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Chapter 1

Introduction

Large-scale computation, involving computer systems made of thousands of

networked compute nodes, has had an undeniable impact on how we live. The

influences of the Internet and cloud services are pervasive in modern American

society. Big science is dependent on cluster computing to gather and analyze

experimental data as well as simulate phenomena. Marketing and national security

depend on large scale computing to monitor, analyze, and correlate human behavior.

Extremely large computation platforms come with extremely high operational

costs. Private individuals do not experience the cost of Internet connectivity or the

services used, as the costs are amortized over all users. The vast majority of the

Internet functionality is housed in massive data centers distributed all over the

world and connected by bundles of wired and wireless links, any of which may span

thousands of miles. Initial procurement of facilities, hardware, and network links

carries substantial cost and must be done prior to activating a system. Network

links and computing hardware must be continuously maintained and power costs are

incurred on an ongoing basis. Owning organizations directly experience these

capital and operation expenses and must allocate their finite financial resources to

cover them.

High Performance Computing (HPC) systems are a special class of large scale

computing platform since HPC systems are designed for completing extremely large

computations and tend to be single-site single-owner systems. Comparison of HPC

systems is typically done by evaluating their rate of computation, measured in

Floating Point Operations per Second (FLOPS). Current top systems operate at 10s

of petaflops1. The power consumed to reach these speeds is substantional, with

some systems exceeding 10 megawatts. A common estimate, as of the time of this

1One petaflop is 1015 flops.
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2 CHAPTER 1. INTRODUCTION

Attribute 2010 2018 Increase
System Peak 2 Pflops 1 Eflop O(1000)
Power 6 MW 20 MW O(10)
Memory 0.3 PB 32-64 PB O(100)
Node Performance 125 GF 1-10 TF O(10)−O(100)
Node Memory BW 25 GB/s .4-4 TB/s O(100)
Node Concurrency 12 1-10k O(100)−O(1000)
Total Concurrency 225 000 109 O(10000)
Total Node Interconnect BW 1.5 GB/s 200 GB/s O(100)
MTTI days 1 day −O(10)

Table 1.1: Table showing the estimated properties of first generation exascale systems
compared to 2010 petascale systems.

writting, for machine energy costs is roughly one million USD per year per

megawatt, indicating that some top systems cost over 10 million USD per year to

power2.

Higher-level organizational objectives ultimately drive spending, not merely

technical goals. For commercial organizations, these priorities tend to be driven

heavily by profitability since profit is required for continued existence. For

governmental organizations, these priorities tend to be driven by the organizational

mission, providing the justification for that entity’s funding. In either case, the

computing systems are subservient to and require justification based on their ability

to support these high-level priorities. Deployment of a technical solution introduces

additional risk management concerns to the organization, since theft, loss, or other

disruptions may threaten the organization’s overall ability to operate. Given that

organizational funding is limited, a computing solution may be too expensive for

adoption, regardless of technical merit.

The US Department of Energy (DoE) is a major consumer of HPC systems.

These systems are used to support a national security mission via advanced applied

and fundamental science activities. Current DoE exascale initiatives are driven by a

desire to support more and larger science efforts. Table 1.1 is a familiar table for

HPC researchers3 regarding the challenges moving from 2010 petascale systems to a

2018 exascale target. Many of these challenges appear similar to scaling in industry

and are potentially addressable via the horizontal scaling strategies in industry:

2As of November 2015, the Tianhe-2 is listed as the world’s fastest computer according to the
Top500 list [1]. The system is reported to consume nearly 18 MW. RIKEN, in fourth place on the
Top500 list, is reported to consume over 12 MW.

3The table’s origin is sometimes attributed to Pete Beckman.
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concurrency, fault remediation, and interconnection bandwidth. One major and

confounding new design challenge for HPC is an administrative, more than

technical, restriction that the computer have a finite power budget that grows

significantly slower than the compute performance.

Current HPC systems are power over-provisioned, meaning that power

infrastructure and procurement are sufficient to safely run the system at peak

theoretical power consumption. One proposed strategy to achieve exascale is to

build a hardware over-provisioned system, meaning that there is more hardware

available than can be simultaneously powered. Hardware over-provisioning

introduces a new organizational risk since a full computational load would induce an

unsupported rate of energy consumption, potentially damaging the computer and

power infrastructure. To address the new risk, new power aware resource

management systems will be needed to guarantee total power consumption remains

safely within bound, protecting the system from damage, while simultaneously

optimizing performance to align with other organizational priorities.

There is a practical tension between what can be done and what an

organization can afford to do. New technical solutions will likely be needed to

operate future systems in alignment with management constraints and priorities. In

the next three chapters we will look at three Computer Science (CS) topic areas

that are likely relevant for the design and implementation of these solutions.

1. Information Flow Processing (IFP) - Research that could be used for

collecting information needed to manage a large scale-computer system.

2. Scheduling - Research into matching work and resources.

3. Energy/Power Aware Computing - Research looking at a major operational

cost for HPC computing platforms.
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Chapter 2

Information Flows

Effective system management requires visibility into the system state. A continuous

flow of information regarding the system’s current state is required for management

to detect issues needing remediation and inform future decisions. Simple questions

in an High Performance Computing (HPC) system , such as “have any nodes

failed?”, requires collection of some data indicating liveness across all nodes. More

complex questions, such as “Are the failed nodes due to node level or rack level

faults?”, require both collection and correlation of data across many nodes. Ideally

information regarding system state is rapidly available to management. Continuing

with the node failure example, if events are received indicating a node will soon fail

then management could proactively reassign the work and avoid interuption.

Information Flow Processing (IFP) helps to address the visibility challenge by

providing capabilities to gather data from a large number of sources and perform

some processing as the data moves to interested sinks.

Cugola and Margara [13] unify Complex Event Platform (CEP) and Datastream

Management System (DSMS) research under the unified topic of IFP. An IFP

system, according to Cugola and Margara has a number of distributed sources from

which information is processed as the data moves towards a sink1. Stonebraker,

Centintemel, and Zdonik [60] enumerate 8 desirable properties for IFP systems

motivated by latency and usability. The data flow or flows are typically processed as

the data moves through an overlay network to address challenges associated with

data volume or timeliness constraints. Hirzel et al. [25] enumerate twelve

transformations on the flow processing graph that may be useful in performance

optimization.

1A single sink seems overly restrictive, and may be broadened to include systems where there are
multiple sinks.
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Researchers working on IFP often dismiss traditional relational database

management system (RDBMS) solutions, including active databases, as being too

slow [13, 60]. The position is unfortunate since modern RDBMS solutions, with

insert triggers and asynchronous queues, are capable of behavior like a centralized

DSMS. An IFP system built on Oracle’s RDBMS will be briefly discussed in section

2.4. The program analysis community, until recently, has been similarly dismissive

of using traditional databases in program analysis due to a similar belief in poor

performance 2. While soundly outside of the scope of this research, there is reason

to believe properly configured RDBMS’s may be suitable for IFP applications.

2.1 Simple Event Processing

A simple example of IFP is a pure publish/subscribe system. The only processing

provided by the system is a null transform on the data. Generally,

publish/subscribe systems do provide filtering on event fields. Differences in the

structure of publish/subscribe overlay, filtering strategies, and routing strategies

lead to differences performance and service guarantees.

Hermes [54] provides a distributed publish/subscribe system using an event

forwarding tree. Events are typed, defining the fields expected in events, and a node

is elected as the root for each event type. Event publishers and subscribers are

arranged in a tree shaped broker overlay per type. Publication advertisements and

subscription filters propagate toward the root. Published events propegate toward

the root and each intermediate broker with a matching filter propagates the event

along the reverse path of the subscription.

CIFTS [23] describes a publish/subscribe system targeting log like data in HPC

systems. Subscribing clients are connected to a static tree of brokers. Publishers

send events to brokers asynchronously, which are delivered to each subscribers’

queue. Each subscriber is responsible for polling their queue to detect and read

incoming events. In addition to filters based on event contents, CIFTS supports

event namespaces, which effectively define named event streams.

2In the 1980s Linton [41] used a relational database as part of an analysis tool and commented on
the advantages of an RDBMS for reasoning and structuring his solution as well as the performance
challenge. Databases have been effectively absent from the program analysis literature until recently
where datalog has been used for efficient points-to analysis [37, 59, 4].
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2.2 Complex Event Platforms

CEP systems typically target environments where there are a large number of

atomic event sources and analysis of event patterns is required to indicate that some

action should be taken. A publish/subscribe style interface for event producers and

consumers is generally provided by the system. Event sources publish events to the

CEP and event consumers subscribe to the CEP for events of interest. Usually the

internal structure of events are unspecified or underspecified by the platform to

allow for flexibility. Mechanisms are also provided within CEPs to describe how to

generate “complex events”, events composed of other events, based on the patterns

in the event stream.

Carzaniga, Rosenblum, and Wolf [10] present a distributed CEP platform,

SIENA, supporting efficient untyped event notification. Sources and sinks interface

via a broker network that handles event filtering and pattern detection, based on

event content, as events flow through the overlay. Prior to publishing an event, an

event source must advertise a filter that matches all events that might be published.

An event sink will subscribe to a broker with a pattern describing the events the

sink is interested in. Coversets, encapsulating advertisements and subscriptions, are

propagated between brokers to generate routing information for efficient event

forwarding. Follow-on work improves routing performance by reducing the number

of times filter conditions must be evaluated to make the routing decision[11] More

complex predicates, such as 2D spatial filtering have also been added to SIENA [35].

PADRES [40, 30] provides an IFP platform to efficiently generate composite

events. Subscription and event routing are managed via rules distributed through

the broker overlay. A rule describes the relation between fields of one or more

events, using logical AND or OR operators to chain together multiple constraints.

Additional PADRES features include an SQL-like query language for subscription

and persistent event stores to support new subscriptions involving historic data.

Apache Storm [42] uses a data flow abstraction for data processing that can be

adapted to provide CEP like services. Computations are defined using a directed

acyclic graph of operator elements, referred to as “bolts”. Events enter Storm via

spouts, traverses the bolts in the data flow graph, and exit the system as new

events. Bolts are arbitrary code and can perform any operation on the data flowing

through the bolt.

Over the past decade a team at Georgia Tech has been working on a framework,

named EVPath, designed to facilitate rapid construction of CEP overlays for
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HPC [18] and data center domains. ECho [17] uses EVPath for construction of a

publish/subscribe system for HPC systems based on typed events and event

channels. Monalytics [36, 66] uses EVPath to implement a realtime datacenter

monitoring platform. Flexpath [14] supports the construction of scientific workflows

by interconnection of scientific codes using ADIOS [43] for IO via an IFP overlay.

ADIOS with Flexpath treats data writes as events and uses the overlay to route

write events to the correct readers.

2.3 Streaming Databases

Datastream Management Systems (DSMSs) typically target environments where

there are a number of tuple streams that must be correlated in realtime to support

some action. A query language is usually provided to allow sinks to express the data

of interest and the DSMS then encodes the query into the overlay. The queries can

be thought of as running continuously, as each new record received by the DSMS

flows through the processing overlay and potentially causes a new result to be

delivered to the sink. Records typically have a well defined schema and each stream

represents one type of record.

Arasu, Babu, and Widom [5] propose and implement a continuous query

language, CQL, for interacting with DSMSs. CQL is based on the relational algebra

constructs of SQL and also supports mixing tuple streams with traditional relational

tables. Streams in CQL are conceptually mapped to tables using windows, a window

is a set of tuples over some interval within the stream. Referencing a stream within

a query involves providing the stream’s name and a window specification. Derived

streams, streams resulting from CQL queries, may be referenced in other CQL

queries and must provide a stream type that informs which tuples are returned.

Aurora [12] uses a conceptual model involving boxes and arrows, which

respectively contain transformation operations and connections between boxes, to

implement continuous processing of information flows. Data flowing through Aurora

is represented as tuples and the processing graph must be loop-free. Load balancing

is achieved by migrating boxes between compute resources and potentially mutating

the processing graph with stream splits and joins. To support failure recovery in

distributed environments, lazy deletion of tuples allows for retransmission and

recomputation when a failed box is reinstantiated. Aurora’s authors also mention

quality of service (QoS) concerns when designing the load shedding and latency

estimation features.
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SASE [67] considers the flow processing problem as execution of table based

queries over temporal windows. Queries in SASE express tuple patterns of interest

and executing a SASE query returns complex events composed of the tuples

generating the match. An interesting feature of the SASE event language is the

inclusion of event negation, querying for patterns involving the nonexistence of

particular events. SASE uses a query planner to generate the necessary predicates

and state machines for phases of the processing pipeline. SASE’s authors cite the

assumption of global total temporal order and the inability to use the output of a

SASE query as a tuple source as limitations of their design.

Cayuga [16] considers the flow processing problem as being similar to string

processing by finite automata. Cayuga Event Language (CEL) is an SQL-like

language used in Cayuga to describe, based on some set of named tuple streams, a

desired output tuple stream. CEL queries are compiled into automata by the

Cayuga engine. At runtime Cayuga has only a single instance of each automata but

keeps bookkeeping data to track conceptually concurrently executing instances of an

automata. The restriction that tuples be processed in global temporal order seems

like a challenge for scaling Cayuga.

2.4 Other Systems

Between 2005 and 2011 I worked on several commercial systems that fit in the IFP

space and had committed timeliness and data volume requirements in the system

service level agreements (SLAs). These systems used a three layer design and

microbatching strategy for event ingestion and a traditional clustered RDBMS to

present the data to consumers. Events were received or pulled from the source

systems, using the source’s preferred protocol, by the extractor layer. The extractor

layer would timestamp and give a unique identifier to each record before passing the

events to the formatter layer. The formatter layer would convert the batch of events

to database rows that could be quickly ingested by the database and flag event data

that did not match the expected schema. The load layer would add the formatter

output to the database tablespace, update partitions, and start any postprocessing

processes required for the newly ingested data. The 2005 production deployment

was scaled to ingest 2.5 TB of data per day at an insertion rate of over 30k events

per second with a maximum 40 second SLA on time from extraction to availability

in end user reports. Internal experiments conducted with the 2005 deployment

reported near linear weak scaling for the tested node counts and data volumes with
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response times well under the SLA.

Cache [61] is a centralized IFP system that provides both event and RDBMS

like interfaces. Cache is designed to support high performance complex event

processing through the registration of automata within the Cache server. Automata

in Cache are written in a C like language and may inject new events or send data,

via a network socket, to the process that registered the automata. As new events

are inserted into Cache, automata associated with the effected tables are triggered

and run asynchronously in other threads. Each event received by Cache is stored as

a record in a ring queue based on insertion time, where the specific queue is related

to the event type. The ring queues can be interacted with like tables in a traditional

RDBMS via SQL, with the conspicuous lack of the join operator.

Spark [69] represents big data processing as transformations from a large

distributed data set. “Queries” in Spark are written as an expression of data

transformations. Executing the “query” involves applying the transforms in order

towards the underlying data and caching intermediate results as the data flows

towards the requester. Caching and lineage allows for recomputation when faults

are encountered. The streaming extensions to Spark [70] support streams as

sources, in addition to files, and use microbatching based on event arrival time to

support data processing over windows.

LDMS [2] has recently gotten a lot of attention in the HPC space. The

monitoring system provides support for high fan-in3 metric collection across an HPC

machine using a tree shaped overlay. A plug-in model is used for extending the

samplers to collect new metrics as well as extending the supported output formats.

The LDMS aggregators are located on separate nodes from the monitored workloads

and polling is used to retrieved data from children. A child may simultaneously

participate in several overlays, with aggregator polling intervals being individually

configurable. The only aggregation model discussed is effectively concatenation.

MRNet [55] also provides a tree shaped overlay for aggregation and has been

used by several projects in the HPC space [55, 39, 6, 46]. Agelastos et al. [2], in the

related work section, argue the superiority of LDMS for the metric collection

activity due to a better alignment of LDMS features (compared to MRNet’s

features) in LDMS’s deployment context.

3High fan-in refers to enviroments where there are a very large number of sources all sending to
one sink.
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2.5 Other Concerns

Event generation is assumed to be asynchronous across sources. In environments

where system clocks are well maintained and the time tolerances are wide enough4,

source generated timestamps can be used to provide a global temporal partial order

on events. Latencies in event propagation add an additional challenge for pattern

matching involving event order since events may not be received in the globally

agreed temporal order. Correct ways to address temporal issues are unclear due to

potential impacts on the competing design goals of correctness and responsiveness.

Deployment of a single IFP platform across many users may introduce security

concerns since not all events should be directly shared with all users. CS-DSMS [68]

targets shared data centers where conflicts of interest exist between users.

CS-DSMS event streams carry a vector describing the security level of the data

within the event stream. The security vector of the querying process must dominate

a stream’s security level to include the stream’s data in a computation. Minami et

al. [44] describe a publish/subscribe system, with event aggregation support, where

a publisher defines an access control list (ACL) to control which nodes may

subscribe directly to or receive aggregates based on the publisher’s events.

Direct performance comparison of solutions built on general purpose IFP

system to specialized solutions may be unfair. For a single application with tightly

coupled data collection, using highly optimized communication primitives like those

provided by MPI [62, 26] will almost assuredly be more performant than using a

more general flow processing solution. IFP platforms allow collected data to be

reused across multiple consumers, potentially amortizing the collection and

transport costs across many concurrently executing applications. The value

proposition for IFP within a solution’s design must consider a broader view of

implementation context than the specific solution being built.

2.6 Takeaways

In context, system wide management problems are multi-dimensional and

crosscutting. IFP systems provide a way to flexibly collect and distribute

information across application boundaries and distributed execution environments.

The performance information useful for resource management within a system can

4Technologies such as NTP are able to support clock synchronization on the order of 10s of
milliseconds and other techniques can reach synchronization within microseconds [31]
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be thought of as an event stream with events generated at the sampling interval for

monitored resources. Systems like PTRADE [28], if extended to observe and

optimize machine wide performance, would likely benefit from having realtime

visibility into configuration effects across the machine. Systems like Argo [53] could

use an IFP-like information service to avoid multiple collection of metrics in the

presence of multiple resource managers, running in parallel or hierarchically.

Intuitively, distributed IFP solutions feel unavoidable at scale. Increasing data

volumes should overwhelm centralized solutions due to bandwidth and compute

resource limitations, yet the complexity of distributing the processing appears in

many cases to overcome the anticipated gains from distribution. Results from

Ellsworth et al. [19], Koliousis and Sventek [34], and experience industry indicate

centralized solution can perform reasonably well at fairly large scales. The Koliousis

and Sventek [34] paper is germane since the DEBS challenge specifically targets the

IFP solution space and Cache was able to outperform the other IFP platform

submissions. More work is likely needed to understand how to model performance

and cost to understand when and in what environments the overhead of distributed

IFP can outperform more centralized processing. Additionally, a closer look at

performance evaluation criteria may be warranted since an application with

specialized data collection will most likely outperform solutions incurring the

overhead of a generalized IFP solution.



Chapter 3

Scheduling

Scheduling, as a general problem area, can be described as matching work to be

done with resources to accomplish that work. The association is commutative;

scheduling can equivalently be described as matching resources to accomplish work

with work to be done. Using either description, there will be constraints on the

resources or work available that restrict the set of possible schedules. Ideally the

work and resources will allow a schedule to be found that fits within the constraints.

Practical scheduler implementations cannot rely on knowledge of such a schedule a

priori and must be able to handle overloaded conditions; conditions in which there is

insufficient resource or insufficient work.

Algorithmically, scheduling can be presented as a packing problem where the

units being scheduled are the things to pack. Given some set of things to be packed

and a structure with constraints to pack them, can all of the items be packed? The

knapsack problem is perhaps the canonical articulation from the algorithms

community. In the general case, computing decidability for the knapsack problem is

NP-complete. The optimization problem, determination of an optimal packing, is

NP-hard in the general case.

3.1 Work to Resources

A common approach to scheduling is to start from the computation work to be

done, at some granularity, and assign that work to the available resources. Common

granularities in High Performance Computing (HPC) literature are jobs and tasks.

In other areas, processes and threads are common granularities for work scheduling.

Some runtime systems suggest implementers over-decompose computations into

units of work too light or too numerous for standard OS threads, such as Charm++

13
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“charms”, with the expectation that the runtime can better utilize the hardware

through scheduling the smaller work units.

Handling overload, when work scheduling, is generally handled by queuing work

to be done until resources are available to service the work. The problem of

scheduling is thus often recast from a packing and optimization problem to a

queuing problem. Queue the work to be done, then dequeue and assign work to

resources as the resources become available to service the work. Specifics of how the

queues are emptied determine the properties of the schedules produced.

3.1.1 Jobs

Jobs generally represent complete computation activities that do not depend on

other concurrent computation activities. A job description or script will enumerate

the resources required, the specific computations to run, and the data to use.

Structured as independent and encapsulated units of work, jobs have nice properties

for scheduling since they can be run whenever resources are available and the

scheduler makes the assignment. Often the job scheduling problem is evaluated with

respect to FIFO queuing, commonly referred to as First Come First Served (FCFS)

in the job scheduling literature. A priority queue can be used instead of a FIFO

queue without loss of generality and enables scheduling based on properties in

addition to submission time.

Modern schedulers are parallel job schedulers as opposed to pure batch

schedulers. In pure batch scheduling systems, only one job would be allowed to run

at a time on the system. Parallel job scheduling allows jobs from the queue to be

run concurrently if sufficient resources are available. When the highest priority job

in queue cannot be scheduled due to insufficient resource availability, backfilling

schedulers will scan ahead in the queue for jobs that will fit in the available

resources and not overly delay the start time of the highest priority job in queue[21].

Most users of HPC systems interact via a job scheduler, such as SLURM or

Torque. Important parts of the job resource description on these systems typically

include the number and types of resources needed for the job, the expected runtime

of the job, and the account to charge the machine time against. Estimated runtime

can be used to allow the scheduler to use backfilling to reduce the time to launch

while mitigating against starvation issues that backfilling introduces. Associating an

account for chargeback with each job supports priority queue disciplines where the

value of the job to the organization owning the machine can be included as a factor
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in scheduling. These job schedulers are designed for HPC job profiles, which tend to

involve jobs that use a large number of nodes for long periods of time.

Sparrow [47] targets environments where jobs involve multiple nodes but each

job is expected to be short, a job profile aligning with Hadoop and Spark queries.

Jobs are expressed to Sparrow as a sequence of tasks to be executed by workers.

Sparrow uses a set of uncoordinated Sparrow schedulers sharing a pool of workers.

At schedule time, workers are sampled to determine worker workload and tasks are

distributed to sampled workers with least load. Since the Sparrow schedulers are

almost stateless, scheduler failure is handled by resubmitting the outstanding tasks

to one of the live schedulers.

3.1.2 Tasks

Within a parallel job or parallel program, the work can be subdivided into tasks.

Tasks are units of work that may depend on one another. The task scheduler is able

to concurrently schedule any tasks where the dependencies have been met. Since the

tasks that can be scheduled may evolve during runtime, task scheduler logic must

often run during program execution. Overheads are incurred against execution by

the time taken to make the scheduling decision and time need to move the

associated work. In simple cases, tasks may be assigned to compute resources at

task generation time such that each compute resource has an equal number of tasks.

A simple example of parallel tasks would be the body of a PARALLEL FOR

loop. When the “loop executes”, a task is spawned for each time the loop body

would be executed serially. After the tasks are spawned, the runtime can execute

the tasks in parallel across the available compute units. Once all of the tasks

representing the body of the loop have completed, the task containing the

instructions following the loop can be scheduled for execution.

In addition to scheduler overheads, task scheduling carries challenges due to

load imbalance. A seemly natural approach to task scheduling given c compute

units and t tasks, where t� c, an equal number of tasks could be assigned to each

compute resource. At a practical level, even in the presence of tasks with equal

compute cost, data access costs can lead to significant performance variation

depending on which compute resource a task is assigned to. In the general case the

cost of a task cannot be computed a priori since this would effectively require

solving the halting problem. Assigning an equal number of tasks to each compute

resource can result in imbalanced load if some resources become idle (unloaded)
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while other resources still have tasks in queue.

Work stealing is a task scheduling approach in which unloaded compute

resources take tasks from queues located on other more loaded compute resources.

In a centralized formulation, there is a global work queue containing all of the tasks

to be performed. When a compute resource has capacity, the compute resource

requests work from the central work queue. In a diffuse formulation, the centralized

work queue is replaced by the work queues of some number of neighbors. For either

formulation, a compute resource may request additional work in advance to hide the

latency involved in migrating the task.

The sandpile scheduler [38] is similar to work stealing but is proactive on task

reallocation. In sandpile scheduling, task queues are arranged as an undirected

graph, which the authors suggests should be a small world graph. Each scheduling

cycle, the queue depths are exchanged by neighboring nodes and tasks “avalanche”

from deep queues toward shallower queues. The sandpile approach is diffuse and the

authors indicate rapid convergence to a near optimal schedule for their experimental

test sets.

Zheng et al. [71] investigates a hierarchical approach to load balancing for

Charm++. Load balancers are arranged in a rooted tree, where all nodes are

balancers and leaves are tasks. Tasks are represented by tokens, held by the parent

load balancers, allowing the load balancing computation to be done without directly

operating on the tasks. At the end of a scheduling cycle a global collective is used to

request work from the formerly owning leaf scheduler to scheduler currently holding

the token for the task. Reported experimental results indicate that the hierarchical

approach can produce application load balances similar to a centralized approach

with less wall clock time lost to overhead.

Pearce has done considerable work in the space of load balancing for HPC

codes. These codes involve simulation of physical phenomena and tend to have

spacial geometry. In simulations where tasks represent a spacial volume within a

mesh, the amount of work associated with a cell may change over time as the

simulation progresses1. The scheduling challenge involves distributing imbalanced

tasks across the compute resources so that all resources have approximately the

same amount of work or modifying tasks such that all tasks contain approximately

1We may consider the case of simulating ping-pong balls bouncing within a box. The box is
divided into a mesh of cells and a task encapsulates the simulation work to be done within a
particular cell. As the ping-pong balls move through the simulated volume, the balls move between
mesh cells. Mesh cells with a higher density of ping-pong balls will require more compute resources
since there are more interactions to compute.



3.1. WORK TO RESOURCES 17

the same amount of work.

Pearce et al. [51] suggest traditional load imbalance metrics provide little

utility for selecting a balancing algorithm. The traditional metric for load imbalance

considers the ratio of the most loaded component to the average load, λ = Lmax

Lavg
.

Statistical moments might also be considered for load imbalance metrics but Pearce

argues statistical moments provide little insight to guide balancing algorithm

selection. Using an element-aware load model, where compute load and work

element costs are reported, the performance of the load balancing algorithms can be

estimated by the scheduler. Results from the work indicate the model selects the

best algorithm in almost all cases.

Pearce et al. [50] investigate load balancing in N-body simulations using an

approach built on hypergraph cuts, motivated by the insight that the compute work

is related to the number of interactions rather than the number of particles within

the task. An N-body simulation computes the state of a physical system based on

the pairwise interactions between bodies within the simulation (e.g. location of the

planets in a solar system based on gravitational interaction). Bodies can be thought

of as vertices within a graph and interactions as edges within the graph. In the

hypergraph, weighted vertices 2 represent adjacent edges from the initial graph (e.g.

interactions that share a body) and edges represent both the body and the body’s

interaction edges. The scheduler partitions the hypergraph, with the objective of

having an equal vertex weight in all partitions and a minimal number of cuts, then

assigns a partition to each worker process. Adaptive sampling is used to

substantially reduce the size of the hypergraphs constructed and the authors report

a significant performance improvement using their approach.

In Decoupling Load Balancing [52], Pearce et al. suggest decoupling scheduling

activity from simulation activity. Classically, a simulation pauses after a number of

iterations to execute its load balancing computation on the same resources being

used to compute the simulation. In the proposed decoupling, processing external to

the simulation is used to asynchronously compute a new work distribution based on

information periodically sent by the simulation. An additional benefit of the

decoupling is the ability to scale the scheduler and simulation compute resources

separately. New assignments are determined by the scheduler and are applied lazily

by the simulation. The initial experimental results use simulation runs with 65k

compute processes and achieve a load imbalance of under 5% while reducing the

2The paper was not clear on how the vertex weight is computed. I would guess the weight is
related to the number of edges the vertex represents in the initial graph.
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scheduler overhead by a factor of 15.

3.2 Resources to Work

The schedulers had control over when and where work was done in the previous

section. The resources were fixed and the work was distributed across the resources.

The scheduling problem considered in this section involves contexts in which when

and where the work occurs is outside of the scheduler’s control. The work to be

done concurrently is fixed and the resources are distributed across the work. While

these both appear to be sides of the same coin, the inability to directly delay work

makes queuing strategies less applicable.

Allocating RF spectrum appears to be a resource scheduling problem. The

bandwidth of the underlying medium is the resource to be scheduled and is

partitioned by frequency. The scheduler is allowed to assign frequencies to

transmitters. Work is not controlled by the scheduler, when and who transmits is

determined by the transmission source. Only a single transmitter by use the

resource at a time, concurrent use without additional protocols would results in

garbled transmissions.

Circuit switched networks provide another example of resource scheduling. A

simple circuit switched network contains a finite number of links (resource) and each

link may participate in only one circuit at a time. The network has little control

over the work done by an end point or when and which end points will

communicate. During the setup phase of the connection, the network reserves

(schedules) links for use by the requesting end point. If insufficient resources are

available, the network must reject the connection attempt but the work bears the

responsibility of choosing to fail or retry the communication.

Store and forward packet switched networks, like IP networks, do not fit this

model for resource scheduling. Conceptually, each router in a network is a node in

the network with a number of interfaces/links (resources). Each packet received by

the router is a work unit that must be scheduled on a link. The packets (work) can

be held in queue until the resource becomes available to assign the work to; violating

the constraint that the scheduler has little control over when the work executes.

quality of service (QoS) and Software Defined Networking (SDN) features erode this

objection as both technologies enable packet switched network configurations that

share some resource reservation qualities found in circuit switch networks.

In Hedera [3], a central scheduler assigns physical network paths to logical
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network flows and can be implemented using SDN. An optimal schedule is one in

which no flow is network limited, however Hedera does not attempt to schedule the

bandwidth associated with the flows. Underlying packet queuing and retry

mechanisms within the network handle the case of overload Equal-Cost Multi-Path

forwarding (ECMP) is used as the performance baseline for comparison, the ECMP

strategy has each router independently select from multiple outgoing interfaces

based on a hash computed from the packet header. Evaluated Hedera strategies

include a greedy first-fit strategy and a simulated annealing strategy. The work is

evaluated experimentally and in simulation, showing improvement in resource

utilization.

Sharma et al. [58] use QoS mechanisms to support bandwidth reservations for

bulk data transfers across networks. Reservation requests indicate the amount of

data to transmit, when the data will be available for transmission, and a deadline

for when transmission must complete. The domain controllers coordinate across

network boundaries to schedule bandwidth for the transmission, which the local

request schedulers instantiate via network QoS configuration. Cases where the

network may provide bandwidth exceeding the disk bandwidth are considered and

addressed by including a maximum rate in the reservation request. When a

bandwidth reservation cannot be made for a reservation request, the request is

rejected and no bandwidth is reserved.

In POWsched [20], a central scheduler assigns power to physical processor

sockets. An optimal schedule is one in which no socket is power-bound during

execution, however POWsched does not attempt to schedule work on the sockets.

Overload has the side effect of reducing runtime performance since the processor

must down clock to maintain the assigned power bound. Power scheduling is done

using a simple closed loop control strategy, distributing power from under

consuming sockets to sockets that appear power bound. When insufficient power is

available, POWsched attempts to converge to a fair share power allocation across

power bound sockets.

3.3 Interference

Most work directly on scheduling considers the entirety of the scheduled units being

isolated and unshared. Using an abstraction with noninterference between units

makes reasoning about behavior and structuring solutions easier. In real systems

the environment is rarely so clean. Scheduling exists because the system resources
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are shared.

Kambadur et al. looked at performance interference between processes sharing a

core with Google’s production systems[33]. Their work indicates that the runtime

perturbation, measured as standard deviations of instructions per cycle, of

co-resident work differ significantly depending on the co-resident application. The

result is, on the one hand, intuitive due to the expectation that some local resources

will be contended. On the other hand, the perturbation reported is unexpectedly

asymmetric and not maximized by running two instances of the same process.

Breslow et al. [9] assume that a scheduler can concurrently execute jobs from

multiple users on a single node. The work is motivated by insights that coresident

processes from different applications, in some cases, can improve global system

performance in energy efficiency. At the node level the collocated processes compete

for resources and perturb performance, which presents a challenge for the dominant

chargeback model based on node compute hours. Their tool, POPPA, samples

collocated job performance and allows for fairer chargebacks.

Bhatele et al. [8] investigated performance in terms of runtime for an HPC

workload. Their work highlights the inconsistency of performance in the presence of

a shared network substrate. The results of running the code on BG/Q architectures,

in which each job has a dedicated block of the system, is extremely consistent

compared to the same code run on a Cray XE6 using a Gemmi network, which is

shared by all jobs.

While rarely talked about in scheduling literature, security is also a practical

consideration for scheduling of shared resources. Isolation is a foundational design

principle for risk mitigation and reliance on the abstraction may introduce

insecurity. Colocation of two work items on a resource allows each to infer

information about or perturb the operation of the other, often impacting

confidentiality or availability properties. In security contexts where strict separation

between users and between work units is a requirement, the amount of leakiness of

the scheduling abstraction on the system should be considered in risk assessments.

3.4 Takeaways

Schedulers must have some mechanism to handle overload if they are to practical.

Ideally a schedule exists that allows all work and resources to be satisfactorily

assigned, however for many real cases no such schedule exists or is infeasable to

compute. Work scheduling generally handles the overload problem using queues and
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often describes scheduling in terms of queue management. Resource scheduling has

little recourse in the event of overload other than flat out denial of resource access

or providing a fraction of the requested resource. Smooth handling of overload in

resource scheduling requires the work have an ability to adapt to the assigned

resources.

The majority of work surveyed on scheduling is from the HPC community and

tends to be focused on work scheduling approaches. Limited work on resource

scheduling within the community seems reasonable given that HPC has classically

had few realtime constraints, allowing under runs to be handled by delaying the

computation. Power is a fundamentally different resource to schedule since an under

run of power can cause the computation to be incorrect and physically damage the

hardware. Future HPC scheduling work will likely have a greater focus on realtime

constraints due to current community interests in power, in-situ visualization, and

in-situ analysis.

Problems and approaches from the networking community for streaming media

were not included in the literature survey due to the focus towards HPC. Scheduling

bandwidth resource for adaptive streaming work likely has similar properties to

scheduling power resource to compute work. Like power, excess bandwidth above a

threshold cannot improve stream quality and bandwidth beneath a threshold results

in quality issues. Future scheduling work in HPC might be able to benefit from

looking at existing work regarding media streaming.
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Chapter 4

Power and Energy

As a by-product of their operation, computers convert electrical energy into thermal

energy. A major contributor to energy consumption and heat generation within a

computer is transistor switching. Each transistor converts a small amount of energy

to heat when changing state, the amount is related to the voltage and switching

frequency. Additionally, some energy is lost due to leak current. A model to

describe the power loss due to switching is W = ηCV 2f [15]; the watts W lost are

directly related to the square of the voltage V and the frequency f of switching.

Voltage and frequency must be increased together, resulting in a nonlinear

relationship between watts and instruction execution speed dominated by the V 2

term. Power lost to leak current is also related to the voltage [15].

Energy constrained and power constrained computing are separate but related1

problem spaces. Energy constrained computing captures cases where the number of

joules available for computation are limited. Much of the energy work in the mobile

computing space is focused on how to maximize the amount of computation

available before depleting the battery. Data center green computing also tends to

focus on energy constraints to meet an energy bill target or reduce the energy cost

associated with operating the data center. Power constrained computing captures

cases where the rate at which joules can be accessed is limited. In the power

constrained computing environment, the system is typically connected to the power

grid (effectively unlimited energy) with the local substation and physical power

distribution infrastructure limiting the rate at which power can be moved to

compute components. Work on power constrained computing is not common yet,

but is starting to appear in the HPC space due to the challenges involved in

supporting the maximum power draw of all components.

1We highlight that power in watts is defined in terms of joules: W = J
s

23
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There are two primary low level techniques for energy and power control

exposed to software: dynamic power management (DPM), and dynamic voltage and

frequency scaling (DVFS). Hardware that supports DPM allows software to make

the processor go into low power sleep mode, greatly reducing the number of active

transistors. The sleep mode results in minimal power consumption but halts

computation. Hardware that supports DVFS allows software to adjust the voltage

and frequency of the processor. Reducing the clock frequency may or may not

impact application runtime due to the latencies involved in memory access; at a

higher clock speed the processor will incur the power cost of higher voltage while

executing no ops until data arrives from cache or the bus.

While DVFS results in reduced power consumption over the maximum clock

speed, DVFS does not guarantee a particular power consumption is not exceeded.

Work published in 2002 by Minerik, Freeh, and Kogge [45] demonstrate the ability

to achieve consistent power consumption under a general purpose operating system

using frequent DVFS setting changes. The authors design and describe their

technique using the problem of meeting a battery life goal in a laptop. The battery

life goal is achieved by using DVFS to tune for an average power consumption that

aligns with the energy target. P =
E0−Ef

T
where E0 is the initial battery energy, Ef

is the final energy, and T is the desired time to reach Ef from E0. The model can

be extended for settings where the battery is being recharged while the power

control is running.

Intel’s Running Average Power Limit (RAPL) uses a technique similar to the

one described by Minerik, Freeh, and Kogge [45], in addition to other proprietary

techniques, to allow software to set a power limit that the processor will not exceed.

Rountree et al. [56] and Inadomi et al. [29] look at the effect of RAPL across many

identically configured nodes executing the same benchmark. The work shows a

significant difference in runtime performance between nodes when executing the

same benchmark at the exact same power bound. Differences in runtime are

attributed to subtle manufacturing variations between processors. While not

explicitly stated, these variations in performance encourage Ellsworth et al. to

schedule power per socket rather than per job or node[20].

4.1 Energy Aware Computing

Energy aware and green computing are umbrella terms for techniques and

technologies that reduce the energy used to complete a computation. Reducing the
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energy used to complete the same computation, within the time envelope, can result

in lower operating costs. Much of the work in this space has a distinct optimization

focus and is a point of similarity between embedded computing and HPC. The

underlying problem can be stated as “given that energy has a cost, how can the

energy cost be minimize and the system still complete the work?”

Battery operated realtime systems have hard operational constraints involving

guaranteed maximum latency and battery longevity. Bambagini et al. [7]

investigated the energy consumption properties of using DVFS and DPM and

proposed a power scheduling solution for energy limited realtime systems. The

schedule attempts to run the computation phases at the most energy efficient

setting that meets the realtime deadline (DVFS savings) and simultaneously

attempts to maximize the idle time between computation (DPM savings). A limited

preemption model is used to reduce switching overheads when compared with fully

preemptive scheduling and to avoiding deadline issues possible under fully

nonpreemptive scheduling. Experimental results indicated that their hybrid DPM

and DVFS solution outperforms DPM or DVFS only solutions.

In Adagio, Rountree et al. [57] look at reducing energy consumption of HPC

applications while maintaining runtime performance using DVFS. The Adagio

authors use the insight that in many cases the nodes executing a High Performance

Computing (HPC) application do not arrive at MPI collectives simultaneously,

causing some number of nodes to idle until all nodes have arrived. As the

application executes, Adagio records the time spent between collective

communication and the time spent waiting within the collective. On future

iterations, Adagio adjusts the clock frequency during the computation portion of

execution to reduce the time spent waiting within the collective. Adagio runtime

and energy savings are favorable across a wider range of applications than the other

algorithms mentioned in the Adagio paper.

Green Queue [64] also investigates energy saving for HPC applications using

DVFS. The approach used by Green Queue is considerably more invasive than

Adagio, involving static analysis and traced executions prior to the experimental

execution. While the reported Green Queue results are impressive, with an average

17% energy savings, the results are out of context since the energy and time cost of

executions needed to generate models are not considered. Failure to consider the

total energy costs of the approach may challenge the viability of the work for

adoption since the total cost may exceed the benefit.

Mistral [32], attempts to maintain bounded application responsiveness while
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saving power in virtualized environments. Virtual machine migration, virtual

machine CPU fraction, and powering up/down hypervisor nodes are configuration

actions available to change application power consumption characteristics.

Reconfiguration of the system potentially carries a cost in time and application

responsiveness which is factored in to the decision. A pregenerated table is used to

estimated the cost of a reconfiguration action. Exprimental results in the Mistral

paper show application responsiveness and power consumption are favorable

compared to other techniques.

4.1.1 Computation Energy

A question one might ask is “how much energy is required to complete a given

computation?” Answering this question is nontrivial, in large part due to the

complexity of superscalar architectures and the relationship between power and

runtime. Good models to determine the energy cost prior to execution or models

that are effective without experimentally collected application profiles were not

discovered during the prepation of this survey paper. Several papers already

discussed in this chapter looked at energy cost under different work placements;

these works tend to note that different applications have different power

consumption behaviors but do not attempt to explore the issue. The following

papers pay some attention to this concern.

Work published in 2014 by Vogeleer et al. [15] reports a convex relationship

between energy consumed and computation completed when varying the processor

frequency. The authors spend a significant portion of the paper describing a model

for energy loss that is compared against the experimental results. For the

experiment reported, only a single benchmark is used. The experiment sweeps a

space of frequency settings and input sizes. We observe from their results a

consistent shape to the curve even though the computation per nanojoule can vary

greatly based on input size.

Tiwari, Schulz, and Carrington [63] apply a machine learning approach to

estimate the effect of a given power bound on a computation runtime. Roughly

10,000 compute kernel executions are collected to generate the training set for a

machine learning algorithm. After training the model, the model is used to estimate

application slowdown under a given bound. The authors experiment using only a

single node and report an error of less than 6% between the experimentally

measured and model estimated slowdown due to power bounding of two HPC
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benchmarks. Discussion of the similarities or differences in power consumption

characteristics of the training compute kernels, benchmarks, and real HPC

applications was not presented in the work and it is unclear if the models will

continue to work in the general case or if the number of nodes is scaled.

Dynamic Power Sharing for Higher Job Throughput [19] includes discussion of

an analytically devised model for simulation of application runtime under a power

bound. In the derivation of this model, the author considers an application

execution as an ordered sequence of transistor state transitions and an application

to be modeled by a function of instantaneous power required. Modeling the

application execution in this way allowed introduction of an Instruction Work

metric, abstractly relating the instruction stream to the switching power. The

runtimes reported by the model for execution under bound followed the

experimentally observed trends. While not providing direct insight into the energy

cost of a computation, an estimate of energy consumption using a model of this

form could be produced through integration.

4.2 Power Aware Computing

For large HPC systems the power infrastructure is a major limitation on system size

and in practice large HPC systems rarely run at the maximum power [49]. Patki et

al. propose future HPC systems be hardware over-provisioned, meaning that more

hardware is available than can be powered simultaneously at maximum

consumption [48]. To safely operate such a system technologies such as RAPL are

required to enforce that the aggregate power consumed does not exceed the system

threshold [19].

Fukazawa et al. [22] look at power consumption of a single scientific application

running under different RAPL power limits. Results from Fukazawa et al. indicate

runtime increases nonlinearly beneath a limit threshold and that runtime does not

improve from limits above the threshold. The MHD code studied is also interesting

since there are distinct phases with different power consumption, the results indicate

that power limits only impact the period of execution where an unlimited execution

would consume above the limit. Ellsworth et al. replicate these result using several

HPC benchmarks in Dynamic Power Sharing for Higher Job Throughput [19] and

use the finding to drive the feedback mechanism for per socket power scheduling.

In Exploring Hardware Overprovisioning in Power-Constrained, High

Performance Computing, Patki et al. [48] explore application performance under job
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wide power bound, enforced using RAPL. For the same power bound different node

counts are possible; the job power bound, L, over n nodes is satisfied by any node

level power bound, a, such that L ≥ na. Several HPC benchmark codes are used to

evaluate the effect of bound and configuration on runtime performance. Patki et al.

demonstrate that, under a job wide power bound, execution on the least number of

nodes with the highest power setting never results in the shortest runtime and that

the number of nodes and cores to achieve best performance is application specific.

In later work, Patki et al. [49] consider job scheduling in a hardware

over-provisioned HPC system. Jobs are submitted with a processor count

requirement and a power requirement. The job scheduler explored schedules jobs

based on node availably and may reduce a job’s power, by a configurable percent, if

needed to fit the job within the available resources. The work demonstrates the

ability to maintain a system wide power bound and improve job turn around time.

At the same conference, Ellsworth et al. [20] also present work showing the

ability to enforce a power limit across an HPC system and reduce the time required

to complete multiple concurrently executing jobs. The power enforcement system

proposed by Ellsworth et al. monitors and opportunistically reallocates power

between sockets at runtime. Sockets not consuming their allocation have the excess

power allocation reclaimed by the scheduler and given to sockets consuming near

their full allocation. An interesting note on the technique described is that no a

priori knowledge of application power consumption characteristics or mapping of

sockets to jobs is required. The work reports an observation of up to 14% runtime

improvement, to complete all current jobs, over setting an equal power bound on all

sockets for the duration of the experiment. Follow-on work by Ellsworth et al. [19]

discusses the properties of the concurrently scheduled jobs needed to achieve

runtime performance improvements. The power scheduling algorithm depends on

differences between the power consumption across sockets. When all sockets would

consume energy at the same rate there is no opportunity to yield power to other

components within the system.

The discussion so far in has looked only at the power consumed by the

processor. Many components contribute to the overall energy consumption and

required power budget. Power costs for memory, network, and other devices must

also be considered when looking at the total power consumption of an HPC system.

Tiwari, Schulz, and Carrington [63] look at the distribution between the CPU

and DRAM within the system. The work takes advantage of the availability of

RAPL on the experimental platform to set CPU and DRAM power limits
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independently. Prior to the experiment run, several computations are run at

different power limits to generate training data. Training is done using training data

and application features to produce a machine learned model capable of predicting

the impact of bounds on an application.

Hoffmann frames the power and energy problems as a multidimensional

optimization problem on program performance[27, 28]. Rather than looking at a

bound as a hard limit, the works consider a bound as an optimization target when

adjusting other properties of the environment. Environmental controls used in the

work extend beyond direct power control, actions like changing the DVFS settings,

to indirect controls, like changing the work distribution across cores. Hoffmann

demonstrated an ability to reduce energy cost without performance impact for

applications where iterations faster than a realtime interval produce no benefit [27].

Hoffmann et al. demonstrated a online tuning system, PTRADE, that can learn

environmental settings to improve power efficiency during runtime [28].

4.3 Power Monitoring

Energy and power aware computing are currently topics of intense focus in the

community due to the challenges associated with building ever larger HPC systems

as well as the challenges in ubiquitous embedded computing. Many of the

techniques for energy and power aware computing involve feedback mechanisms. An

execution must be monitored in realtime and spooled for analysis and model

generation or responded to directly for realtime execution guiding. The research

systems mention earlier in this section implement monitoring, analysis, and control

as tightly coupled software components. In addition to the direct research focus on

how to best take advantage of the available energy there is also a need for efficient

monitoring and analysis of energy and power attributes.

The IBM BlueGene systems include extensive power monitoring capabilities in

the system management plane, via the BPM. Wallace et al. [65] show that the BPM

measurements, while not at fine temporal granularity, can be useful for profiling

applications however the measurements are not generally exposed to the jobs. The

work by Wallace et al. also uses the environmental monitoring (EMON) API to

capture similar data within a job and notes that, while EMON provides finer

temporal resolution, the samples may not be tightly time aligned across components.

Hackenberg et al. [24] discuss work to improve the fidelity of energy

measurement on their SandyBridge cluster. The authors note that accuracy can be
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lost at several points, starting with challenges in taking the analogue measurements

and continuing through to the eventual storage. Measurements may also be taken at

different levels within the machine and at different sampling intervals, complicating

correlation between data streams. The work presents IPMI and BMC extensions

that improve the accuracy and temporal resolution of power and energy

measurements.

4.4 Takeaways

Power and energy are separate but related quantities. Energy consumption occurs

at some rate during operation and power is a measure of the rate of energy

consumption. Energy over an interval is the integral of instantaneous power over the

interval. Conversion from energy to power over an interval produces an average

power for the interval, which may not accurately represent the actual power if the

interval is too large and the power changes. Examples of applications with phased

power consumption indicate that allocating power based on dividing an applications

running time by the run duration may negatively impact performance.

A tradeoff space exists between power, energy, and performance within the

processor. Trivially a computer that is unplugged consumes no power but also fails

to perform the desired computation. All interesting cases require some level of

power consumption that supports computational progress. The energy used by a

computation is the integral of power over the duration of the computation. Due to

the design and physical properties of the processors, there is a direct relationship

between instruction work per unit time (which is related to the clock speed) and

power consumption. Reducing power consumption beneath a computation phase

specific threshold extends the runtime of the computation, potentially increasing the

total energy used. Increasing power beyond a computation phase specific threshold

increases the total energy used and does not reduce runtime since NO-OP

microinstructions must be executed to support operation at the higher clock

frequency.

Assessment or estimation of the impact of changing a power setting would likely

benefit from information across the system. Power control without visibility into

application behavior may make poor decisions in the case of operation sequences,

like busy waits, where lots of instructions are being executed but no application

progress actually occurs. Some existing energy work in HPC uses the difference in

arrival time at collectives to save power across nodes, increasing the temporal
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alignment and reducing power wasting wait time. Other work uses a notion of an

application heartbeat to detect application progress as configuration changes are

made.
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Chapter 5

Conclusion and Perspectives

5.1 Recapitulation

Computing platforms are becoming increasingly limited by fiscal concerns rather

than technical concerns. Large scale computing platforms carry significant capital

and energy costs that must be justified by organizational management in terms of

organizational objectives and constraints. 100 MW computers and 6 Ghz processors

are technically possible to build however the costs to build and operate such

systems are too high to justify in most cases. Viable computing platforms must

balance management constraints, organizational objectives, and technical

capabilities to receive funding for construction and ongoing operation.

Information Flow Processing (IFP) platforms potentially provide a mechanism

to connect multiple management systems to the same data sources and provide

some processing as the data flows toward the sinks. Intuitively IFP should provide

value by amortizing data collection overheads across several sinks. Direct single

solution performance comparison between IFP backed and non-IFP backed solutions

may be unfair since there is no opportunity for overhead amortization. Advanced

IFP platforms can provide the ability to process data as the data flows toward the

sinks, allowing the processing to be distributed and reducing the required

bandwidth at the end point.

Scheduling addresses how work and resources are matched in a shared

environment. The problem can be approached as scheduling work onto resources,

which typically is done by viewing scheduling as a queuing problem. While waiting

in queue, the work is directly delayed by the scheduler. Alternatively the problem

can be approached as scheduling resource to work, where resource requests are

granted, failed, or some reduced resource allocation is provided. Work is fully
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serviced if the full allocation is granted or indirectly delayed if a lesser allocation is

granted. Resource allocation and when work is executed impact the execution of

organizational objectives. Ideally, schedulers will operate in alignment with

organizational priorities and constraints.

Energy and power are important resources to manage that have specific

qualities. Energy is consumed and converted to heat during computation. Power

measures the rate of energy flow. Increasing energy efficiency does not necessarily

reduce power and reducing power does not necessarily increase energy efficiency1.

Reducing the processor clock speed, on existing processors, will reduce power

consumption and may or may not impact application runtimes. High Performance

Computing (HPC) systems are connected to the power grid and have access to

effectively unbound energy but have a hard limit on the rate at which the energy

can be accessed.

5.2 Perspective

Future computing platforms will need control and introspective capabilities to

support the owning organization’s objectives. The currently envisioned next

generation HPC systems are far too large, too dynamic, and too fast to support

human management of work and resources. Addressing this challenge will require

introducing system management systems to dynamically control work and resource

allocations within the platform. To make these decisions the system management

system will need to be able to evaluate the system state during runtime and

autonomously control the system to maintain alignment with organizational

objectives. At this highest level, there are interesting considerations regarding how

organizational intent can be expressed to the management system and how can

system state be gathered and analyzed to check for fit with objectives.

Assuming the introspection problem can be solved, perhaps via an IFP-like

mechanism, the results of the analysis must turn somehow into action. In most

cases, one can imagine that a management action takes the form of a scheduling

change. Both organization constraints and priorities would be reflected in the

resource and work schedules executed by the platform. At this deeper level, there

are interesting considerations regarding what information the schedulers need from

1Consider a component, A, that draws 15 watts over 3 seconds, for a total energy consumption
of 45 joules. A more energy efficient component, B, might draw 20 watts over 2 seconds, for a total
energy consumption of 40 joules. B is more energy efficient than A but also requires more power.
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applications and the environment and what opportunities for performance

improvement exist when schedulers and applications are aware of one another.

As a current hot topic in HPC research, power provides a concrete and focusing

instance to explore the above questions and the interplay between management and

technical system objectives. Power bound computing can be viewed as a problem of

enforcing nontechnical constraints set by the owning organization. Enforcement of

the bound may have an impact on the organizational objectives, as reduced power

can reduce performance in terms of time to solution. Some mechanism must exist to

distribute the information across subsystem boundaries for an enforcement

mechanism to be aware of the impact of a change or for an application to be aware

a change is coming. For a moment in time, there is an interesting opportunity to

research at the intersection of IFP, scheduling, and power.
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