
Solver Schemes for Linear Systems

Oral Comprehensive Exam Position Paper

Kanika Sood
Department of Computer and Information Science

University of Oregon

December 9, 2016

1 Introduction

This report presents different approaches to solving sparse linear systems—direct and iterative
solvers—and compares a number of methods in each category. I also consider the two techniques
of using solvers for linear systems: single method solver schemes and multi-method solver schemes.
I also present some of the popular systems that use these techniques. This involves surveying the
relevant literature that contains in-depth information about techniques in the field.

Linear systems are a form of representation for problems in a variety of domains, including
but not limited to statistics, thermodynamics, electric circuits, quantum mechanics, nuclear engi-
neering, fossil fuels, robotics and computational fluid dynamics. Solution methods in numerical
optimization and PDE-based simulations frequently rely on the efficient solution of large, typically
sparse linear systems. Given that linear systems are widespread [75, 74] across different areas of
research, providing accurate and efficient solution methods plays a critical role for scientists in these
fields. There are two classes of linear systems: sparse and dense. The systems in which most of the
elements are zero are known as sparse systems. Those systems for which most of the elements are
non-zero are referred to as dense linear systems. A common approach of storing sparse matrices
requires only the non-zero elements to be stored, along with their location, instead of storing all
the elements including the zero elements. Large sparse linear systems tend to represent real world
problems better than dense systems and large sparse systems occur more frequently than small or
dense systems. In this report, I focus on sparse linear systems.

Large sparse linear systems arise in many computational problems in science and engineering.
Over the last several decades, applied mathematicians and computer scientists have developed
multiple approaches to solving such linear systems. The traditional approach involves using a single
solver, possibly combined with a preconditioner to get the solution. Preconditioning is discussed in
more detail in Section 4. This solver can be chosen among a number of available options. For sparse
linear systems, iterative solvers would be a more reasonable choice than direct solvers [30] because
direct solvers can be more computationally expensive and might not even produce a solution. The
challenge then is to identify which solver to use among the numerous options available because it is
nontrivial even for experts to determine which is the best solver. The main reason is that the best
solution is not consistent for a variety of problems occurring in different domains, or even different
problems from the same domain. In addition, given that these are iterative solutions, which are

1

approximations of the solution, there may be more than one acceptable solution, which further adds
to the complexity of choosing a solver. Another challenge in single-solver solutions is the reliability
of getting a solution from one single solver. Consider the situation where the chosen solver fails
to provide a solution, which defeats the purpose of a model that plans to offer solutions for its
users. These problems motivate a different methodology of solving the given problem, namely, an
approach that does not depend on a single method to get the solution for the system.

The second approach involves using multiple solvers (a composite of suitable solvers) [11, 73, 69,
32], instead of a single solver. If two or more solvers are used instead of one, the chances of getting
to a solution increase. Further, there are different techniques of using multiple solvers for solving
sparse linear systems: composite solvers, adaptive solvers and poly-iterative solvers. These are
discussed in detail later in this section. The first technique has the solvers arranged in a sequence.
It picks the first solver in the order and tries to solve the system; if this solver fails, it uses the next
solver in the list. The second technique uses only one solver, but which solver would be used is
decided dynamically. The third technique solves the system with multiple solvers simultaneously.
As soon as a solver gets to a solution, the computation by the rest of the solvers is terminated.

The major advantage of using multiple solvers over the traditional single-solver technique is
improving the reliability and providing significant performance improvement.

Figure 1: Solver hierarchy

2

Many modeling and simulation problems require solutions of large sparse linear systems, hence
scientists from different domains, with different levels of expertise in the domain and programming
background must be able to use linear solvers effectively. To select a solution method, the application
developer must read all necessary documentation, be an expert programmer and should have done
an analysis on the kinds of solver methods available for his problem. Practically considering the time
required to read various documents and expecting all these skills from researchers with backgrounds
in non-computer science fields, is not feasible. Even if they decide on a solver method, the chances
that the method will be able to optimally solve the system, or in fact even be able to solve the
system, are low. Selecting a suitable solver is not the only concern; in addition, the reliability
needs to be improved. Problems from different domains may have different characteristics and
requirements; in fact, a single domain may have problems with a variety of characteristics, which
makes it harder to make guesses for what an optimal solver method would be, or to set a single
solver method as default.

There has been some work done in this area in the past; the scope and consequence of using
multiple solvers instead of a single solver was identified in 1968 [62], but still there is work to be
done. Performance and reliability can be potentially improved by using a combination of solution
methods instead of a single-solver scheme. In the case of a single-solver scheme, the complexity of
choosing a suitable solver arises from two factors. First, the expertise required to make the decision
of the solution method is not common in researchers of different fields. Second, the chance that
solver method will continue to remain suitable with change of problems is minimal. This is because
of the fact that as the problem changes, the problem characteristics also change; hence the good
solving method(s) also change for the problem. With a variety of solution methods available for any
given problem, there can be more than one good method to solve the system. Instead of choosing
from those methods, if a scheme considers using multiple methods, the likelihood of successfully
solving the system increases. Such a scheme will be referred to as multi-method scheme in the
future scope of this document. In this document I review prior research in which either of these
two solving schemes has been applied. Figure 1 shows the hierarchy of the sparse linear solvers,
each of which is discussed in detail in the later sections.

This document surveys the categories of solvers and the two popular schemes applied for solving
linear systems in detail and various kinds of systems that follow these scheme. This document is
structured as follows. The next section describes the motivation behind this work. The following
section outlines the single-method solver approach and presents the categories of solvers available
for solving linear systems, namely direct and iterative, focusing on the Krylov subspace methods.
In addition, I present a comparison of direct and iterative solvers. Section 4 discusses the pre-
conditioning process. Section 5 outlines the parallelism issues for the solver methods from both
solver categories and introduces multigrid methods. In the following section, multi-method solver
approaches are discussed in detail. Section 7 presents some of the software packages available for
various solvers. Section 8, elaborates on the common approaches for performance modeling for
solvers. Section 9 delivers the conclusions and outlines the questions we would like to address and
other tasks that can be done in the future. In the last section, I provide the appendix for this
report.

2 Motivation

Systems of linear equations arise in many scientific and engineering computations. The use of
linear systems is not just limited to scientists, in fact they are present in our day-to-day lives

3

Figure 2: Head Scan chamber
a

aSource: HD imagelib online resources

Figure 3: Head scan of a patient
a

aSource: Austin CC online class resources

as well. This section presents a few examples to demonstrate how linear systems are widespread
in various domains and how their solutions impact our daily lives. Solutions of linear systems
therefore, are crucial for a much wider range of audiences. They are used in electric networks,
balance network reactions, weather modeling, etc. Consider an imaging chamber for a head scan.
Figure 2 shows the air pressure in different areas of the chamber, which emit and consume waves
of different wavelengths. Different colors here are the different wavelengths of the rays, which
construct images of the human brain from different angles to detect mild physiological changes in
the brain and also anomalies, including bleeding, tumor, etc. Figure 3 shows the CAT scan of a
patient, which is a collection of slices of human brain, where each slice can be represented as a set
of linear equations. Each slice is a reconstructed image captured by the scanner. The pictures offer
an image of the density of tissue in different parts of the brain.

Traffic flow in a network of streets is yet another common example of linear systems in day-to-
day life. Decisions such as when the road surface will wear down or how the traffic lights should
be set up depends on the flow rate of cars in each segment of streets in the given area. Figure 4
shows the university area for University of Oregon. The streets with the arrows are the one-way
streets showing the direction of vehicles. Consider the area in the red box. This part on the map
shows the area we are interested to monitor for flow rate of cars. This can be in the form of linear
equations, where the number of cars entering and exiting different streets and the ones entering
this whole red area can form a set of linear equations.

4

Figure 4: Traffic flow in a network of streets near University of Oregon.

Another example of linear systems is a room thermostat system behavior. The control system
is modeled as differential equations and solution of these equations helps the system designer to
design the thermostat in such a way that it responds fast to temperature change. The solution to
these equations helps make the decision for smoother functionality of the thermostats. As a result,
the transition from ON state to OFF state and vice-versa is more accurate. The two states of the
thermostat are shown in Figures 5 and 6.

Figure 5: Thermostat in ON stage, with the
circuit being complete.
a

aSource: Web

Figure 6: Thermostat in the OFF stage, with
the circuit being broken.
a

aSource: Web

One other instance of linear equations, as illustrated in [1] is in structural engineering for
deflection of membranes and beam-bending problems. These are differential equations, which are
discretized by finite elements to obtain linear systems which are then solved to obtain solutions for

5

these problems. Therefore linear systems not only solve large problems, but are also useful in small
problems arising from various scenarios like those mentioned above.

As programming techniques and computer capabilities improve, the size of systems that can be
solved is also increasing. With the advancement in understanding of solver methods, small-sized
systems can be solved very easily; in fact most (or all) of the solver methods that can give an exact
solution of the system are able to solve these problems, with varying solve time. Solving large sparse
systems brings its own challenges though. The systems, being large usually demand an optimized
approach for storing the problem and solving the problem in reasonable time. In addition, some
of the problems formulate in a way that they exceed the existing computational limit. Also, they
have a specific structure which varies for different problems and needs to be exploited in order to
master the solving strategy. Here, structure refers to the pattern of the non-zero elements in the
problem matrices.

3 Single-method Solver Systems

Solvers can be categorized as follows: direct and iterative. Direct solvers give an exact solution of
the linear system. Direct solvers are a very general technique for solving sparse linear systems. They
have high numerical accuracy and work even for sparse matrices with irregular patterns. Direct
solvers perform a factorization of the original matrix A, into a product of multiple matrices, such
as L,U . In the equation for linear systems: Ax = b can be now written as LUx = b, where L and
U are the factors of A. Although factors can be reused for multiple right-hand sides (rhs), direct
solvers are costly in terms of memory for factors. However, this kind of approach is suitable for
smaller problems, where an exact solution is possible because most likely, one solver is capable of
solving the system after suitable selection of the solver method. But for very large sparse problems,
an exact solution is not possible or desirable because of excessive run time and the kind of solution
required changes from exact to approximation. This introduced the second class of solvers, called
the iterative solvers, which use an initial guess to get an approximation of the solution. For a given
approximation solution xk, we assume that it is better than the xk−1 solution and keep updating
the solution until we get close enough to the actual solution. Iterative solvers are capable of solving
very large problems with or without the use of preconditioners. The efficiency of these solvers
depends on the properties of the problem in hand and the preconditioning. These solvers do not
involve matrix factors and instead involve matrix-vector products. This scheme is cheaper than the
direct solver scheme because it uses less memory and fewer flops. However, solutions with multiple
right hand sides can be problematic. In this section, we discuss in detail the direct solvers and the
iterative solvers.

With respect to the number of solution methods used for a single linear system, there are two
main solution approaches: single method and multiple methods. The traditional approach of solving
linear systems is to choose a single optimized solver technique based on the dimension space and the
physics of the problem, and to apply that solver method to obtain a solution. The second approach
is by using more than one solver technique to obtain the solution. This section elaborates on the
traditional approach and discusses some popular systems that use this technique.

In the single-method approach, only one method is used to solve the given linear system, as
shown in [30, 59, 58, 44, 68, 76, 40, 66, 55, 78]. Based on the characteristics of the problem, the
choice of solver is made. For instance, for symmetric positive definite matrix, Conjugate Gradient
is a suitable choice. For non-symmetric matrices, BiCG becomes more preferable. For sparse least
squares problems ill conditioned problems, Sparse QR factorization is a popular choice. For well-

6

conditioned problems, Cholesky factorization is used. If the method fails to solve the system, there
is no other solving technique applied to the problem. Either of the two kinds of solvers can be
used in this approach depending on the kind of problem. Direct solvers being the exact solutions
and iterative being the approximation of the solutions can be used for small and large problems
depending on the requirements. If an approximation of a solution is good enough, iterative solvers
can be used. Although as the problems grow bigger iterative solvers become a preferable choice,
however in some applications with bigger problem size also, direct solvers are used because of
non-familiarity in iterative solutions. On the other hand, using multi-method schemes, makes it
complex, as the number of decisions to be made are more, for instance, which all base methods
to be used, when should a new solver be applied, which solver should be applied next, when do
we eliminate a solver from the list of base methods, etc. Using a single solver scheme makes it
easy, once the solver to be used is known, because the decision, once taken, is the only opportunity
to decide which solver to pick. Numerical properties of a system can change during the course
of nonlinear iterations and the solving scheme does not take that into consideration. This is a
downside of using a single solver.

All the direct and iterative methods described in this section can be used as standalone solver
methods for solving sparse linear systems.

3.1 Direct Solvers

For linear systems Ax = b, where A is the coefficient matrix (sparse), x is the solution vector, b
is the right-hand side vector (known vector) sometimes with all elements set to one, direct solvers
[30, 25] provide an exact solution, x = A−1b, when A is invertible, for the linear system in a finite
number of steps, and they are more robust than iterative solvers. These solvers work very well with
small matrices and when exact solutions are required. However, they don’t work well with very
large matrices, because they may be too expensive. The time complexity of direct solvers can be
given as, O(n3) and the space complexity is generally O(n2). We focus on large sparse problems
for our research, and for such matrices, direct solvers may not necessarily be the optimal choice
for solving these systems. This is because the memory requirement for direct solvers can be huge,
for an n × n matrix. The reason is, the program requires to store n × n elements of matrix A,
whereas sparse systems only require non-zero elements to be stored, which means it needs storage
of 3 ∗ nnz(A), where nnz is the number of non-zeros and for each non-zero entry it needs to store
the row and column number it belongs to and the value of the element, making it three values for
each non-zero entry. In addition, direct methods cause fill-in, which introduces additional non-zeros
during the factorization process, which can be very large. There have been modifications made to
these kinds of solvers to work with sparse matrices; however for the scope of this work we consider
using iterative solvers for now. In this section, I briefly describe some of the most commonly used
direct solvers.

3.1.1 LU Factorization

The LU method is a technique in which an n × n matrix A is factored into a product of lower
triangle and upper triangle of the matrix and shown by the equation: A = LU where A is the
matrix, with elements ai,j , with i rows and j columns; L is the lower triangle and U is the upper
triangle matrices. An n × n square matrix L with elements lij is called lower triangular if lij = 0
for i ≤ j, i.e., all elements above the diagonal are zero. An n × n square matrix U with elements
uij is called Upper Triangular if uij = 0 for i ≥ j i.e. all elements below the diagonal are zero.

7

Figure 7: LU factorization for matrix A.

The LU Factorization of A having elements, aij is given as the product of these two matrices L
and U, where li,j = 1. L and U are obtained by applying various row operations to make all the
elements below the diagonal and all the elements above the diagonal as zero, respectively. The LU
factorization is shown in Figure 7. This is then followed by forward and backward substitution to
get the solution. The total time is dominated by decomposition, which is O(1/3n3). Forward and
backward substitution is shown as below:

Forward substitution for lower triangular system Ax = b

x1 = b1/a11 xi = [bi −
∑i−1
j=1 aijxu]/aii, where i = 2, . . . , n.

Backward substitution for upper triangular system Ax = b

xn = bn/ann xi = [bi −
∑n
j=i+1 aijxj]/aii, where i = n− 1, . . . , 1.

This method leads to a unique and robust solution. However the disadvantage of this scheme
is the large memory requirement because of fillin during factorization. In the process of fillin,
zeros are converted to non-zeros, which makes the number of entries substantially more for the
factors than there were for the original matrix, thus increasing the memory requirement. The time
complexity for LU Factorization is O(2/3n3) and its space complexity is O(n2). One additional
feature intrinsic to this strategy is that, if the diagonal elements are zero in the start or in any of
the intermediate stages, this method will fail. In order to address this issue, it becomes mandatory
to use a preconditioner with this method.

A =

a11 a21 a31
a21 a22 a32
a31 a32 a33

=

l11 0 0
l21 l22 0
l31 l32 l33

 .
l11 l21 l31

0 l22 l32
0 0 l33

 = LLT

=

 l211 l21l11 l31l11
l21l11 l221l

2
22 l31l21 + l32l2

l31l11 l31l21 + l32l22 l231 + l232 + l233

Figure 8: Cholesky method for matrix A.

8

3.1.2 QR Factorization

LU factorization and the Cholesky method are based on Gaussian elimination, whereas QR factor-
ization is an orthogonalization method. Some problems cannot be solved with Gaussian elimination,
as it does not preserve the Euclidean norm, which therefore does not preserve the solution to the
problem. In such situations QR factorization is applicable. In QR factorization [39], the matrix is
factorized into the product of two matrices: Q, the orthogonal matrix, and R, the upper triangular
matrix; i.e.,A = QR. The orthogonal matrix is a matrix such that the product of the orthogonal
matrix and its transpose give the identity matrix,

QTQ = I and Q−1 = QT .
A = QR where R = QTA

Now instead of solving Ax = b, Qx = b is solved by simply computing Rx = QT b. QR factor-
ization is one of the simpler methods which converts the problem into a triangular problem that is
easier to be solved by forward or backward substitution. So similar to Gaussian elimination meth-
ods, this method also tries to introduce zeros in order to make the problem in the Upper Triangular
format. QR factorization can be computed by many ways, such as plane rotation, Householder
transformation and Givens rotation. One popular way is using Gram-Schmidt orthogonalization,
which is explained in detail below. There are three main steps of the QR factorization:

1. Find the orthogonal basis for the problem using Gram-Schmidt method: It orthonormalizes
a set of vectors in an inner product space. It takes a1, a2, . . . , ak and generates an orthogonal
set u1, u2, . . . , uk where ak are the columns of the original matrix, A . The orthogonal basis
is computed by the formula shown below:

uk = ak −
∑k−1
j=1 projujak

2. Convert the orthogonal basis into orthonormal basis: This conversion is done to make them
of uniform length. This is computed as follows:

ek = uk/||ak||

Here ek is the normalized vector and ||ak|| is the length of vector a.

3. Perform the QR factorization: Once the first two steps have been performed, this will give Q,
which is the normalized vector ek obtained in Step 2. R is obtained by applying the formula
R = QTA.

Note that this method requires separate storage for A, Q and R matrices because A is used for
the inner loop calculations and hence cannot be discarded. The space complexity of this method
is O(n2) and the time complexity is O(4/3n3). Modified Gram-Schmidt method can be applied
to address this high storage requirement by making A and Q share the same storage. Therefore,
orthogonalization methods are more expensive than Gaussian elimination methods, for instance
Cholesky method.

9

3.1.3 Cholesky Method

The Cholesky method is a popular direct method for symmetric positive definite matrices, and the
factorization can be shown by the equation: A = LLT where L is a lower triangle matrix with
positive entries on its diagonal. The factorization is shown in Figure 8. New nonzero entries that
appear in A are called fill-in. The system can be solved by computing A = LLT , followed by solving
Ly = b, and later solving LTx = y. This method involves computing square roots of some of the
elements, such as the first element in the first row. This method is very popular for its efficiency and
stability when solving symmetric linear systems, for the following reasons. Cholesky only requires
the lower triangle of the matrix to be stored, so the upper triangle need not be stored at any point in
time. It requires only (n3)/6 multiplications and a similar number of additions. This is half of the
storage requirement and half of the operations required by other direct methods for nonsymmetric
systems, such as LU factorization. Computing square roots requires positive entries, which ensures
that the algorithm is well defined. In addition, this method does not require pivoting of any form
for stability purposes. In contrast to LU decomposition, Cholesky is more efficient with its time
complexity better by a factor of 2; that is, O(1/3n)3. The space complexity of this method is O(n2).

Cholesky can be used for problems other than positive definite with a variation (the original
Cholesky method fails if the problem involves negative values, as it requires taking square root of a
negative element). This problem can be avoided by using a variant of the Cholesky method, which
factorizes the system as follows: LDLT factorization where D is the diagonal matrix of the squares
of the diagonal entries. This ensures that this variant does not require square roots of any elements.
This variant is also referred to as the Augmented System method. It is represented as follows:[

I A
AT 0

]
.

[
r
x

]
=

[
b
0

]
The matrix above is symmetric, positive definite which can be solved with this factorization.

If the matrix is ill conditioned, then I can be replaced with αI for improvement because LDLT

factorization is not very efficient with ill conditioned A.

3.1.4 Frontal Solver Method

Frontal solver method [48] is a method for solving sparse linear systems which are symmetric
positive-definite and banded. They are very popular in finite element analysis. It is a slight
improvement of the Gaussian elimination and performs better by eliminating more finite elements.
Each finite element is associated with some variables. This method declares a frontal matrix, which
is a dense square sub-matrix, in which all the operations are performed. It starts eliminating finite
elements and moves downwards in a diagonal fashion, element by element. It assembles the finite
elements (based on an order defined prior to the assembly), then eliminates and updates variables,
and then again does the assembly. This alternate cycle keeps going till the frontal matrix gets
filled. This process is shown in Figure 9 At this stage, the frontal matrix consumes the maximum
memory, and from here on, the frontal matrix does not grow in size. Once the frontal matrix is
full, a partial factorization is applied on the frontal matrix, and elimination is performed. The
elements that are fully summed are eliminated, and all the others elements are updated. A variable
is fully summed when the last equation in which it occurs is assembled. Those elements that are
selected for elimination are removed from the frontal matrix and placed elsewhere. This is followed
by assembly of the new finite elements, which earlier could not be assembled because the frontal

10

matrix had become full. This process continues until all the elements have not been assembled and
all variables have been eliminated. The next step is to solve the linear system, using forward and
backward substitution.

Figure 9: Standard LU factorization for matrix A.

3.2 Iterative Solvers

Iterative solvers [37, 67, 77, 5, 4] start with an initial guess for the solution and successively improve
until the solution is accurate enough and is acceptable as a solution. The time complexity for
iterative solvers is O(n2) per iteration. One popular class of iterative numerical solvers is the
family of Krylov subspace methods. This class of solvers decomposes the solution space into several
subspaces, which are simpler than the original subspace. These methods form a sequence, called
the Krylov sequence, shown below:

Kk(A, r0) = span{r0, Ar0, A2r0, . . . , A
k−1r0}

where k is the order of the subspace, A is an n × n matrix, v is a vector of dimension n, r0 is
an initial vector of successive matrix powers times the initial residual (the Krylov sequence). The
subspace is the successive powers of the matrix A starting from 0 to k − 1 applied to the residual
form. Minimizing the residual over the subspace formed then forms the approximations to the
solution. The main operations in a Krylov subspace method are (i) matrix-vector products, (ii) dot
products and norm computations, and (iii) vector updates. They are among some of the successful
methods for solving linear and non-linear systems because of their efficiency and reliability. Iterative
solvers provide an approximation of the solution, as the exact solution might be too expensive to
compute or may not exist. Iterative solvers start with an initial guess and generate successive
approximations to the solution. In cases of large linear systems, iterative methods are more useful.
The traditional approach of solving large sparse linear systems involves using a solver combined
with a preconditioner. There are many solver techniques that exist for solving large sparse linear
systems of the form: Ax = b. The residual norm can be given as ||Ax− b||. The aim with iterative
solvers is to reduce the residual norm as much as possible.

These methods are preferable than the direct solver methods for many reasons. First, itera-
tive methods are more parallelizable in respect to scalability than direct methods because iterative
methods use matrix-vector products instead of matrix-matrix products. Matrix-matrix multiplica-
tion operations are more expensive computationally due to more floating-point operations required
per memory access. Also, it is harder to program a scalable matrix-matrix multiplication imple-
mentation. As the number of processors increase for a given problems, the communication overhead
increases. Second, iterative methods require less storage space because they do not perform a fill-
in operation for the coefficient matrix. This makes them less expensive than the direct methods

11

which give an exact solution. Also if the initial guess is good for iterative solvers, the problem can
converge in very few steps.

Further in this section, I list some of the most popular Krylov subspace methods for symmetric
and non-symmetric matrices.

3.2.1 Conjugate Gradient Method

Conjugate Gradient (CG) method [44, 60, 56] is applicable for symmetric linear systems. CG starts
with an initial guess of the solution, an initial residual and an initial search direction. It looks for
approximate solutions at each step within its Krylov subspace as shown below:

Kk = span{b, Ab,A2b, . . . , Ak−1b} for k ≥ 1

It finds a series of gradients (conjugate vectors) x0, x1, . . . until the point where the gradient gets
close enough to the solution. The gradients are given by the equation shown below:

xk+1 = xk + αksk

where αk is a scalar determining the step length and sk is the search direction.
The minimum over α occurs when the residual is orthogonal to the search direction. Each

iteration requires only one matrix-vector multiplication. They are also the gradients of a quadratic
function shown below, the minimization of which is the same as solving the system

φ(x) = 1/2xTAx− xT b.

Initially, s0 = r0 = b− ax0, and the residual is updated in the following way:

rk+1 = b−Axk+1 = rk − αkAsk.

The storage requirement of this method is low, as it only needs to store vectors x, r and s, and
they can be overwritten after each iteration. The convergence rate depends on the square root
of the condition number. It is an extremely popular solver technique for symmetric, positive
definite matrices. Conjugate Gradient method became the ground for many other solver methods,
which were variants of CG, such as BiConjugate Gradient method, BiConjugate Gradient Stabilized
method, Conjugate Gradient Squared and Improved Stabilized version of BiConjugate Gradient
Squared method (some of which are described in the following section).

3.2.2 Variants of Conjugate Gradient Method

The Biconjugate Gradient(BiCG) method [78] is useful for non-symmetric and non-singular ma-
trices. Its implementation is similar to running the Conjugate Gradient except that it maintains a
second Krylov subspace, so there are two sequences of vectors, one based on A and other on the
transpose of the matrix AT . At each iteration, it requires a multiplication of A and AT , therefore
BiCG has twice as many matrix-vector multiplications and dot products than Conjugate Gradient
method. It solves the system Ax = b as well as ATx∗ = b∗. The two sequences of residuals that are
updated in BiCG can be seen below:

r(i) = r(i−1) − αiAx(i)
r∗(i) = r∗(i−1) − αiATx∗(i)

where
αi = r∗(i−1)

T
ri−1/x∗(i)

T

Axi

12

The advantage of BiCG over Conjugate Gradient method is that it can solve a wider variety of
matrices, such as symmetric positive definite matrices and non-symmetric matrices.

The Biconjugate gradient stabilized method (BiCGStab) [76] is an iterative Krylov subspace
method for the numerical solution of non-symmetric linear systems which is a variant of the Bi-
conjugate gradient method (BiCG). It computes i|− > Qi(A)Pi(A)r(0) where Q is an ith degree
polynomial describing a steepest-descent update. It has a faster convergence than the original
method, as well as other variants such as the conjugate gradient squared method (CGS). This
method involves two inner products more than the BiCG method. The advantage is, it avoids the
irregular convergence patterns, which are observed in other variants of Conjugate Gradient method.

Improved Stabilized version of BiConjugate Gradient Stabilized (IBiCGStab) method [54] is
another variant of Conjugate Gradient method series. It is an improved stabilized version of Bi-
Conjugate Gradient Stabilized method. This method attempts to reduce the computational cost of
the BiCGStab method.

The Conjugate-Gradient Squared (CGS) [72] method is another variant of the BiCG algorithm.
The difference between them is that CGS does not involve adjoint matrix-vector multiplications,
and the convergence rate is expected to be better than the BiCG method.

3.2.3 LSQR Method

LSQR [58, 59] is an algorithm for non-symmetric sparse linear equations. It is one of the oldest
methods in the history of iterative solvers and is similar to Conjugate Gradient method. This
method undergoes a bidiagonalization procedure and generates a sequence of approximations in a
manner that the residual norm, ||rk|| decreases monotonically. Given an initial guess and a starting
vector b, it uses the Lancoz process to reduce the problem to a tridiagonal form. The Lancoz
method generates a sequence of vectors v1, w1 which help convert the original problem matrix to
tridiagonal form shown below:

β1v1 = b
w1 = Av1 − βivi−1

αi = vTi wi
βi+1vi+1 = wi − αivi for i = 1, 2, . . . , k

After k steps, it becomes:

AVk = VkTk + βk+1vk+1e
T
k .

Here, Tk is the tridiagonal(βi, αi, βi+1) and Vk = [v1, v2, . . . , vk] and α, β are the scalars generated
by the Lancoz method. Now for solving the system where xk is the sequence of vectors, the following
equations are multiplied by an arbitrary vector yk whose last element is ηk.

Tkyk = β1e1
xk = Vkyk

Once the ηkβk+1 is negligibly small, it becomes the termination criterion for the method.
Some of the advantages of this solver are high efficiency and high convergence speed for a variety
of linear systems. The memory requirement for these systems scales with the dimensions of the
matrix and work well in parallel setups, as the matrix A is used only for computing products of
the form Av and ATu. It has been observed in the past that this method is more reliable than the
other solver techniques and hence is popular in many domains; for instance, it has been a common
choice for seismic tomography since many years in the past.

13

3.2.4 GMRES Method and Its Variants

This category of solvers includes the Generalized minimal residual (GMRES) and variants of it,
such as, Flexible GMRES and LGMRES. GMRES method [68, 49] and its variants are used for
non-symmetric matrices. They approximate the solution by generating a sequence of orthogonal
vectors for a Krylov subspace. MINRES [57] is similar to Conjugate Gradient and applies the same
solving scheme. Since Conjugate Gradient is only for symmetric definite matrices and MINRES is
applicable for symmetric indefinite matrices. GMRES is similar to MINRES because it also com-
putes a sequence of orthogonal vectors because the Arnoldi method is used to find the orthogonal
vectors and it produces an upper Hessenberg matrix using the Gram Schmidt method. The GM-
RES method at each step minimises the norm of the residual vector over a Krylov subspace. Below
are the steps followed in GMRES method:

1. Choose the initial guess to begin, x0 and compute the residual, r0 = b−Ax0 and v1 = r0/||r0||.

2. For each iteration, calculate the orthogonal vectors with Arnoldi method and minimize the
residual over x0 +Kk, where Kk is the kth Krylov subspace, and then minimize the residual
as follows:

||b−Axk|| = minXεX0+Kk
||b−Ax|| hi,j = (Avj , vi), i = 1, 2, . . . , j

v′j+1 = Avj −
∑j
i=1 hi,jvi

hj+1,j = ||vj+1||
vj+1 = v′j+1/hj+1,j

3. Set the approximate solution as:

xk = x0 + Vkyk, where yk minimizes the residual.

4. Repeat until the residual is small enough.

The number of multiplications required by this method is 1
2k

2n, where k is the number of
iterations and n is the number of rows. The storage requirement for GMRES is more than MINRES
and Conjugate Gradient because it needs to store the entire sequence of vectors (all the successive
residual vectors) for the Krylov subspace. The GMRES method is restarted after a certain amount
of vectors have been generated to reduce the memory requirement. Choosing the number of vectors
after which the method is restarted plays a crucial role in deciding whether the method will converge.
If a very small k is used, it may result in poor or no convergence.

FGMRES method [66, 55] is a generalization of GMRES that allows greater flexibility in the
choice of solution subspace than GMRES method by allowing any iterative method to be used
as a preconditioner. LGMRES [7, 6] augments the standard GMRES approximation space with
error approximations from previous restart cycles. This method supersedes the original method by
accelerating the convergence of restarted GMRES.

3.2.5 Quasi-Minimal Residual Method (QMR)

QMR [38] is a quasi-minimal residual method for non-symmetric linear systems and is an im-
provement over the BiCG method. QMR can also be compared to GMRES and one can say that

14

the former is better because GMRES usually converges too slowly for difficult problems because
of the restarts that GMRES needs. QMR overcomes the problems of BiCG breakdown and slow
convergence of GMRES. It looks ahead using the Lancoz Algorithm to generate vectors for the
Krylov subspace.
It uses two non-zero starting vectors, v1 and w1, and generate two sequences of vectors given as
v1, v2, . . . , vnand w1, w2, . . . , wn such that

span(v1, v2, . . . , vn) = Kn(v1, A)
span(w1, w2, . . . , wn) = Kn(w1, A

T)

If wTn+1vn+1 = 0, the Lancoz algorithm has to be terminated because this would make the system
fail in the next iteration as it will introduce division by zero case. This can happen in three ways:
(1) wTn+1 = 0 (2) wn+1 = 0 or (3) wTn+1 6= 0 and vn+1 6= 0. This is called serious breakdown. This
is where the QMR uses look-ahead to make the decision to terminate, thus avoiding the breakdown
condition. Given an initial guess, x0 and rn gives the residual vector rn

rn = b−Axn and xn ∈ x0 +Kn(r0, A)
xn = x0 + V (n)z where V is the block generated from the sequence v1, v2, . . . , vn

AV (n) = V (n+1)H(n)e

where H is the upper Hessenberg matrix which can be reduced to tridiagonal matrix using a diagonal
matrix represented by ω(n), which gives the QR decomposition as shown below:

ω(n)H
(n)
e = Q(n)HA =

[
R(n)

0

]
Once the QR factorization is updated, the residual is computed as follows, where t(n) is obtained

from zn :

xn = x0 + V (n)(R(n))−1t(n)

zn = (R(n))−1t(n)

QMR is similar to the BiCG method, and takes almost same number of iterations to solve as BiCG
except, that it is more robust than BiCG because of the lookahead strategy described above. Due
to this QMR has smooth convergence curves and good numerical stability. When compared to
BiCG, QMR is less prone to breakdowns and is more stable. It updates the Euclidean norm instead
of the norm; hence, the word Quasi which means ”almost”. TCQMR [31] is a variant of QMR
provided by Tony Chan with improvement over the QMR Method which avoids the matrix-vector
multiplications with AT .

3.2.6 Chebyshev Method

The Chebyshev method [40, 41] can be used for symmetric, positive definite or non-symmetric
sparse linear systems. It is a variant of the Conjugate Gradient method, except that Chebyshev
avoids computing inner products, removing the operations with the inner products completely,
unlike GMRES, Conjugate Gradient and other orthogonalization methods whose parallel imple-
mentations require communication intensive inner products. The only inner products performed by
the Chebyshev method are the inner products required for monitoring of convergence, which can be
done only occasionally and not for every iteration. The occasional convergence check is due to the

15

special property of this method, which is a reliable forecast of the convergence rate. This method
needs knowledge about the spectrum of the matrix A, given by the lower estimate of the smallest
Eigenvalue and the upper estimate of the largest Eigenvalue. Once the Eigenvalues are known, the
iteration parameters become known as well and the ellipse enveloping the Eigenvalues is identified.
Two scalar values, c, d are needed to define the ellipses such that they have common center d > 0
and foci d + c and d − c which contain the ellipse that surrounds the spectrum. Let the center of
the ellipse be α and so the foci are given as α± c.
The Chebyshev method can be defined by translating the Chebyshev polynomial, Tn from the
interval [-1,1] to the interval I, which is followed by scaling which makes their value at 0 to be 1.

Tn(I) =

 cos(narcos(I)) if |I| ≤ 1,
cosh(narcosh(I)) if |I| ≥ 1,
(−1)ncosh(narcosh(−I)) if |I| ≤ −1

The residual polynomial,pn that characterizes the Chebyshev iteration is as follows:

pn(I) = (Tn((I − α)/c))/Tn((−α)/c

Given the initial guess of the solution x0 and the residual to be r0 = b − Ax0, then the nth
approximation of the solution and residual should satisfy:

b−Axn = rn = pn(A)r0.

The Chebyshev iteration obtained is optimal, for each iteration it generates the smallest max-
imum residual. These computed residuals do not cause any slowdown when compared to BiCG
and and Conjugate Gradient method, nor do they have higher computational cost; in fact, the
overall cost is lower, since it skips computing the inner products completely except the ones that
are inexpensive.

3.2.7 Jacobi Method

Jacobi method is a solver in which the original matrix A is split into two matrices, say, S and T ,
such that, A = S + T , where S is the diagonal matrix of A and T is the original matrix with the
diagonal matrix removed, leaving the remainder, shown as,

S = diag(A) = DA and T = A−DA

Once the diagonal matrix is obtained and the original matrix is split into S and T matrices, an
update is performed according to the following update rule:

Ax = b, A = S + T and S = DA

(S + T)x = b
(DA +A−DA)x = b

For each iteration, to obtain the next successive solution the below rule is used.
x(k+1) = D−1A (b− (A−DA)xk)

This method has a simple formulation; given an initial guess, let us say x0, for the solution, we
can obtain xk so that

16

xki = [bi −
∑n
j=1,j 6=i aijx

k−1
j]/aii.

This method requires double storage for the solution vector, because all the old values are needed
for the sweep process to get the new values; so at a given time, it stores the old and the new values
of x shown in equation above, and that causes the double storage demand. In addition, the Jacobi
method is extremely slow, because in each iteration, it solves every variable locally with respect
to other variables. So each variable is solved once in each iteration. The rate of convergence is
(π2/log10)s2/2. Here s is the mesh size, which is 1/n + 1, for an n × n matrix. This is a solver
method that is common for diagonally dominant system. One of the reasons it is very popular is
because it is highly parallelizable.

3.2.8 Gauss-Seidel Method

This method is a popular technique for diagonally dominant, symmetric and positive definite ma-
trices. Gauss-Seidel method is similar to the Jacobi method and uses the same scheme of solving,
except that this method takes advantage of the fact that the latest information obtained in the first
iteration can be used in the subsequent iterations. The formula is

xki = (bi −
∑i−1
j=1 aijx

k−1
j −

∑n
j=i+1 aijx

k
j)/aii.

This method converges faster than the Jacobi method. Also, the computation cost per iteration
is lower than Jacobi and Conjugate-Gradient because it applies the updated values of the variable
as soon as they become available during the iteration. Therefore it is cheaper in terms of cost per
iteration. This method also has an added advantage of using the updated values right away; it
does not require duplicate storage for the solution vector. Although the convergence rate is better
for this method than Jacobi method by a factor of two, it is still slow. The rate of convergence is
(π2/log10)s2 where s is the mesh size, which is 1/n+ 1, for an n× n matrix.

However, the disadvantage of the GS method is, with this scheme, although it allows using the
latest information obtained during the present iteration to be used in the upcoming iterations, it
loses the parallelizability. Parallelism is discussed in detail in Section 5. In addition, Jacobi and
Gauss-Seidel method remove the high frequencies of the error very quickly, however the iteration
stops if the error is a smooth function. This causes slow convergence to the solution for both these
methods.

3.2.9 Successive Over-Relaxation Method

Successive Over-Relaxation (SOR) [42] is an improvement of the Gauss-Seidel method. Although
the Gauss-Seidel Method is faster than the Jacobi Method, it is still slow. SOR achieves an improve-
ment over the convergence rate of the Gauss-Seidel method by reducing the norm of the residual
vector. Starting with xki , xk+1

i is computed the way Gauss-Seidel method would compute, shown
by the equation below:

xk+1
i = (bi −

∑i−1
j=1 aijx

k
j −

∑n
j=i+1 aijx

k+1
j)/aii.

Also written as xk+1
i = xki + rk+1

ii aii where r is the residual vector.

SOR uses the next iteration as a search direction with a fixed relaxation parameter, called ω. So
the above equation changes to

17

xk+1
i = xki + ωrk+1

ii aii

That is, xk+1
i is computed by taking a weighted average of the present iteration and the next

Gauss-Seidel iteration. The value of ω, if taken as one, gives the Gauss-Seidel method. A value less
than one gives under-relaxation, which takes more time to converge than the Gauss-Seidel method.
A value in between one and two gives over-relaxation and gives a faster convergence rate than the
Gauss-Seidel method. The rate of convergence for SOR is much improved from Jacobi and Gauss-
Seidel. The convergence rate is (2π/log10)s; where s is the mesh size which is 1/n+ 1, for an n×n
matrix.

3.3 Comparison of Direct and Iterative Solvers

Direct solvers solve the system in a finite number of steps and provide an exact solution for the
system. These methods have high numerical accuracy and are reliable, as the solution does not
depend on the characteristics of the problem. These solvers do not generate a solution until the
entire solving process has finished. Such solvers are suitable for small systems. However, for large
problems, they become very expensive, and in some cases, direct solvers cannot solve the system
because of the high memory requirement. It requires O(n)3 operations for solving the system and
the memory requirement is also O(n)3. Therefore the direct solvers do not scale very well for larger
problems.

Iterative solvers, on the other hand, are approximations of the solutions. They start with an
initial guess of the solution and proceed until they reach close enough to the actual solution and
achieve desired accuracy. Each iteration improves accuracy of the solution, and the solving process
stops once the estimated error is equal or below the acceptable tolerance. The efficiency of these
methods depends on the type of problem, and the convergence rate depends on the condition num-
ber of the system and preconditioning. It is hard to predict the number of iterations it takes to
get to the solution for these solvers. The speed of the solver depends on the number of non-zero
elements present in the system. It is less expensive in terms of memory; the memory requirement is
O(n), where n is number of non-zero elements and typical convergence is less than O(n) iterations.
The storage requirement is shown in Table 3.3, and operations required per iteration are shown in
Table 3.3, for all iterative solvers discussed in this report. In the table, i refers to the iteration
number, n is the number of rows and nnz are the number of non-zeros. These solvers are less
reliable, as they may not be able to converge to a solution. There can be multiple reasons for a
solver to not converge, such as, the time it takes to get to a solution may be very high or, it may
not have been solved accurately enough to be accepted as the solution. Iterative solvers are more
suitable for large sparse linear systems.

18

Solver Storage requirement
QMR nnz + 16 n
Chebyshev nnz + 5 n
GMRES nnz + (i + 5)n
Conjugate Gradient nnz + 6 n
BiCG nnz + 10 n
BiCGSTAB nnz + 10 n
CGSTAB nnz + 11 n
Jacobi nnz + 3 n
SOR nnz + 2 n
LSQR nnz + 2 n
Gauss-Seidel nnz + 2 n

Table 1: Storage requirement of iterative
solvers.

Solver
Matrix-Vector
Products

Inner
Products

QMR 2 (1 with A, AT) 2
Chebyshev 1 (with A) 0
GMRES 1 (with A) i+1
Conjugate Gradient 1 (with A) 2
BiCG 2 (1 with A, AT) 2
BiCGSTAB 2 (with A) 4
CGSTAB 2 (with A) 2
Jacobi 1 (with A) 0
SOR 1 (with A) 0
Gauss-Seidel 1 (with A) 0
LSQR 2 (with A) 2

Table 2: Operations per iteration for iterative solvers.

Although iterative solvers can get to a solution faster, direct solvers still tend to remain useful,
as in many cases iterative solvers cannot produce a solution. For instance, scientists in the domain
of nuclear physics continue to use a direct solver (SuperLU), even though iterative solvers exist.
The reason is that using iterative solvers cause the system to fail in finding solution. The overall
aim is to deliver solutions for problems in the best time without frequently encountering scenarios
in which some problems have no solutions. Therefore, both direct solvers and iterative solvers
continue to exist, as each solve different kinds of problems and techniques have been developed that
use multiple solvers to improve both efficiency and robustness. These techniques will be discussed
in detail in the later sections of this report.

3.4 Accuracy of Solutions

Once a solution has been obtained. The solution can be validated using different metrics. In this
section we discuss two of the popular metrics.

1. Residual of a solution: In order to check the validity of a solution, the easiest way is to
plug it in the equation and compare how close the left and right sides of the equation are to
each other. The residual vector of a computed solution x′ for the linear system Ax = b can
be given as:

r = b−Ax′

A large residual implies a large error in the solution. For direct solutions, we desire the error
E to be equal to zero, which is given by the equation shown below.

E = ||x′ − x|| = 0

For iterative solutions, the computed solution is an approximation of the actual solution, so
we also want the error to be as close to zero as possible. However, a small residual does not
necessarily mean it is a good indication as the computed solution is close to the true solution

19

because some methods always produce a small residual regardless of the system characteristics.
An example of such a method is Gaussian elimination with backward substitution.

2. Estimation with condition number: Conditioning is a characteristic of a system given by
the formula cond(A) = |A|.|A−1|. The condition number can determine the possible relative
change in the solution for relative changes in the entries of the matrix. Therefore it can give
an estimate of the error in the computed solution. In other words, changes in the input, i.e.,
A and b of the equation Ax = b, get multiplied by the condition number to produce changes
in the output, i.e. x in Ax = b. This means, small errors in the input operations can cause
large errors in the solution of the system. Hence a large value for condition number for a
matrix means it is ill conditioned. A smaller value implies a well-conditioned matrix.

4 Preconditioning

The general strategy of solving a linear system involves transforming the system into another
system which has the same solution x and that is easier to be solved. This process is known
as Preconditioning [10]. This is done by combining a solver method with a preconditioner. One
such transformation is pre-multiplying a linear system with a non-singular matrix. In other words,
multiplying the left-hand side and the right-hand side with a non-singular matrix P .This process
leaves the system unaffected. This transformation is shown below:

Ax = b
PAx = Pb

x = (PA)−1Pb = A−1P−1Pb = A−1b

Another transformation is by introducing the product of a matrix, P and its inverse P−1 in the
original system. Since a matrix when multiplied by itself results in identity matrix, it has no affect
on the system.

Ax = b
(PP−1)Ax = b
P−1APx = b

Introducing y where y = Px and substituting in above equation gives:
P−1Ay = b

So the system of equation changes from Ax = b, to P−1Ay = b, and Px = y. The transformed
system can be more easily solved because of the change in the condition number. The original
matrix A, had a higher condition number than the transformed system P−1A. A system with
a higher condition number is more ill conditioned than a system with a lower condition number.
The convergence rate of iterative solvers increases with a decrease in condition number. Therefore,
preconditioning helps by improving the convergence rate of solvers and lets them get to the solution
faster. Below is a list of popular preconditioners:

• Incomplete factorization (ILU): ILU is an approximation of the LU (Lower Upper) factoriza-
tion. LU factorization factors a matrix as the product of the lower and the upper triangular
matrix.

20

• Jacobi or diagonal: One of the simplest forms of preconditioning, in which the preconditioner
is the diagonal of the original matrix.

• Additive Schwarz method: Solves an equation approximately by dividing the problem into
smaller problems and adding the results to get the final result.

• Block Jacobi: It is similar to Jacobi, except that in this case, instead of the diagonal, the
block-diagonal is chosen as the preconditioner.

5 Parallelism Issues

At the time that many of these solvers methods were developed, the main goal was to solve the
problems at hand in the best time. Scaling these solvers was not a concern until they began to be
used for new problems and the problem sizes exceeded the limit, and the efficiency of these methods
became questionable.

Scaling linear systems depends on many factors. For instance, the amount of time will the
solver takes to complete in a parallel environment. This time begins when the first processor begins
and finishes when the last processor finishes. The second factor is how much better will the solver
perform in the parallel environment and how does that compare to the serial version of the solver
i.e., the efficiency (E) of the solver, which can be computed as follows:

E = S/f = Ts/fTp

Here f is the factor of speedup, and Ts is the serial time and Tp is the parallel time.
With an increase in the number of processors, there can be a big communication overhead

involved if the algorithm involves a lot of communication between different processors, as more
information has to be transferred to multiple processors. The efficiency of the system can be
maintained by maintaining the ratio T0/W . The parallel time (Tp) can be given as:

Tp = (W + T0(W, f))/f

Here W is the number of operations in the solving method and T0 is the overhead time. The
speedup and efficiency now become:

S = W/Tp = Wp/(W + T0(W, f))
E = S/f = W/(W + T0(W, f)) = 1/(1 + T0(W, f)/W)

The need for scaling the existing solver methods has been growing with the prevalence and
increasing scales of parallel architectures. For direct solvers, memory consumption is very high,
because the direct solvers involve fill-ins, which are unknown and can cause load imbalance. There-
fore designing a parallel algorithm that is efficient has proven to be challenging. In addition, direct
solvers involve matrix-matrix products, which are more expensive computationally. On the other
hand, although iterative solvers replace that with matrix-vector products; if iterative methods were
to be performed in a parallel environment, the chances that the efficiency of the solvers would be
good are low. This is because the way iterative methods work is, they perform an iteration and com-
pute some quantities, like the norm of the matrix to check whether they have reached the desired
approximation for the solution. This computed value has to be sent to all the processors, which
requires global communication and global synchronization, as they have to be updated at the same
time. In addition, each iterative solver suffers from scaling difficulties for more than 10,000 cores,

21

as each iteration requires a minimum of one vector inner product. Every inner product requires
global synchronization and that does not scale well, due to internode latency.

One strategy for handling this situation is to avoid computation of these quantities that involve
global communication for convergence check. The norm value is updated to the neighboring proces-
sors and propagated later. However, this, again, involves global communication and it also requires
a complex decision regarding until what point the processor should be deferred from updating.

Multigrid methods [46] on the other hand, avoid these problems completely by solving a sub-
system separately and avoid global communication completely. The mechanism of these methods is
explained in detail below, followed by a description of one of the popular multigrid methods. An-
other approach that came into existence because of the scalability issues is the hierarchical approach
of using solvers. Hierarchical solvers are also explained in the later part of this section.

5.1 Multigrid Methods

There have been many efficient methods designed for solving linear systems. However as the size of
the problems increase, the complexity of solving them also rises. Either the memory requirement
becomes humongous or the execution time is high. The use of multiple machines can contribute
better solutions by offering more memory, and reducing the execution time even for very large
systems. Multiple machines can be parallel computers or cluster of systems. Parallel computers are
a set of processors that work collectively to solve a computational problem. These have thousands
of processors, networks of workstations and embedded systems. Parallel computers have very high
cost and therefore may not be affordable by scientists and researchers. Machine cluster, on the other
hand, are simply multiple machines, used in combination. These clusters are located geographically
distant from each other and are referred to as grids. They are heterogeneous systems as these grid
systems have different architecture, network parameters, such as bandwidth and latency. A grid
may be defined as a set of interconnected local clusters. Each node of the grid performs a separate
task. Using these clusters as resources in collection to do the computation for large linear systems
is referred to as a grid computing.

The performance of traditional numerical methods, including those which are designed to run
on parallel homogeneous machines may be unacceptable as these grids are heterogeneous in nature
and therefore become unsuitable for this computing environment. The traditional methods also
are not expected to work efficiently on these machines, as there is high dependency during the
computation, which requires more communication. These problems catalyzed techniques of solving
that work well in a grid computing environment. Such methods are called multigrid methods. This
scheme solves differential equations using a hierarchy of discretization. There are two kinds of
grids, coarse and fine. The kind of grid used to solve the solution is related to the error introduced
in the system. A component that appears smooth on a fine grid may appear not-so-smooth on
a coarse grid. Therefore a good strategy is to use multigrids to improve the convergence rate of
iterative methods. In addition, they are also more scalable as they are optimal in terms of the
number of operations required, i.e. O(n). There are two kinds of multigrid methods; the first type
is called the Geometry multigrid (GMG) which uses two or more meshes. The second type is called
the Algebraic multigrid (AMG) which doesn’t necessarily have to use multiple meshes necessarily;
rather, it mimics what happens on a coarse mesh. These kinds of multigrid methods are used for
linear systems. For non-linear systems, a multigrid scheme is called Full Approximation Scheme
(FAS). For the scope of this work, we will focus on linear system schemes. The main advantage of
using multigrid scheme is that the accuracy obtained is the same as fine mesh, and the convergence

22

is in between a fine mesh and a coarse mesh for two-grid multigrid method. multigrid methods are
among the most powerful solving methods for sparse linear systems.

multigrid schemes use a sequence of coarse grids to accelerate the fine grid solution. The
ultimate solution must be obtained on the finest mesh. The coarse mesh is used only to accelerate
the convergence process and not to obtain the ultimate solution. For simplicity, let us consider a
2-grid mesh. It has two mesh levels, one with the fine mesh and the other with the coarse mesh.
The first step is to set up these meshes. Next is to solve the equations on the fine mesh to partial
convergence. The solving has to be done for partial convergence, or else we will end up solving
the system at the same convergence speed, with no improvement. Solving to partial convergence
will propagate some error, which would be taken care of in the future steps of this process. The
way partial convergence is executed varies. One common technique is to stop when the residual
drops by a factor of two, meaning the ratio of residual obtained by the initial residual is less than
0.5. The next step involves calculating the residual for the fine mesh. Once it has been calculated,
the residual is transferred to the coarse mesh. In the next stage, solve to partial convergence is
performed. Next the correction over the coarse mesh points is computed. At this stage, a solver
that can reduce the error to zero is preferred. And finally, the algorithm transfers the correction
from the coarse mesh to the fine mesh. So, the main role of the coarse grid is to compute an
improved initial guess for the fine-grid relaxation.

5.1.1 Finite Element Tearing and Interconnecting and its parallel solution algorithm
(FETI)

Direct solvers are more suitable for smaller problems and iterative solvers are preferred for larger
problems. This solver uses a hybrid approach: It uses an iterative solver and then breaks the
problem into sub-problems and applies direct solvers on those sub-problems. This algorithm [35, 65]
uses a domain decomposition approach for solving the given linear system for finite element solution
in a parallel fashion. The main problem domain is partitioned into non-overlapping sub-domains.
These sub-domains are fully independent, which makes FETI suitable for parallel computing. Each
one of these sub-domains is assigned to a separate processor. These sub-domains are connected
later on by using Lagrange multipliers on neighboring sub-domains. Applying a direct solver to
solve the unknowns present in that domain solves each of the sub-domains. The solution of the
sub-domain problems is then parallelized. This improves the chances of convergence for a given
overall. Figure 10. Stage (a) shows the decomposition into four sub-domains, for instance. Stage
(b) shows the splitting of Lagrange multipliers and forming clusters.

23

Figure 10: Domain Decomposition in FETI.

This also means that if the given linear system can be solved by a direct method, FETI would
be slower than that; however in comparison to an iterative method, it usually performs much better
and has better chance of convergence, as it is using direct solvers on the sub-domain. In addition,
it also uses many fewer communication calls between processors as compared to the other direct
decomposition methods.

5.2 Hierarchical and Nested Solver Methods

Iterative methods suffer from scalability issues, because irrespective of the solving technique, at
least one vector inner product is required in each iteration. Hierarchical methods handle this issue
by reducing the number of global inner products and replacing them with local inner products,
as they are inexpensive. Hierarchical methods are a generalization of Block Jacobi and Additive
Schwarz Methods. Applying Krylov methods on smaller blocks solves each block. Each level in the
hierarchy applies the same solver method for all sub-problems. They are hierarchical in the sense
that this block-subblocks hierarchy can continue to form smaller and further smaller blocks.
Nested Krylov methods are a generalization of inner-outer iterative methods. These methods use
Krylov method as an inner method and another Krylov method as an outer method to solve the
system. They avoid inner vector products completely by using inner iterations that do not require
performing global and local inner products at all.

In [53] the authors apply FGMRES method for the hierarchical strategy, with 2 levels of
hierarchy and FGMRES, BiCGStab and Chebyshev as the nested Krylov methods. The way global
inner vector products are reduced is by applying a hierarchical approach or nested multi-layer
iterations. This can reduce the overall solve time and improve scalability for large-scale applications.
The minimum dimension that can be used with these approaches are O(106) using at least O(104)

24

cores.

Figure 11: Hierarchical vector partition

In the hierarchical approach, the initial global vector x is partitioned into a hierarchy and also
the total cores are partitioned with the same hierarchy. A segment at an upper level is the parent
of the segments at lower levels. The upper level segment is inherited by the lower level segments.
Figure 11 shows the hierarchical vector partition for vector x. At each level m, the partitioned
segment is given as: x(i1,...,im−1,im). In this the first m− 1 indices, i.e. (i1, . . . , im−1) are inherited
from the parent and the rest im are its own index. Until convergence on all cores is achieved, it
applies Krylov solvers at each level. The lower level solvers are responsible for smaller subsets of
the problem sub-domain forming local sub-systems. The top-level solver iterates over all variables
of a global problem. The iterations proceed starting from the top level to the lowest level, by doing
an inexact solver for each local sub-system. Inner solvers can be chosen based on the characteristics
of the sub-domain problem that improves the overall performance of the systems. This gives the
flexibility of using the solvers, which are most suitable at that level of the hierarchy.

Figure 12 shows the partitioning for a two level hierarchy. For simplicity a a global dimension
of 64 is shown across four cores. As shown in the figure, it divides the problem such that the lower
levels are in charge of solving smaller sub-problems.

Figure 12: Hierarchical vector partition with two levels

25

Layered nested Krylov methods, also called inner-outer iterative methods, use a different itera-
tive method as a preconditioner for each iteration in one of the following two ways:
First, a flexible Krylov method is used as an outer iterative method such that it allows variable
preconditioning. The inner iterative method, in this case can be any iterative method, like GMRES
and Conjugate Gradient. Second, the outer iterative method can be any Krylov method and the
inner iterative method is a fixed preconditioner. A fixed preconditioner is one which is applicable
only if the number of linear operations to be performed are fixed. A variable preconditioner is one,
which can be employed if the number of these operations is not fixed. In [53] BiCGStab is used
with Block Jacobi preconditioner, using one block per core and ILU(0) as the local solver. They
consider BiCGStab, GMRES and Chebyshev solvers. BiCGStab was preferred over GMRES be-
cause the former avoids repeated orthogonalizations that have high communication cost associated
with them. They used Chebyshev successfully with other Krylov methods as it requires no inner
products. These methods reduced overall simulation time drastically, due to the combined effect of
reduced global synchronization, due to few global inner products and stronger inner hierarchical/
nested preconditioners.

6 Multi-method Solver Systems

In a single solver scheme, the choice of the solver method is made by experts or dependant on
the resources available online and documentation provided with different methods. But in many
cases, there is often no single solver that is consistently better, even for problems from a single
application domain. There is also no guarantee that the solver method applied will converge. These
challenges generated the idea of a solving strategy that involved more than one solver algorithm. The
earliest work [62, 63], which suggested that the efficiency of a system is expected to improve with
polyalgorithm solvers, used three basic solvers. [63] provides the design details of a polyalgorithm
for automated solution of the equation F (x) = 0. The challenges for the work include the small
number of problems available for solving. In addition, the system did not find all the roots for the
equation mentioned above and for some of the roots it found out, they were questionable.

In this section we talk about different types of multi-method solver approaches, namely com-
posite solvers, poly-iterative solvers and adaptive solvers. Multi-method linear systems include a
variety of techniques, such as composite solvers, iterative solvers and adaptive solvers. Below are
the papers that cover the variety of multi-method solver techniques that are popular for use. Fig-
ure 13 shows the comparison of various solve schemes in terms of time and number of solvers for
single-method solvers and multi-method solvers.

26

Figure 13: Comparison of various solve schemes

6.0.1 Composite Solvers

A composite solver approach is the one in which basic solver methods are sequenced in an ordered
fashion [16, 15, 17, 18, 2]. The first choice for solving the system is the first solver method in the
sequence. If a method fails, then the next method in the sequence is invoked. This continues to
happen until the problem is solved successfully. The composite algorithms are developed to have
efficient and robust solvers as composites of multiple solver methods. [16] achieves this by using
multiple preconditioned iterative methods in sequence to provide a solution. The solution obtained
by this strategy is believed to be reliable and to have a good performance in parallel. This scheme
has been tested in a driven cavity flow application for performance. As mentioned in [2, 16], the
reliability of a method is given as ri = 1 - fi, where fi refers to the failure rate. The running time of
the composite scheme depends on the sequence of the solver methods. The worst-case time scenario
for the composite solver scheme is when it needs to attempt solving the system with all the solver
techniques in the given sequence. This can be given by:

Tπ = tπ(1) + fπ(1).tπ(2) + fπ(2).tπ(3) +(fπ(1)...fπ(n−1))tπ(n).
To have minimum worst-case running time among all the possible combinations possible, the

base methods are arranged in the sequence in the increasing order of their utility ratio, ui which
is given by the ratio ti/ri. For computing this ratio, ri is substituted as shown below and using
estimates of ti with some sampling technique:

ri = 1− fi
This also means that this technique uses knowledge obtained in the past, which enables using

domain-specific knowledge for the selection of solvers. This system maintains the past performance
history and allows monitoring of system performance.

The solvers are then arranged in the increasing order of their utility ratio, ui. They use a simple
sampling technique for the optimal composite by computing this ratio from running all their solver
methods in the sequence on a small dataset and obtaining the mean of the time taken per iteration
by the solvers and the failure rates.

27

The software architecture that supports this strategy is modeled in Figure 14. It has the
following components: solver proxy, non-linear solvers, linear solvers, ordering agent and application
driver. The proxy linear solver method acts as an intermediate between the non-linear solver
algorithm and linear algorithm. The proxy, linear solvers and non-linear solvers have the same
solver interface to make it easy to use multiple solvers. This proxy interacts with the ordering
agent to choose the linear solvers based on the ordering strategy. The proxy is used with Newton-
Krylov solver. They use the following four set of base solution methods: (1) GMRES(30), restricted
additive Schwarz method (RASM)[1] with Jacobi sub-domain solver (2) GMRES(30), RASM[1],
with SOR sub-domain solver (3) TFQMR, RASM[3] with no-fill ILU sub-domain solver and (4)
TFQMR, RASM[4] with no-fill ILU subdomain solver. The numbers in brackets denote the degree
of overlap.

[15]

Figure 14: multi-method software architecture.

6.0.2 Adaptive Solvers

In this approach [52, 26, 27, 14, 33] only one solver is used, and it is selected as the most suitable
solver dynamically, based on the match of the solver with the characteristics of the linear system
under consideration. This technique adapts the solver method during a simulation, based on the
changing attributes of the problem. The difference this approach has over the composite solve
approach is that it uses only one base solver for each linear system.

Numerical properties for a system change at each iteration of a given problem and so does the
choice of the solver and the selection criteria. Linear solvers [52] are selected at each iteration
based on the characteristics of the problem emerging at each level; given the nature of the problem

28

at that stage, the decision of the best suited solver is taken at each stage. This strategy applies
a different preconditioner during different simulation stages, maintaining a low overall time for
finding the solution. This is done by the combination criteria for different methods. For instance,
if there is a more robust method at one stage, then the other stages had methods that were faster
to compensate the time taken by the first method. They used GMRES(10) with a point-block
ILU(1) preconditioner. In this approach, the chances of obtaining a solution are increased by the
use of robust methods, and the total time for the solution is acceptable. [14] is an extension of
the previous work to solve a more complex parallel application to show that the adaptive poly-
algorithmic approach is parallelizable and scalable. They used four linear solvers:

(1) GMRES with a Block Jacobi preconditioner and SOR as a subdomain solver, called GMRES-
SOR.

(2) Bi-conjugate gradient squared (BCGS) with a BJ preconditioner and no-fill incomplete
factorization (ILU (0)) as a sub-domain solver, called BCGS-ILU0.

(3) flexible GMRES (FGMRES) with a BJ preconditioner with ILU (0) as a sub-domain solver,
designated as FGMRES-ILU0.

(4) FGMRES with a Block Jacobi preconditioner that uses ILU (1) as a sub-domain solver,
called FGMRES-ILU1.

The switch is made on the following two indicators: 1. The non-linear residual norm is calculated
and assigned to the following four categories: (a) ||f(u)|| ≥ 102, (b) 104 ≤ ||f(u)||<102, (c) 1010 ≤
||f(u)||<104, and (d) ||f(u)||<1010 A change in the solver is made when the simulation moves
from one category to another and the solver method is moved up or down accordingly. 2. Average
time per non-linear iteration: The base solver methods are arranged in increasing order of their
corresponding average time per nonlinear iteration.

[26] has a different approach. It uses statistical data modeling to make the solver choice
automatically. It combines different solver techniques with different preconditioners and different
parameters as well.

6.0.3 Poly-iterative Solvers

Poly-iterative solver approach uses multiple solvers applied simultaneously to the system so that
the chances of getting a solution increase. If one solver fails, one of the other solvers from the
system may provide a solution.

One of the earliest suggestions made in [62] for poly-iterative solver strategy was made in the
late 1960s. This strategy is based on selecting the solver based on the problem size and the user’s
specifications about the problem and the accuracy level expected from the system. If the user
specifies no information, then the size is used to pick the solver. If it is a small matrix, with less
than 15 rows and 15 columns, the solver chosen is LU decomposition. If this method fails, then the
solution obtained just before failure is used as the initial guess for SOR. If this method also fails, the
user is provided with the summary and prompted for further instructions to solve. The user may
lower the accuracy level to accept somewhat less acceptable solution or allow longer computations
for solving the system.

For problems of larger size (considered large in that decade), more than 80 rows and columns,
SOR is applied. If this fails, SOR is applied again, but this time on the product of matrix transpose
and the original matrix. If this strategy fails then the user is asked for further instructions similar
to the small matrix scheme.

For problems of intermediate size, the properties of bandedness and diagonal nature are inves-

29

tigated. If either of these properties are valid for the problem in consideration, SOR is applied. If
that fails, LU decomposition is used. If that fails as well, then the system relies on user feedback
for accepting lower accuracy or allowing longer computations.

The work in [9] with the poly-iterative approach [62, 64, 34] mentions the advantages of using
a poly-iterative approach in parallel. First being an increased probability of finding a solution. The
second being increased performance resulting from an efficient matrix-vector product. In addition,
once any one of the solver methods has converged, the process can be terminated. This algorithm
uses three solver techniques: 1. QMR 2. CGS 3. BiCGSTAB. These methods start computing the
inner product, and then perform the vector updates and finally a preconditioner solve. All these
methods are applied simultaneously and as soon as one of them converges, the iteration is stopped
for all other methods. The cost per iteration is the sum of the cost of the three methods. In case if
a method fails, it is removed from the iterative scheme. This strategy takes more time than the best
method, but is preferred, sometimes it has a higher probability of finding the solution. The extra
time is due to the communication cost involved in this strategy, although making communications
global may reduce it. Another situation in which this method incurs higher cost is when one of the
methods is comparatively more expensive than the others and it is not the first method to converge
nor it fails. However, this strategy is more beneficial in a parallel implementation, as this approach
aligns the mathematical operations of the solver methods and combines the communication stages
to make it more efficient. Figure 15 shows the sequence of operations and how the communication
is combined.

The work in [64] provides methods that can be used for automatic solution of F (x) = 0 where
F (x) is a non-linear equation for one variable. This is one of the oldest solver methods, done in
1968, when more than the size of the problem, solving a problem was the focus. It uses three base
methods: Secant method, half-interval method and descent method.

1. Secant method: Secant solver is one of the oldest solver methods in the history of numerical
analysis. It is a root-finding algorithm that finds roots in succession to get an approximation
of the root. This method is an approximation of the Newton’s method. The secant method
is as follows:

xn = xn−1 − f(xn−1) xn−1−xn−2

f(xn−1)−f(xn−2)
= xn−2f(xn−1)−xn−1f(xn−2)

f(xn−1)−f(xn−2)

2. Half-interval method: This method works in conjunction with the previous method. It applies
secant method for a short run for both the intervals; each interval being half of the total time.
If none of these secant method work, the point at which the sign changes is classified as a
discontinuity.

3. Descent method: This is descent on the absolute function of the non-linear equation used to
alter the location of the root. It is used only when a root is found by the secant method and
cannot be used standalone.

7 Software Examples

In this section I describe some of the software packages that are commonly used for solving sparse
linear systems. While there are significant overlaps in functionality in some cases (e.g., precondi-
tioned Krylov methods in PETSc and Trilinos), the packages discussed here cover different sets of
algorithms and incorporate different implementation strategies.

30

Figure 15: Sequence of operations.

31

7.1 PETSc

Portable, Extensible Toolkit for Scientific Computation (PETSc) [8] is a popular toolkit for linear
system solvers and preconditioners. It can run on different kinds of architecture and different
operating systems. It is portable to any parallel system that supports MPI. It provides scalable
solutions and is efficient and has unique features which give the library widespread popularity. It
provides a wide variety of scalable parallel preconditioners, krylov subspace methods. Table 16
shows the list of solvers and preconditioners offered by PETSc.

Figure 16: Solvers and preconditioners offered by PETSc.

PETSc also has profiling abilities. PETSc gives its users the flexibility to change the level of
abstraction to what suits their problem the best. It has a plug-in architecture to offer extensibility to
its users. This means additional implementations can be added and made available for other users.
Figure 17 shows the hierarchical organization of the toolkit. Starting from the bottom level, the
lowest level has the standard library for PETSc, such as MPI for communication, BLAS, LAPACK
for linear algebra computation. The next level in the hierarchy is the lightweight-profiling interface,
which gives information such as where the code is spending its time during solution, which is useful
to application programmers, and indicates how their program is organized. The next level has the
basic building blocks, i.e, the data objects that PETSc uses, such as matrices, vectors, and indices
to access blocks. The DM module at this level is how PETSc coordinates interaction between
what happens with meshes and discretization in differential equations. It is an adapter class that
communicates information from discretization in the mesh to the solvers. It makes using the solvers
easier for the toolkit users. The next level has the linear solvers, which are the Krylov subspace

32

methods and preconditioners. PETSc also offers non-linear solvers, which form the next level in the
hierarchy. Optimization is provided by the TAU [71] component of PETSc for linear solvers within
PETSc algorithm and basic building blocks. The ODE intergrators interface non-linear solvers and
sometimes-linear solvers directly, depending on the problem.

Figure 17: PETSc Components.

7.2 Trilinos

Trilinos [43] is an object-oriented software framework for solving science and engineering problems.
It runs on laptops, workstations, and small and large clusters and supports MPI. It offers a va-
riety of linear and non-linear solvers and preconditioners. Figure 3 shows the list of solvers and
preconditioners that are offered.

Solver and preconditioner interfaces Names of solvers and preconditioners
Iterative linear solvers AztecOO, Belos, Komplex
Direct sparse linear solvers Amesos, Amesos2, ShyLU
Direct dense linear solvers Epetra, Teuchos, Pliris
Iterative eigenvalue solvers Anasazi, Rbgen
ILU-type preconditioners AztecOO, IFPACK, Ifpack2, ShyLU
Multilevel preconditioners ML, CLAPS, Muelu
Block preconditioners Meros, Teko
Nonlinear system solvers NOX, LOCA, Piro
Optimization (SAND) MOOCHO, Aristos, TriKota, Globipack, Optipack
Stochastic PDEs Stokhos

Table 3: Trilinos Solvers and Preconditioners.

The Trilinos solvers interfaces are described briefly as follows. The AztecOO interface includes
the iterative linear solvers namely, Conjugate Gradient, GMRES, BiCGStab and incomplete fac-
torization preconditioners. AztecOO is the improvement over Aztec offered by Trilinos. Belos is

33

an interface for a variety of solvers, such as GMRES, Conjugate Gradient, block and pseudoblock
solvers, hybrid GMRES. Belos and AztecOO have some overlapping solvers, however Belos is be-
lieved to be better than AztecOO interface. Amesos2 is a direct solver interface for Tpetra. This
includes SuperLu solver and all its variants. ShyLU is a scalable LU which is a hybrid of direct
and iterative solver for robustness. Ifpack(2) includes Incomplete factorization, Chebyshev, Block
relaxation, domain decomposition preconditioners.It uses Epetra and Tpetra for matrix and vector
calculations. Ifpack(2) is a Tpetra version of Ifpack. ML includes the multi-level preconditioners
which are multigrid and domain decomposition. These are the ones that are considered for scalable
performance of applications. MueLu is similar to ML but better in the sense that it can work with
Epetra and Tpetra objects as well.

7.3 MUMPS

MUMPS is a multi-frontal massively parallel sparse direct solver library that uses a multi-frontal
technique, shown in Figure 18. It focuses on providing solutions for symmetric positive definite
matrices and symmetric and non-symmetric matrices. MUMPS solves large systems of linear equa-
tions of the form Ax = b by factorizing A into A = LU for non-symmetric matrices and A = LDLT

for symmetric matrices. Here L and U are the lower and upper triangles of A respectively and D is
the diagonal matrix. It is a three-phase approach. The first step is the analysis phase in which it
analyzes the matrix structure and prepares for factorization. Then it preprocesses the matrix and
performs the data factorization. The second phase is the phase of factorization, where it factorizes
the matrix A based on the properties of the matrix. A non-symmetric matrix A is factorized into
A = LU . If it is a symmetric matrix and it is also positive definite, the factorization is as follows:
A = LLT . If it is symmetric indefinite then factorization changes to A = LDLT . And the final
phase is the solution phase, in which it performs the forward and backward substitutions Ly = b
and Ux = y.

7.4 Self-Adapting Large-Scale Solver Architecture (SALSA) Solvers

SALSA [28] is a self-adapting solver technique which has several levels on which the computational
choices for the application scientist are automated. The choice of solver technique can be made
based on the nature of data and on the efficiency of the available kernels on the architecture under
consideration to facilitate tuned high-performance kernels. One of the advantages of this scheme is
that it is expected to increase its intelligence overtime. It is self-adapting software that remembers
the results of the runs and learns over time. There are three levels of adaptivity, as follows.

1. Kernel level: It can be done in one-time installation and is independent of the data given by
the user.

2. Network level: Some level of interaction with user data.

3. Algorithm level: At this level, analysis is done dynamically based on the user data.

SALSA is a component-based framework; Figure 19 shows the four components of the framework.
An Intelligent Agent that includes an automated data analyzer to reveal necessary information
about the structure of the data, a data model for expressing this information, and a self-adapting
decision engine that can combine the meta data to choose the best library and algorithm for solving.

34

Figure 18: Multi-frontal solving technique.

The analysis module computes the properties of the input. The history database records all the
information related to the intelligent component along with the data that each interaction with a
numerical routine produces like the algorithm. Metadata vocabulary provides information about
the data and the performance profiles. It is used to build the history database and supports building
an intelligent system.

7.5 Linear System Analyzer Solvers

The Linear System Analyzer (LSA) [20] is a component-based problem-solving environment for
large sparse linear systems. The components LSA provides are broadly categorized in four cate-
gories, IO, Filter, Solver and Information. IO is for feeding the problem into the system and getting
the solution out of the system. The user also feeds various parameters and settings for solving such
as, the relaxation for solving, what solver to be used for solving, etc. Although this system takes a
lot of input from the user apart from the problem to be fed as input, it provides settings to choose
default parameters for the various solving techniques and other settings shown on the interface.
Figure 20 shows a sample LSA session. Filter is for providing filtering of data or system manipula-
tion in other words, such as scaling, eliminating entries based on the size, etc. Solver is for actually
getting the system solved. LSA offers four choices to the users to use for solving. They are as
follows:

1. Banded: A matrix has a banded structure if its rows and columns can be permuted such that
the non-zero entries form a diagonal band, like exhibiting a staircase pattern of overlapping

35

Figure 19: Component based framework.

rows. It converts the system to banded structure and solves the system, with the new data
structure and uses LINPACK [29] routines for solving. LINPACK, LINear algebra PACKage
is a Fortran package developed in 1970’s. It uses BLAS for the underlying routines.

2. Dense: It converts the system into a dense 2D array data structure and then solves it using
Lapack [3] routines. system to a dense 2D array data structure.

3. SuperLU: SuperLU [50] is a solver library for getting direct solutions for large, sparse, non-
symmetric systems of linear equations.

4. SPLIB: They use preconditioned iterative solvers offered by SPLIB library [21]. This library
had 13 solvers and 7 preconditioners when this research was performed.

Figure 21 shows the LSA architecture with its four components namely, user control, manager,
communication subsystem, and information subsystem. This approach provides parallelism between
components, which supports solving large problems by simultaneously using the computational
resources of multiple machines. This system allows comparisons of different solver methods and
support to facilitate practical solution strategies.

The user control module is a Java interface. A new system is fed as input in the first component
in the module “NewSystem”. Meanwhile, the matrix is scaled and reordered, simultaneously on
different machines. These actions are performed through the user control module, which also has
options for choosing parameters for all the modules in the interface. The scaled problem is sent
to SuperLU and the reordered version is sent to SPLIB where SuperLU and SPLIB are the two
component subinterfaces. LSA has an option of running multiple solvers on a single system in order
to compare these techniques and use them for research purposes.

36

Figure 20: Sample LSA Session.

Figure 21: LSA Architecture.

37

The LSA manager collaborates control and resource management. It establishes a component
network to facilitate multiple user control systems with a single LSA session. It also assigns unique
identifiers and maintains the database of various machines and components.

The next module is the communication subsystem, Nexus [36] which is a cross-platform system
for facilitating parallel applications and distributed computing. LSA uses a many libraries for solvers
and preconditioners that are written in different programming languages and therefore there needs
to be a module that handles this and make it robust as a mixed language system. Nexus provides
this bridge between the different languages used in LSA.

The Information subsystem module provides any information that the user may want about the
solving process except the undesirable information. The results are shown in the form of a summary
with the performance metrics for that scenario. There is a small description provided, along with
the details whether the event was successful or failure or there was a warning. The user is also
redirected to more information, in case if she wants more details.

8 Performance Modeling Approaches for Solvers

As illustrated in the previous section, there are various options available for solving a linear system.
The choice of selecting the solvers is made on past research and expertise. There are some common
sets of metrics that are used to measure the performance of a model which are listed as follows.

1. Ranking: The first set of metric is based on ranking. The model is rewarded for generating
predicted values with the same pairwise ordering as the actual pairwise ordering of the values
in consideration. Area under the curve is one such metric. Ranking techniques are good
for direct solvers, as direct solvers have a unique solution which can be compared with other
solutions, if they exist. However, a ranking model would not necessarily be useful for the solver
selection work, as the solver methods are iterative in nature which makes them approximations
of the solution. Therefore, ranking may not be possible, as ranking approaches tend to be very
solver specific. For instance, with iterative solutions there can be multiple correct solutions
and more than one method can be equally good.

2. Regression: The second set of metrics is regression-based, in which, if the predicted value is
close to the actual value, the model is rewarded. If the predicted value is far away from the
actual value, the model is penalized. An example of such a metric is Mean Squared Error.
The goal of regression is to learn a model that can predict a real-valued target from a vector
of features using a prediction function, unlike ranking models, which are classification models
that predict the class from a possible set of classes. Regression models are most useful when
the actual value of the prediction is very important. One example is a model for generating
the estimated price of airplane tickets.

3. Regression and Ranking combined: A model that performs well on both these metrics
is hard to achieve. In fact, a model with great performance on one metric can perform very
poorly on the other metric. One such example would be a case of binary class distribution
with one of the labels occurring very rarely; the model can achieve almost perfect regression
by always predicting the class that is more frequent. But ranking, on the other hand, is
not valuable. Many situations demand good performance in both these metrics or at least
acceptable performance for both metrics in the majority of cases. In the past few years, there
has been some work done for achieving good performance for both these metrics. This has been

38

achieved by combining both the above-mentioned approaches in [70]. Combining ranking with
regression adds additional useful constraints to the model, which gives an improvement over
the regression-only models. Therefore this approach enables improved regression performance,
especially in the cases of rare events, as compared to the performance of regression-only
methods. With the regression loss L(w,D) and pairwise ranking loss L(w,P), the combined
ranking and regression approach optimization problem is given as follows:

min
w∈Rm

αLw,D) + (1− α)L(w,P) + λ
2 ||w||

2
2

where D is the dataset, P is the set of candidate pairs, L is the regression loss, w is the weight
vector, λ is the parameter that controls regularization and α is the parameter for combined
regression and ranking. In the above equation α ∈ [0, 1] Setting α = 0 makes it pairwise
ranking-only and setting α = 1 makes it regression-only approach. For the optimization to
consider both the techniques, α is set to a value in between 0 and 1.

4. Classification: Another approach [12] for modeling solver performance is by using machine-
learning methods to classify the solvers for a linear system. These methods apply supervised
learning on the data and learn about the linear system based on the characteristics of the
problem. Once the various machine-learning algorithms are applied, there can be a comparison
of the accuracy of the solver prediction and time it took to build the model for each machine
learning algorithm. These learning algorithms can then be used to make predictions for which
solvers should be used for a new incoming system. In this approach of solver selection, each
linear system can be solved with multiple solvers. Based on the time it takes for each solver
to solve the system and whether it converged or not the solvers can be classified. The class
label can be chosen based on the solve time and a threshold chosen as the acceptable rate for
a solver to be considered “good”.
Once a label is assigned for each data point, supervised learning can be performed on the
data. To do this, some machine-learning classification algorithms can be used to make the
solver selection for the linear problems. Below are some of the methods that that can be used:
BayesNet [19], k-nearest neighbor [24], Alternate Decision Trees [13], Random Forests [22],
J48 [61], Support Vector Machines (SVM) [23], Decision Stump [47], LADtree [45].

There are other approaches to doing the classification, which include more than two-class label-
ing. For instance, a strategy with tertiary labeling. However a two class labeling is better than two
class labeling for solver predictions for two reasons: given the nature of our system, what seems to
be most interesting is whether a solver was good or bad for a given system. A solver being mediocre
good for a case is not likely to be of interest to the systems users. Second, classification with three
classes of solvers will reduce the number of data points in each category. This may result in the
case where there are not enough data points for each category because the categorization is done
based on the time it takes to solve a system and it may be the case that most of the solver times
don’t fall in one of the categories, which will drop the performance.
However, techniques like the combined ranking-regression mentioned above, can be applied to
achieve ranking among the solvers along with regression and the ‘good‘ solvers can be ranked
based on how much time they took to solve the system. To ensure the suggestions made are realis-
tic, one can verify the ranking results the model produces, with the ranking that one would expect
based on the theoretical knowledge we have about the various solver methods.

39

9 Conclusion and Future Work

In this work I presented the two categories of solvers, direct and iterative that can be used for solving
large sparse linear systems. This work briefly portrays the role of preconditioners. The report
describes in detail some of the most popular direct and iterative solvers, followed by comparing the
two approaches. The report further outlines the time and space complexity and how scalability of
these methods introduces a new technique of solving linear systems. Later in the report we saw
some popular software that offer different linear systems solvers for solving large sparse systems.
In the later part of the report, I elaborate on the two most popular solving schemes. And we also
saw some approaches for modeling solver performance in the last section of this report.

Although traditional ways of solving linear systems emphasize using one solver technique for a
given problem, studying the two techniques in detail, we have become inclined to see the advantages
of using multi-solver technique for solving. This will not only make the system more efficient, it
will give the system the power to alter decisions based on the changing characteristics of the system
during the solving process. This will help us build a system that is more efficient, robust, generic
and reliable. Direct solvers use a single solver throughout the process. In an adaptive solver scheme,
many methods are used but at a time only one solver is applied. But it keeps changing the solver
based on switching criteria. It runs one solver and then applies the switching check which involves
some calculations like convergence rate and increase in the number of iterations. Once this is done,
it decides to use the same solver or switch. In the composite solver scheme, the solvers are sequenced
in order and everything is preassembled. If the first solver fails, the system switches to the second
solver in the order. In poly-iterative approach multiple solvers are applied simultaneously and
whichever converges the fastest, terminates the solving process.

In the future, we would like to use Weka and other existing ML packages to investigate the
effectiveness of different ML approaches for our problems. In addition, sampling the solver space
intelligently is a task we would like to perform in the future, as it sounds more realistic and doable
with bigger datasets. As the dataset grows in size, the number of possible combinations for the
solvers and preconditioners and their parameter options also grows drastically. This generates
a sample space that is very big in size and becomes hard to handle. This means the number of
experiments required to explore the sample space is so huge that it requires almost infinite resources,
which is not desirable in any situation. This calls attention to sampling the space intelligently and
be able to represent the sample space with less data; yet at the same time, also show a true
representation of the space. Any kind of approach that involves randomly picking the data points
from the space would not be able to perform the desired task. There has been some work done
by researchers in this field as in [51], and this is one of the areas which we have started exploring
recently and would like to explore more in the near future.

10 Appendix

1. Diagonal matrix: A matrix in which the non-diagonal elements are 0. For instance, the
matrix below is diagonally dominant, as the only non-zero elements are present at the diagonal
locations.

1 0 0 0
0 4 0 0
0 0 −6 0
0 0 0 2

40

2. Diagonally dominant matrix: A matrix is diagonally dominant if for each row, the magnitude
of the diagonal entry in that row is larger than or equal to the sum of the magnitudes of all
the other non-diagonal entries in that row.

3. Order of a matrix: The number of rows and columns of a matrix are referred to as the order
of the matrix. For instance, a matrix with 4 rows and 5 columns has an order of 4x5.

4. Singular matrix: A matrix whose determinant is zero. For instance, the matrix given below
has a determinant 0, which makes it singular matrix.[

2 4
4 8

]
The determinant of the matrix can be given by the Laplace formula:

determinant(A) =
∑
σ∈Sn

−1N(σ)
∏n
i=1 ai,σi

.

det(A) =
∑
σ∈Sn

sgn(σ)
∏n
i=1 ai,σi

.

5. Triangular matrix: A square matrix with the following special characteristics: Lower triangu-
lar matrix: The square matrix in which all the elements above the diagonal are zero. Upper
triangular matrix: The square matrix in which all the elements below the diagonal are zero.

6. Square matrix: A matrix with the same number of rows and columns.

7. Symmetric matrix: A square matrix that is equal to its transpose, so A = AT . An example
of a symmetric matrix is shown below:1 2 4

2 −3 8
4 8 −9

8. Factorization: Original matrix is decomposed into multiple smaller matrices. The original

matrix can be obtained by the product of the smaller matrices.

9. Ill conditioned matrices: Matrices, which have a very large condition number, are called as
Ill conditioned matrices. Matrices with a small condition number are referred to as well-
conditioned matrices.

10. Bidiagonalization: The process of converting a matrix into a bidiagonal matrix, which is, a
matrix in which the non-zero elements are along the main diagonal of the matrix and either
the diagonal below or above the main diagonal. For example, the matrix shown below is
bidiagonal.

1 0 0 0
2 4 0 0
0 1 −6 0
0 0 3 2

41

11. Tridiagonal matrix: A matrix in which the non-zero elements are along the main diagonal
of the matrix and along the diagonal below and above the main diagonal. For example, the
matrix shown below:

1 5 0 0
2 4 4 0
0 1 −6 1
0 0 3 2

12. Orthogonalization: The process of finding a set of orthogonal vectors in a given subspace.

13. Symmetric positive definite matrix: A matrix is symmetric positive definite if A = AT , A−1

exists, all its Eigenvalues are positive and all elements of A are greater than zero.

References

[1] L. M. Adams. Iterative algorithms for large sparse linear systems on parallel computers. 1982.

[2] E. Alba and J. M. Troya. A survey of parallel distributed genetic algorithms. Complexity,
4(4):31–52, 1999.

[3] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. DuCroz,
A. Greenbaum, S. Hammarling, A. McKenney, et al. Lapack users guide. society for
industrial and applied mathematics, philadelphia, pa. Technical report, ISBN 0-89871-447-8
(paperback), 1999.

[4] O. Axelsson. A survey of preconditioned iterative methods for linear systems of algebraic
equations. BIT Numerical Mathematics, 25(1):165–187, 1985.

[5] O. Axelsson. Iterative solution methods. Cambridge university press, 1996.

[6] A. Baker, J. Dennis, and E. R. Jessup. Toward memory-efficient linear solvers. In
International Conference on High Performance Computing for Computational Science, pages
315–328. Springer, 2002.

[7] A. H. Baker, E. R. Jessup, and T. Manteuffel. A technique for accelerating the convergence
of restarted gmres. SIAM Journal on Matrix Analysis and Applications, 26(4):962–984, 2005.

[8] S. Balay, S. Abhyankar, M. Adams, J. Brown, P. Brune, K. Buschelman, V. Eijkhout,
W. Gropp, D. Kaushik, M. Knepley, et al. Petsc users manual revision 3.5. Argonne National
Laboratory (ANL), 2016.

[9] R. Barrett, M. Berry, J. Dongarra, V. Eijkhout, and C. Romine. Algorithmic bombardment
for the iterative solution of linear systems: a poly-iterative approach. Journal of
Computational and applied Mathematics, 74(1):91–109, 1996.

[10] M. Benzi. Preconditioning techniques for large linear systems: a survey. Journal of
computational Physics, 182(2):418–477, 2002.

[11] S. Bhowmick. Multimethod solvers: algorithms, applications and software. Pennsylvania State
University, 2005.

42

[12] S. Bhowmick, V. Eijkhout, Y. Freund, E. Fuentes, and D. Keyes. Application of machine
learning to the selection of sparse linear solvers. Int. J. High Perf. Comput. Appl, 2006.

[13] S. Bhowmick, V. Eijkhout, Y. Freund, E. Fuentes, and D. Keyes. Application of alternating
decision trees in selecting sparse linear solvers. 2010.

[14] S. Bhowmick, D. Kaushik, L. McInnes, B. Norris, and P. Raghavan. Parallel adaptive solvers
in compressible petsc-fun3d simulations. In Proceedings of the 17th International Conference
on Parallel CFD. Elsevier, 2005.

[15] S. Bhowmick, L. McInnes, B. Norris, and P. Raghavan. The role of multi-method linear
solvers in pde-based simulations. In Computational Science and Its ApplicationsICCSA 2003,
pages 828–839. Springer, 2003.

[16] S. Bhowmick, L. McInnes, B. Norris, and P. Raghavan. Robust algorithms and software for
parallel pde-based simulations. In Proceedings of the Advanced Simulation Technologies
Conference, ASTC, volume 4, pages 18–22, 2004.

[17] S. Bhowmick, P. Raghavan, L. McInnes, and B. Norris. Faster pde-based simulations using
robust composite linear solvers. Future Generation Computer Systems, 20(3):373–387, 2004.

[18] S. Bhowmick, P. Raghavan, and K. Teranishi. A combinatorial scheme for developing efficient
composite solvers. In Computational ScienceICCS 2002, pages 325–334. Springer, 2002.

[19] C. Bielza and P. Larrañaga. Discrete Bayesian Network classifiers: A survey. ACM Comput.
Surv., 47(1):5:1–5:43, July 2014.

[20] R. Bramley, D. Gannon, T. Stuckey, J. Villacis, E. Akman, J. Balasubramanian, F. Breg,
S. Diwan, and M. Govindaraju. The linear system analyzer. Technical report, Technical
Report TR511, Indiana University, 1998.

[21] R. Bramley and X. Wang. Splib: A library of iterative methods for sparse linear systems.
URL address: http://www. elk. itu. edu. tr/dag/lssmc. html, 1995.

[22] L. Breiman. Random forests. Machine Learning, 45(1):5–32, Oct. 2001.

[23] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273–297, 1995.

[24] P. Cunningham and S. J. Delany. k-nearest neighbour classifiers. Multiple Classifier Systems,
pages 1–17, 2007.

[25] T. A. Davis. Direct methods for sparse linear systems, volume 2. Siam, 2006.

[26] J. Demmel, J. Dongarra, V. Eijkhout, E. Fuentes, A. Petitet, R. Vuduc, R. C. Whaley, and
K. Yelick. Self-adapting linear algebra algorithms and software. Proceedings of the IEEE,
93(2):293–312, 2005.

[27] J. Dongarra and V. Eijkhout. Self-adapting numerical software and automatic tuning of
heuristics. In International Conference on Computational Science, pages 759–767. Springer,
2003.

43

[28] J. Dongarra and V. Eijkhout. Self-adapting numerical software for next generation
applications. International Journal of High Performance Computing Applications,
17(2):125–131, 2003.

[29] J. Dongarra, C. Moler, J. Bunch, and G. Stewart. Linpack users guide: Society for industrial
and applied mathematics. Philadelphia, Pennsylvania, 1979.

[30] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct methods for sparse matrices. Clarendon
press Oxford, 1986.

[31] V. Eijkhout et al. Overview of iterative linear system solver packages. NHSE review, 3(1),
1998.

[32] V. Eijkhout and E. Fuentes. Multi-stage learning of linear algebra algorithms. In Machine
Learning and Applications, 2008. ICMLA’08. Seventh International Conference on, pages
402–407. IEEE, 2008.

[33] V. Eijkhout, E. Fuentes, N. Ramakrishnan, P. Kang, S. Bhowmick, D. Keyes, and Y. Freund.
A self-adapting system for linear solver selection. In Proc. 1st intl workshop on automatic
performance tuning (iWAPT2006), pages 44–53, 2006.

[34] A. Ern, V. Giovangigli, D. E. Keyes, and M. D. Smooke. Towards polyalgorithmic linear
system solvers for nonlinear elliptic problems. SIAM Journal on Scientific Computing,
15(3):681–703, 1994.

[35] C. Farhat and F.-X. Roux. A method of finite element tearing and interconnecting and its
parallel solution algorithm. International Journal for Numerical Methods in Engineering,
32(6):1205–1227, 1991.

[36] I. Foster, C. Kesselman, and S. Tuecke. The nexus approach to integrating multithreading
and communication. Journal of Parallel and Distributed Computing, 37(1):70–82, 1996.

[37] R. W. Freund, G. H. Golub, and N. M. Nachtigal. Iterative solution of linear systems. Acta
numerica, 1:57–100, 1992.

[38] R. W. Freund and N. M. Nachtigal. Qmr: a quasi-minimal residual method for non-hermitian
linear systems. Numerische mathematik, 60(1):315–339, 1991.

[39] W. M. Gentleman. Least squares computations by givens transformations without square
roots. IMA Journal of Applied Mathematics, 12(3):329–336, 1973.

[40] G. H. Golub and R. S. Varga. Chebyshev semi-iterative methods, successive overrelaxation
iterative methods, and second order richardson iterative methods. Numerische Mathematik,
3(1):157–168, 1961.

[41] M. H. Gutknecht and S. Röllin. The chebyshev iteration revisited. Parallel Computing,
28(2):263–283, 2002.

[42] A. Hadjidimos. Successive overrelaxation (sor) and related methods. Journal of
Computational and Applied Mathematics, 123(1):177–199, 2000.

[43] M. A. Heroux and J. M. Willenbring. Trilinos users guide, 2003.

44

[44] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems,
volume 49. NBS, 1952.

[45] G. Holmes, B. Pfahringer, R. Kirkby, E. Frank, and M. Hall. Multiclass alternating decision
trees. In ECML, pages 161–172. Springer, 2001.

[46] B. Hutchinson and G. Raithby. A multigrid method based on the additive correction
strategy. Numerical Heat Transfer, Part A: Applications, 9(5):511–537, 1986.

[47] W. Iba and P. Langley. Induction of one-level decision trees. In Proceedings of the ninth
international conference on machine learning, pages 233–240, 1992.

[48] B. M. Irons. A frontal solution program for finite element analysis. International Journal for
Numerical Methods in Engineering, 2(1):5–32, 1970.

[49] K. Jbilou, A. Messaoudi, and H. Sadok. Global fom and gmres algorithms for matrix
equations. Applied Numerical Mathematics, 31(1):49–63, 1999.

[50] X. S. Li, J. Demmel, J. Gilbert, L. Grigori, M. Shao, and I. Yamazaki. Superlu numerical
software library. URL http://crd-legacy. lbl. gov/xiaoye/SuperLU.

[51] M. Manguoglu, F. Saied, A. Sameh, and A. Grama. Performance models for the spike banded
linear system solver. Scientific Programming, 19(1):13–25, 2011.

[52] L. McInnes, B. Norris, S. Bhowmick, and P. Raghavan. Adaptive sparse linear solvers for
implicit cfd using newton-krylov algorithms. In Proceedings of the Second MIT Conference on
Computational Fluid and Solid Mechanics, volume 2, pages 1024–1028, 2003.

[53] L. C. McInnes, B. Smith, H. Zhang, and R. T. Mills. Hierarchical krylov and nested krylov
methods for extreme-scale computing. Parallel Computing, 40(1):17–31, 2014.

[54] R. T. Mills, G. E. Hammond, P. C. Lichtner, V. Sripathi, G. K. Mahinthakumar, and B. F.
Smith. Modeling subsurface reactive flows using leadership-class computing. In Journal of
Physics: Conference Series, volume 180, page 012062. IOP Publishing, 2009.

[55] K. Morikuni, L. Reichel, and K. Hayami. Fgmres for linear discrete ill-posed problems.
Applied Numerical Mathematics, 75:175–187, 2014.

[56] D. P. O’Leary. The block conjugate gradient algorithm and related methods. Linear algebra
and its applications, 29:293–322, 1980.

[57] C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear equations.
SIAM journal on numerical analysis, 12(4):617–629, 1975.

[58] C. C. Paige and M. A. Saunders. Algorithm 583: Lsqr: Sparse linear equations and least
squares problems. ACM Transactions on Mathematical Software (TOMS), 8(2):195–209,
1982.

[59] C. C. Paige and M. A. Saunders. Lsqr: An algorithm for sparse linear equations and sparse
least squares. ACM transactions on mathematical software, 8(1):43–71, 1982.

45

[60] B. T. Polyak. The conjugate gradient method in extremal problems. USSR Computational
Mathematics and Mathematical Physics, 9(4):94–112, 1969.

[61] R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San
Mateo, CA, 1993.

[62] J. Rice. On the construction of poly-algorithms for automatic numerical analysis. In
Interactive Systems for Experimental Applied Mathematics. M. Klerer and J.Reinfelds, pages
301–313. Academic Press, 1968.

[63] J. R. Rice. A polyalgorithm for the automatic solution of nonlinear equations. pages
179–183, New York, NY, USA, 1969. ACM.

[64] J. R. Rice. A polyalgorithm for the automatic solution of nonlinear equations. In Proceedings
of the 1969 24th national conference, pages 179–183. ACM, 1969.

[65] L. Ř́ıha, T. Brzobohatỳ, A. Markopoulos, O. Meca, and T. Kozubek. Massively parallel
hybrid total feti (htfeti) solver. In Proceedings of the Platform for Advanced Scientific
Computing Conference, page 7. ACM, 2016.

[66] Y. Saad. A flexible inner-outer preconditioned gmres algorithm. SIAM Journal on Scientific
Computing, 14(2):461–469, 1993.

[67] Y. Saad. Iterative methods for sparse linear systems. Siam, 2003.

[68] Y. Saad and M. H. Schultz. Gmres: A generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM Journal on scientific and statistical computing,
7(3):856–869, 1986.

[69] Y. Saad and B. Suchomel. Arms: An algebraic recursive multilevel solver for general sparse
linear systems. Numerical linear algebra with applications, 9(5):359–378, 2002.

[70] D. Sculley. Combined regression and ranking. In Proceedings of the 16th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 979–988. ACM,
2010.

[71] S. S. Shende and A. D. Malony. The tau parallel performance system. International Journal
of High Performance Computing Applications, 20(2):287–311, 2006.

[72] P. Sonneveld. Cgs, a fast lanczos-type solver for nonsymmetric linear systems. SIAM journal
on scientific and statistical computing, 10(1):36–52, 1989.

[73] A. Stathopoulos and J. R. McCombs. Primme: preconditioned iterative multimethod
eigensolvermethods and software description. ACM Transactions on Mathematical Software
(TOMS), 37(2):21, 2010.

[74] J. Todd. Survey of numerical analysis. McGraw-Hill, 1962.

[75] L. N. Trefethen and D. Bau III. Numerical linear algebra, volume 50. Siam, 1997.

[76] H. A. Van der Vorst. Bi-cgstab: A fast and smoothly converging variant of bi-cg for the
solution of nonsymmetric linear systems. SIAM Journal on scientific and Statistical
Computing, 13(2):631–644, 1992.

46

[77] J. Varah. A survey of iterative methods for sparse linear systems. In Proceedings of the
fifteenth Manitoba conference on numerical mathematics and computing (Winnipeg, Man.,
1985), pages 83–92, 1986.

[78] E. W. Weisstein. Biconjugate gradient method. 2003.

47

