
Winter 2019 Area Exam Paper

Scientific Visualization on Supercomputers: A Survey

Roba Binyahib

Department of Computer and Information Science, University of Oregon, Eugene, OR, USA

Abstract

Supercomputers increase both computing power and available memory. This allows scientists to generate high resolution
physics-based simulations. Most of these simulations produce a massive amount of data, resulting in potentially trillions of cells.
Scientific visualization is an essential method for understanding this simulation data. Visualization algorithms are usually run
on supercomputers to leverage additional memory and computational power. Running visualization algorithms in distributed
memory settings is challenging for several reasons such as I/O cost, communication cost, load balancing, and coordination
between the nodes. In this paper, we survey the challenges and techniques for visualizing large data sets on supercomputers,
discussing different visualizing algorithms and analyzing the factors impacting the performance.

Keywords: Supercomputing, distributed-memory, scientific visualization, parallel computing.

1. Introduction

Simulations enable scientists to study complex phenomena which
may have been too difficult or expensive to study experimentally.
That said, simulations can only replace experiments if they have
sufficient accuracy, and achieving this accuracy often requires fine
mesh resolution. Supercomputers allow scientists to achieve finer
mesh resolutions by performing calculations at a massive scale.
Examples of fields that regularly use large scale simulations are
high energy physics, biology, and cosmology. For these fields and
others, the simulations produce data sets potentially containing tril-
lions of cells. These massive amounts of data are the key to future
discoveries and scientific breakthroughs. Further, visualization is a
powerful tool to achieve that goal, enabling scientists with ways to
explore, extract, understand, and analyze important information.

The size of the data sets produced by today’s large scale simu-
lations make visualization difficult for several reasons. One com-
plication is that data transfer is expensive, which often prevents
transfers to local desktops or visualization clusters. Another com-
plication is in the processing of large data. Some techniques reduce
the processing costs by focusing on coarser versions of the data or
on subsets of the data. These techniques, including multiresolution
techniques and streaming, are used regularly in non-HPC environ-
ments. However, in the context of supercomputing, the dominant
processing technique is parallelism, i.e. using the same supercom-
puter for not only simulation but also visualization. This is done by
distributing data or workloads across multiple nodes, where each
node visualizes its assigned portion. In most cases, the processing
is done at the native mesh resolution and storing the entire mesh in
memory (although distributed), requiring significant computational

power, large memory, and I/O bandwidth. These requirements are
often acceptable, however, since performing visualization on a su-
percomputer allows visualization algorithms to take advantage of
the supercomputer resources. That said, visualizing such large data
on a supercomputer (i.e., a distributed memory setting) adds new
challenges. Even though most visualization algorithms are embar-
rassingly parallel, others require heavy communications and co-
ordination. In addition, load balance must be maintained to run
these algorithms efficiently, even with embarrassingly parallel al-
gorithms.

These challenges have been the subject of various research ef-
forts to improve the scalability and efficiency of visualization algo-
rithms. In this survey, we cover techniques for visualizing large data
sets at scale with an exclusive focus on distributed memory par-
allelism algorithms and their challenges. Section 2 provides areas
of background for scientific visualization in a distributed memory
setting. The majority of the research on distributed memory visual-
ization are focused on three algorithms: particle advection (Section
3), volume rendering (Section 4), and image compositing (Section
5). The remainder of visualization algorithms are also discussed in
this survey (Section 6), as are supporting infrastructures used by
visualization algorithms (Section 7).

Explicitly, this survey focuses on performing visualization algo-
rithms on supercomputers, and in particular the methods and op-
timizations required to visualize large data in a distributed mem-
ory setting. Related topics to this survey include multiresolution
processing, streaming, hybrid parallelism, and in situ processing;
while these topics are discussed when relevant to visualization on

c© 2019 The Author(s)

R. Binyahib / Area Exam Paper

supercomputers, they are otherwise considered out of scope for the
survey.

2. Background

In this section, we cover important areas of background for scien-
tific visualization on distributed memory. We start by discussing
the impact of I/O on the visualization pipeline (Section 2.1). Next,
we discuss the processing techniques for visualization algorithms
(Section 2.2). Then, we take a look at the framework design used
in most of visualization tools (Section 2.3). Finally, we discuss the
parallelization design of visualization algorithms (Section 2.4).

2.1. I/O in Scientific Visualization

Computational power is increasing tremendously, while I/O sys-
tems are not improving at nearly the same pace. The main limiting
factor for large scale visualization performance is I/O [CPA∗10a,
PYR∗09]. Several techniques have been proposed to reduce the
cost of I/O operations for visualization algorithms such as mul-
tiresolution techniques [CMNR07, PF01], subsetting [CBB∗05,
RPW∗08], or parallel processing. In multiresolution techniques,
data sets are stored in a hierarchical structure, and visualization is
performed starting from the coarser data up to the finer ones. Sub-
setting is used to read and process only the portion of the data that
will contribute to the visualization result. In parallel processing,
the visualization method use the computational power of multiple
nodes to process the data faster. Despite the presence of the first
three techniques, the supercomputing community use parallel pro-
cessing.

As supercomputers are pushing toward exascale, the gap be-
tween computation power and I/O is expected to increase even
more. Consequently, I/O constraints are an important factor to take
into account when designing visualization systems. Each one of the
above mentioned techniques addresses I/O constrains. Multiresolu-
tion and subsetting solutions reduce the required I/O. Parallel pro-
cessing increases the available I/O bandwidth.

2.2. Processing Technique

There are two processing techniques for visualization algorithms:
post-hoc and in situ. The traditional paradigm is post-hoc process-
ing, where scientists visualize their data as a post-processing step.
In this model, the simulation code saves data to disk and is either
read back later on the same computational resources or transferred
to another machine for visualization. An alternative solution to re-
duce the cost of I/O is to use in situ processing [BAA∗16], where
the visualization is performed while the simulation is running. The
data is streamed from the simulation code to the visualization. In
situ visualization adds new challenges to both simulation codes and
visualization systems which must be addressed. These challenges
include for instance code modification, data flow management, syn-
chronization between tasks, and difference of data models between
the simulation and the visualization tool. Successful examples of in
situ systems include Catalyst [FMT∗11], and Libsim [WFM11a],
which work along with Paraview and VisIt respectively.

The remainder of this survey will focus on efficient paralleliza-
tion techniques regardless of their processing model.

2.3. Data Flow Framework

Parallel visualization frameworks have been developed to help
users visualize their data. These frameworks include VTK
[SML96], AVS [UJK∗89], MegaMol [GKM∗15], VisIt [CBW∗12],
and Paraview [AGL∗05]. Most of these systems implement a data
flow framework. A data flow framework executes a pipeline of
modules where a module is an operation on its input data, and a link
between two modules is a data stream. A module in the pipeline can
be: 1) a source, 2) a filter, or 3) a sink. A source is a module that
generates data, usually by reading data from a file. A filter is a mod-
ule that takes data as an input, applies an operation, and produces
an output. A sink is a module that receives data and produces a final
result which can be written to file or displayed on a screen. These
frameworks implement each visualization algorithm as an indepen-
dent module. Figure 1 shows an example of a visualization pipeline:
the source (read operation) reads data from a file, the filters (com-
pute density, clip data, and compute isosurface) apply operations
on the data and generate new data, and the sink (write operation)
receives the data to produce an output.

Read Data

Compute Density

Clip Data

Isosurface

Write Data to File

Figure 1: A data flow example.

Using a data flow framework has several advantages:

• The framework is abstract and hides the complexity from the
users

• The framework is flexible and allows users to add new modules
without requiring to modify old modules

• Modules of the framework can be combined to create advanced
analysis.

2.4. Parallelization Design

The main challenge for parallel visualization algorithms is to de-
compose the work into independent segments, where processors
can process their segments in parallel. These segments are usually
data blocks. Most of visualization systems use a scatter-gather de-
sign. In this design, segments are scattered across different proces-
sors. Each processor reads its segment and applies the visualization
pipeline using data flow network. Each processor has an identical

c© 2019 The Author(s)

R. Binyahib / Area Exam Paper

data flow network and processors differ in the segments they oper-
ate on. Then the results of different processors are gathered in the
rendering phase.

Visualization algorithms can be classified int two categories: 1)
embarrassingly parallel and 2) non-embarrassingly parallel. In an
embarrassingly parallel algorithm, each processor can apply vi-
sualization on its segment independently. On the other hand, a
non-embarrassingly parallel algorithm depends on other proces-
sor’s computations. The majority of visualization algorithms are
embarrassingly parallel.

2.5. Load Balance

A major challenge when running algorithms in parallel is main-
taining load balance. Load balance is defined as the allocation of
the work of single application to processors so that the execution
time of the application is minimized [SS94]. Maintaining load bal-
ance is essential to achieve good performance since the execution
time is determined by the time of the slowest processor. There are
two categories of load balancing: 1) static, and 2) dynamic. In static
load balancing, the workload is distributed among processors dur-
ing the initialization phase. The workloads then remain on their
computational resources during the entire execution of the visual-
ization. The challenge in static load balancing is to guarantee equal
workload, which can be difficult for some visualization algorithms.
In dynamic load balancing, the workload is distributed during run
time by a processor acting as the master. Dynamic load balancing
can be used when the workload is unknown before run time.

Most of the solutions in this survey focus on solving load imbal-
ance for different visualization algorithms. Load imbalance can be
defined with the following equation:

Load imbalance =
Ts

∑0<p<N Tp/N

Where Tp is the total non-idle execution time for processor P,
and Ts is the total non-idle execution time of the slowest processor.

Load balance is a major focus of this survey as many of the so-
lutions and optimizations were suggested to maintain load balance.

3. Particle Advection

This section provides an overview of the particle advection tech-
nique. Advection is the process of moving a massless particle de-
pending on a vector field. This results in an integral curve (IC),
which represents the trajectory the particle travels in a sequence
of advection steps from the seed location to the final particle loca-
tion. Particle advection is a fundamental building block for many
flow visualization algorithms [GGTH07, Hul92, GTS∗04, MLZ09,
KGJ09, MLP∗10].

3.1. Integration Methods

An approximation of the integral curves (ICs) is calculated using
numerical integration methods [HNW93]. The complete IC is cal-
culated on several steps until reaching the maximum number of

steps or exiting the data. At each step, a part of the curve is com-
puted between the previous particle location and the current. The
vector field around the current location is used to determine the
direction of the next location.

There are different methods to calculate the next location. The
Euler method [HNW93] is the simplest and least expensive method.
It uses only the vector field of the current location to calculate the
next location. Equation 1 shows the Euler method, where pi+1 is the
next location of the particle, pi is the current location of the particle,
h is the length of the advection step, and v(ti, pi) is the vector field
value at the current location at the current time step. Runge Kutta
(RK) [PD81] is a higher order method that uses Euler in its steps.
There are different orders of the method; the most commonly used
is the 4th order method referred to as RK4. Using RK4 produces
more accurate results than Euler, but it is more expensive since it
uses more points. Equation 2 shows the RK4 method, where pi+1
is the next location of the particle, pi is the current location of the
particle, h is the advection step, and v(ti, pi) is the vector field value
at the current location at the current time step. In both methods,
as the advection step size decreases the accuracy of the trajectory
increases, as well as the complexity. And as the total number of
advection steps increases, the accuracy of the trajectory increases
as well as the complexity.

pi+1 = pi +h× v(ti pi) (1)

pi+1 = pi +
1
6
×h× (k1 +2k2 +2k3 + k4)

k1 = v(ti pi)

k2 = v(ti +
h
2
+ pi +

h
2
× k1)

k3 = v(ti +
h
2
+ pi +

h
2
× k2)

k4 = v(ti +h+ pi +h× k3)

(2)

3.2. Parallelization Overview

Particle advection is computationally expensive. Several compo-
nents that impact the cost of particle advection: 1) data size, 2) the
number of steps, 3) size of advection step, 4) the number of parti-
cles, and 5) complexity of the vector field.

The computation of ICs is an expensive problem due to the non-
local nature of particle advection and the data dependency. The
trajectory of the particle determines which data blocks need to be
loaded, which is unknown before run time. The nature of this prob-
lem makes parallelization of particle advection a challenging prob-
lem and prone to load imbalance.

There are two main parallelization techniques [PCG∗09]: 1) par-
allelize over data, and 2) parallelize over particles. In parallelize
over data, data blocks are distributed among processors, and each
processor advects particles in its data block. In parallelize over par-
ticles, particles are distributed among processors, and each proces-
sor advects its particles. In this section, we start by discussing the

c© 2019 The Author(s)

R. Binyahib / Area Exam Paper

challenges of parallel particle advection. Next, we survey the differ-
ent parallel solutions and categorize them under one of three cat-
egories: 1) parallelize over data, and 2) parallelize over particles,
and 3) a hybrid between the first two.

Parallel particle advection requires efficient memory, computa-
tion, communication, and I/O. Thus choosing a scalable paralleliza-
tion technique depends on the case. The choice of parallelization
methods depends on four factors: 1) data set size, 2) number of
particles, 3) particles distribution, and 4) vector field complexity.

• Data set size: A given data set can be small enough to fit the
main memory of a node or not. If the data set is small enough,
it allows data to be replicated among processors and favors the
distribution of particles (parallelize over particles). As the size
of the data increases, distributing data becomes necessary, thus
parallelizing over data might lead to better performance.

• Number of particles: When the number of particles is large,
the computation complexity increases and thus distributing this
complexity is important. If the number of particles is small, then
it is better to distribute the data (parallelize over data) to reduce
the I/O cost.

• Particles distribution: Particles can be located in a region of
the data (dense) or be more scattered (sparse). If the particle dis-
tribution is dense, only a subset of the data set will be required,
reducing significantly the cost of I/O. This setup is more favor-
able to parallelize over particle because in the case of paralleliz-
ing over data only a small number of processors would work. On
the over hand, if the particles are spread out (sparse) and cover
the whole data set, the cost of I/O will become more significant.
In this case, parallelizing over data would be more favorable to
limit the cost of I/O.

• Vector field complexity: As mentioned before, the vector field
determines the next position of the particle, which determines
which part of the data is needed. For example, if the vector field
is circular, the same data blocks will be needed more than once.
Consequently, a method that has low I/O is an optimal choice
(parallelize over data). Another example is, the case where the
vector field has a critical point, and most particles are advect-
ing toward a specific point (i.e., specific data block). Thus us-
ing parallelize over data, in this case, would lead to load imbal-
ance. Figure 2 shows examples of complex vector fields of four
blocks data. This dependency increases the complexity of par-
allelization since this information is not known before run time
without conducting any prior studies as done by several solu-
tions [CF08, YWM07, NLS11].

3.3. Parallelize over Data

Parallelize over data was introduced first by Sujudi and Haimes
[SH96]. In this method, data is distributed between different pro-
cessors. Each processor advects the particles located at its block
until they exit the block or terminate. When a particle leaves the
current data block, the particle is communicated to the processor
that owns the needed data block.

This technique reduces the cost of I/O which is more expensive
than the cost of computation. While this technique performs well
for uniform vector fields and sparse particles distribution, it can

(a) (b)

Figure 2: Complex vector fields of four blocks data, (a) circular
vector field, (b) a vector field with critical points, where particles
advect toward the two data blocks colored white.

lead to load imbalance in other situations. This technique is sensi-
tive to particles distribution and vector field complexity. Particles
distribution can impact this method negatively in cases where the
particles are located in a certain region of the data. Thus load im-
balance might occur due to the unequal work distribution. In cases
where the vector field is circular, the communication cost can in-
crease. Examples of both cases have been presented in Section 3.2.
Different solutions have been presented to avoid load imbalance.

Peterka et al. [PRN∗11] presented a solution that used round-
robin block assignment to guarantee that processors are assigned
blocks in different locations. Their solution eliminates the load im-
balance that could occur in cases where particles are located in a
certain region of the data. While their method can reduce load im-
balance, it can also increase the communication cost.

Different solutions have used a pre-processing step to maintain
load balance. Chen et al. [CF08] presented an algorithm that re-
duced communication cost. Their solution considered the particles
distribution and the vector field while partitioning the data into
blocks. Their method partitioned the data depending on the vector
field direction, thus reducing I/O cost.

Another solution that considered vector field was presented by
Yu et al. [YWM07]. Their solution clustered data based on their
vector field similarity. Next, the algorithm computed a workload
estimation for each cluster. This estimation was used while dis-
tributing the data among processors.

Nouanesengsy et al. [NLS11] presented a method that also used
a pre-processing step. Their algorithm used a pre-processing step
to estimate the workload of each block using the advection of the
initial particles. The results from the pre-processing step were used
to distribute the work among processors. Each processor was as-
signed a percentage of the work of each block. Blocks are loaded
to all processors that share the workload of the block. Their so-
lution maintained load balance and improved performance. While
these solutions resulted in better load balance, they introduced a
new cost which is the pre-processing step. This cost can become
expensive when the data size is large.

To avoid the cost of the pre-processing step, Peterka et al.

c© 2019 The Author(s)

R. Binyahib / Area Exam Paper

[PRN∗11] proposed a solution that used dynamic load balancing.
Their method repartitioned data blocks depending on their work-
load using recursive coordinate bisection (RCB) algorithm [BB87].
The workload was computed as the total advection steps so far.
The algorithm checked the workloads at regular intervals during
run time and redistributed the work.

While the round robin solution presented in [PRN∗11] was sim-
ple, it did show good results. This solution is sensitive to particles
distribution and vector field complexity. The algorithm did reduce
the potential of load imbalance when the particle distribution is
dense, but it might still occur if the data size is large and a small re-
gion of the data has all the particles. This will lead to a small group
of processors doing all the work. If the vector field is complex, such
as circular, the communication cost can become expensive, and if
the vector field has a critical point, this will lead to load imbalance.

Using a pre-processing step to distribute the workload among
processors can improve performance. While these solutions [CF08,
YWM07, NLS11] can lead to better load balance, the cost of the
pre-processing step might be expensive leading to reduced over-
all performance. This cost increases when the data size is large,
and most likely the pre-processing step has to be performed by dif-
ferent processors, thus introducing additional communication cost.
Paying the additional cost might not lead to improved overall per-
formance especially when the number of particles is small.

Although dynamic load balancing [PRN∗11] can maintain load
balance while avoiding the pre-processing cost, their solution
showed lower performance than the static round robin distribution.
This is due to the additional cost of data redistribution and commu-
nication.

3.4. Parallelize over Particles

In this technique, particles are distributed across different proces-
sors. Particles are sorted spatially before distributing them to differ-
ent processors to enhance spatial locality. Each processor advects
its particles and loads data blocks as needed. To minimize the cost
of I/O, a processor advects all particles that belong to the loaded
block until the particles are on the boundaries of the block. This
technique uses the least-recently used LRU mechanism to cache
blocks. If there is not enough space when a new block is loaded,
the least recently used block is discarded. Each processor termi-
nates when all its active particles are terminated.

Since this technique loads data on demand, the cost of I/O dom-
inates most of the run time. Data prefetching [RTBS05, AR13] has
been used to reduce this cost. The idea of data prefetching is to load
the next predicted needed data block while advecting the current
particles to hide the I/O cost. Since the performance of this method
depends on the accuracy of the prediction, the I/O access patterns
are stored. Several solutions [CXLS11, CNLS12, CS13] have com-
puted an access dependency graph to improve prediction accuracy.
They performed a pre-processing step to compute the graph.

Camp et al., [CCC∗11] used an extended memory hierarchy to
reduce the cost of I/O. In their solution, data was stored in solid
state drives (SSDs) and local hard drives instead of the file sys-
tem. The algorithm treats SSDs as a cache where data blocks are

loaded. Since the cache can hold a smaller amount of data than
memory, blocks are removed in a least-recently used (LRU) mech-
anism when exceeding the maximum specified number of blocks.
When a data block is not found in cache, the algorithm checks local
hard drives before accessing the file system. This extended hierar-
chy increased the size of the cache which leads to less memory
access and thus reducing the I/O cost.

Even though the number of particles distributed between differ-
ent processors is the same, the workload might still be unbalanced.
This is because particles might have different advection steps (some
particles terminated early). To guarantee equal workload, different
algorithms used dynamic load balancing methods. One of the load
balancing methods is based on a work stealing approach [DLS∗09].
In this approach, once a processor is done advecting its particles it
steals particles from another busy processor. The processor stealing
the particles is called a thief, and the other processor is called a vic-
tim. Each processor stores its particles in a queue, the thief proces-
sor transfer particles from the victim’s queue. The most common
approach to choose a victim is randomly [BL99]. Work stealing
showed good results but it is difficult to implement. Thus another
method was presented by Muller et al. [MCHG13] called work re-
questing. In work requesting, the victim sends the particles to the
thief, while in work stealing the thief takes the particles without
any action from the victim. While work requesting adds additional
communication cost, it is easier to implement than work stealing
especially on a distributed memory setting.

Other solutions used k-d tree decomposition to balance the work-
load during run time. Morozov et al. [MP16] presented a solution
that used k-d tree decomposition to redistribute workload. Their
algorithm checked for active particles at regular time intervals. Ac-
tive particles are divided into groups, where all groups have the
same workload. Next, each processor was assigned a group. While
this method achieved load balance, it required access to the en-
tire data set, which can increase the I/O and memory cost. Zhang
et al. [ZGH∗18] proposed a solution to avoid this cost. Their al-
gorithm assigned a data block with ghost layers to each processor
before run time. When the algorithm performed the particles de-
composition, it considered the data blocks assignment. Thus each
processor received particles which were in its data block. Their re-
sults showed improved load balance while maintaining the cost of
I/O.

The most expensive step in parallelize over particles is I/O
[CPA∗10b]. While several solutions [CXLS11,CNLS12,CS13] re-
duced this cost by using prediction to apply prefetching, they in-
troduced additional costs and these cost increases as the data size
and/or the number of particles increase. Camp et al., [CCC∗11]
reduced the I/O cost, but the algorithm can perform poorly when
dealing with complex vector fields and large data size. In addition,
the algorithm can suffer from load imbalance if the advection steps
vary between processors. The solution suggested by [MCHG13]
avoided load imbalance but at the cost of additional communica-
tions. While dynamic load balancing [MP16, ZGH∗18] avoided
the cost of pre-processing and it considered the change in the vec-
tor field, it added an additional cost of redistributing particles. This
cost could increase when the number of particles is large.

c© 2019 The Author(s)

R. Binyahib / Area Exam Paper

3.5. Hybrid Parallel Particle Advection Solutions

Both parallelize over data and parallelize over particles have limi-
tations as presented in Sections 3.3, and 3.4. Hybrid solutions have
been proposed to address these limitations and maintain load bal-
ance while reducing additional costs.

Pugmire et al. [PCG∗09] proposed a hybrid solution known as
the master/worker. In their algorithm, processors were divided into
groups, where each group had a master. The algorithm partitioned
the data statically and loaded data blocks on demand. The mas-
ter distributed particles between the workers and monitored the
workload to ensure load balance. When a processor needed a data
block, the master followed a set of rules to decide whether the
worker should load the block or send the particle to another worker.
Their algorithm showed better performance than both traditional
parallelization techniques and has been used in the VisIt frame-
work [CBW∗12].

DStep [KWA∗11] is another similar hybrid solution. DStep is
a framework designed for parallelization domain traversal tech-
niques. They used a static round robin to assign the data blocks to
processors. Processors were divided into groups, where each group
had workers and had a communicator processor (master). The al-
gorithm stored particles in a queue, and the communicator assigned
particles to processors depending on their workloads. Processors of
the same group can communicate and send particles, and communi-
cators of each group exchange particles between different groups.
Their algorithm showed scalability and has been used in several
implementations [GYHZ13, GHS∗14, LGZY16].

Lu et al. [LSP14] presented another hybrid solution to com-
pute stream surfaces (Section 3.7). A stream surface is a union
of streamlines (particles trajectories) connected to form a surface.
Their solution distributed data blocks among processors. Next, par-
ticles were distributed among processors in segments, where a seg-
ment is a part of the surface that is computed between two particles.
Each processor had a queue that stored the assigned segments. Dur-
ing run time, when a processor needed a data block, it requested it
from the processor that owns the block. To make sure the load is
balanced if particles of a segment diverge, the segment was divided
into two segments and pushed to the processor queue. When a pro-
cessor was idle, it acquired more work by stealing work from other
processors. Their results showed load balance and good scalability.

Hybrid solutions reduce load imbalance, but they are more com-
plicated to implement, and they introduce additional costs. The so-
lution presented by Pugmire et al. [PCG∗09] does not require a
pre-processing step, and it avoids redistributing the data. The algo-
rithm showed better results than traditional techniques but it could
still suffer from high I/O cost since it loads data on demand. Algo-
rithms based on a master/worker design [PCG∗09, KWA∗11] can
perform poorly when the number of processors is small, and the
number of particles is large. This is because not all processors are
performing computation (advection). When the number of proces-
sors is large, the communication between workers and masters can
become a bottleneck, thus finding the correct group size can im-
pact the performance. DStep [KWA∗11] lowered the potential of
the communication congestion between the workers and master by
allowing processors of one group to communicate directly. The so-
lution proposed by Lu et al. [LSP14] avoided this communication

congestion, but it had the additional cost of communicating data
blocks between processors.

3.6. Summary

Table 1 shows a summary of the factors mentioned in Section 3.2
and the best configuration for each of these factors using the two
traditional parallelization techniques. Each one of these factors im-
pacts the choice of the parallelization technique, and they should
all be considered when choosing a parallel solution.

Parallelize over data is generally favored when the data size is
large since it has less I/O cost than parallelize over particles. How-
ever, it can suffer from load imbalance if the vector field has a crit-
ical point. The round robin distribution suggested by Peterka et al.
[PRN∗11] might still lead to load imbalance since the critical point
can be located in one block of the data. And while the several so-
lutions proposed for parallelize over data [CF08, YWM07, NLS11,
PRN∗11] can maintain load balance, these solutions can be expen-
sive when the data size or the number of particles increases due
to the pre-processing or redistribution costs (when using dynamic
load balancing). On the other hand, parallelize over particles is fa-
vored when the number of particles is large or when the particles
are densely distributed. Yet this technique can suffer from load im-
balance if the number of advection steps per processor is very dif-
ferent. While the suggested solutions proposed for parallelize over
particles [CXLS11,CNLS12,CS13,MCHG13,MP16,ZGH∗18] can
maintain load balance, they can still lead to bad overall perfor-
mance due to the cost of pre-processing, communication, or I/O.

Hybrid solutions can be a viable alternative to traditional paral-
lelization techniques. While these solutions maintain load balance
and showed better performance, they can be are more complicated
to implement, and typically have a high communication cost.

3.7. Flow Visualization Algorithms

As mentioned previously, particle advection is used in many flow
visualization algorithms. In this section, we give a brief description
of some of these flow visualization algorithms, such as streamlines,
pathlines, streaklines, timelines, and stream surfaces. A stream-
line [CF08, CGC∗11, CXLS11, PCG∗09, NLS11, PRN∗11] is the
trajectory of the particle from the seed location to the final location.
Streamlines are the basis of other flow visualization algorithms. A
pathline [YWM07,CNLS12,CS13] is the trace of a particle through
a period of time. Each pathline shows the moment of a certain parti-
cle through multiple time steps. A streakline is a line that connects
the positions of different particles that passed a certain point. A
timeline is a time that connects adjacent particles at a given time.
A stream surface [CCG∗12, LSP14] is a union of streamlines con-
nected to form a surface. Figure 3 shows the different flow visual-
ization algorithms. The most commonly used algorithms in scien-
tific visualization are streamlines, pathlines, and stream surfaces.

As mentioned before, pathlines are traces of particles over time.
This means that for each particle the algorithm is computing an ad-
ditional value (three points for position and one for time), which
increases the computational cost. In time varying data set, an addi-
tional challenge arises since particles might move from one block to

c© 2019 The Author(s)

R. Binyahib / Area Exam Paper

Table 1: Comparing parallel particle advection methods. For each parameter, the table indicates which methods is best suited depending on
the parameter.

Problem Classification Parallelize over data Parallelize over particles
Data set size Large Small

Number of particles Small Large
Seed distribution Sparse Dense

Vector field No critical point No circular field

another over time. Thus the change over time has to be taken into
consideration. Yu et al. [YWM07] presented a solution that used
parallelize over data technique. Their algorithm considered time as
a fourth dimension and performed a clustering based on the vec-
tor field similarity. Processors were assigned clusters depending on
their workload, thus guaranteeing load balance over time.

The default setup for storing time varying data is to store each
time step separately. Since a pathline algorithm computes the loca-
tion of the next position in the next time step, the algorithm will
need to access a different file with every integration step if paral-
lelize over particles technique is used. This increases the I/O cost
and might result in poor performance.

Chen et al. [CNLS12] presented an algorithm that reordered
the storing of time varying flow data. Their algorithm used par-
allelize over particles technique and used data prefetching to load
data blocks. The algorithm performed a pre-processing step to opti-
mize the file layout and enhance the accuracy of prefetching. They
divided the data into spatial blocks depending on their spatial lo-
cality. Next, particles that were in the same spatial block but in
sequential time steps were grouped into a time block. In the pre-
processing step, the algorithm computed an access dependency
graph [CXLS11]. This graph was used to store time blocks and
enhance data prefetching accuracy. Another solution that used ac-
cess dependency graph to reduce I/O cost was presented by Chenet
al. [CS13]. Their algorithm computed this graph in a pre-processing
step, and grouped particles to the same block depending on their
trajectories similarity. During run time, at each time step, proces-
sors advected particles in groups. They are thus reducing the num-
ber of I/O operations.

Stream surfaces are computed using a front-advancing approach
that was introduced by Hultquist [Hul92] and used by other serial
stream surfaces solutions [GTS∗04, MLZ09]. In this approach, the
algorithm started by placing the seeding curve, which are the initial
particles. Next, these particles are advected forming streamlines.
An arc is created between adjacent pairs of streamlines; these arcs
result in a stream surface. The computation of the surface depends
on the advection of the particles at the front of the surface. New par-
ticles are inserted or deleted depending on the divergence or con-
vergence of the surface. There are additional challenges when par-
allelizing stream surfaces. For example, when the particles in the
front of the surface diverge, new particles needs to be added. This
adds to the workload of the processor owning that segment of the
surface, which can lead to load imbalance. To reduce the potential
of load imbalance,

Lu et al. [LSP14] presented an efficient solution that used work
stealing technique to balance the work between processors. The al-

gorithm is a hybrid between parallelize over data and parallelize
over particles. Their solution divided the curve into segments that
are distributed among processors. Each processor stored the seg-
ments in a queue and advected the particles in its segments. When
the surface diverges and new particles are added, the algorithm
formed new segments and inserted them to the processor queue.
When a processor has no segments left, it requested segments from
another processor. Camp et al. [CCG∗12] presented another so-
lution for stream surfaces. However, their solution did not apply
the front-advancing approach. Instead, their algorithm computed
streamlines independently (regardless of the parallelization tech-
nique) and created the surface between these lines (triangulation)
after advection. After the advection step, the algorithm performed
an adaptive refinement check. If the distance between adjacent
streamlines was larger than a given threshold, a new particle was
inserted. This new workload was distributed between processors
(regardless of the parallelization technique) to perform the advec-
tion. Their algorithm reduced the potential load imbalance caused
by the additional inserted particles.

4. Volume Rendering

There are two types of rendering: 1) surface rendering, and 2) di-
rect rendering. Surface rendering is generating an image from a
geometry that was produced by the visualization pipeline by con-
verting the geometry into pixels through rasterization [WB99], or
ray tracing [SAM05]. Direct volume rendering is generating an im-
age directly from the data using ray-casting [DCH88]. This is done
by sampling and mapping samples into color and opacity using a
transfer function. In this section, we discuss direct volume render-
ing.

4.1. Ray Casting

Ray casting is commonly used due to its simplicity and the quality
of the results. For each pixel in the screen, a ray is cast into the vol-
ume and samples are computed along the ray. Next, each sample is
mapped into a color and opacity (RGBA values) using the transfer
function [Max95]. These RGBA values are accumulated to com-
pute the final color of the pixel. The accumulation process can be
performed either in a front-to-back order or in back-to-front order.
Equation 3 and 4 presents a front-to-back and back-to-front order
accumulation, respectively.

C =
n

∑
i=0

Ci

i−1

∏
j=0

(1−Ai) (3)

Where C is the RGBA value of the pixel, Ci is the color of the

c© 2019 The Author(s)

R. Binyahib / Area Exam Paper

t0 t1 t2 t3 t4 t5 t0 t1 t2 t3 t4 t5

t0 t1 t2 t3 t4 t5

(b) A Stream Sufrace (c) Pathlines

(d) A Streakline (e) A Timeline

(a) Streamlines

Figure 3: Different flow visualization algorithms that use particle
advection.

current scalar value at sample i, n is the number of samples along
the ray, and Ai is the opacity at sample i.

C =
0

∑
i=n

Ci × (1−A) (4)

Where C is the RGBA value of the pixel, Ci is the color of the
current scalar value at sample i, n is the number of samples along
the ray, and A is the accumulated opacity along the ray.

Figure 4 shows an example of the ray-casting process.

Ray-casting is expensive, thus different acceleration techniques
have been used to reduce this cost. One of the most used accel-
eration techniques is early ray termination [HKRs∗06]. Ray cast-
ing computes the color of the pixel by accumulating the colors and
opacities of the samples along the ray. If the accumulated opacity is
high, samples that are far from the camera will not contribute to the
final color and will be hidden. The idea of early termination is to
stop the compositing along the ray when the accumulated opacity
is high, which reduces the total time. However, this optimization is
only possible with front-to-back compositing.

Figure 4: Ray-Casting

4.2. Parallelization Overview

Volume rendering is computationally expensive, and its cost in-
creases with the size of the data set. Parallelizing such heavy com-
putation is essential to visualize data in a timely manner. However,
performing parallel ray-casting introduces new challenges, espe-
cially with respect to load balancing (Section 2.5). There are two
main techniques for parallel volume rendering [MCEF94]: 1) im-
age order (sort first), and 2) object order (sort last). In the image
order technique, the parallelization happens over pixels. In the ob-
ject order technique, the parallelization happens over cells (sub-
volumes). In this section, we start by discussing the challenges of
parallel volume rendering. Next, we survey the different parallel so-
lutions and categorize them under one of three categories: 1) image
order (sort first), 2) object order (sort last), and 3) a hybrid between
the first two.

The performance of ray-casting depends on two components: 1)
the number of cells, and 2) the number of samples. These two com-
ponents are heavily impacted by four factors, each of which can
cause significant load imbalances and influence the choice of par-
allelization method. These four factors are the following: 1) camera
position, 2) camera view is changing, 3) image size, and 4) data Set
size.

• Camera Position: It impacts the performance in two points: 1)
which part of the data is visible, and 2) the number of samples
per cells (cell sizes). If the camera is zoomed in, it implies: 1)
there are no empty pixels, and 2) cells that are in the camera
view have more samples (larger cells). If the camera is zoomed
out, it implies: 1) there are empty pixels, and 2) cells have a
similar number of samples (equal sizes). Image order performs
well when the camera is zoomed in since there are no empty pix-
els. However, it performs poorly when the camera is zoomed out
since there are parts of the image that are empty. On the other
hand, object order performs well when the camera is zoomed
out because the cells are distributed evenly among processor and
most of the cells are in the camera view. However, it can suf-
fer from load imbalance when the camera is inside the volume
because only the processors having visible cells (in the camera
view) will do the work (larger cells).

• Moving Camera View : If the camera view is changing between

c© 2019 The Author(s)

R. Binyahib / Area Exam Paper

frames, the visible portion of the data changes between frames.
The image order technique is expensive with this configuration
because it requires to redistribute data blocks among processors
for every new camera view. In some cases, the data is replicated
to avoid redistributing the blocks, but this becomes challenging
when the size of the data is large and cannot fit into a single
memory. On the other hand, object order works well for cases
where the camera view frequently changes since each processor
works on its cells independently from the camera view.

• Image Size: In order to produce the final pixel color, a processor
needs to have all the data required for that pixel. In image order,
each processor has the data required to produce its part of the im-
age; no exchange is needed between processors. In object order,
processors need to exchange samples (i.e., image compositing)
to calculate the final color of the pixel. The communication cost
of this step is expensive and could become a bottleneck when
the size of the image is large. Thus image order works better
than object order for large image sizes.

• Data Set Size: If the data size is small enough to fit into a single
memory, data can be replicated when using image order. As the
size increases, using image order becomes difficult and could
add additional costs of redistributing data blocks. Object order
offers scalability when the data size is large.

4.3. Image Order

In the image order technique, pixels are distributed among proces-
sors in groups of consecutive pixels, also known as tiles. Each pro-
cessor is responsible for loading and sampling the cells that con-
tribute to its tile. Then, each processor generates a sub-image cor-
responding to its tile. The sub-images from all the processors are
then collected onto one processor to produce the final image.

This technique allows each processor to generate its sub-image
independently, avoiding the communication cost of image com-
positing. Load imbalance can occur if processors have un-equal cell
distribution. This can happen when some tiles have more cells than
others, which means some processors are performing more work
than others, resulting in load imbalance. Different solutions have
been proposed to avoid load imbalance by introducing additional
steps to guarantee equal cells distribution.

Samanta et al. [SZF∗99] presented a solution that reduced the
probability of un-equal cell distribution by using virtual tiles. These
virtual tiles are flexible in their shapes and size depending on the
workload. Their solution maintained load balance by assigning
similar cell load to each processor.

Erol et al. [EEP11] used a dynamic load balancing method to
maintain load balance. Their algorithm divided the workload into
tiles and used the previous rendering times to distribute the tiles
among processors.

Moloney et al. [MAWM11] reduced load imbalance by intro-
ducing a bricking step. In this step, the data is divided into bricks,
and bricks outside the view frustum are excluded. Next, the view
frustum is divided between processors and each processor sampled
the bricks within its view. Using the bricking step divides the visi-
ble part of the image among processors and eliminates assigning a
processor an empty tile.

While the previous solutions maintained load balance which
improved the performance, all of these solutions needed a pre-
processing step and some included redistribution of the data. Both
[SZF∗99] and [EEP11] required a pre-processing step to determine
the load of different tiles, and have the cost of redistributing the
data. The third solution, [MAWM11], required performing camera
transformation to determine visible data, which avoided the cost of
redistributing the data.

4.4. Object Order

Object order is the most common technique for parallel volume ren-
dering. With the object order approach, data is divided into blocks
and distributed among processors. Each processor starts sampling
the cells of its blocks independently of the other processors. Next,
samples from all processors are composited to produce the final
image.

Unlike the image order technique, this technique requires pro-
cessors to communicate with each other to do the final composit-
ing (i.e., image compositing), which could become a bottleneck
[BCH12]. Load imbalance can occur if processors have un-equal
samples distribution. This can happen when dealing with unstruc-
tured data. Unstructured data have different cell sizes creating dif-
ferent workloads: one processor could have large cells thus more
workload. Different solutions have been proposed to avoid load im-
balance by introducing additional steps to guarantee equal samples
distribution.

Marchesin et al. [MMD06] presented a solution to guarantee
load balance by performing an estimation step. In their solution,
they divided data into blocks and discard any blocks that were out-
side the camera view or blocks that were invisible. Next, the re-
maining blocks were distributed among processors, and each pro-
cessor sampled its blocks. Finally, binary swap [MPHK94] was
used as an image compositing method.

Ma et al. [MC] presented a solution that used round robin cells
assignment to perform interleaved cell partitioning. This assign-
ment reduces the probability of load imbalance since usually, cells
that are spatially close have similar sizes. Assigning these cells to
different processors helps to avoid heavy workload for some pro-
cessors. In addition, this assignment achieved load balance when
the camera is zoomed into a region of the data. Samples from dif-
ferent processors are stored in a linked list. To allow for early com-
positing of the samples, processors sample the cells in the same
region at the same time.

Steiner et al. [SPEP16] achieved load balance by using a work
package pulling mechanism [EMP09]. In their solution, work was
divided into equal packages and inserted into a queue. Clients asked
the server for work whenever they are done with their assigned
workload.

Muller et al. [MSE06] used a dynamic load balancing tech-
nique. Their method calculated the balance of each processor while
sampling the cells. Data were redistributed between processors to
achieve load balance.

Most of the presented solutions focused on how to improve
blocks assignment to processors, which lead to better load balance.

c© 2019 The Author(s)

R. Binyahib / Area Exam Paper

This is done either through a pre-processing step or at runtime. The
work presented by [MMD06] performed the camera transforma-
tion and had to use an estimation step to distribute the data dynam-
ically.

While [MSE06] achieved load balance, the cost of redistributing
the data could be very expensive. This cost could be a bottleneck
when the size of the data is large or if the camera is zoomed into
a region of the data that belongs to one processor. This resulted in
redistributing most of the data blocks in the camera view.

4.5. Hybrid Parallel Volume Rendering Solutions

Both image order and object order techniques have limitations and
often can result in load imbalance. While several solutions have
been proposed (Section 4.3, and 4.4) for both techniques to elimi-
nate load imbalance, most of these solutions have additional costs
such as a preprocessing step or redistribution of the data. Using
a hybrid solution to overcome the limitations that both techniques
have individually, and can reduce load imbalance at a lower cost.

Montani et al. [MPS93] presented a hybrid solution, where they
used an image order distribution followed by an object order. In
their work, nodes are divided into clusters, and the pixels are dis-
tributed among clusters using the image order technique. Each clus-
ter loads the data contributing to its pixels, and data are distributed
among nodes of the cluster using the object order technique. Their
solution reduces the potential of load imbalance compared to tra-
ditional techniques, in addition to achieving data scalability. Load
imbalance can still occur either at the clusters level or at the nodes
level. At the clusters level, load imbalance can occur if some clus-
ters were assigned an empty tile. At the nodes level, load imbalance
can occur if some nodes of the cluster are assigned larger cells that
need more work than others.

Childs et al. [CDM06] presented another hybrid solution, where
they used an object order distribution followed by an image or-
der. In their solution, data were distributed among processors using
the object order technique. Their solution began by categorizing
cells into small and large cells, depending on the number of sam-
ples (see Section 4.2). Each processor was responsible for its own
cells and classified them by comparing the number of samples with
a given threshold. Next, each processor sampled small cells only.
Then, pixels were distributed among processors using the image or-
der technique. Depending on the pixels assignment, the algorithm
exchanged two types of data: 1) samples that were generated from
small cells, and 2) large cells that were not sampled. Next, each
processor sampled the large cells contributing to its pixels. Then,
samples from both sampling steps were composited generating a
sub-image. Finally, sub-images were combined to produce the final
image. As an extension for this algorithm, Binyahib et al. [BPL∗18]
presented a full evaluation of [CDM06], where they compared the
hybrid solution with traditional solutions. They also improved the
original algorithm, where they reduced the memory and communi-
cation costs. In addition, their solution used hybrid parallelism to
improve the performance and take advantage of many core archi-
tectures.

Samanta et al. [SFLS00] presented another hybrid solution that
partitioned pixels into tiles and distributed cells into groups. Their

algorithm used the camera view to determine visible cells. Next,
the algorithm partitioned the visible region along the longest axis,
assigning cells that are in the same screen space to the same proces-
sor. This is done by having two lines at the end of each side of the
longest axis. The line moved into the opposite direction until there
are N tiles, each containing N cell. Finally, each tile was assigned
to a processor. Their solution achieved load balance by assigning N
cells and N tiles to N processors. Figure 5 shows an example of the
algorithm.

Garcia et al. [GS02] presented a hybrid algorithm, where they
used an object order distribution followed by an image order. Their
algorithm classified processors into clusters. Then data was dis-
tributed among different clusters using the object order technique.
At each cluster, pixels were distributed among processors of the
cluster using the image order technique. Next, communication hap-
pened between the different clusters to perform the image com-
positing step and produce the final image, thus reducing the com-
munication cost. To reduce the memory requirement, their algo-
rithm used an interleaved loading method. Each processor loaded
every Nth row of the data, where N is the number of processors
in the cluster. This meant that processors only had a partial data
set to sample. Next, each processor used this sub-data to produce
its part of the image, where interpolation was used for the missing
rows. While this method reduced the memory cost, it came at the
cost of image quality and accuracy. Increasing the number of pro-
cessors per cluster had a direct impact on the final image accuracy.
This method could be used to explore new data, but it would not be
accurate enough to use for generating production images. In addi-
tion, load imbalance might still occur if the camera is focused on a
region of the data that belongs to one cluster.

While the solution presented by [MPS93] reduced the potential
of load imbalance, this algorithm might not perform well in ex-
treme camera conditions. For example, when the camera is inside
the volume. The solution provided by [CDM06,BPL∗18] performs
better in these conditions, but it has additional communication cost
in other camera positions such as when the camera is in the mid-
dle. The solution presented by [SFLS00] has an idle initialization
time since all servers have to wait for the client to do the screen
space transformation and then assign work to servers. While this
algorithm might work on a small scale, it could perform poorly on
a large scale. Finally, the solution presented by [GS02] reduces the
potential of load imbalance and reduces the cost of the image com-
positing step. But load imbalance might still occur if some clusters
have more work than others due to the camera view focus.

4.6. Summary

Table 2 shows a summary of the factors mentioned in Section 4.2
and the best configuration for each of these factors using image or-
der and object order techniques. Each one of these factors impacts
the choice of the technique, but these factors should be all consid-
ered when choosing a technique.

For example, [SZF∗99], and [EEP11] presented solutions to re-
distribute the workload to avoid load imbalance when using image
order for the zoomed out case. While this could achieve good re-
sults when the size of the data is small, it could become very expen-
sive when the data size increases. Another example is [MMD06]

c© 2019 The Author(s)

R. Binyahib / Area Exam Paper

Figure 5: Example execution of the hybrid partition algorithm
[SFLS00].

and [MSE06] solutions to reduce load imbalance for object order
when the camera is inside the volume. While their solution reduced
imbalance they added an additional cost of redistributing the data.
Ma et al. [MC] solution avoided this cost, but it could suffer from
load imbalance if the data has an unusual mesh, where the cell sizes
differ in a strange pattern.

As mentioned in Section 4.2 the performance depends on the
number of samples and the number of cells per processor. Load
imbalance occurs when there is an uneven distribution in one of
them. The hybrid solutions combined both image order and object
order to limit the imbalance in these two factors. Thus they can be
viable alternatives to the two traditional techniques. While these
solutions improve performance and have better results, they still
have some limitations or additional costs.

4.7. Unstructured Data and Volume Rendering

(a) (b)

Figure 6: Example of (a) structured, and (b) unstructured meshes.

An unstructured mesh represents different cell sizes and some-
times different cell types in an arbitrary order. Figure 6 shows

an example of structured and unstructured meshes. Unlike struc-
tured data, unstructured data does not have an implicit indexing ap-
proach, and thus the cell connectivity information is not available.
This increases the complexity of volume rendering.

Different solutions have been proposed to reduce this cost.
Ma [Ma95] presented an algorithm that computed the cell connec-
tivity in a pre-processing step so it would not impact the perfor-
mance while rendering. Each processor performed this step to ac-
quire the cell connectivity information. In this step, the algorithm
specified the external faces, which are faces that are not shared be-
tween cells. Next, the algorithm stored face-node, cell-face, and
cell-node relationships in a hierarchical data structure. The algo-
rithm excluded the cells that were outside the camera view. Then,
each processor sampled its data. For each ray, it entered the volume
from an external face, and the cell connectivity information was
used to determine the next cell. A ray exited the volume when it
intersected a second external face. Finally, the image compositing
step was performed to exchange samples between processors and
produce the final image.

Max et al. [MWSC03] proposed an algorithm that used slicing.
Three slices were generated for each cell perpendicular to the X, Y,
and Z axes. Depending on the camera view, one of these slices was
used. While sampling, the values were computed using interpola-
tion between the cell vertices. Next, the computed scalar values
were used as 1D texture coordinates to obtain the color. Finally,
the slices were rendered in back-to-front order, starting with slices
that were furthest from the camera. The colors of these slices were
composited to produce the final color.

Larsen et al. [LLN∗15] presented an algorithm where cells were
sampled in parallel using multi-threading. Cells were distributed
among different processors. Each processor created a buffer that
has the size of Width×Height ×Numbero f SamplesperRay. Each
processor sampled its cells in parallel and samples were stored in
the buffer. The index of each sample in the buffer was computed
depending on its screen space coordinates (x, y, z). Finally, in the
image compositing step, processors exchange samples, and sam-
ples of each ray were composited to produce the final color.

The solution presented by Ma [Ma95] had the additional cost of
the pre-processing step, which could become expensive when the
data size is large. While Max et al. [MWSC03] algorithm did not
have this cost, their algorithm might have a high cost at the com-
positing step. This is because their algorithm composited the slices
in a back-to-front order, which means they cannot use the early ter-
mination technique, mentioned in Section 4.1. The algorithm intro-
duced by Larsen et al. [LLN∗15] could take advantage of the early
termination techniques if the image compositing was done in front-
to-back. But their algorithm can suffer from high memory cost if
the size of the image (Width×Height) is large and/or the number
of samples is large.

5. Image Compositing

Image compositing is the final step of parallel volume rendering
when using the object order technique (Section 4.4). The goal of
this step is to order samples in the correct depth order to compute
the final pixel color. Image compositing includes two operations: 1)

c© 2019 The Author(s)

R. Binyahib / Area Exam Paper

Table 2: Factors impacting the performance of parallel volume rendering, and the best configuration for each of these factors using image
order and object order techniques.

Image Order Object Order
Camera Position zoom in zoom out

Moving Camera View No Yes
Image Size Large Small
Data size Small-Medium Large

communicating samples between processors, 2) compositing these
samples to produce the color of the pixel. Image compositing is
expensive and can become the bottleneck of the object order ap-
proach [BCH12]. Thus several solutions have been proposed to re-
duce the cost of this step. In this section, we survey and compare
these solutions.

5.1. Image Compositing Methods

There are three main image compositing methods: 1) direct send,
2) binary swap, and 3) radix-k.

The most straightforward method to implement is direct
send [EP07], where all processors communicated with each other.
In this method, image pixels were assigned to processors, where
each processor was responsible for compositing a part of the image.
Depending on this assignment, processors exchanged data. Figure 7
shows an example of a direct send compositing between four pro-
cessors. While direct send is easy to implement it could be inef-
ficient with a large number of processors since all processors are
communicating with each other.

Another image compositing method is binary swap [MPHK94].
This method required the number of processors to be a power of
two. In this method, the communication between processors hap-
pened in rounds. The algorithm performed log2(N) rounds, where
N is the number of processors. Processors communicated in pairs,
and each round the pairs were swapped. At each round, the size
of the exchanged tiles was reduced by half. Figure 8 shows an
example of a binary swap compositing between four processors.
Binary swap reduced network congestion and had good scalabil-
ity [BCH12], but it had the limitation of requiring the number of
processors to be a power of two. Thus an improved version, 2-3
swap, was implemented by Yu et al. [YWM08] to overcome this
limitation. Their algorithm worked with any number of processors
and processors communicated in rounds. At each round, proces-
sors were divided into groups of size two and three, and proces-
sors in the same group communicated with each other. This method
had the flexibility in the number of processors while taking advan-
tage of the efficiency of the binary swap. Another improved version
of binary swap is 234 composite [NOF15, NOF18]. Their solution
used an elimination process named 3-2 and 2-1 [RT04] that was
developed for optimizing reduction for a non-power of two number
of processors. The 234 compositing method divided processors into
groups of size three and four. For each round, a pair of processors
exchanged half the image. At the end of a round, all processors of
the same group have communicated and the result from each group
is two halves of the image. The total number of half images pro-

duced from all groups is a power of two. A binary swap method is
applied to collect these partial images into a full image.

Peterka et al. [PGR∗09] proposed another image compositing
method known as radix-k. Their method also performed commu-
nication in multiple rounds. At each round, it defined a group size
ki, where i is the current round. The multiplication of the group
sizes of all rounds is equal to N, where N is the number of proces-
sors. For this algorithm, the product of all ki must be equal to N. At
each round, each processor was responsible for 1/k of the image.
Processors within a group communicated with each other using a
direct send. Figure 9 shows an example of a radix-k compositing
between six processors. This method avoided network congestion
while providing the flexibility to work with any number of proces-
sors.

Moreland et al. [MKPH11] introduced a technique named tele-
scoping to deal with non power of two number of processors. This
technique grouped the largest power of two processors and defined
it as the largest group. Then it took the largest power of two pro-
cessors from the remaining processors and defined it as the second
largest group. This process continued until all the processors have
been assigned to a group. In each group, processors applied a com-
positing method, either binary swap or radix-k. Next, the smallest
group sent its data to the second smallest group for compositing.
The second smallest group did the compositing and sent the data
to the third smallest group. This continued until all the data was
sent to the largest group. They compared binary swap and radix-k
using telescoping against the traditional methods, and their results
showed overall improvement.

Figure 7: Image compositing using Direct Send method between
four processors.

Direct send is flexible and easy to implement. While it has been
used in several solutions, its performance can decrease when the
number of processors is large due to the increase in the number of

c© 2019 The Author(s)

R. Binyahib / Area Exam Paper

Figure 8: Image compositing using Binary Swap method between
four processors.

messages. Binary swap and radix-k solve this by allowing groups
of processors to communicate at each round. Although this reduces
the communication cost, it introduces a synchronization overhead
at the end of each round.

5.2. Image Compositing Optimization

While the previous section focused on communication patterns for
image compositing, in this section, we discuss optimization meth-
ods that have been presented for the compositing operation.

Active pixel encoding has been used to reduce the cost of image
compositing. When using active pixel encoding, the bounding box
and opacity information is used to mark inactive pixels. These pix-
els are removed to reduce the cost of communicating and composit-
ing. Using this technique showed improvement in the performance
in several solutions [AP98, MWP01, YYC99, TIH03, KPH∗10].

Load imbalance can increase the cost of image composing. This
happens when a part of the image contains more samples; thus the
processor that owns this part of the image has to do more work.
Thus different solutions have been proposed to reduce load im-
balance. One of the methods used is interlace [MCEF94, TIH03],
where non-empty pixels are distributed among processors. The data
pixels are rearranged so that all processors have a similar workload.
While the traditional interlace technique has its advantage, it intro-
duces an overhead at the final step to arrange the pixels into their
correct order and this overhead could be expensive when the im-
age size increases. To reduce this cost, Moreland et al. [MKPH11]
proposed an improvement. Their solution guaranteed the slices that

Figure 9: Image compositing using Radix-k method between six
processors and k = [3,2].

are created during the data rearrangement are equal to the final im-
age partitions created by the compositing method (binary swap or
radix-k). Thus reducing the cost of pixels arrangement by avoiding
extra copies which would have been necessary if the slices sizes did
not match the final image partitions.

5.3. Image Compositing Comparative Studies

In this section, we discuss some of the papers that compared differ-
ent image compositing methods.

Moreland et al. [MKPH11] compared the traditional binary swap
method with different factorings of radix-k, where the group size
varies. They used the Image Composition Engine for Tiles (IceT)
framework [Mor11]. Their paper tested these methods at scale and
added an improvement that was mentioned in the previous sections
(Section 5.2). They compared binary swap and radix-k with these
improvements against the traditional implementations and their re-
sults showed overall improvement.

Moreland [Mor18] presented a paper where he compared differ-
ent versions of the binary swap with the IceT compositor [Mor11],
which uses telescoping and radix-k. His paper focused on test-
ing the performance when dealing with non-power of two num-
ber of processors. Variations of binary swap included 2-3 swap
[YWM08], 234 swap [NOF15, NOF18], telescoping [MKPH11], a
naive method, and a reminder method. The first three methods were
discussed earlier in the section. The naive method finds the largest
number of processors that is a power of two. Then, the remaining
processors send their data to processors that are in the group and

c© 2019 The Author(s)

R. Binyahib / Area Exam Paper

stays idle for the rest of the communication. The reminder method
applies a 3-2 reduction to the remaining processors which is simi-
lar to the one mentioned in 234 compositing [NOF15]. He ran each
algorithm for multiple frames and different camera configurations.
His experiments showed better performance for the telescoping and
reminder methods, while the naive method performed poorly when
dealing with a non-power of two number of processors. Finally,
IceT showed better performance than all versions of binary swap.

5.4. Summary

There are two main factors impacting the performance of image
compositing: 1) the number of processors, 2) the distribution of
non-empty pixels, which is impacted by the camera position as
mentioned in Section 4.2.

While different compositing and optimization methods have
been proposed to improve the performance, sometimes paying the
additional overheads introduced for these methods can be more ex-
pensive. When the number of processors is small enough, using
direct send might result in better performance than using binary
swap or radix-k. Since the number of processors is small, the prob-
ability of network congestion is low and thus it avoids the synchro-
nization overhead introduced for more complex methods. As the
number of processors increases, paying the cost of this overhead
leads to better overall performance. If the distribution of non-empty
pixels is dense in one region of the image (zoomed out camera
position), this could lead to load imbalance. Thus using the opti-
mization techniques mentioned in Section 5.2 and paying the ad-
ditional cost can be necessary to improve the performance. Other
cases show that simple solutions can be more efficient as well. Ac-
cording to [MKPH11] findings, the overhead of interlace could be
larger than the gain when using a small number of processors. An-
other example is presented in [Mor18], where the author showed
that the reminder algorithm gives better performance than other
more complicated methods.

6. Other Visualization Techniques

In this section, we present other visualization algorithms and the
challenges added by parallelism.

6.1. Contouring

One of the most used visualization techniques is iso-contours. An
iso-contour displays a line or a surface representing a certain scalar
value. This value is represented by an isoline in the case of 2D data
or an isosurface in the case of 3D data. For example, displaying the
isosurface of the density in a molecular simulation to represent the
boundaries of atoms. There are different techniques for isosurface
extraction; the most commonly used is Marching Cubes [LC87].
The marching cube method extracts a surface by computing trian-
gles depending on a set of cases. Iso-contour extraction is com-
posed of two steps: 1) the search step, and 2) the generation step.
In the search step, the algorithm finds the cells containing the iso-
value. In the generation step, the algorithm generate the isosurface
triangles through interpolations of the cells scalar values. The com-
putational cost of this method increases with the size of the data set.
A parallel solution is therefore needed to process large data sets.

Out of core solutions have been proposed to handle large data
sets. While these solutions are useful, they add additional I/O costs.
Chiang et al. [CFSW01] presented an isosurface extraction algo-
rithm that was an extension of a previous work [CSS98]. The exten-
sion included parallelizing the I/O operations and isosurface extrac-
tion. Their work introduced a concept called meta-cells. Cells that
are spatially near each other were grouped into a meta-cell. Their
algorithm used a preprocessing step that partitioned the dataset into
spatially coherent meta-cells. These meta-cells were similar in size.
Thus the cost of reading these cells from memory is similar. Each
meta-cell had two lists: a list contained the vertices information,
and a list contained the information of the cells . For each vertex
in the first list, the algorithm stored x, y, z, and a scalar value.
For each cell in the second list, the algorithm stored pointers to
the vertices of the cell. Using pointers allowed the algorithm to
avoid storing each vertex more than once for each meta-cell. For
each meta-cell, the algorithm computed meta-intervals, each meta-
interval stored min and max values. Next, the algorithm computed
a binary-blocked I/O (BBIO) interval tree, which is an indexing
structure. The BBIO stored meta-intervals and the meta-cell ID for
each interval; this ID is a pointer to the meta-cell. The algorithm
stored the meta-cells and the BBIO on the disk. During run time, the
algorithm used the BBIO to find the meta-cells that intersected with
the isovalue. Next, the algorithm read meta-cells from disk one at a
time and generated the isosurface triangles. In their algorithm, they
used a self-scheduling technique [Qui87], where one node acted as
a client that assigned work to servers. The client scanned the BBIO
and determined the active meta-cells. Next, the client maintained
a queue of all active meta-cells. When servers had no more work,
they sent a request to the client to be assigned more work. Each
server read meta-cells from disk and computed isosurface triangles.

Another out of core solution was proposed by Zhang et al.
[ZBB01]. Their algorithm maintained load balance by decompos-
ing the data depending on their workloads. They used the contour
spectrum [BPS97] to get the workload information. The contour
spectrum is an interface that provided a workload histogram for
different isovalues. The algorithm reduced the I/O time by using a
new model, where instead of having one disk that can be accessed
by different processors, each processor has a local disk. Thus dif-
ferent processors could read data from their local disks in parallel.
When a processor needed data from a remote disk, data were sent
by the owner processor. For each local disk, the algorithm built an
I/O-optimal interval tree [AV96] as an indexing structure. During
run time, each processor searched its local disk for active cells and
computed isosurface triangles.

Additional challenges are arising when extracting an isosurface
on an Adaptive mesh refinement (AMR) data [BC89]. Different re-
gions of simulation data need different resolutions depending on
the importance of accuracy in that region. Adaptive mesh refine-
ment (AMR) solves this by giving a finer mesh to regions of in-
terest. AMR data is a hierarchy of axis-aligned rectilinear grids
which is more memory efficient than using unstructured grid since
it does not require storing connectivity information. While AMR
reduces memory cost, it can create discontinuities at boundaries
when transitioning between refinement levels, thus causing cracks
in the resulting isosurface. One way to prevent the formation of
these cracks is by creating transition regions between the different

c© 2019 The Author(s)

R. Binyahib / Area Exam Paper

refinement levels [FWC∗04]. Generating such transition region is
difficult because of the difference of resolution between two grids
and the hanging nodes (or T-junctions) caused by this difference.
Hanging nodes are nodes found at the border between two grids
but which only exist in the fine grid. Weber et al. [WCM12] pre-
sented a solution that used dual grids [WKL∗01] to remove these
discontinuities. Their implementation mapped the grid from cell-
centered to vertex-centered by using the cell centers as the vertices
of the vertex-centered dual grid. This resulted in a gap between
the coarse grid and the fine grids, which they solved by generat-
ing stitch cells between coarse and fine regions. Figure 9 shows a
2D dual grid before and after stitch cell generation. The approach
used a case table to determine how to connect vertices to form suit-
able stitches. Performing isosurface extraction in parallel can lead
to artifacts around the boundaries of the different data blocks. This
happens because a processor does not necessarily own all the neigh-
boring cells of its local cells. Instead, some neighboring cells can be
owned by other processors. Thus their algorithm used ghost cells to
avoid these artifacts. Since AMR data has different resolution lev-
els, the algorithm decomposed data into boxes, where each box had
one level only. Data was distributed among different processors and
each processor performed the iso-surface extraction and generated
stitch cells for its local data.

(a) (b)
Figure 10: A Dual grid with three refinement levels. (a) Before
stitch cell generation, the original AMR grids are drawn in dashed
lines and the dual grids in solid lines. (b) After stitch cell genera-
tion. [WKL∗01]

The solution proposed by Chiang et al. [CFSW01] maintained
load balance by using the self-scheduling technique (one client as-
signs the work to all the servers). However, this technique can be-
come inefficient at large scale because many servers have to com-
municate with a single client. This might lead to having high com-
munication cost. The solution proposed by Zhang et al. [ZBB01]
used a pre-processing step to guarantee load balance across proces-
sors. Despite the addition of a pre-processing step, high communi-
cation cost could still happen because of block exchanges between
processors which can be expensive for large data sets.

The solution proposed by Weber et al. [WCM12] for AMR data
is efficient, but it is dependent on the existence of ghost data. In
cases where ghost data was not generated by the simulation code,
it needs to be dynamically generated, which can increase the total
execution time.

6.2. Connected Components Computation

Connected components are used in several image processing tech-
niques. For a given graph, a connected component is a group of
vertices that are connected through an edge forming a sub-graph.
Figure 11 shows a graph with four components, one of which is a
single vertex. Connected components computation is used in differ-
ent visualization algorithms [GCS∗12, KAC15] to perform differ-
ent types of clustering. Performing connected components compu-
tation in a distributed memory setting is challenging because ver-
tices are scattered across multiple processors. There are two main
steps for computing connected components on a disturbed mem-
ory system. The first step is finding local connected components.
The second step is merging local connected components into global
connected components. In this section, we survey the solutions pre-
sented for connected components in scientific visualization.

Harrison et al. [HCG11] proposed an algorithm that computed
connected sub-meshes of 3D data. The algorithm used the Union-
find method [CLRS01] to find connected components. The union
operation merges two components into one. The find operation de-
termines which component does an element belongs to. This is used
to determine if two elements are in the same component. The al-
gorithm had four main steps. In the first step, each processor com-
puted its local connected components using the Union-find method.
In the second step, the algorithm transformed local labels for the
connected components into global labels and added a new field to
the mesh that stored the global label for each cell. In the third step,
the algorithm re-distributed data using a binary space partitioning
(BSP) [FKN88] to guarantee that cells that are topologically next to
each other are assigned to the same processor. The BSP is a tech-
nique that partitions the data into N pieces, where N is the num-
ber of processors. It maintains load balance by assigning a similar
number of blocks to different processors. The BSP technique parti-
tion the data set by iteratively scanning the current partition along
the different axis. For each iteration, the algorithm selected and
scanned an axis to find possible locations to split a region along
the current axis; these locations are called pivots. The algorithm
performed multiple random iterations to find a good pivot. This re-
cursive scan operations along the axes continued until the number
of regions was equal to the number of processors. Then, the Union-
find method was used to compute connected components of cells,
and global labels were assigned to merged cells. A record stored
all the union operations. Next, the data was re-distributed as the
original assignment. Finally, in the fourth step of the algorithm, all
processors exchanged a list of the union operation. Next, the unions
from all different processors were stored in a list, and each proces-
sor applied the Union-find method to identify the global connected
components. An extension of the previous solution was presented
by Harrison et al. [HWB∗15]. This new algorithm improved the
search method for a good pivot. The original method chose piv-
ots randomly, which lead to performing multiple iterations to find

c© 2019 The Author(s)

R. Binyahib / Area Exam Paper

a good pivot. To avoid a large number of iteration, the algorithm
selected the best pivot found until now, even if this pivot leads to
imbalanced partitions. Instead, the improved algorithm chose five
pivot points that are evenly spaced through the data. Then, the al-
gorithm found the best two pivots of those five and placed new five
pivot points between them. Next, the algorithm found the best pivot
from the new five points and used that to split the region. This im-
provement showed better balance and less communication time.

Additional challenges are arising when computing connected
components for Adaptive mesh refinement (AMR) data [BC89]
since AMR data has multiple refinement levels (Section 6.1). Zou
et al. [ZWB∗15] proposed a solution for finding connected com-
ponents in AMR data. Their algorithm considered connected cells
that are in the same refinement level as a box. The algorithm had
three phases. In the first phase, each processor computed local con-
nected components of each level using the Union-find method. In
the second phase, processors that had the same refinement level
merged their components. One processor acted as the leader and
assigned global labels to components. Next, the leader merged sim-
ilar components. In the third phase, components of different refine-
ment levels were merged. A master communicated with leaders of
the different refinement levels and assigned global labels. Next, the
master merged similar components together.

Figure 11: A graph with four connected components.

All of the previous solutions performed local components merge
followed by a global merge. The solution presented by Harrison et
al. [HCG11, HWB∗15] reduced the cost of the global merge by re-
assigning data blocks and doing a second local components merge.
The solution proposed by Zou et al. [ZWB∗15] addressed the addi-
tional problem of having multiple refinement levels by performing
two global merges. The second merge operation could become a
bottleneck when the number of refinement levels increases; thus
increasing the number of leaders communicating with the master.

6.3. Halo finding

Cosmological simulations have been used to study the evolution of
the universe. These simulations usually contain a large amount of
data making it hard for scientists to analyze. One of the most used
algorithms in analyzing such data is finding dark matter halos. Dark
matter halos are halos that contain dense dark matter particles. The

most common techniques for finding halos in distributed memory
solutions are: 1) friends-of-friends (FOF) clustering [DEFW85],
and 2) the HOP [EH98] technique.

In the FOF technique, the algorithm searches for all particles that
are accessible via a link that is shorter than a given distance (known
as the linking length) resulting in a network of linked particles.
Each connected component in this network is considered a halo.
Next, halos in the network are filtered using a halo size parameter,
where all halos that are under the specified size are ignored. This
is tested by comparing the number of particles in the halo with the
halo size parameter. The advantage of this technique is that it does
not make assumptions on the shape of the halo and thus results in
arbitrary shapes. The disadvantage comes from the linking length
parameter; if this parameter has a large value, it could merge two
different halos as one.

The HOP technique takes into consideration particles density in
addition to their spatial locality. The first step is calculating the
normalized density of each particle using local smoothing based on
the masses and distances to its nearest neighbors (64 neighbor par-
ticles by default). The kD-tree [FBF77] algorithm is used to find the
nearest neighbors. Next, the algorithm links (creates a chain) each
particle to its densest nearest neighbor. Chains are created between
particles going from the particle with the lower density to the one
with the higher density. Finally, adjacent chains are merged into a
halo and particles that have a density less than a given threshold are
excluded.

Due to the size and complexity of cosmological simulations, par-
allelization has been used for finding halos. In this section, we sur-
vey available parallel solutions and discuss some of the paralleliza-
tion challenges.

An FOF halo finding algorithm was implemented in Par-
aview [AGL∗05] based on previous sequential solutions [HAH10,
WHA∗11]. In this algorithm, data was distributed among proces-
sors, where each processor was responsible for finding halos in its
data. Ghost data was used to make sure each processor had the
neighboring particles. The algorithm used a kD-tree reduction to
find halos. Each processor built a kD-tree from its particles, where
each node represented a particle. The algorithm started from the
leaf particles. At each iteration, if the distance between particles
was less than the linking length, then these particles were joined
into halos. The algorithm compared the bounding boxes of sub-
trees. If the bounding box is too distant to all the points, then no
checks were performed. If the bounding box is close enough to all
the points, then it was merged into a halo immediately. By com-
paring the bounding boxes of sub-trees, the algorithm reduced the
number of required checks. After processors found their local ha-
los, a global halo finding was performed (i.e., halo stitching). In
this halo stitching step, the algorithm performed a merge operation
to merge the same halos located on different processors.

Another FOF solution was presented by Rasera et al. [RAC∗10].
In their algorithm, data was divided into sub-cubes and distributed
among processors. Each processor was responsible for finding the
halos in its sub-cube. When a processor found a halo that is near the
edge of the current sub-cube, it checked if other particles belonging
to this halo were found in the neighboring sub-cube. This process

c© 2019 The Author(s)

R. Binyahib / Area Exam Paper

was repeated until all halos that were across multiple sub-cubes are
merged.

Liu et al. [LLC03] presented a parallel halo finding solution that
used the HOP algorithm. The algorithm used a kD-tree to find the
nearest neighbor and to balance the workload. Their solution di-
vided particles into spatially closed regions that had a similar num-
ber of particles. Next, the regions were distributed among proces-
sors, and each processor stored the global tree but was responsi-
ble for a part of the tree. Next, each processor performed the HOP
algorithm on its particles and chains were created between parti-
cles. When a particle created a chain to a remote particle, it was
communicated to the processor owning the remote particle. Then,
each processor created its local halos by merging adjacent chains.
Finally, processors exchanged their local halos, and similar halos
were merged.

Another solution using the HOP algorithm was presented by
Skory et al. [STNC10]. Their solution started by distributing data
among processors. Next, each processor calculated the density of
its particles and built a local kD-tree. The algorithm performed
a padding step, where a padding region was created around each
sub-data. The goal of using padding is to acquire needed neighbor-
ing particles owned by other processors but which are necessary to
compute the correct set of nearest neighbors. For each sub-data, the
algorithm stored the size of padded region in a global lookup table.
Processors used this table to communicate needed particles to each
other. Next, each processor performed the HOP algorithm on its
particles and chains were created between particles. No chains are
allowed from a padded particle to other particles since padded par-
ticles might have a denser neighbor on another processor. When the
chains between particles ended up in padded particles, these chains
were communicated to processors that had these particles. Virtual
links were created between chains on the sending processor and
chains on the receiving processor. Finally, the linked chains were
collected globally.

The difference between the two FOF solutions [AGL∗05,
RAC∗10] is the merging of halos. The first solution [AGL∗05]
merged halos at the end by checking halos across processors. The
second solution [RAC∗10] merged halos iteratively whenever a
processor had a particle that is on the edge of the cube.

Both solutions [LLC03, STNC10] had a local halo finding step,
followed by a merging step, and both solutions used a kD-tree. In
the first solution [LLC03], each processor stored the global kD-tree,
which could be expensive when dealing with a large data set. While
in the second solution [STNC10], each processor built a local kD-
tree and padding was used to guarantee correct results.

7. Supporting Infrastructure

In this section, we discuss different supporting algorithms that are
used in parallel visualization.

7.1. Ghost Data

Parallel visualization algorithms usually distribute data among dif-
ferent processors, with each processor applying the algorithm on its
sub-data. Different visualization algorithms depend on the values

of neighboring cells, such as iso-contour extraction, and connected
components. For example, in the case of isosurface extraction, in-
terpolating the scalar value of a point depends on the scalar values
of the neighboring cells. If a point is located on the boundaries of
the sub-data, the result of the interpolation will be incomplete with-
out considering the neighboring cells. Ghost data [ILC10,KS10] is
used to allow parallelization of such algorithms. Ghost data is an
extra set of cells added to the boundaries of the sub-data. These ad-
ditional cells are usually only used for computations at the bound-
aries but are not taken into account during the rendering phase to
avoid artifacts. For instance, in the case of iso surface extraction,
ghost cells are used to correctly interpolate scalar values on the
cells at the boundaries of the sub data, but the ghost cells them-
selves are not interpolated.

Different visualization tools support the use of ghost data,
which has been used in previous solutions for different visualiza-
tion algorithms such as isosurfaces [AGL∗05, CBW∗12, JPW00,
WCM12], particle advection [ZGH∗18], and connected compo-
nents [HWB∗15]. Ghost data is usually generated by the simula-
tion code and most of visualization tools do not support the gen-
eration of the ghost data. Paraview provided a Data Decomposi-
tion (D3) filter [KM07] that generated ghost data by repartitioning
the data. Patchett et al. [PNP∗17] presented an algorithm to gen-
erate ghost data; this algorithm was integrated into the Visualiza-
tion Toolkit (VTK) [SML96]. Each processor exchanged its exter-
nal boundaries information with all other processors. Next, each
processor compared its external boundaries with received external
boundaries from all other processors. If the processor found an in-
tersection, it sent the cells to the processor owning that boundary.
Biddiscombe [Bid16] presented an algorithm for generating ghost
data, where he integrated the partitioning library Zoltan [BCCD12]
with VTK and ParaView [AGL∗05]. The algorithm provided the
user with a selection of ghost cell generation options.

7.2. Metadata

Many visualization systems use a data flow framework. A data flow
framework executes a pipeline of operations (or modules) with data
being transmitted between modules. A pipeline usually applies dif-
ferent visualization algorithms known as filters. The optimization
required to achieve good performance for visualization algorithms
varies from one algorithm to another. It is important when optimiz-
ing to take into consideration the operations performed through the
pipeline. For this reason, visualization frameworks use metadata,
which is a brief description of the data that improves algorithms
execution. There are different forms of metadata [Mor13] includ-
ing regions, and contracts.

Regions are a description of the spatial range of the whole data
domain and the spatial bounds of different blocks. This information
can be updated by the three pipeline passes [ABM∗01] depending
on the filters. For example, with a select operation, only a specific
region of the data is needed. The pipeline updates the regions meta-
data so that only that part of the data is read.

Contract [CBB∗05] is a data structure that provides optimization
by allowing each filter to declare its impact. The data structure has
data members that define constraints and optimizations. Each filter

c© 2019 The Author(s)

R. Binyahib / Area Exam Paper

in the pipeline modifies this data member to make sure it contains
its constraints and optimization requirements. Before performing
any of the filters, the contract is passed to each filter in the pipeline
starting from the last filter. After this process is done, filters are
executed with the required optimizations. Contracts can be used to
specify different parameters, such as identifying ghost data, cells to
exclude, type of load balancing used by the framework, etc. Differ-
ent visualization tools used contracts in post-hoc [CBW∗12] and in
situ [WFM11b, MDRP17].

7.3. Delaunay tessellation

N-body simulations such as cosmological or molecular dynamics
simulations generate particles. However, it may be necessary to
derive a mesh from these particles to better analyze and visual-
ize certain properties. This is for instance, the case in cosmology
simulation to analyze the density of dark matter [PKP∗12,PMP14]
Delaunay tessellation [GKS92] is a geometric structure for creat-
ing a mesh from a set of points. Performing tessellation on large
simulations is computationally expensive and must be performed
in parallel.

Peterka et al. [PKP∗12,PMP14] presented an algorithm that per-
formed tessellation in parallel. Their algorithm distributed the data
among different processors which then exchanged needed neigh-
boring points. Each processor computed the tessellation using one
of two libraries Qhull [BDDH96], or CGAL [FP09]. Then, each
processor wrote the results to memory. To balance the number of
points per block, a solution was proposed by Morozov et al. [MP16]
where they used kD tree decomposition.

7.4. Out of Core

Out of core algorithms [AV88, Vit01] (external-memory algo-
rithms) have been used to allow visualization of large data that
does not fit into the main memory. In out of core solutions, data
is divided into pieces that can fit into main memory. An out of
core algorithm reads and processes one piece of data at a time.
This process is known as streaming. There are two paradigms of
out of core solutions [Vit01]: 1) batched computations, and 2) on-
line computations. In the batched computation paradigm, there is
no pre-processing step, and the entire data is streamed one piece at
a time. In the on-line computation paradigm, a pre-processing step
is performed, and the data is organized into a data structure to im-
prove the search process. Using the on-line computation paradigm
is effective for visualization since usually only a portion of the data
contributes to the final result.

Different pre-processing techniques have been used to improve
I/O efficiency. These techniques include meta-cells [CFSW01], and
binary-blocked I/O interval tree (BBIO Tree) [CSS98, CS99].

The out of core model has been used in several visualization
algorithms such as particle advection [CXLS11, CNLS12, CS13],
and isosurfaces [CFSW01, ZBB01]. It is also used by many vi-
sualization tools such as VisIt [CBW∗12], VTK [SML96], Par-
aview [AGL∗05], and the Insight Toolkit (ITK) [LI05].

7.5. Usage of Visualization Systems

Modern visualization tools such as Paraview or VisIt support three
different modes. The first one is a client-server model, where the
user runs a lightweight client on a local machine and connects to
a server (supercomputer) that hosts the data. The computations are
performed on the server and visualization is streamed back (geom-
etry or images) to the client machine for display. The second mode
executes the entire pipeline in batch without displaying the visual-
ization and saves images on the supercomputer. Finally, the third
mode is using the local machine of the scientist exclusively. Data
is transferred from the supercomputer to a local machine to exe-
cute the visualization pipeline and explore data. Even though this
mode might be convenient for the end user, it is often not prac-
tical anymore due to the extreme size of today’s data sets which
prevent moving data outside of the supercomputer. Additionally, a
local machine or small cluster would not have the computational
power and/or memory to process data in a timely manner.

7.6. Hybrid Parallelism

Hybrid parallelism refers to the use of both distributed- and shared-
memory techniques. A distributed memory algorithm runs multiple
tasks across multiple nodes in parallel and tasks communicate via
the message passing interface (MPI) [Nag05]. Multiple tasks can
be running on the same node, usually one MPI task per core. A hy-
brid parallel algorithm run a fewer number of tasks per node (usu-
ally one per node) and use the remaining cores via threading using
OpenMP [CJvdPK08], or POSIX [NBFF96]. Threads on the same
node share the same memory, which allows for optimization. It is
possible to take advantage of multicore CPUs with MPI only by
running multiple MPI tasks per node. However, the threading pro-
gramming model has proven to be more efficient. It requires less
memory footprint and performs less inter-chip communication. Hy-
brid parallelism showed improved performance for volume render-
ing [HBC12, HBC10], and particle advection [PCG∗09, CGC∗11].

8. Conclusion

This survey covered the state of the art for multiple visualization
algorithms, and supporting infrastructures.

This paper showed that many scientific visualization algorithms
share common challenges at scale such as data sizes, I/O costs,
efficient communication patterns, and load-balancing. These chal-
lenges are also impacted by more specific factors such as the com-
plexity of a vector field in particles advection (Section 3.2), or the
position of the camera in volume rendering (Section 4.2). Overall,
this survey showed that all factors should be considered when par-
allelizing a visualization method.

Many solutions presented in this survey demonstrated improved
performance and scalability compared to traditional methods. How-
ever, it can be difficult for an end user to select which method to use
for their particular use cases because of the lack of comparison be-
tween advance methods. That is for instance the case with particle
advection techniques where several efficient parallelization meth-
ods are available. Our future work will address this gap by studying
and comparing multiple state of the art particle advection methods.

c© 2019 The Author(s)

R. Binyahib / Area Exam Paper

We hope that having a single platform to study multiple algorithms
with multiple data sets will help both the end users to better se-
lect a visualization method fitting their needs, and the visualization
community to evaluate where are the remaining use cases or per-
formance issues needing to be addressed if any.

References

[ABM∗01] AHRENS J., BRISLAWN K., MARTIN K., GEVECI B., LAW
C. C., PAPKA M.: Large-scale data visualization using parallel data
streaming. IEEE Computer Graphics and Applications 21, 4 (July 2001),
34–41. doi:10.1109/38.933522. 17

[AGL∗05] AHRENS J., GEVECI B., LAW C., HANSEN C., JOHNSON
C.: 36-paraview: An end-user tool for large-data visualization. The vi-
sualization handbook 717 (2005). 2, 16, 17, 18

[AP98] AHRENS J., PAINTER J.: Efficient sort-last rendering using
compression-based image compositing. In in Proceedings of the 2nd
Eurographics Workshop on Parallel Graphics and Visualization (1998),
pp. 145–151. 13

[AR13] AKANDE O. O., RHODES P. J.: Iteration aware prefetching
for unstructured grids. In 2013 IEEE International Conference on Big
Data (Oct 2013), pp. 219–227. doi:10.1109/BigData.2013.
6691578. 5

[AV88] AGGARWAL A., VITTER JEFFREY S.: The input/output com-
plexity of sorting and related problems. Commun. ACM 31, 9 (Sept.
1988), 1116–1127. URL: http://doi.acm.org/10.1145/
48529.48535, doi:10.1145/48529.48535. 18

[AV96] ARGE L., VITTER J. S.: Optimal dynamic interval management
in external memory (extended abstract). In FOCS (1996). 14

[BAA∗16] BAUER A. C., ABBASI H., AHRENS J., CHILDS H., GEVECI
B., KLASKY S., MORELAND K., O’LEARY P., VISHWANATH V.,
WHITLOCK B., BETHEL E. W.: In situ methods, infrastructures, and
applications on high performance computing platforms. In Proceedings
of the Eurographics / IEEE VGTC Conference on Visualization: State of
the Art Reports (Goslar Germany, Germany, 2016), EuroVis ’16, Euro-
graphics Association, pp. 577–597. URL: https://doi.org/10.
1111/cgf.12930, doi:10.1111/cgf.12930. 2

[BB87] BERGER, BOKHARI: A partitioning strategy for nonuniform
problems on multiprocessors. IEEE Transactions on Computers C-36,
5 (May 1987), 570–580. doi:10.1109/TC.1987.1676942. 5

[BC89] BERGER M., COLELLA P.: Local adaptive mesh refinement
for shock hydrodynamics. Journal of Computational Physics 82, 1
(1989), 64 – 84. URL: http://www.sciencedirect.com/
science/article/pii/0021999189900351, doi:https:
//doi.org/10.1016/0021-9991(89)90035-1. 14, 16

[BCCD12] BOMAN E. G., CATALYUREK U. V., CHEVALIER C.,
DEVINE K. D.: The Zoltan and Isorropia parallel toolkits for combinato-
rial scientific computing: Partitioning, ordering, and coloring. Scientific
Programming 20, 2 (2012), 129–150. 17

[BCH12] BETHEL E. W., CHILDS H., HANSEN C.: High Performance
Visualization: Enabling Extreme-Scale Scientific Insight, 1st ed. Chap-
man & Hall/CRC, 2012. 9, 12

[BDDH96] BARBER C. B., DOBKIN D. P., DOBKIN D. P., HUH-
DANPAA H.: The quickhull algorithm for convex hulls. ACM
Trans. Math. Softw. 22, 4 (Dec. 1996), 469–483. URL: http:
//doi.acm.org/10.1145/235815.235821, doi:10.1145/
235815.235821. 18

[Bid16] BIDDISCOMBE J.: High-Performance Mesh Partitioning and
Ghost Cell Generation for Visualization Software. In Eurographics
Symposium on Parallel Graphics and Visualization (2016), Gobbetti E.,
Bethel W., (Eds.), The Eurographics Association. doi:10.2312/
pgv.20161181. 17

[BL99] BLUMOFE R. D., LEISERSON C. E.: Scheduling multithreaded
computations by work stealing. J. ACM 46, 5 (Sept. 1999), 720–
748. URL: http://doi.acm.org/10.1145/324133.324234,
doi:10.1145/324133.324234. 5

[BPL∗18] BINYAHIB R., PETERKA T., LARSEN M., MA K., CHILDS
H.: A scalable hybrid scheme for ray-casting of unstructured vol-
ume data. IEEE Transactions on Visualization and Computer Graphics
(2018), 1–1. doi:10.1109/TVCG.2018.2833113. 10

[BPS97] BAJAJ C. L., PASCUCCI V., SCHIKORE D. R.: The contour
spectrum. In Proceedings. Visualization ’97 (Cat. No. 97CB36155) (Oct
1997), pp. 167–173. doi:10.1109/VISUAL.1997.663875. 14

[CBB∗05] CHILDS H., BRUGGER E., BONNELL K., MEREDITH J.,
MILLER M., WHITLOCK B., MAX N.: A contract based system for
large data visualization. In VIS 05. IEEE Visualization, 2005. (Oct 2005),
pp. 191–198. doi:10.1109/VISUAL.2005.1532795. 2, 17

[CBW∗12] CHILDS H., BRUGGER E., WHITLOCK B., MEREDITH J.,
AHERN S., PUGMIRE D., BIAGAS K., MILLER M., HARRISON C.,
WEBER G. H., KRISHNAN H., FOGAL T., SANDERSON A., GARTH
C., BETHEL E. W., CAMP D., RÜBEL O., DURANT M., FAVRE J. M.,
NAVRÁTIL P.: VisIt: An End-User Tool For Visualizing and Analyzing
Very Large Data. In High Performance Visualization–Enabling Extreme-
Scale Scientific Insight. Oct 2012, pp. 357–372. 2, 6, 17, 18

[CCC∗11] CAMP D., CHILDS H., CHOURASIA A., GARTH C., JOY
K. I.: Evaluating the benefits of an extended memory hierarchy for par-
allel streamline algorithms. In 2011 IEEE Symposium on Large Data
Analysis and Visualization (Oct 2011), pp. 57–64. doi:10.1109/
LDAV.2011.6092318. 5

[CCG∗12] CAMP D., CHILDS H., GARTH C., PUGMIRE D., JOY K. I.:
Parallel stream surface computation for large data sets. In IEEE Sym-
posium on Large Data Analysis and Visualization (LDAV) (Oct 2012),
pp. 39–47. doi:10.1109/LDAV.2012.6378974. 6, 7

[CDM06] CHILDS H., DUCHAINEAU M., MA K.-L.: A scal-
able, hybrid scheme for volume rendering massive data sets. 153–
161. URL: http://dx.doi.org/10.2312/EGPGV/EGPGV06/
153-161, doi:10.2312/EGPGV/EGPGV06/153-161. 10

[CF08] CHEN L., FUJISHIRO I.: Optimizing parallel performance of
streamline visualization for large distributed flow datasets. In 2008
IEEE Pacific Visualization Symposium (March 2008), pp. 87–94. doi:
10.1109/PACIFICVIS.2008.4475463. 4, 5, 6

[CFSW01] CHIANG Y.-J., FARIAS R., SILVA C. T., WEI B.: A uni-
fied infrastructure for parallel out-of-core isosurface extraction and vol-
ume rendering of unstructured grids. In Proceedings IEEE 2001 Sym-
posium on Parallel and Large-Data Visualization and Graphics (Cat.
No.01EX520) (Oct 2001), pp. 59–151. doi:10.1109/PVGS.2001.
964405. 14, 15, 18

[CGC∗11] CAMP D., GARTH C., CHILDS H., PUGMIRE D., JOY K.:
Streamline integration using mpi-hybrid parallelism on a large multicore
architecture. IEEE Transactions on Visualization and Computer Graph-
ics 17, 11 (Nov 2011), 1702–1713. doi:10.1109/TVCG.2010.
259. 6, 18

[CJvdPK08] CHAPMAN B., JOST G., VAN DER PAS R., KUCK D.: Us-
ing OpenMP: Portable Shared Memory Parallel Programming. No. v. 10
in Scientific Computation Series. Books24x7.com, 2008. URL: https:
//books.google.com/books?id=MeFLQSKmaJYC. 18

[CLRS01] CORMEN T. H., LEISERSON C. E., RIVEST R. L., STEIN C.:
Introduction to algorithms second edition, 2001. 15

[CMNR07] CLYNE J., MININNI P. D., NORTON A., RAST M.: Inter-
active desktop analysis of high resolution simulations : application to
turbulent plume dynamics and current sheet formation. 2

[CNLS12] CHEN C., NOUANESENGSY B., LEE T., SHEN H.: Flow-
guided file layout for out-of-core pathline computation. In IEEE Sym-
posium on Large Data Analysis and Visualization (LDAV) (Oct 2012),
pp. 109–112. doi:10.1109/LDAV.2012.6378984. 5, 6, 7, 18

[CPA∗10a] CHILDS H., PUGMIRE D., AHERN S., WHITLOCK B.,

c© 2019 The Author(s)

http://dx.doi.org/10.1109/38.933522
http://dx.doi.org/10.1109/BigData.2013.6691578
http://dx.doi.org/10.1109/BigData.2013.6691578
http://doi.acm.org/10.1145/48529.48535
http://doi.acm.org/10.1145/48529.48535
http://dx.doi.org/10.1145/48529.48535
https://doi.org/10.1111/cgf.12930
https://doi.org/10.1111/cgf.12930
http://dx.doi.org/10.1111/cgf.12930
http://dx.doi.org/10.1109/TC.1987.1676942
http://www.sciencedirect.com/science/article/pii/0021999189900351
http://www.sciencedirect.com/science/article/pii/0021999189900351
http://dx.doi.org/https://doi.org/10.1016/0021-9991(89)90035-1
http://dx.doi.org/https://doi.org/10.1016/0021-9991(89)90035-1
http://doi.acm.org/10.1145/235815.235821
http://doi.acm.org/10.1145/235815.235821
http://dx.doi.org/10.1145/235815.235821
http://dx.doi.org/10.1145/235815.235821
http://dx.doi.org/10.2312/pgv.20161181
http://dx.doi.org/10.2312/pgv.20161181
http://doi.acm.org/10.1145/324133.324234
http://dx.doi.org/10.1145/324133.324234
http://dx.doi.org/10.1109/TVCG.2018.2833113
http://dx.doi.org/10.1109/VISUAL.1997.663875
http://dx.doi.org/10.1109/VISUAL.2005.1532795
http://dx.doi.org/10.1109/LDAV.2011.6092318
http://dx.doi.org/10.1109/LDAV.2011.6092318
http://dx.doi.org/10.1109/LDAV.2012.6378974
http://dx.doi.org/10.2312/EGPGV/EGPGV06/153-161
http://dx.doi.org/10.2312/EGPGV/EGPGV06/153-161
http://dx.doi.org/10.2312/EGPGV/EGPGV06/153-161
http://dx.doi.org/10.1109/PACIFICVIS.2008.4475463
http://dx.doi.org/10.1109/PACIFICVIS.2008.4475463
http://dx.doi.org/10.1109/PVGS.2001.964405
http://dx.doi.org/10.1109/PVGS.2001.964405
http://dx.doi.org/10.1109/TVCG.2010.259
http://dx.doi.org/10.1109/TVCG.2010.259
https://books.google.com/books?id=MeFLQSKmaJYC
https://books.google.com/books?id=MeFLQSKmaJYC
http://dx.doi.org/10.1109/LDAV.2012.6378984

R. Binyahib / Area Exam Paper

HOWISON M., , WEBER G. H., BETHEL E. W.: Extreme scaling
of production visualization software on diverse architectures. IEEE
Computer Graphics and Applications 30, 3 (May 2010), 22–31. doi:
10.1109/MCG.2010.51. 2

[CPA∗10b] CHILDS H., PUGMIRE D., AHERN S., WHITLOCK B.,
HOWISON M., PRABHAT, WEBER G. H., BETHEL E. W.: Extreme
scaling of production visualization software on diverse architectures.
IEEE Computer Graphics and Applications 30, 3 (May 2010), 22–31.
doi:10.1109/MCG.2010.51. 5

[CS99] CHIANG Y.-J., SILVA C. T.: External memory algorithms.
American Mathematical Society, Boston, MA, USA, 1999, ch. External
Memory Techniques for Isosurface Extraction in Scientific Visualization,
pp. 247–277. URL: http://dl.acm.org/citation.cfm?id=
327766.327800. 18

[CS13] CHEN C., SHEN H.: Graph-based seed scheduling for out-of-
core ftle and pathline computation. In 2013 IEEE Symposium on Large-
Scale Data Analysis and Visualization (LDAV) (Oct 2013), pp. 15–23.
doi:10.1109/LDAV.2013.6675154. 5, 6, 7, 18

[CSS98] CHIANG Y.-J., SILVA C. T., SCHROEDER W. J.: Interactive
out-of-core isosurface extraction. In Proceedings of the Conference
on Visualization ’98 (Los Alamitos, CA, USA, 1998), VIS ’98, IEEE
Computer Society Press, pp. 167–174. URL: http://dl.acm.org/
citation.cfm?id=288216.288241. 14, 18

[CXLS11] CHEN C., XU L., LEE T., SHEN H.: A flow-guided file layout
for out-of-core streamline computation. In 2011 IEEE Symposium on
Large Data Analysis and Visualization (Oct 2011), pp. 115–116. doi:
10.1109/LDAV.2011.6092326. 5, 6, 7, 18

[DCH88] DREBIN R. A., CARPENTER L., HANRAHAN P.: Volume ren-
dering. In Proceedings of the 15th Annual Conference on Computer
Graphics and Interactive Techniques (New York, NY, USA, 1988), SIG-
GRAPH ’88, ACM, pp. 65–74. URL: http://doi.acm.org/10.
1145/54852.378484, doi:10.1145/54852.378484. 7

[DEFW85] DAVIS M., EFSTATHIOU G., FRENK C. S., WHITE S. D.:
The evolution of large-scale structure in a universe dominated by cold
dark matter. The Astrophysical Journal 292 (1985), 371–394. 16

[DLS∗09] DINAN J., LARKINS D. B., SADAYAPPAN P., KRISH-
NAMOORTHY S., NIEPLOCHA J.: Scalable work stealing. In Pro-
ceedings of the Conference on High Performance Computing Net-
working, Storage and Analysis (New York, NY, USA, 2009), SC ’09,
ACM, pp. 53:1–53:11. URL: http://doi.acm.org/10.1145/
1654059.1654113, doi:10.1145/1654059.1654113. 5

[EEP11] EROL F., EILEMANN S., PAJAROLA R.: Cross-Segment Load
Balancing in Parallel Rendering. In Eurographics Symposium on Par-
allel Graphics and Visualization (2011), Kuhlen T., Pajarola R., Zhou
K., (Eds.), The Eurographics Association. doi:10.2312/EGPGV/
EGPGV11/041-050. 9, 10

[EH98] EISENSTEIN D. J., HUT P.: HOP: A new group-finding algo-
rithm forN-body simulations. The Astrophysical Journal 498, 1 (may
1998), 137–142. doi:10.1086/305535. 16

[EMP09] EILEMANN S., MAKHINYA M., PAJAROLA R.: Equalizer:
A scalable parallel rendering framework. IEEE Transactions on Visu-
alization and Computer Graphics 15, 3 (May 2009), 436–452. doi:
10.1109/TVCG.2008.104. 9

[EP07] EILEMANN S., PAJAROLA R.: Direct send compositing for par-
allel sort-last rendering. In Proceedings of the 7th Eurographics Confer-
ence on Parallel Graphics and Visualization (Aire-la-Ville, Switzerland,
Switzerland, 2007), EGPGV ’07, Eurographics Association, pp. 29–
36. URL: http://dx.doi.org/10.2312/EGPGV/EGPGV07/
029-036, doi:10.2312/EGPGV/EGPGV07/029-036. 12

[FBF77] FRIEDMAN J. H., BENTLEY J. L., FINKEL R. A.: An al-
gorithm for finding best matches in logarithmic expected time. ACM
Trans. Math. Softw. 3, 3 (Sept. 1977), 209–226. URL: http:
//doi.acm.org/10.1145/355744.355745, doi:10.1145/
355744.355745. 16

[FKN88] FUTCHS H., KEDEM Z. M., NAYLOR B. F.: Tutorial: Com-
puter graphics; image synthesis. Computer Science Press, Inc., New
York, NY, USA, 1988, ch. On Visible Surface Generation by a Priori Tree
Structures, pp. 39–48. URL: http://dl.acm.org/citation.
cfm?id=95075.95084. 15

[FMT∗11] FABIAN N., MORELAND K., THOMPSON D., BAUER A. C.,
MARION P., GEVECIK B., RASQUIN M., JANSEN K. E.: The paraview
coprocessing library: A scalable, general purpose in situ visualization li-
brary. In 2011 IEEE Symposium on Large Data Analysis and Visualiza-
tion (Oct 2011), pp. 89–96. doi:10.1109/LDAV.2011.6092322.
2

[FP09] FABRI A., PION S.: Cgal - the computational geometry algo-
rithms library. pp. 538–539. 18

[FWC∗04] FANG D. C., WEBER G. H., CHILDS H., BRUGGER E. S.,
HAMANN B., JOY K. I.: Extracting geometrically continuous iso-
surfaces from adaptive mesh refinement data. In Proceedings of
2004 Hawaii International Conference on Computer Sciences (2004),
pp. 216–224. 15

[GCS∗12] GAITHER K. P., CHILDS H., SCHULZ K. W., HARRISON
C., BARTH W., DONZIS D., YEUNG P.: Visual analytics for finding
critical structures in massive time-varying turbulent-flow simulations.
IEEE Computer Graphics and Applications 32, 4 (July 2012), 34–45.
doi:10.1109/MCG.2012.63. 15

[GGTH07] GARTH C., GERHARDT F., TRICOCHE X., HANS
H.: Efficient computation and visualization of coherent struc-
tures in fluid flow applications. IEEE Transactions on Visual-
ization and Computer Graphics 13, 6 (Nov. 2007), 1464–1471.
URL: https://doi.org/10.1109/TVCG.2007.70551,
doi:10.1109/TVCG.2007.70551. 3

[GHS∗14] GUO H., HONG F., SHU Q., ZHANG J., HUANG J., YUAN
X.: Scalable lagrangian-based attribute space projection for multivari-
ate unsteady flow data. In 2014 IEEE Pacific Visualization Symposium
(March 2014), pp. 33–40. doi:10.1109/PacificVis.2014.15.
6

[GKM∗15] GROTTEL S., KRONE M., MÜLLER C., REINA G., ERTL
T.: Megamol: A prototyping framework for particle-based visualization.
IEEE Transactions on Visualization and Computer Graphics 21, 2 (Feb
2015), 201–214. doi:10.1109/TVCG.2014.2350479. 2

[GKS92] GUIBAS L. J., KNUTH D. E., SHARIR M.: Randomized incre-
mental construction of delaunay and voronoi diagrams. Algorithmica
7, 1 (Jun 1992), 381–413. URL: https://doi.org/10.1007/
BF01758770, doi:10.1007/BF01758770. 18

[GS02] GARCIA A., SHEN H.-W.: An interleaved parallel volume ren-
derer with pc-clusters. In Proceedings of the Fourth Eurographics Work-
shop on Parallel Graphics and Visualization (Aire-la-Ville, Switzerland,
Switzerland, 2002), EGPGV ’02, Eurographics Association, pp. 51–
59. URL: http://dl.acm.org/citation.cfm?id=569673.
569682. 10

[GTS∗04] GARTH C., TRICOCHE X., SALZBRUNN T., BOBACH
T., SCHEUERMANN G.: Surface techniques for vortex vi-
sualization. In Proceedings of the Sixth Joint Eurograph-
ics - IEEE TCVG Conference on Visualization (Aire-la-Ville,
Switzerland, Switzerland, 2004), VISSYM’04, Eurographics As-
sociation, pp. 155–164. URL: http://dx.doi.org/10.
2312/VisSym/VisSym04/155-164, doi:10.2312/VisSym/
VisSym04/155-164. 3, 7

[GYHZ13] GUO H., YUAN X., HUANG J., ZHU X.: Coupled en-
semble flow line advection and analysis. IEEE Transactions on Vi-
sualization and Computer Graphics 19, 12 (Dec. 2013), 2733–2742.
URL: http://dx.doi.org/10.1109/TVCG.2013.144, doi:
10.1109/TVCG.2013.144. 6

[HAH10] HSU C., AHRENS J. P., HEITMANN K.: Verification of the
time evolution of cosmological simulations via hypothesis-driven com-
parative and quantitative visualization. In 2010 IEEE Pacific Visualiza-
tion Symposium (PacificVis) (March 2010), pp. 81–88. doi:10.1109/
PACIFICVIS.2010.5429606. 16

c© 2019 The Author(s)

http://dx.doi.org/10.1109/MCG.2010.51
http://dx.doi.org/10.1109/MCG.2010.51
http://dx.doi.org/10.1109/MCG.2010.51
http://dl.acm.org/citation.cfm?id=327766.327800
http://dl.acm.org/citation.cfm?id=327766.327800
http://dx.doi.org/10.1109/LDAV.2013.6675154
http://dl.acm.org/citation.cfm?id=288216.288241
http://dl.acm.org/citation.cfm?id=288216.288241
http://dx.doi.org/10.1109/LDAV.2011.6092326
http://dx.doi.org/10.1109/LDAV.2011.6092326
http://doi.acm.org/10.1145/54852.378484
http://doi.acm.org/10.1145/54852.378484
http://dx.doi.org/10.1145/54852.378484
http://doi.acm.org/10.1145/1654059.1654113
http://doi.acm.org/10.1145/1654059.1654113
http://dx.doi.org/10.1145/1654059.1654113
http://dx.doi.org/10.2312/EGPGV/EGPGV11/041-050
http://dx.doi.org/10.2312/EGPGV/EGPGV11/041-050
http://dx.doi.org/10.1086/305535
http://dx.doi.org/10.1109/TVCG.2008.104
http://dx.doi.org/10.1109/TVCG.2008.104
http://dx.doi.org/10.2312/EGPGV/EGPGV07/029-036
http://dx.doi.org/10.2312/EGPGV/EGPGV07/029-036
http://dx.doi.org/10.2312/EGPGV/EGPGV07/029-036
http://doi.acm.org/10.1145/355744.355745
http://doi.acm.org/10.1145/355744.355745
http://dx.doi.org/10.1145/355744.355745
http://dx.doi.org/10.1145/355744.355745
http://dl.acm.org/citation.cfm?id=95075.95084
http://dl.acm.org/citation.cfm?id=95075.95084
http://dx.doi.org/10.1109/LDAV.2011.6092322
http://dx.doi.org/10.1109/MCG.2012.63
https://doi.org/10.1109/TVCG.2007.70551
http://dx.doi.org/10.1109/TVCG.2007.70551
http://dx.doi.org/10.1109/PacificVis.2014.15
http://dx.doi.org/10.1109/TVCG.2014.2350479
https://doi.org/10.1007/BF01758770
https://doi.org/10.1007/BF01758770
http://dx.doi.org/10.1007/BF01758770
http://dl.acm.org/citation.cfm?id=569673.569682
http://dl.acm.org/citation.cfm?id=569673.569682
http://dx.doi.org/10.2312/VisSym/VisSym04/155-164
http://dx.doi.org/10.2312/VisSym/VisSym04/155-164
http://dx.doi.org/10.2312/VisSym/VisSym04/155-164
http://dx.doi.org/10.2312/VisSym/VisSym04/155-164
http://dx.doi.org/10.1109/TVCG.2013.144
http://dx.doi.org/10.1109/TVCG.2013.144
http://dx.doi.org/10.1109/TVCG.2013.144
http://dx.doi.org/10.1109/PACIFICVIS.2010.5429606
http://dx.doi.org/10.1109/PACIFICVIS.2010.5429606

R. Binyahib / Area Exam Paper

[HBC10] HOWISON M., BETHEL E. W., CHILDS H.: Mpi-hybrid paral-
lelism for volume rendering on large, multi-core systems. In Proceedings
of the 10th Eurographics Conference on Parallel Graphics and Visu-
alization (Aire-la-Ville, Switzerland, Switzerland, 2010), EG PGV’10,
Eurographics Association, pp. 1–10. URL: http://dx.doi.org/
10.2312/EGPGV/EGPGV10/001-010, doi:10.2312/EGPGV/
EGPGV10/001-010. 18

[HBC12] HOWISON M., BETHEL E. W., CHILDS H.: Hybrid paral-
lelism for volume rendering on large-, multi-, and many-core systems.
IEEE Transactions on Visualization and Computer Graphics 18, 1 (Jan
2012), 17–29. doi:10.1109/TVCG.2011.24. 18

[HCG11] HARRISON C., CHILDS H., GAITHER K. P.: Data-parallel
mesh connected components labeling and analysis. In Proceedings of
the 11th Eurographics Conference on Parallel Graphics and Visualiza-
tion (Aire-la-Ville, Switzerland, Switzerland, 2011), EGPGV ’11, Eu-
rographics Association, pp. 131–140. URL: http://dx.doi.org/
10.2312/EGPGV/EGPGV11/131-140, doi:10.2312/EGPGV/
EGPGV11/131-140. 15, 16

[HKRs∗06] HADWIGER M., KNISS J. M., REZK-SALAMA C.,
WEISKOPF D., ENGEL K.: Real-time Volume Graphics. A. K. Peters,
Ltd., Natick, MA, USA, 2006. 8

[HNW93] HAIRER E., NØRSETT S. P., WANNER G.: Solving Ordi-
nary Differential Equations I (2Nd Revised. Ed.): Nonstiff Problems.
Springer-Verlag New York, Inc., New York, NY, USA, 1993. 3

[Hul92] HULTQUIST J. P. M.: Constructing stream surfaces in steady
3d vector fields. In Visualization, 1992. Visualization ’92, Proceed-
ings., IEEE Conference on (Oct 1992), pp. 171–178. doi:10.1109/
VISUAL.1992.235211. 3, 7

[HWB∗15] HARRISON C., WEILER J., BLEILE R., GAITHER K.,
CHILDS H.: A distributed-memory algorithm for connected components
labeling of simulation data. In Topological and Statistical Methods for
Complex Data (Berlin, Heidelberg, 2015), Bennett J., Vivodtzev F., Pas-
cucci V., (Eds.), Springer Berlin Heidelberg, pp. 3–19. 15, 16, 17

[ILC10] ISENBURG M., LINDSTROM P., CHILDS H.: Parallel and
streaming generation of ghost data for structured grids. IEEE Com-
puter Graphics and Applications 30, 3 (May 2010), 32–44. doi:
10.1109/MCG.2010.26. 17

[JPW00] JOHNSON C. R., PARKER S. G., WEINSTEIN D.: Large-scale
computational science applications using the scirun problem solving en-
vironment. In In Supercomputer (2000). 17

[KAC15] KRESS J., ANDERSON E., CHILDS H.: A visualization
pipeline for large-scale tractography data. In 2015 IEEE 5th Symposium
on Large Data Analysis and Visualization (LDAV) (Oct 2015), pp. 115–
123. doi:10.1109/LDAV.2015.7348079. 15

[KGJ09] KRISHNAN H., GARTH C., JOY K.: Time and streak surfaces
for flow visualization in large time-varying data sets. IEEE Transactions
on Visualization and Computer Graphics 15, 6 (Nov 2009), 1267–1274.
doi:10.1109/TVCG.2009.190. 3

[KM07] KENNETH MORELAND LISA AVILA L. A. F.: Parallel un-
structured volume rendering in paraview, 2007. URL: https://doi.
org/10.1117/12.704533, doi:10.1117/12.704533. 17

[KPH∗10] KENDALL W., PETERKA T., HUANG J., SHEN H.-W.,
ROSS R.: Accelerating and benchmarking radix-k image composit-
ing at large scale. In Proceedings of the 10th Eurographics Confer-
ence on Parallel Graphics and Visualization (Aire-la-Ville, Switzerland,
Switzerland, 2010), EG PGV’10, Eurographics Association, pp. 101–
110. URL: http://dx.doi.org/10.2312/EGPGV/EGPGV10/
101-110, doi:10.2312/EGPGV/EGPGV10/101-110. 13

[KS10] KJOLSTAD F. B., SNIR M.: Ghost cell pattern. In Proceedings
of the 2010 Workshop on Parallel Programming Patterns (New York,
NY, USA, 2010), ParaPLoP ’10, ACM, pp. 4:1–4:9. URL: http://
doi.acm.org/10.1145/1953611.1953615, doi:10.1145/
1953611.1953615. 17

[KWA∗11] KENDALL W., WANG J., ALLEN M., PETERKA T., HUANG

J., ERICKSON D.: Simplified parallel domain traversal. In Proceed-
ings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis (New York, NY, USA, 2011), SC ’11,
ACM, pp. 10:1–10:11. URL: http://doi.acm.org/10.1145/
2063384.2063397, doi:10.1145/2063384.2063397. 6

[LC87] LORENSEN W. E., CLINE H. E.: Marching cubes: A high
resolution 3d surface construction algorithm. In Proceedings of the
14th Annual Conference on Computer Graphics and Interactive Tech-
niques (New York, NY, USA, 1987), SIGGRAPH ’87, ACM, pp. 163–
169. URL: http://doi.acm.org/10.1145/37401.37422,
doi:10.1145/37401.37422. 14

[LGZY16] LIU R., GUO H., ZHANG J., YUAN X.: Comparative visual-
ization of vector field ensembles based on longest common subsequence.
In 2016 IEEE Pacific Visualization Symposium (PacificVis) (April 2016),
pp. 96–103. doi:10.1109/PACIFICVIS.2016.7465256. 6

[LI05] LUIS IBANEZ WILL SCHROEDER L. N. J. C.: Streaming large
data. in the itk software guide. 18

[LLC03] LIU Y., LIAO W.-K., CHOUDHARY A.: Design and evaluation
of a parallel hop clustering algorithm for cosmological simulation. pp. 8
pp.–. doi:10.1109/IPDPS.2003.1213186. 17

[LLN∗15] LARSEN M., LABASAN S., NAVRÁTIL P., MEREDITH J.,
CHILDS H.: Volume Rendering Via Data-Parallel Primitives. In Pro-
ceedings of EuroGraphics Symposium on Parallel Graphics and Visual-
ization (EGPGV) (Cagliari, Italy, May 2015), pp. 53–62. 11

[LSP14] LU K., SHEN H., PETERKA T.: Scalable computation of stream
surfaces on large scale vector fields. In SC ’14: Proceedings of the In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis (Nov 2014), pp. 1008–1019. doi:10.1109/
SC.2014.87. 6, 7

[Ma95] MA K.-L.: Parallel volume ray-casting for unstructured-grid
data on distributed-memory architectures. In Proceedings of the IEEE
Symposium on Parallel Rendering (New York, NY, USA, 1995), PRS
’95, ACM, pp. 23–30. URL: http://doi.acm.org/10.1145/
218327.218333, doi:10.1145/218327.218333. 11

[MAWM11] MOLONEY B., AMENT M., WEISKOPF D., MOLLER T.:
Sort-first parallel volume rendering. IEEE Transactions on Visualiza-
tion and Computer Graphics 17, 8 (Aug 2011), 1164–1177. doi:
10.1109/TVCG.2010.116. 9

[Max95] MAX N.: Optical models for direct volume rendering. IEEE
Transactions on Visualization and Computer Graphics 1, 2 (June 1995),
99–108. doi:10.1109/2945.468400. 7

[MC] MA K.-L., CROCKETT T. W.: A scalable parallel cell-projection
volume rendering algorithm for three-dimensional unstructured data. In
In Proceedings of 1997 Symposium on Parallel Rendering, pp. 95–104.
9, 11

[MCEF94] MOLNAR S., COX M., ELLSWORTH D., FUCHS H.: A sort-
ing classification of parallel rendering. IEEE Computer Graphics and
Applications 14, 4 (July 1994), 23–32. doi:10.1109/38.291528.
8, 13

[MCHG13] MÜLLER C., CAMP D., HENTSCHEL B., GARTH C.: Dis-
tributed parallel particle advection using work requesting. In 2013 IEEE
Symposium on Large-Scale Data Analysis and Visualization (LDAV) (Oct
2013), pp. 1–6. doi:10.1109/LDAV.2013.6675152. 5, 6

[MDRP17] MOMMESSIN C., DREHER M., RAFFIN B., PETERKA T.:
Automatic data filtering for in situ workflows. In 2017 IEEE Inter-
national Conference on Cluster Computing (CLUSTER) (Sep. 2017),
pp. 370–378. doi:10.1109/CLUSTER.2017.35. 18

[MKPH11] MORELAND K., KENDALL W., PETERKA T., HUANG J.:
An image compositing solution at scale. In Proceedings of 2011 In-
ternational Conference for High Performance Computing, Network-
ing, Storage and Analysis (New York, NY, USA, 2011), SC ’11,
ACM, pp. 25:1–25:10. URL: http://doi.acm.org/10.1145/
2063384.2063417, doi:10.1145/2063384.2063417. 12, 13,
14

c© 2019 The Author(s)

http://dx.doi.org/10.2312/EGPGV/EGPGV10/001-010
http://dx.doi.org/10.2312/EGPGV/EGPGV10/001-010
http://dx.doi.org/10.2312/EGPGV/EGPGV10/001-010
http://dx.doi.org/10.2312/EGPGV/EGPGV10/001-010
http://dx.doi.org/10.1109/TVCG.2011.24
http://dx.doi.org/10.2312/EGPGV/EGPGV11/131-140
http://dx.doi.org/10.2312/EGPGV/EGPGV11/131-140
http://dx.doi.org/10.2312/EGPGV/EGPGV11/131-140
http://dx.doi.org/10.2312/EGPGV/EGPGV11/131-140
http://dx.doi.org/10.1109/VISUAL.1992.235211
http://dx.doi.org/10.1109/VISUAL.1992.235211
http://dx.doi.org/10.1109/MCG.2010.26
http://dx.doi.org/10.1109/MCG.2010.26
http://dx.doi.org/10.1109/LDAV.2015.7348079
http://dx.doi.org/10.1109/TVCG.2009.190
https://doi.org/10.1117/12.704533
https://doi.org/10.1117/12.704533
http://dx.doi.org/10.1117/12.704533
http://dx.doi.org/10.2312/EGPGV/EGPGV10/101-110
http://dx.doi.org/10.2312/EGPGV/EGPGV10/101-110
http://dx.doi.org/10.2312/EGPGV/EGPGV10/101-110
http://doi.acm.org/10.1145/1953611.1953615
http://doi.acm.org/10.1145/1953611.1953615
http://dx.doi.org/10.1145/1953611.1953615
http://dx.doi.org/10.1145/1953611.1953615
http://doi.acm.org/10.1145/2063384.2063397
http://doi.acm.org/10.1145/2063384.2063397
http://dx.doi.org/10.1145/2063384.2063397
http://doi.acm.org/10.1145/37401.37422
http://dx.doi.org/10.1145/37401.37422
http://dx.doi.org/10.1109/PACIFICVIS.2016.7465256
http://dx.doi.org/10.1109/IPDPS.2003.1213186
http://dx.doi.org/10.1109/SC.2014.87
http://dx.doi.org/10.1109/SC.2014.87
http://doi.acm.org/10.1145/218327.218333
http://doi.acm.org/10.1145/218327.218333
http://dx.doi.org/10.1145/218327.218333
http://dx.doi.org/10.1109/TVCG.2010.116
http://dx.doi.org/10.1109/TVCG.2010.116
http://dx.doi.org/10.1109/2945.468400
http://dx.doi.org/10.1109/38.291528
http://dx.doi.org/10.1109/LDAV.2013.6675152
http://dx.doi.org/10.1109/CLUSTER.2017.35
http://doi.acm.org/10.1145/2063384.2063417
http://doi.acm.org/10.1145/2063384.2063417
http://dx.doi.org/10.1145/2063384.2063417

R. Binyahib / Area Exam Paper

[MLP∗10] MCLOUGHLIN T., LARAMEE R. S., PEIKERT R., POST
F. H., CHEN M.: Over Two Decades of Integration-Based, Geomet-
ric Flow Visualization. Computer Graphics Forum (2010). doi:
10.1111/j.1467-8659.2010.01650.x. 3

[MLZ09] MCLOUGHLIN T., LARAMEE R. S., ZHANG E.: Easy integral
surfaces: A fast, quad-based stream and path surface algorithm. In Pro-
ceedings of the 2009 Computer Graphics International Conference (New
York, NY, USA, 2009), CGI ’09, ACM, pp. 73–82. URL: http://
doi.acm.org/10.1145/1629739.1629748, doi:10.1145/
1629739.1629748. 3, 7

[MMD06] MARCHESIN S., MONGENET C., DISCHLER J.-M.: Dy-
namic load balancing for parallel volume rendering. In Proceedings of
the 6th Eurographics Conference on Parallel Graphics and Visualiza-
tion (Aire-la-Ville, Switzerland, Switzerland, 2006), EGPGV ’06, Eu-
rographics Association, pp. 43–50. URL: http://dx.doi.org/
10.2312/EGPGV/EGPGV06/043-050, doi:10.2312/EGPGV/
EGPGV06/043-050. 9, 10

[Mor11] MORELAND K.: Icet users’ guide and reference, version 2.0.
technical report sand2010-7451, sandia national laboratories, January
2011. 13

[Mor13] MORELAND K.: A survey of visualization pipelines. IEEE
Transactions on Visualization and Computer Graphics 19, 3 (March
2013), 367–378. doi:10.1109/TVCG.2012.133. 17

[Mor18] MORELAND K.: Comparing binary-swap algorithms for odd
factors of processes. In 2018 IEEE 8th Symposium on Large Data Anal-
ysis and Visualization (LDAV) (Oct 2018). 13, 14

[MP16] MOROZOV D., PETERKA T.: Efficient delaunay tessellation
through k-d tree decomposition. In SC ’16: Proceedings of the In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis (Nov 2016), pp. 728–738. doi:10.1109/SC.
2016.61. 5, 6, 18

[MPHK94] MA K.-L., PAINTER J. S., HANSEN C. D., KROGH M. F.:
Parallel volume rendering using binary-swap compositing. IEEE Com-
puter Graphics and Applications 14, 4 (July 1994), 59–68. doi:
10.1109/38.291532. 9, 12

[MPS93] MONTANI C., PEREGO R., SCOPIGNO R.: Parallel render-
ing of volumetric data set on distributed-memory architectures. Concur-
rency: Practice and Experience 5, 2 (1993), 153–167. 10

[MSE06] MÜLLER C., STRENGERT M., ERTL T.: Optimized volume
raycasting for graphics-hardware-based cluster systems. In Proceedings
of the 6th Eurographics Conference on Parallel Graphics and Visualiza-
tion (Aire-la-Ville, Switzerland, Switzerland, 2006), EGPGV ’06, Eu-
rographics Association, pp. 59–67. URL: http://dx.doi.org/
10.2312/EGPGV/EGPGV06/059-066, doi:10.2312/EGPGV/
EGPGV06/059-066. 9, 10, 11

[MWP01] MORELAND K., WYLIE B., PAVLAKOS C.: Sort-last parallel
rendering for viewing extremely large data sets on tile displays. In Pro-
ceedings of the IEEE 2001 Symposium on Parallel and Large-data Vi-
sualization and Graphics (Piscataway, NJ, USA, 2001), PVG ’01, IEEE
Press, pp. 85–92. URL: http://dl.acm.org/citation.cfm?
id=502125.502141. 13

[MWSC03] MAX N., WILLIAMS P., SILVA C., COOK R.: Volume ren-
dering for curvilinear and unstructured grids. In Computer Graphics
International, 2003. Proceedings (2003), IEEE, pp. 210–215. 11

[Nag05] NAGLE D.: Mpi – the complete reference, vol. 1, the mpi core,
2nd ed., scientific and engineering computation series, by marc snir,
steve otto, steven huss-lederman, david walker and jack dongarra. Sci.
Program. 13, 1 (Jan. 2005), 57–63. URL: http://dx.doi.org/
10.1155/2005/653765, doi:10.1155/2005/653765. 18

[NBFF96] NICHOLS B., BUTTLAR D., FARRELL J., FARRELL J.:
PThreads Programming: A POSIX Standard for Better Multiprocessing.
A POSIX standard for better multiprocessing. O’Reilly Media, Incor-
porated, 1996. URL: https://books.google.com/books?id=
oMtCFSnvwmoC. 18

[NLS11] NOUANESENGSY B., LEE T. Y., SHEN H. W.: Load-balanced
parallel streamline generation on large scale vector fields. IEEE Transac-
tions on Visualization and Computer Graphics 17, 12 (Dec 2011), 1785–
1794. doi:10.1109/TVCG.2011.219. 4, 5, 6

[NOF15] NONAKA J., ONO K., FUJITA M.: 234 scheduling of 3-2
and 2-1 eliminations for parallel image compositing using non-power-
of-two number of processes. In 2015 International Conference on High
Performance Computing Simulation (HPCS) (July 2015), pp. 421–428.
doi:10.1109/HPCSim.2015.7237071. 12, 13, 14

[NOF18] NONAKA J., ONO K., FUJITA M.: 234compositor: A flex-
ible parallel image compositing framework for massively parallel vi-
sualization environments. Future Generation Computer Systems 82
(2018), 647 – 655. URL: http://www.sciencedirect.com/
science/article/pii/S0167739X17302030, doi:https:
//doi.org/10.1016/j.future.2017.02.011. 12, 13

[PCG∗09] PUGMIRE D., CHILDS H., GARTH C., AHERN S., WEBER
G. H.: Scalable computation of streamlines on very large datasets. In
Proceedings of the Conference on High Performance Computing Net-
working, Storage and Analysis (Nov 2009), pp. 1–12. doi:10.1145/
1654059.1654076. 3, 6, 18

[PD81] PRINCE P., DORMAND J.: High order embedded runge-kutta
formulae. Journal of Computational and Applied Mathematics 7, 1
(1981), 67 – 75. URL: http://www.sciencedirect.com/
science/article/pii/0771050X81900103, doi:https:
//doi.org/10.1016/0771-050X(81)90010-3. 3

[PF01] PASCUCCI V., FRANK R. J.: Global static indexing for real-time
exploration of very large regular grids. In SC ’01: Proceedings of the
2001 ACM/IEEE Conference on Supercomputing (Nov 2001), pp. 45–
45. doi:10.1145/582034.582036. 2

[PGR∗09] PETERKA T., GOODELL D., ROSS R., SHEN H. W.,
THAKUR R.: A configurable algorithm for parallel image-compositing
applications. In Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis (Nov 2009), pp. 1–10.
doi:10.1145/1654059.1654064. 12

[PKP∗12] PETERKA T., KWAN J., POPE A., FINKEL H., HEITMANN
K., HABIB S.: Meshing the universe : Identifying voids in cosmological
simulations through in situ parallel voronoi tessellation. 18

[PMP14] PETERKA T., MOROZOV D., PHILLIPS C.: High-performance
computation of distributed-memory parallel 3d voronoi and delau-
nay tessellation. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analy-
sis (Piscataway, NJ, USA, 2014), SC ’14, IEEE Press, pp. 997–
1007. URL: https://doi.org/10.1109/SC.2014.86, doi:
10.1109/SC.2014.86. 18

[PNP∗17] PATCHETT J. M., NOUANESENGESY B., POUDEROUX J.,
AHRENS J., HAGEN H.: Parallel multi-layer ghost cell generation
for distributed unstructured grids. In 2017 IEEE 7th Symposium on
Large Data Analysis and Visualization (LDAV) (Oct 2017), pp. 84–91.
doi:10.1109/LDAV.2017.8231854. 17

[PRN∗11] PETERKA T., ROSS R., NOUANESENGSY B., LEE T. Y.,
SHEN H. W., KENDALL W., HUANG J.: A study of parallel parti-
cle tracing for steady-state and time-varying flow fields. In 2011 IEEE
International Parallel Distributed Processing Symposium (May 2011),
pp. 580–591. doi:10.1109/IPDPS.2011.62. 4, 5, 6

[PYR∗09] PETERKA T., YU H., ROSS R., MA K., LATHAM R.: End-to-
end study of parallel volume rendering on the ibm blue gene/p. In 2009
International Conference on Parallel Processing (Sept 2009), pp. 566–
573. doi:10.1109/ICPP.2009.27. 2

[Qui87] QUINN M. J.: Designing Efficient Algorithms for Parallel Com-
puters. McGraw-Hill, Inc., New York, NY, USA, 1987. 14

[RAC∗10] RASERA Y., ALIMI J.-M., COURTIN J., ROY F., CORASAN-
ITI P. S., FUZFA A., BOUCHER V.: Introducing the dark energy universe
simulation series (deuss). AIP Conference Proceedings 1241 (06 2010),
1134. doi:10.1063/1.3462610. 16, 17

c© 2019 The Author(s)

http://dx.doi.org/10.1111/j.1467-8659.2010.01650.x
http://dx.doi.org/10.1111/j.1467-8659.2010.01650.x
http://doi.acm.org/10.1145/1629739.1629748
http://doi.acm.org/10.1145/1629739.1629748
http://dx.doi.org/10.1145/1629739.1629748
http://dx.doi.org/10.1145/1629739.1629748
http://dx.doi.org/10.2312/EGPGV/EGPGV06/043-050
http://dx.doi.org/10.2312/EGPGV/EGPGV06/043-050
http://dx.doi.org/10.2312/EGPGV/EGPGV06/043-050
http://dx.doi.org/10.2312/EGPGV/EGPGV06/043-050
http://dx.doi.org/10.1109/TVCG.2012.133
http://dx.doi.org/10.1109/SC.2016.61
http://dx.doi.org/10.1109/SC.2016.61
http://dx.doi.org/10.1109/38.291532
http://dx.doi.org/10.1109/38.291532
http://dx.doi.org/10.2312/EGPGV/EGPGV06/059-066
http://dx.doi.org/10.2312/EGPGV/EGPGV06/059-066
http://dx.doi.org/10.2312/EGPGV/EGPGV06/059-066
http://dx.doi.org/10.2312/EGPGV/EGPGV06/059-066
http://dl.acm.org/citation.cfm?id=502125.502141
http://dl.acm.org/citation.cfm?id=502125.502141
http://dx.doi.org/10.1155/2005/653765
http://dx.doi.org/10.1155/2005/653765
http://dx.doi.org/10.1155/2005/653765
https://books.google.com/books?id=oMtCFSnvwmoC
https://books.google.com/books?id=oMtCFSnvwmoC
http://dx.doi.org/10.1109/TVCG.2011.219
http://dx.doi.org/10.1109/HPCSim.2015.7237071
http://www.sciencedirect.com/science/article/pii/S0167739X17302030
http://www.sciencedirect.com/science/article/pii/S0167739X17302030
http://dx.doi.org/https://doi.org/10.1016/j.future.2017.02.011
http://dx.doi.org/https://doi.org/10.1016/j.future.2017.02.011
http://dx.doi.org/10.1145/1654059.1654076
http://dx.doi.org/10.1145/1654059.1654076
http://www.sciencedirect.com/science/article/pii/0771050X81900103
http://www.sciencedirect.com/science/article/pii/0771050X81900103
http://dx.doi.org/https://doi.org/10.1016/0771-050X(81)90010-3
http://dx.doi.org/https://doi.org/10.1016/0771-050X(81)90010-3
http://dx.doi.org/10.1145/582034.582036
http://dx.doi.org/10.1145/1654059.1654064
https://doi.org/10.1109/SC.2014.86
http://dx.doi.org/10.1109/SC.2014.86
http://dx.doi.org/10.1109/SC.2014.86
http://dx.doi.org/10.1109/LDAV.2017.8231854
http://dx.doi.org/10.1109/IPDPS.2011.62
http://dx.doi.org/10.1109/ICPP.2009.27
http://dx.doi.org/10.1063/1.3462610

R. Binyahib / Area Exam Paper

[RPW∗08] RUBEL O., PRABHAT, WU K., CHILDS H., MEREDITH J.,
GEDDES C. G. R., CORMIER-MICHEL E., AHERN S., WEBER G. H.,
MESSMER P., HAGEN H., HAMANN B., BETHEL E. W.: High perfor-
mance multivariate visual data exploration for extremely large data. In
SC ’08: Proceedings of the 2008 ACM/IEEE Conference on Supercom-
puting (Nov 2008), pp. 1–12. doi:10.1109/SC.2008.5214436.
2

[RT04] RABENSEIFNER R., TRÄFF J. L.: More efficient reduction algo-
rithms for non-power-of-two number of processors in message-passing
parallel systems. In Recent Advances in Parallel Virtual Machine and
Message Passing Interface (Berlin, Heidelberg, 2004), Kranzlmüller D.,
Kacsuk P., Dongarra J., (Eds.), Springer Berlin Heidelberg, pp. 36–46.
12

[RTBS05] RHODES P. J., TANG X., BERGERON R. D., SPARR T. M.:
Iteration aware prefetching for large multidimensional datasets. In Pro-
ceedings of the 17th International Conference on Scientific and Statis-
tical Database Management (Berkeley, CA, US, 2005), SSDBM’2005,
Lawrence Berkeley Laboratory, pp. 45–54. URL: http://dl.acm.
org/citation.cfm?id=1116877.1116883. 5

[SAM05] SHIRLEY P., ASHIKHMIN M., MARSCHNER S.: Funda-
mentals of Computer Graphics. Ak Peters Series. Taylor & Fran-
cis, 2005. URL: https://books.google.com/books?id=
0VOEjFmPB-0C. 7

[SFLS00] SAMANTA R., FUNKHOUSER T., LI K., SINGH J. P.: Hybrid
sort-first and sort-last parallel rendering with a cluster of pcs. In Proceed-
ings of the ACM SIGGRAPH/EUROGRAPHICS Workshop on Graphics
Hardware (New York, NY, USA, 2000), HWWS ’00, ACM, pp. 97–
108. URL: http://doi.acm.org/10.1145/346876.348237,
doi:10.1145/346876.348237. 10, 11

[SH96] SUJUDI D., HAIMES R.: - integration of particle paths and
streamlines in a spatially-decomposed computation. In Parallel
Computational Fluid Dynamics 1995, Ecer A., Periaux J., Satdfuka
N., Taylor S., (Eds.). North-Holland, Amsterdam, 1996, pp. 315 –
322. URL: http://www.sciencedirect.com/science/
article/pii/B9780444823229500931, doi:https:
//doi.org/10.1016/B978-044482322-9/50093-1. 4

[SML96] SCHROEDER W. J., MARTIN K. M., LORENSEN W. E.: The
design and implementation of an object-oriented toolkit for 3D graphics
and visualization. In VIS ’96: Proceedings of the 7th conference on Vi-
sualization ’96 (1996), IEEE Computer Society Press, pp. 93–ff. 2, 17,
18

[SPEP16] STEINER D., PAREDES E. G., EILEMANN S., PAJAROLA
R.: Dynamic work packages in parallel rendering. In Proceedings of
the 16th Eurographics Symposium on Parallel Graphics and Visualiza-
tion (Goslar Germany, Germany, 2016), EGPGV ’16, Eurographics As-
sociation, pp. 89–98. URL: https://doi.org/10.2312/pgv.
20161185, doi:10.2312/pgv.20161185. 9

[SS94] SIEGELL B. S., STEENKISTE P.: Automatic generation of paral-
lel programs with dynamic load balancing. In Proceedings of 3rd IEEE
International Symposium on High Performance Distributed Computing
(Aug 1994), pp. 166–175. doi:10.1109/HPDC.1994.340247. 3

[STNC10] SKORY S., TURK M. J., NORMAN M. L., COIL A. L.: PAR-
ALLEL HOP: A SCALABLE HALO FINDER FOR MASSIVE COS-
MOLOGICAL DATA SETS. The Astrophysical Journal Supplement Se-
ries 191, 1 (oct 2010), 43–57. 17

[SZF∗99] SAMANTA R., ZHENG J., FUNKHOUSER T., LI K., SINGH
J. P.: Load balancing for multi-projector rendering systems. In Proceed-
ings of the ACM SIGGRAPH/EUROGRAPHICS Workshop on Graphics
Hardware (New York, NY, USA, 1999), HWWS ’99, ACM, pp. 107–
116. URL: http://doi.acm.org/10.1145/311534.311584,
doi:10.1145/311534.311584. 9, 10

[TIH03] TAKEUCHI A., INO F., HAGIHARA K.: An improvement
on binary-swap compositing for sort-last parallel rendering. In Pro-
ceedings of the 2003 ACM Symposium on Applied Computing (New
York, NY, USA, 2003), SAC ’03, ACM, pp. 996–1002. URL: http:

//doi.acm.org/10.1145/952532.952728, doi:10.1145/
952532.952728. 13

[UJK∗89] UPSON C., JR. T. F., KAMINS D., LAIDLAW D. H.,
SCHLEGEL D., VROOM J., GURWITZ R., VAN DAM A.: The appli-
cation visualization system: A computational environment for scientific
visualization. Computer Graphics and Applications 9, 4 (July 1989),
30–42. 2

[Vit01] VITTER J. S.: External memory algorithms and data structures:
Dealing with massive data. ACM Comput. Surv. 33, 2 (June 2001), 209–
271. URL: http://doi.acm.org/10.1145/384192.384193,
doi:10.1145/384192.384193. 18

[WB99] WOO M., BOARD O. A. R.: OpenGL Programming Guide: The
Official Guide to Learning OpenGL, Version 1.2. Graphics program-
ming. Addison-Wesley, 1999. URL: https://books.google.
com/books?id=IwicQgAACAAJ. 7

[WCM12] WEBER G. H., CHILDS H., MEREDITH J. S.: Efficient par-
allel extraction of crack-free isosurfaces from adaptive mesh refinement
(amr) data. In IEEE Symposium on Large Data Analysis and Visual-
ization (LDAV) (Oct 2012), pp. 31–38. doi:10.1109/LDAV.2012.
6378973. 15, 17

[WFM11a] WHITLOCK B., FAVRE J. M., MEREDITH J. S.: Parallel
In Situ Coupling of Simulation with a Fully Featured Visualization Sys-
tem. In Eurographics Symposium on Parallel Graphics and Visualization
(2011), Kuhlen T., Pajarola R., Zhou K., (Eds.), The Eurographics Asso-
ciation. doi:10.2312/EGPGV/EGPGV11/101-109. 2

[WFM11b] WHITLOCK B., FAVRE J. M., MEREDITH J. S.: Parallel in
situ coupling of simulation with a fully featured visualization system. In
Proceedings of the 11th Eurographics Conference on Parallel Graph-
ics and Visualization (Aire-la-Ville, Switzerland, Switzerland, 2011),
EGPGV ’11, Eurographics Association, pp. 101–109. URL: http://
dx.doi.org/10.2312/EGPGV/EGPGV11/101-109, doi:10.
2312/EGPGV/EGPGV11/101-109. 18

[WHA∗11] WOODRING J., HEITMANN K., AHRENS J., FASEL P., HSU
C.-H., HABIB S., ADRIAN POPE A.: Analyzing and visualizing cosmo-
logical simulations with paraview. The Astrophysical Journal Supple-
ment Series 195 (06 2011), 11. doi:10.1088/0067-0049/195/
1/11. 16

[WKL∗01] WEBER G. H., KREYLOS O., LIGOCKI T. J., SHALF J.,
HAGEN H., HAMANN B., JOY K. I.: Extraction of crack-free isosur-
faces from adaptive mesh refinement data. In VisSym (2001). 15

[YWM07] YU H., WANG C., MA K.: Parallel hierarchical visualization
of large time-varying 3d vector fields. In SC ’07: Proceedings of the
2007 ACM/IEEE Conference on Supercomputing (Nov 2007), pp. 1–12.
doi:10.1145/1362622.1362655. 4, 5, 6, 7

[YWM08] YU H., WANG C., MA K.-L.: Massively parallel volume
rendering using 2-3 swap image compositing. In Proceedings of the
2008 ACM/IEEE Conference on Supercomputing (Piscataway, NJ, USA,
2008), SC ’08, IEEE Press, pp. 48:1–48:11. URL: http://dl.acm.
org/citation.cfm?id=1413370.1413419. 12, 13

[YYC99] YANG D.-L., YU J.-C., CHUNG Y.-C.: Efficient composit-
ing methods for the sort-last-sparse parallel volume rendering system on
distributed memory multicomputers. In Proceedings of the 1999 Inter-
national Conference on Parallel Processing (Sep. 1999), pp. 200–207.
doi:10.1109/ICPP.1999.797405. 13

[ZBB01] ZHANG X., BAJAJ C., BLANKE W.: Scalable isosurface vi-
sualization of massive datasets on cots clusters. In Proceedings of the
IEEE 2001 Symposium on Parallel and Large-data Visualization and
Graphics (Piscataway, NJ, USA, 2001), PVG ’01, IEEE Press, pp. 51–
58. URL: http://dl.acm.org/citation.cfm?id=502125.
502136. 14, 15, 18

[ZGH∗18] ZHANG J., GUO H., HONG F., YUAN X., PETERKA T.: Dy-
namic load balancing based on constrained k-d tree decomposition for
parallel particle tracing. IEEE Transactions on Visualization and Com-
puter Graphics 24, 1 (Jan 2018), 954–963. doi:10.1109/TVCG.
2017.2744059. 5, 6, 17

c© 2019 The Author(s)

http://dx.doi.org/10.1109/SC.2008.5214436
http://dl.acm.org/citation.cfm?id=1116877.1116883
http://dl.acm.org/citation.cfm?id=1116877.1116883
https://books.google.com/books?id=0VOEjFmPB-0C
https://books.google.com/books?id=0VOEjFmPB-0C
http://doi.acm.org/10.1145/346876.348237
http://dx.doi.org/10.1145/346876.348237
http://www.sciencedirect.com/science/article/pii/B9780444823229500931
http://www.sciencedirect.com/science/article/pii/B9780444823229500931
http://dx.doi.org/https://doi.org/10.1016/B978-044482322-9/50093-1
http://dx.doi.org/https://doi.org/10.1016/B978-044482322-9/50093-1
https://doi.org/10.2312/pgv.20161185
https://doi.org/10.2312/pgv.20161185
http://dx.doi.org/10.2312/pgv.20161185
http://dx.doi.org/10.1109/HPDC.1994.340247
http://doi.acm.org/10.1145/311534.311584
http://dx.doi.org/10.1145/311534.311584
http://doi.acm.org/10.1145/952532.952728
http://doi.acm.org/10.1145/952532.952728
http://dx.doi.org/10.1145/952532.952728
http://dx.doi.org/10.1145/952532.952728
http://doi.acm.org/10.1145/384192.384193
http://dx.doi.org/10.1145/384192.384193
https://books.google.com/books?id=IwicQgAACAAJ
https://books.google.com/books?id=IwicQgAACAAJ
http://dx.doi.org/10.1109/LDAV.2012.6378973
http://dx.doi.org/10.1109/LDAV.2012.6378973
http://dx.doi.org/10.2312/EGPGV/EGPGV11/101-109
http://dx.doi.org/10.2312/EGPGV/EGPGV11/101-109
http://dx.doi.org/10.2312/EGPGV/EGPGV11/101-109
http://dx.doi.org/10.2312/EGPGV/EGPGV11/101-109
http://dx.doi.org/10.2312/EGPGV/EGPGV11/101-109
http://dx.doi.org/10.1088/0067-0049/195/1/11
http://dx.doi.org/10.1088/0067-0049/195/1/11
http://dx.doi.org/10.1145/1362622.1362655
http://dl.acm.org/citation.cfm?id=1413370.1413419
http://dl.acm.org/citation.cfm?id=1413370.1413419
http://dx.doi.org/10.1109/ICPP.1999.797405
http://dl.acm.org/citation.cfm?id=502125.502136
http://dl.acm.org/citation.cfm?id=502125.502136
http://dx.doi.org/10.1109/TVCG.2017.2744059
http://dx.doi.org/10.1109/TVCG.2017.2744059

R. Binyahib / Area Exam Paper

[ZWB∗15] ZOU X., WU K., BOYUKA D. A., MARTIN D. F., BYNA
S., TANG H., BANSAL K., LIGOCKI T. J., JOHANSEN H., SAMATOVA
N. F.: Parallel in situ detection of connected components in adaptive
mesh refinement data. In 2015 15th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (May 2015), pp. 302–312. doi:
10.1109/CCGrid.2015.154. 16

c© 2019 The Author(s)

http://dx.doi.org/10.1109/CCGrid.2015.154
http://dx.doi.org/10.1109/CCGrid.2015.154

