
CONTROL OPERATORS: ISSUES OF EXPRESSIBILITY

by

DANIEL B. KEITH

A DIRECTED RESEARCH PROJECT REPORT

Presented to the Department of Computer
and Information Science

and the Graduate School of the University of Oregon
in partial fulfillment of the requirements

for the degree of
Doctor of Philosophy

December, 2008

ii

Abstract

It has been shown that a language with the delimited control operators shift and

reset can be translated into a language containing only an undelimited control operator

such as callcc and a single mutable storage cell. We study this translation and a related

translation from a language containing callcc into one containing the control and

prompt operators. We show that the translation does not faithfully preserve other control

effects that may be present. We describe new versions of these translations that address

these problems. We provide a background on control operators and some of the

formalisms used to describe the behavior and translation of these operators.

iii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION . 1

1.1 The Language L+− . 2
1.2 Control Operators . 9
1.3 Expressibility . 11
1.4 Research Focus . 12
1.5 Organization of this Report . 13

II. UNTYPED LAMBDA CALCULI . 18

2.1 A Minimal Functional Language - L0 19
2.2 Effects and Standard Reduction . 21
2.3 Contextual Semantics . 22

III. ABORTIVE CONTINUATIONS . 27

3.1 Undelimited Control . 27
3.2 Delimited Control . 33
3.3 Summary . 36

IV. COMPOSABLE CONTINUATIONS . 37

4.1 The shift and reset operators . 37

iv

4.2 Composable continuations can be used without a reset 38
4.3 Summary . 41

V. IMPROVED ENCODING OF ABORTIVE CONTINUATIONS 42

5.1 Traditional Encoding of callcc as Cu 42
5.2 An Improved Encoding . 45
5.3 A Proof of Correctness . 47
5.4 Summary . 48

VI. IMPROVED ENCODING OF COMPOSABLE CONTINUATIONS 49

6.1 A traditional encoding of shift and reset 49
6.2 Problems with the Traditional Encoding 52
6.3 An Improved Encoding of Composable Continuations 56
6.4 A Proof of Correctness . 58
6.5 Summary . 59

VII. CONCLUSION . 60

I. READING LIST . 61

1.1 Programming Languages Background 61
1.2 Continuations and Control Operators . 62
1.3 Historical and Biographical . 64

II. ML IMPLEMENTATIONS AND EXAMPLES 65

III. EXTENDED CONTINUATION PASSING STYLE 73

BIBLIOGRAPHY . 80

1

CHAPTER I

Introduction

For the past few months, I have worked with my research advisor, Professor Zena Ariola,

on applying formal programming language techniques to understand how various control

operators behave and misbehave when translated or implemented in a target language. The

questions that our work addresses are:

Are there systematic errors in the translation of control operators that result in
the translation not being faithful in the presence of other effects?

Can we improve the translation to avoid these errors?

This report details my Directed Research Project on these questions, which we answer

in the affirmative. To anticipate a broad audience, I will include some background on the

terminology, notation, and techniques used in the formal study of control operators and

programming languages.

For our purposes, the term language informally refers to a set (usually infinite) of pos-

sible well-formed programs, and to the means for evaluating, executing or otherwise in-

terpreting a well-formed program. This definition applies to conventional programming

languages such as C++, Java, and ML as well as to the synthetic programming languages

studied by programming language researchers and discussed in this report.

A programming language may be formally characterized by providing its syntax and

one or more semantics. The syntax for a particular language is a set of rules or other means

of defining the well-formed (syntactically valid) sentences in the language. A semantics

for a language is a means of mapping program phrases into some value or meaning. In

this report, we will be primarily concerned with operational semantics, which emphasizes

2

a view of program execution as a series of transitions, ultimately leading to some value

or final result. For completeness and historical context, we will introduce denotational

semantics, which emphasizes a view of a program text as having a meaning or denotation

in some model domain.

Our research considered a family of functional programming languages, each mem-

ber of which extends a base language L0 (an untyped, call-by-value, lambda calculus).

We looked at some of the well-known translations between members of this family, and

developed some examples wherein these translations were not faithful to our expectations.

Further analysis revealed a common oversight in these translations and permitted us to craft

improved versions of these translations. Specifically, the implicit by-value conversion in a

call-by-value language can affect the order of effects and inattention to this reordering can

produce erroneous translations. The purpose of this report is to provide some background

on the formal techniques used to describe these examples, to analyze their shortcomings,

and to provide improved implementations.

1.1 The Language L+−

For the purposes of this Introduction, we will consider an example language of arithmetic

expressions which will be called L+−, and will describe it using the formal methods that

we will expand upon later in this report.

The intent behind our example language L+− is to allow the expression and evalua-

tion of simple addition/subtraction expressions using signed integers. Program phrases in

this language will consist of arithmetic expressions that contain only integers (positive or

negative), the infix operators + and -, and parentheses () for grouping. For example, the

following are some examples of L+− phrases, as well as some strings that are not:

Well-Formed (∈ L+−) Not Well-Formed (/∈ L+−)

1 + 2 --1

1 - (-1 + -1) 1 + ()

1.1.1 Concrete Syntax

We can unambiguously specify the set of all well-formed L+− programs by providing a

concrete syntax in BNF (Backus-Naur Form), as illustrated in Figure 1.1.

3

〈digit〉 ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 Digits

〈num〉 ::= 〈digit〉 | Numbers

〈num〉〈digit〉

〈snum〉 ::= 〈num〉 | Signed Numbers

+ 〈num〉 |
- 〈num〉

〈expr〉 ::= 〈snum〉 | Expressions

〈expr〉 + 〈expr〉 |
〈expr〉 - 〈expr〉 |
(〈expr〉)

〈prog〉 ::= 〈expr〉

FIGURE 1.1: These rules define the concrete syntax of a simple arithmetic language L+−.

Most formal programming analysis operates upon an abstract syntax which is even

further removed from the character set and physical details of the source text. An abstract

syntax for a language will define a set of syntax domains, as well as a set of rules that

indicate how a particular syntax phrase may be built from smaller phrases. Each syntax

domain corresponds to a particular role in the syntax, similar to a part of speech in a natural

language. For our purposes, the syntactic values that populate these syntactic domains are

best understood as abstract syntax trees. However, we will usually write these trees in a

linear form using parenthesization to indicate the structure of the tree. For example, when

we write the concrete syntax phrase 1 + (2 − 3) as the abstract plus(1,minus(2, 3)), we

are actually representing a tree with plus at the root, minus as an inner node, and 1, 2, and

3 as terminal nodes.

4

The issues of how characters are mapped into numerals, how parentheses are used to

group subexpressions, infix and postfix distinctions, and syntactic ambiguities are all ig-

nored when using abstract syntax to describe a language. It is assumed that there exists a

function to map from a concrete syntax phrase into an abstract syntax structure; this func-

tion is typically implemented as a parser, which takes as input a phrase in the concrete

syntax of L+− and returns a phrase in the abstract syntax of L+−.

Figure 1.2 presents the abstract syntax description of L+−. Notice how the abstract

syntax emphasizes the compositional structure of the syntax, that an 〈expr〉 is composed

of smaller syntactic elements. As is conventional in the literature, we define and use a

representative metavariable for each syntax domain, to make the rules and subsequent

reasoning more concise. In our L+− syntax, we have two syntax domains: Num andExpr.

We use the symbol N as a metavariable that represents any element of Num; similarly, E

represents any element of Expr. We can then use these representative symbols in our

syntactic and semantic descriptions. For example, E ::= plus(E,E) is easier to read than

the corresponding set-based description, Expr ::= plus(Expr, Expr). It is important to

remember that E is a metavariable that represents a particular element of Expr; Expr is

the set of all syntactic objects that are generated by the Expr-rules.

The abstract syntax of a language forms a multi-sorted algebra [22], where elements

are either atomic (as in the case of N) or composite (as in the case of plus(E,E)). This

algebra is independent of any particular realization and can be used as a means to prove

properties of the syntactic structure. More importantly, this algebra can be used to easily

and concisely express semantic functions, both operational and denotational.

As long as we keep in mind that the domain of discourse is abstract syntax, then we

can choose to use a particular realization of this syntax in our notation; this realization is

usually very similar to the concrete syntax. So we can write 1 + 2 and know that we are

referring to the abstract syntax tree plus(number(1), number(2)) without ambiguity. This

convention simplifies the notation, while still allowing us to reason about abstract syntax.

In the remainder of this document, we will usually use a notation that resembles concrete

syntax for convenience.

5

Syntax Domains

N ∈ Num (Integers)

E ∈ Expr (Expressions)

Syntax Constructors

Abstract Concrete

N ::= number(n) n

E ::= value(N) | N

plus(E,E) | E + E

minus(E,E) E − E

FIGURE 1.2: The abstract syntax describes one or more syntax domains, each of which is

a set of abstract syntax phrases. For each domain, there are generators to build elements of

the domain.

1.1.2 Denotational Semantics

A semantics for a given language L is a way to assign a meaning to an arbitrary program

P ∈ L. Denotational semantics is useful in programming language theory because it

provides a mapping between a language and a model domain of mathematical functions

and values. This model domain can then be used as the basis of formal reasoning about the

programs in L, their capabilities and limitations.

A typical denotational semantics provides a semantic valuation function which can be

applied to a program P ∈ L to produce a value or function in the model domain. The

evaluation function is usually indicated with the JK delimiters. For example, if we consider

our program 1+2 in our L+− language, then J1+2K = 3. Note that the expression 1+2 is

in the domain of abstract syntax, whereas the 3 is in the model domain for this semantics,

which is N. Some authors will use a notation or text style to distinguish between the 3 ∈ N
and the 3 ∈ N ; for example, the above might be written as J1 + 2K = 3. We will not be

using this notation, instead relying upon the context to disambiguate these symbols.

6

If we consider a more complex language that permits the expression of functions, arrays

or complex structures, then we must extend our model to include mathematical functions

and structured values. For example, the denotation of:

Jfunction(x) return x; K
is the mathematical identity function, I. Because we know (via the Church-Turing Thesis,

[30]) that any computable function can be represented in the untyped lambda calculus, we

often use lambda calculus to describe the functional values in a model domain. Applying

this to the above example produces:

Jfunction(x) return x; K = λx.x

where λx.x is a lambda calculus expression that expresses a one-argument function that

simply returns its argument. In this report, we may use the lambda calculus to express

mathematical functions that are the denotations of particular programming language ex-

pressions. This mathematical lambda calculus is distinct from the programming language

L0, which will be presented in the next chapter.

There is a semantic valuation function for each syntactic domain in the language. One

requirement of denotational semantics is that the valuation of any abstract syntax object is

solely a function of the valuations of its syntactic components. In other words, the meaning

of a piece of syntax is based only upon the constituent syntactic structure, and not upon a

context outside of the syntax. The other requirement is that any given syntactic form (e.g.,

plus(E,E)) must be obtainable via a unique constructor; there cannot be two constructors

that can construct the same piece of syntax. The basis for these restrictions is detailed in

[22]; essentially, the first rule supports inductive reasoning, and the second rule supports

unique decomposition.

Figure 1.3 summarizes the denotational semantics of L+−. The model domain is simply

the integers Z and we specify how any well-formed piece of abstract syntax can be mapped

to a value in this domain. Note how the evaluation rules are recursive, where a piece of

syntax’s meaning is dependent upon its constituent syntactic meanings. In this case, we

are specifying two distinct semantic functions, one whose domain is Num and the other

whose domain is Expr. In both cases, however, the codomain is the set Z.

A denotational semantics maps a source program into a value in a model domain, of

which the mathematical domain of numbers and functions is one example. There are other

7

practical and commonly used domains, however. We can consider the model of strings

that are themselves source programs of another language, then our semantics is acting as a

translator, translating each program from one language to another. If the model is assembly

language or machine code programs, then our semantics acts as a compiler, translating

source programs into machine code. What is common in all of these cases is that the

syntax of the source is converted to a value in a way that is syntax-driven, with a meaning

function for each syntactic domain.

Once we have a semantic mapping into a model domain, we can then use the model’s

semantic algebra to reason about our programs. In the case of L+−, this means that we can

reason about our programs in the realm of mathematics. We can determine that two distinct

L+− programs are equivalent if they have the same denotation. For example, J1 + 2 + 3K =

J2 + 4K, so we say that the two programs have the same meaning.

What I want to emphasize is that denotational semantics is typically oriented towards

translation and compilation, where some or all of the computational processing occurs in

the mind of the translator/compiler prior to the actual run-time of the program. In other

words, the processing occurs during the mapping between syntax and semantics. An oper-

ational semantics as described below can be viewed as a denotational semantics translation

from a source program into a model domain of machine-configurations. The semantic

algebra of that model corresponds to the rewriting rules of the machine. A denotational se-

mantics is well-suited for use in describing a pure functional language, because the model

domain is simply one of values.

The research results in this report can be described primarily via operational semantics.

However, denotational semantics is important because the literature often uses denotational

semantics. Specifically, the original Filinski and Danvy papers on shift and reset were

based upon denotational semantics. Any denotational semantics can be used to generate an

operational semantics [21], although we will not be using this fact in this report.

1.1.3 Operational Semantics

Operational semantics is a powerful tool for describing, modeling, and implementing a

variety of computational processes. It is based upon a discrete transition system where

each step corresponds to performing some element of the entire computation. We evaluate a

8

program operationally by first converting the program into an initial configuration, and then

using the transition rules of our semantics to step from this initial configuration through a

series of configurations to a final configuration, from which we extract a result. These

transitions are often called rewriting rules, because two configurations differ by rewriting

one or more subparts of the configuration. We now introduce an operational semantics for

the L+− language.

A particular phrase of L+− implicitly specifies a way to compute a value by perform-

ing a series of subcomputations. For example, the concrete L+− phrase 1 + (2 − 3) + 4

corresponds to the abstract L+− phrase plus(plus(1,minus(2, 3)), 4), which reveals the

subcomputations to be performed (the underlined expression is the active computation):

plus(plus(1,minus(2, 3)), 4)

plus(plus(1,−1), 4)

plus(0, 4)

5

The use of operational semantics allows this implicit sequence of subcomputations to

be made into an explicit set of transitions between configurations. In its simplest form, we

specify an operational semantics to operate directly upon the abstract syntax of our source

language. The transition rules specify how an abstract syntax phrase can be evaluated

into a final value in a series of rewriting steps. Later in this report, we will enhance our

operational semantics so that it operates upon configurations, which consist of a program

phrase and associated syntax that represents the state of our program.

There is great latitude and flexibility in the types of operational semantics that can

be developed. For our purposes in this Introduction, we specify a very simple structured

operational semantics in Figure 1.4. We are actually specifying a relation 7−→ between

abstract syntax phrases such that for any syntactic object p, p 7−→ p′ if p transitions to or

reduces to p′. The 7−→ relation describes a single step of evaluation; we can extend it to a

multi-step evaluation 7−→→ as in Figure 1.5.

Note that the rules in Figure 1.4 constrain the 7−→ relations so that the syntax phrases

that comprise the arguments to plus must first be reduced to the number(n) syntax (i.e.,

9

a value) before the actual transition that sums the numbers. In other words, the opera-

tional semantics imposes a left-to-right, call-by-value evaluation order known as standard

reduction.

We can define an eval(E) function which maps an expression in the syntactic domain

Expr into the particular subset ofExpr that has the form value(i); in other words, eval(E)

evaluates the expression to a final value:

eval(E) = n , E 7−→→ value(number(n))

For example, here we consider one possible reduction sequence from the concrete ex-

pression:

(2 ∗ (3 + 4)) + (20 ∗ (30 + 40))

to a final value 1414.

(2 ∗ (3 + 4)) + (20 ∗ (30 + 40)) Concrete source

≡ plus(times(2, plus(3, 4)), times(20, plus(30, 40))) Abstract source

7−→→ plus(times(2,7), times(20, plus(30, 40)))

7−→→ plus(times(2, 7), times(20,70))

7−→→ plus(14, times(20, 70))

7−→→ plus(14,1400)

7−→→ 1414 Final result

1.2 Control Operators

The example language L+− used in this introduction is missing several very important

features that would usually be found in a practical programming language. These features

can primarily be broken into the following categories:

• Functions - Define and invoke functional abstractions

• State - Read and Write storage cells

• Control - Alter the subsequent computation

• Input/Output - Read and write streams that are independent of the expression

10

In the remainder of this report, we will be using languages which have functions, con-

trol, and a limited form of State; we will not be discussing Input/Output features. The

emphasis of this report is on expressibility of control features: how the control operators

of one programming language can be expressed in a different programming language that

lacks these particular operators but operators of equivalent expressive power.

Most programming languages have control features that allow the program to execute

subexpressions conditionally, iteratively, or in various non-trivial ways that are not imme-

diately describable in the simple reduction scheme we presented for L+−. We can define

synthetic programming languages to isolate and model any desired programming language

feature, including these control features. This is done by adding a minimal set of control

operators to the syntax of the lambda calculus and adding corresponding rules and structure

to the semantics of the calculus.

We find that control operators within programming languages are usually organized as

a small suite of operators that form a basis upon which more sophisticated control features

can be expressed.

Exception-handling, multithreading, GOTOs and a variety of other programming lan-

guage features can be described with lambda calculus extended with control operators. The

well-known control operators that I have studied in my DRP include control, prompt,

shift, reset, callcc and abort. For the purposes of this report, we will partition these

control operators into two groups. The abortive continuation operators include abort,

callcc, control, and prompt. The composable continuation operators include shift

and reset. These distinctions refer to whether the captured continuation can be used as a

normal function which return a value to their caller (composable), or whether invoking the

continuation causes an abort to the enclosing top-level (abortive).

We will detail these control operators in their respective chapters later in this report; for

this Introduction, we will only introduce the callcc operator to give an idea of the power

of control operators, and to introduce the essential idea of evaluation context.

The callcc (call with current continuation) operator allows the current continuation of

a subterm to be captured as a value and bound to a variable. The continuation of a subterm

is a description of what will be evaluated after the subterm’s evaluation is complete; in

effect, the continuation describes the entire remaining execution state of the program at

11

the time of capture. For example, the continuation of the subterm (2 + 3) in the term

1 + (2 + 3) + 4 can be seen as an evaluation context 1 + � + 4, where the � represents

a hole into which the result of the current subcomputation is placed. After the (2 + 3)

is evaluated, the result 5 will be placed into the �, and the evaluation of the resulting

expression 1 + 5 + 4 will continue.

When callcc is used, the continuation is bound to a variable that can later be used

to replace the currently evaluating program with a version derived from the continuation,

allowing dramatic and powerful changes to the execution of a program. For example, the

program 1 + callcc(λk.(2 + (k 100) + 3)) + 4 will result in a value of 105. When the

callcc executes, it captures its context, which is 1+�+4, and turns it into a value we call

the continuation, which is bound to the variable k. In other words, all that callcc does is

to turn its context into a value called a continuation, and to make that value available to its

body, which is then executed normally.

It gets interesting when this continuation is invoked, as in the subphrase (k 100) above.

The callcc-captured continuation bound to k is an abortive continuation; this means that

when we invoke it, rather than it executing as a normal function and returning a value, it

instead aborts the current program execution, including the surrounding context, and begins

executing the saved context instead. This means that when we are executing (k 100), it does

not simply return some value to be used by the surrounding context 1 + (2 + � + 3) + 4;

instead it aborts that context and replaces it with the saved context k = 1+�+4, where the

� is filled in with the value 100, the parameter to k. This results in a program 1 + 100 + 4,

which is then computed normally with a result of 105.

1.3 Expressibility

We will be considering the ways that we can translate the capabilities from a source lan-

guage into a different (but similarly powerful) set of capabilities in a target language. The

issues that arise in this expressibility research reveal important and subtle behaviors of

these extensions and translation. Symmetries and conservation principles arise during these

translations that help us understand our programs, and observe potential pitfalls. I like to

12

think that in the same way that scientists use experiments to reveal symmetries and conser-

vation principles, we use tiny test programs and observe their behavior under translation or

encoding.

When the source and target languages are similar (e.g., differing in only one capability),

we can often macro-express a capability from one language in the other. This means that

a subphrase in the source language can be locally translated into a subphrase in the target

language. When the languages differ greatly or the capability has non-local effects, then we

might need to perform a whole-program translation to convert a program in one language

into another. This means that a subphrase in the source program might require global

changes to the target program. One advantage of macro-expressibility is that it makes it

easy to implement the translation as a set of ordinary functions within the target language;

for example, as a library or extension to a source language.

For example, we can consider Li, the language of fully-parenthesized infix arithmetic

expressions (e.g., (1 + (2 ∗ 3)) − 4) and the language Lp, consisting of prefix arithmetic

expressions (e.g.,− (+ 1 (∗ 2 3)) 4). We can formally specify a translation function Ti→p
that can translate a program source text written in Li into a new text written in Lp, and we

can prove that this translation preserves the meaning and intent of the original program.

Researchers use the techniques of translation and simulation to show equivalences and

relations between various languages and implementations. Translation is a specification

of how a given source language text can be transformed into a target language text. Sim-

ulation is a specification of how execution of a translated text simulates the execution of

a source text. A non-obvious translation requires a proof (via induction or simulation) to

demonstrate its correctness.

1.4 Research Focus

The focus of this research is to see how a translation between a source set of control op-

erators and a target set of control operators may not faithfully preserve the behavior and

effects that are present in the translated expression. We study two classes of control oper-

ators that are distinguished by whether they support abortive continuations or composable

continuations.

13

One of the primary ways that we reveal potential errors in the translation is to invent

an expression in our source language and show that the behavior of the expression in the

source language does not match the behavior of the translation or implementation. In the

course of this research, we devised several examples that helped illuminate problems with

traditional encodings.

This report will show that these errors are systematic facets of a single underlying trans-

lation error: the lack of preservation of the call-by-name semantics of the control operators.

Once we understand this flaw, it appears to be a simple matter to construct an improved

translation. We present improved translations for two well-known encodings.

1.5 Organization of this Report

The remainder of this report will use a variety of techniques and formalisms of program-

ming language metatheory to describe and analyze these languages, capabilities, and the

translations between them. Specifically, we will be examining how a program written in

one language can be translated into a program in a different language, and how we can see

whether this translation preserves the meaning of the original program.

In the next chapter, Untyped Lambda Calculi, we will introduce a minimal functional

programming language called L0. We will lay the groundwork necessary to see how se-

mantic functions and metatheory can operate upon the abstract syntax. We will introduce

a refinement of operational semantics known as contextual semantics, and will apply this

to the semantics of L0. This language L0 will serve as the common subset of the other

languages we will explore later in this report.

The following chapter, Abortive Continuations, introduces programming language fea-

tures that are loosely called abortive continuation operators. We will describe the operators

callcc, abort, control, and prompt and present the languages Lcc and LCP . In the Im-

proved Encoding of Abortive Continuations, we present the conventional encoding of Lcc
into LCP , and demonstrate via examples how this encoding is insufficient in the presence

of other control effects. One of the products of our research is an improved version of this

encoding, which we present in that chapter.

14

Next, in Composable Continuations, we introduce another class of control operators

that are characterized by the use of continuations that can be composed and used like nor-

mal functions; i.e., they are not abortive. We will describe the shift and reset operators

and the LSR language.

In the chapter Improved Encoding of Composable Continuations, we present Filinski’s

encoding of LSR into Lcc, as well as the translation of this into Standard ML. Some ex-

amples of the translation, as well as some problematic cases, are presented, motivating the

improved translation that we developed during this research project. We continue by char-

acterizing what we discovered about the Filinski implementation, illuminating where in the

transformation from shift/reset to callcc the problems are introduced. Finally, we

present our contribution, an improved encoding that addresses the problems.

In Conclusion, we summarize our results and present some of the interesting questions

that we asked during the progress of this research. The motivation of this research is to

understand the interexpressibility of control operators. We conclude with a discussion of

some of the implications of this research, as well as related work and future directions.

15

Semantic Domains

n ∈ Z (Integers) EachL+− expression has a unique de-

notation in Z

Semantic Valuations

Jnumber(n)K = n The denotation of a number() is the

corresponding number in Z

Jplus(E1, E2)K = JE1K + JE2K Note how the denotation of the whole

is based upon the denotations of the

parts

Jminus(E1, E2)K = JE1K − JE2K The + and − operators here are the

mathematical addition and subtrac-

tion operations on Z

Semantic Algebra

For L+−, the semantic algebra consists simply of the

addition and subtraction operations on Z
+ : Z→ Z
− : Z→ Z

FIGURE 1.3: The Semantic valuation function J K maps syntactic expressions into their

denotations in the model domain. The Semantic Algebra for L+− relates objects in this

domain.

16

m = n1 + n2 [AddNN]
plus(number(n1), number(n2)) 7−→ number(m)

E1 7−→ E′1 [AddEE]
plus(E1, E2) 7−→ plus(E′1, E2)

E 7−→ E′ [AddNE]
plus(number(n1), E) 7−→ plus(number(n1), E′)

FIGURE 1.4: The 7−→ relation in L+−

E 7−→ E′ [StepE]
E 7−→→ E′

E1 7−→ E2 E2 7−→→ E′2 [StepEE]
E1 7−→→ E′2

FIGURE 1.5: Inference rules for the multistep 7−→→ relation.

Li Lp
Ti→p(−)

FIGURE 1.6: Translation between two languages Li and Lp

17

L0

LSR Lcc

TSR→ CM (Filinski)

TSR→ CM (Improved)

+shift+reset +callcc+mutable

FIGURE 1.7: The base language L0 (untyped λ-calculus) can be extended via the addition

of the shift and reset capabilities, producing the language LSR. Or, it can be extended

with the callcc and mutable capabilities, producing Lcc.

18

CHAPTER II

Untyped Lambda Calculi

In the Introduction, we presented L+−, which can express simple arithmetic phrases such

as 3 + (4− 2). The denotational semantics of L+− permitted us to assign a meaning to an

expression: J3 + (4− 2)K = 5. The operational semantics of L+− allowed us to conclude

that 3+(4−2) ⇓ 5 by showing that there is sequence of operational steps 3+(4−2) 7−→→ 5.

We will now consider a functional language L0 that lacks the ability to directly spec-

ify numbers and arithmetic operations. In fact, the language L0 really has two oper-

ations: lambda(x, e) and apply(e, e). Figure 2.1 presents the abstract syntax for this

simple untyped functional programming language. For convenience, and by convention,

we will often write expressions using a concrete syntax where the symbol λ is used for

the lambda operation and juxtaposition is used to implicitly specify the apply operation.

For example, the concrete (λx.A)B will be our concrete notation for the abstract syntax

apply(lambda(x,A), B). Keep in mind that for the purposes of our formalism, it is only

the abstract syntax that we are speaking about; the concrete syntax is just a shorthand we

use.

The lambda operation allows us to abstract a piece of syntax (the body), making it

conditional upon a variable (the formal argument). This operation is the same function

definition capability found in most programming languages, and in all members of the

λ-calculus family. Our abstract syntax characterizes a λ-expression as a value (v). For

example, we can write the expression λx.λy.x, which indicates a function that takes an

argument x and uses it in the construction of a new function λy.x, which is returned. Of

19

course, this is simply the function definition. No computation occurs until the function is

applied.

We specify function application using the apply(e1, e2) operation, which indicates that

the function e1 is to be applied to e2. The syntax definition for Ł0 does not indicate what it

means for an expression to be applied to another; it only tells us how to build up ever larger

source programs out of lambda and apply. We need to use a semantics to define how these

source programs are interpreted or evaluated, resulting in some final value that constitutes

the result of the specified computation. For our purposes in this paper, we will present an

operational semantics for this language.

2.1 A Minimal Functional Language - L0

Syntax Domains Syntax Constructors

x ∈ Var (Variables) ::= a | b | . . .

v ∈ Val (Values) ::= λx.e

e ∈ Expr (Expressions) ::= v | (e e)

FIGURE 2.1: Syntax of language L0

The operational semantics for L0 is quite simple. The syntax constructors allow the

construction of lambda and apply syntax. The only syntax destructor in our minimal lan-

guage is the β-reduction rule, which removes the lambda syntax and exposes the body.

When we use β-reduction, where each occurrence of the formal variable (x, in this case)

within e1, is replaced with e2. The notation e1[e2/x] is how this is indicated in Figure 2.2,

where we present a first attempt at an operational semantics for L0.

For example, consider two possible reduction sequences from the concrete expression

(λx.λy.(x y))(λz.z+ z)2 to a final value 6. We will use concrete syntax throughout the re-

duction, although what is actually being manipulated by the rules is the equivalent abstract

20

Operational Semantics

(λx.e1) e2 7−→ [e1[e2/x]] β-reduction

FIGURE 2.2: This operational semantics for L0 does not enforce any order of evaluation

or by-value restriction. Any available application will be reduced.

syntax. For these examples, we assume the existence of L0 constants corresponding to +,

1, 2, and so on.

(λx.λy.(x y))(λz.z + z)(1 + 2)

7−→→ (λx.λy.(x y))(λz.z + z)3

7−→→ λy.((λz.z + z)y))3

7−→→ λy.(y + y)3

7−→→ 3 + 3

7−→→ 6

However, there is an alternate reduction sequence that is permitted by our operational

semantics:

(λx.λy.(x y))(λz.z + z)(1 + 2)

7−→→ (λy.((λz.z + z)y)))(1 + 2)

7−→→ (λy.(y + y))(1 + 2)

7−→→ (1 + 2) + (1 + 2)

7−→→ 3 + (1 + 2)

7−→→ 3 + 3

7−→→ 6

The above example illustrates how our current operational semantics for L0 permits

several different reduction orders. In the above case, the order did not matter, we reached

the same final answer, 6. In fact, it can be shown [22] that all reduction sequences that ter-

minate in an irreducible value will terminate with the same irreducible value. This property

is known as confluence, and it holds for any lambda calculus that does not have effects.

21

2.2 Effects and Standard Reduction

In this section, we define side-effects and show how they violate the confluence property

of our simple operational semantics. We then show how we can augment our semantics to

specify a well-defined order of evaluation.

An effect is some observable that is distinct from the result of a functional expression.

For example, printing a string to output, changing a global variable, or raising an exception

are all effects that can happen in addition to or instead of the normal return of a value from

an expression. For example, consider the following ML expression:
v a l g l o b a l = r e f 0 ; (∗ A l l o c a t e a s t o r a g e c e l l , i n i t i a l i z e d t o 0 ∗)
fun foo (x , y) = x + y + ! g l o b a l ;
v a l r e s u l t = foo (

(g l o b a l := ! g l o b a l + 1 ; 1) ,
(g l o b a l := ! g l o b a l ∗ 2 ; 2)) ;

Without a clear specification in the ML language about the order of evaluation of argu-

ments, we might get the answer 5 or the answer 4, depending upon whether we evaluate

arguments left to right (5) or right-to-left (4). ML, and most eager languages, enforce a par-

ticular evaluation order known as standard reduction, which has the following properties:

• The function expression of a function application is evaluated to a value before it can
be used in the application.

• The argument of a function application is evaluated to a value before it can be used
in the application.

• Arguments are evaluated from left to right.

• The leftmost, outermost function application is the unique application to be reduced
next.

The operational semantics we presented above in Figure 2.2 permits the β-reduction

rule to be applied whenever and wherever there is an instance of function application. This

non-determinism permits the various reduction sequences. In the Introduction, we specified

operational semantics for L+− that produced a well-defined, unique reduction order. We

can use a similar refinement here to create a semantics that breaks up the β rule into several

rules, which work together to ensure that our evaluation order has the standard reduction

properties listed above.

22

We present this structural semantics in Figure 2.3. This semantics guarantees a specific

order of reduction of any L0 expression. The preconditions for the three operational rules

enforce the desired evaluation order. Henceforth, we will consider L0 to be using a standard

reduction operational semantics.

e1 7−→ e′1 [ApplyLeft]
(e1 e2) 7−→ (e′1 e2)

e1 val e2 7−→ e′2 [ApplyRight]
(e1 e2) 7−→ (e1 e′2)

e2 val [Apply]
(λx.e1 e2) 7−→ (e1[e2/x])

FIGURE 2.3: This structural operational semantics for L0 forces the leftmost, outermost

application to be reduced, and will not reduce applications that are embedded in an enclos-

ing lambda.

The above inference rules clarify the order of evaluation by ensuring that the [Apply]

rule can only be used when the function has been reduced to a λ-expression, and the ar-

gument has been reduced to a value. An argument can only be evaluated if the function

has first been reduced to a value. However, one unfortunate aspect is that we require three

operational rules to specify the single operation of function application. This is because we

need to have a custom rule for each situation (i.e., computing the function, the argument,

or the application). This deficiency is addressed by contextual semantics, discussed next.

2.3 Contextual Semantics

We can specify the same standard reduction order more concisely by the use of contextual

semantics [13]. A contextual semantics adds a new syntactic component called an evalu-

ation context, which acts as a focusing device that specifies where the active computation

is occurring. Specifically, we extend the syntactic description of L0 with a new category,

23

Ctx, which has similar syntactic structure to Expr, except that that any element of Ctx

will have exactly one hole, which is usually indicated with either [] or �. The hole indi-

cates where the active computation is occurring, the remainder of the Ctx syntax indicates

the remainder of the computation.

n ∈ Num (Integers) ::= . . . | −1 | 0 | 1 | 2 | . . .

e ∈ Expr (Expressions) ::= n | e+ e | e− e

E ∈ Ctx (Context) ::= [] | (E + e) | n E

E[v1 + v2] 7−→ E[n] where n = Jv1K + Jv2K

FIGURE 2.4: We consolidate the syntax and semantics for L+− into a single figure.

We typically consolidate the syntax and operational semantics into a single description,

as we do for L+− in Figure 2.4. For example, if we are computing program P0, which is

(1 + (2 ∗ 3)) + 4, then we can partition this into two syntactic components:

• A context E = 1+ [] +4, which represents a suspended computation that is waiting

for a value.

• An active redex (2 ∗ 3), which is computable because 2 and 3 are values.

After computing (2 ∗ 3) 7−→ 6, we want to substitute this result into the evaluation

context E to create the next configuration of our program. We write this as E[6], which

results in the program P1 , (1 + 6) + 4. We then repeat the process, partitioning this into

a context [] + 4 and a redex (1 + 6). This yields E[7] or 7 + 4. At this point, the partition

results in a context [] and a redex (7 + 4). This computation and substitution results in a

final result of [11], which is simply 11.

24

The use of evaluation contexts in our operational semantics allows us to concisely spec-

ify the order of evaluation we want our language L0 to have. In the remainder of this report,

we will usually use a single figure to describe both the syntax and the contextual operational

semantics of the languages we introduce. We present the consolidated description of L0 in

Figure 2.5. We will use this format for the remainder of this report.

Var (Variables) x ::= a | b | . . .

Val (Values) v ::= λx.e

Expr (Expressions) e ::= v | (e e)
Ctx (Context) E ::= [] | E e | v E

[Apply] E[(λx.e) v] 7−→ E[e[v/x]]

FIGURE 2.5: We consolidate the syntax and semantics for L0 into a single figure.

An example may help explain how to use contextual semantics. Note that each opera-

tional step requires that we first partition the program into context and computation, then

we perform the computation and place the result into the hole in the context, producing the

next program configuration.

Consider the program ((λx.λy.(x y)) (λz.z+z)) 5. We expect that the result of evalua-

tion will be 10. Figure 2.6 illustrates the computation of this result within theL0 operational

semantics. Note that we use arithmetic here, which is not properly part of L0, for readabil-

ity purposes only; the example is intended to illustrate the use of function application, and

not arithmetic.

InL0, the use of evaluation contexts is mostly passive, where the structure of the context

focuses the computation, but the context itself is never changed, it is simply constructed

during the partitioning of a program. The rest of this report defines languages that extend

L0 with additional syntax to support control operators. In these extensions, the context will

play a more active role, with control operators able to access the context and to change it

25

as part of the operational step. This will prove to be a very powerful way to understand and

describe control operators.

26

P0 , ((λx.λy.(x y)) (λz.z + z)) 5 Initial program

= E0[(λx.λy.(x y)) (λz.z + z)] Partition into a context and a redex

where E0 , [] 5

7−→ E0[λy.(x y)[(λz.z + z)/x]] Operation [Apply]

= E0[λy.((λz.z + z)y)] Substitution

= (λy.((λz.z + z)y)) 5 Fill hole

= E1[(λy.((λz.z + z)y)) 5] Partition

where E1 , []

7−→ E1[((λz.z + z)y)[5/y]] Operation [Apply]

= E1[(λz.z + z)5] Substitution

= (λz.z + z)5 Fill hole

= E2[(λz.z + z)5] Partition

where E2 , []

7−→ E2[(z + z)[5/z]] Operation [Apply]

= E2[5 + 5] Substitution

= 5 + 5 Fill hole

7−→→ 10 Primitive operation for this example

FIGURE 2.6: Example L0 evaluation

27

CHAPTER III

Abortive Continuations

In this chapter we will be looking at the suite of control operators that capture and use

continuations that are abortive. An abortive continuation has a control effect when invoked;

it aborts the default flow of control and replaces it with a new sequence of computations to

be performed. We will discuss both undelimited and delimited control operators, and their

interexpressibility.

As we have seen already in the previous chapters, a program can be viewed opera-

tionally as a series of steps, where each step moves the computation forward. At any point,

there is an active redex (reducible expression), and an evaluation context that describes

the destination of the result of the redex; i.e., what happens next. In both the L+− and

L0 languages, the fate of a redex was simply to have its value computed and substituted

within the hole of the evaluation context. The use of control operators permits a different

outcome, where a redex containing one control operator may capture an evaluation context

as a value, and a redex containing a different control operator may take such a value and

make it become the current evaluation context. This enables the construction of power-

ful new language features such as exceptions, nondeterminism, coroutines, threading, and

many more.

3.1 Undelimited Control

We will begin by describing undelimited control operators. This refers to the fact that the

program is delimited only by the implicit top-level prompt, and that no explicit prompts are

present. Later, we will present delimited continuation operators, which permit the insertion

28

of one or more nested delimiters. This allows finer control over the context that is captured

and restored via these continuations. The undelimited case can be viewed as a degenerate

case of the delimited case, where there is an implicit enclosing delimiter to all programs.

3.1.1 The callcc operator

One of the oldest, and perhaps easiest to understand, operators is the callcc operator,

which allows the current evaluation context to be captured and bound as a continuation.

This continuation is a reified evaluation context, which can subsequently be used to dynam-

ically replace the current evaluation context with the captured context. We use callcc by

passing it a body consisting of a λ expression, which is invoked by callcc on our behalf.

When callcc invokes this body expression, it will pass it the current evaluation context

as a value (of syntactic type Continuation). This context may be ignored or used by the

body of the callcc.

Consider the following program in L+−:

(1 + (2 ∗ 3)) + 4

If we consider how this program is computed operationally, we know that at some

step, the program will have the evaluation context E , 1 + � + 4 and the active redex

2 + 3. In other words, the sequence of steps from that point onward will result in the value

2 + 3 => 5 being computed and placed into the �, resulting in a new program 1 + 5 + 4.

At the point where the machine is computing the atomic operation 2 + 3, the evaluation

context indicates the rest of the computation. We can capture this context and bind it to a

variable by using the operator callcc:

1 + callcc(fn k => 2 ∗ 3) + 4

When the callcc is evaluated, it will create a representation of the current evaluation

context 1 + � + 4 and will bind this to the name k, for possible use by the body of the

callcc. This captured evaluation context is indicated as 〈1 +�+ 4〉, where the angle

brackets 〈〉 indicate that this is an abortive continuation. Subsequent evaluation and return

of the 2 ∗ 3 computation will proceed normally; if the continuation k is not used, then the

callcc will have no additional effect. Things get interesting when we consider using the

continuation k. In ML, we use the throw operator to cause a captured continuation to be

29

instantiated as the new evaluation context, and to replace the hole in this evaluation context

with a value. Consider the following example in ML:

1 + callcc (fn k => 2 ∗ (throw k 3)) + 4

Execution proceeds as in the example above, where the continuation 1 + � + 4 is

captured and bound to k, and the subsequent computation of 2 ∗ (\throw k 3) begins. At

the point where the throw k 3 is evaluated, the evaluation context will be 1 + callcc (fn k =>

2 ∗ �) + 4.

The throw k 3 will result in the saved evaluation context within k being installed as the

current evaluation context 1 + \boxempty + 4, and the value 3 being used to fill the hole; in

effect, this step results in the new program 1 + 3 + 4, which is then computed to be 8. In

this case, we simply used the abortive continuation as an unconditional goto statement

which altered the flow of control. To see the more practical possibilities, consider the

following example, where we use the throw k 0 to abort the computation of a product of a

list of numbers (if we know one of them is 0, there is no point in examining the list further

or performing any intermediate multiplications):

fun p r o d u c t numbers =

c a l l c c (fn k =>

l e t

fun p r o d u c t h e l p e r n i l = 1

| p r o d u c t h e l p e r (x : : xs) =

i f (x = 0) then

th row k 0

e l s e

x ∗ (p r o d u c t h e l p e r xs)

in

p r o d u c t h e l p e r numbers

end

) ;

v a l z = p r o d u c t [1 , 2 , 3 , 0 , 5 , 6 , 7] ;

30

3.1.2 The Lcc language

For the purposes of our formal analysis, we will abstract the ML version of callcc

slightly so that the captured continuation becomes a function-like value that can be applied

to an argument without requiring the explicit throw keyword. In most Scheme imple-

mentations, the continuation captured by callcc is used by treating the continuation as a

function; there is no explicit throw keyword. In our Lcc language, we will use the notation

〈E〉 to indicate an abortive continuation that is the reification of the evaluation context E.

We add this callcc operator and the abortive continuation notation to our L0 language to

create the Lcc language, as defined in Figure 3.1.

Var (Variables) x ::= a | b | . . .

Val (Value) v ::= x | λx.e | 〈E〉

Expr (Expression) e ::= v | (e e) | callcc(λx.e)

Ans (Answer) e ::= λx.e | 〈E〉

Ctx (Context) E ::= [] | E e | v E

E[(λx.e) v] 7−→ E[e[v/x]]

E[callcc(λk.e)] 7−→ E[e[〈E〉/k]]]
E[〈E′〉 v]] 7−→ E′[v]

FIGURE 3.1: The Lcc language extends L0 with the callcc operator and the abortive

continuation operator.

Recasting the above example in our Lcc language shows how the continuation k is

applied to its argument in the same way that a function would be (we do not use the throw

keyword in the Lcc language):

1 + callcc(λk.2 ∗ (k 3)) + 4 => 8

31

Viewed operationally, the invocation of the 〈E〉 continuation causes the currently ex-

ecuting program configuration to transition to a new program consisting of E[3], where

E = 1 + � + 4, and therefore E[3] = 1 + 3 + 4. Traditional presentations of callcc

make this abort operation explicit by providing the alternative semantics in Figure 3.2:

Var (Variables) x ::= a | b | . . .

Val (Value) v ::= x | λx.e

Expr (Expression) e ::= v | (e e) | callcc(λx.e) | Au e

Ans (Answer) e ::= λx.e

Ctx (Context) E ::= [] | E e | v E

E[(λx.e) v] 7−→ E[e[v/x]]

E[callcc(λk.e)] 7−→ E[e[λx.Au E[x]/k]]]

E[Au e] 7−→ e

FIGURE 3.2: This description of Lcc language uses an Abort operator instead of the

abortive continuation syntax 〈〉.

We choose to not use the explicit Abort operation in our presentation, to avoid the

confusion that may be caused by existing abort operators and to avoid the implication that

the argument to abort is an ordinary expression which may be evaluated to a value. It turns

out that such an implicit by-value conversion is the source of one of the encoding errors

that we discuss later in this paper.

3.1.3 The Cu operator

One reason that callcc can be considered a simpler operator than the others we will be

discussing is that it does nothing but passively capture the context and bind it to a name. It

has no immediate control effect; it simply allows its body expression to execute. Felleisen

32

[7] describes an operator called C, which was similar to callcc in the capture of the con-

tinuation, but had an additional control effect: the C operator will immediately abort the

current context and execute its body as the new program. The only remnant of the aborted

program will be in the form of the captured continuation. In the next section, we will be

discussing the delimited version of this C operator; we will refer to the undelimited version

here as Cu. Similarly, we may use the nameKu to refer to the undelimited version ofK that

we present in the next section; however, we will usually refer to Ku by its more common

name, callcc.

3.1.4 The LCu language

We define the language LCu containing the undelimited Cu operator in Figure 3.3.

Var (Variables) x ::= a | b | . . .

Val (Value) v ::= x | λx.e | 〈E〉

Expr (Expression) e ::= v | (e e) | Cu(λx.e)

Ans (Answer) e ::= λx.e | 〈E〉

Ctx (Context) E ::= [] | E e | v E

E[(λx.e) v] 7−→ E[e[v/x]]

E[Cu(λk.e)] 7−→ E[e[〈E〉/k]]]
E[〈E′〉 v]] 7−→ E′[v]

FIGURE 3.3: The LCu language extends L0 with the Cu operator and the abortive contin-

uation operator.

33

3.2 Delimited Control

The continuation that is captured by the callcc and C operators is called an undelimited

continuation because the context that is captured includes the entire program. When an un-

delimited continuation is invoked, the entire program is replaced with the captured context.

Effectively, there is an implicit top-level delimiter that surrounds the entire program (and

sometimes, the system invoking the program). In this section, we consider the addition of

delimiting constructs to our language, as well as control operators that capture and restore

delimited context.

We can reconsider the operators Au, Ku (callcc) and Cu described previously by al-

lowing for delimiters to be specified in a source expression; a delimiter can bracket a sub-

phrase such that the scope of these operators is bounded by the delimiter, rather than going

all the way to the top level of the program. Practically, delimited control enables the easy

and safe expression of control effects, without the concern about affecting the entire pro-

gram context. It adds modularity to control effects because an effect can be bounded such

that it has no outward effect to the program outside of the delimiter.

3.2.1 The C (control) and # (prompt) operators

Historically, one of the first set of delimited control operators was the C (control) and #

(prompt) operators described by Felleisen [10]. The # operator takes a subexpression as

its argument and serves to delimit this subexpression from the surrounding context. This

subexpression is evaluated normally, possibly resulting in other, nested # operators being

executed. Thus, at some point, an execution context might have more than one delimiter

in its dynamic context. As we will see below, these delimiters act to create chambers of

computation, wherein which the abortive continuations and abortive control operators can

operate, but outside of which they cannot affect.

The C operator can be used to abort the current execution, while capturing the delim-

ited dynamic context to the nearest enclosing delimiter. We present this idea formally in

Figure 3.4, where we introduce the language LCP . The structure of our evaluation contexts

has been enhanced to include two distinct types of context. The first type of context, FCtx,

contains any prompts that may be present in the program; it acts as a delimiting context.

34

The other type of context, ECtx, acts as the delimited context; it contains no prompts, al-

though it does contain a single hole like any evaluation context. We separate these two

contexts because the C operator will capture only the delimited context, and the delimiting

context will be uncaptured. Similarly, invoking a delimited continuation will replace the

delimited context, leaving the delimiting context alone.

Var (Variables) x ::= a | b | . . .

Val (Value) v ::= x | λx.e | 〈E〉

Expr (Expression) e ::= v | (e e) | C(λx.e) | K(λx.e) |#e

Ans (Answer) e ::= λx.e | 〈E〉 | error:MissingReset

FCtx (Delimiting) F ::= [] | F e | v F |# F

ECtx (Delimited) E ::= [] | E e | v E

E[(λx.e) v] 7−→ E[e[v/x]]

F [#E[C(λk.e)]] 7−→ F [#(e[〈E〉/k])]
F [#E[K(λk.e)]] 7−→ F [#E[e[〈E〉/k]]]
F [#v] 7−→ F [v]

F [#E[〈E′〉 v]] 7−→ F [#[E′[v]]]

E[C(λk.e)] 7−→ error:MissingReset

E[K(λk.e)] 7−→ error:MissingReset

E[〈E′〉 v] 7−→ error:MissingReset

FIGURE 3.4: Syntax and semantics of LCP

3.2.2 The Delimited K (callcc) and A (abort) operators

The C operator is similar to the callcc operator in that it captures an abortive continuation.

However, the C operator is itself abortive; it has a control effect which is to immediately

35

abandon the current delimited context, replacing it with the body of the C. This is distinct

from callcc, which captures the continuation but does not alter the current context. We

use an operator K to specify a callcc-like operator that does not abort the current context,

but only captures the delimited context; ordinarily, callcc captures the entire program

context, ignoring delimiters. We define a language LAK in Figure 3.5 which contains theK
andA operators. This is similar to the language Lcc defined in Figure 3.1, with the addition

of delimiters and a modification to the operational rules and evaluation contexts to support

delimited contexts. As is conventional in the delimited case, we use the notation K instead

of callcc.

Var (Variables) x ::= a | b | . . .

Val (Value) v ::= x | λx.e | 〈E〉

Expr (Expression) e ::= v | (e e) | K(λx.e) | A e |#e

Ans (Answer) e ::= λx.e | 〈E〉 | error:MissingReset

FCtx (Delimiting) F ::= [] | F e | v F |# F

ECtx (Delimited) E ::= [] | E e | v E

E[(λx.e) v] 7−→ E[e[v/x]]

F [#E[K(λk.e)]] 7−→ F [#E[e[〈E〉/k]]]
F [#v] 7−→ F [v]

F [#E[〈E′〉 v]] 7−→ F [#[E′[v]]]

E[K(λk.e)] 7−→ error:MissingReset

E[〈E′〉 v] 7−→ error:MissingReset

FIGURE 3.5: Syntax and semantics of LAK

An example maybe be helpful to distinguish the two operators C and K. Consider the

following programs:

36

1 + #(2 +K(λk.k 3)) + 4

1 + #(2 + C(λk.k 3)) + 4

3.2.3 Expressing Cu as Ku and Au
It is possible to express the Cu operator using Ku (callcc) and an undelimited abort oper-

ator, Au [7]:

V
er

if
y

th
e

[7
]r

ef
er

en
ceCu(λk.e) , Ku(λk.Au e)

In this particular encoding, we intend for the Au operator to be non-strict. A strict

version of Au would result in a space leak.

3.3 Summary

We presented abortive continuations, in both their delimited and undelimited forms. In

a later chapter, Improved encodings of Abortive Continuations, we discuss the converse

encoding of callcc in terms of Cu, where strictness again introduces a space leak and

other problems. One contribution of our research is to improve this encoding, which we

present in that chapter.

37

CHAPTER IV

Composable Continuations

In the previous chapter, we discussed abortive continuations. These were characterized

by the fact that invoking the continuation abandoned the current evaluation context. We

divided these into delimited and undelimited forms. In this chapter, we consider a different

type of delimited control operator, one which provides for composable continuations. This

means that we can invoke the continuation like a normal function that simply returns a

value, rather than the continuation aborting the current computation. The body of this

continuation function contains the captured context; when the continuation is invoked with

a value, the hole in the context will be filled with the argument value and the resulting

expression will be computed and returned as the result.

4.1 The shift and reset operators

Danvy and Filinski [5] introduced the shift and reset operators to implement a monadic

programming pattern within any language supporting these operators. Whatever the orig-

inal motivation, these operators have proven to be a useful basis for constructing more

complex control structures. In much the same way as the prompt/control pair acts to

delimit and capture context, the reset/shift pair of operators acts to delimit and capture

context. The only real difference is that the context that is captured by shift is made

available as an ordinary composable function. For this report, we will often use the generic

term prompt to refer to both the prompt and reset operators, which we indicate with # in

both LCP and LSR.

For example, consider the following expressions, one which uses S and the other C:

38

2 + #(1 + C(λk.(k(k 2)))) 7−→→ 5

2 + #(1 + S(λk.(k(k 2)))) 7−→→ 6

In both cases, the captured delimited context is 1+�. In the case of the abortive operator

C, the inner invocation of (k 2) never returns, instead replacing the current delimited context

with the value 2, causing the next program configuration to be 2 + (1 + 2) = 5. The

outermost invocation of k never occurs. However, in the case of S, the inner invocation of

(k 2) is tantamount to invoking a normal function λx.1 + x, which returns 1 + 2 = 3. This

ordinary result value is then passed to the outer k: (k 3). This then returns 1+3 = 4, which

is used to replace the delimited context 2 +�, resulting in 2 + 4 = 6, the final result.

Our notation distinguishes these cases by using the syntax 〈E〉 to indicate an abortive

continuation (as captured by C and K, and 〈〈E〉〉 to indicate a composable continuation

(as captured by S). Figure 4.1 presents the abstract syntax for a functional programming

language containing the shift (S) and reset (#) operators.

4.2 Composable continuations can be used without a reset

Because composable continuations look and act like regular functions, there should be no

restriction on their context of use. Earlier in our research, we had thought that using a

shift-captured continuation would require that we have an enclosing prompt. This was

encoded as two rules: one that safely handled the composable continuation if a reset was

present, and another rule that produced MissingReset if the use of a composable continua-

tion had no reset.

F [〈〈E〉〉 v] 7−→ F [#E[v]]

E[〈〈E ′〉〉 v] 7−→ error:MissingReset

However, we have since corrected the semantics to allow such use. Composable con-

tinuations are indistinguishable from ordinary functions. For example, the following LSR
expression returns a composable continuation from within a shift and then applies this

continuation to an argument that lies outside of any enclosing prompt.

(#shift(λk.k)) 0

39

Var (Variables) x ::= a | b | . . .

Val (Value) v ::= x | λx.e | 〈〈E〉〉

Expr (Expression) e ::= v | (e e) | S(λx.e) | #e

Ans (Answer) e ::= λx.e | 〈〈E〉〉 | error:MissingReset

FCtx (Context) F ::= [] | F e | v F |# F

ECtx (Context) E ::= [] | E e | v E

E[(λx.e) v] 7−→ E[e[v/x]]

F [#E[S(λk.e)]] 7−→ F [#(e[〈〈E〉〉/k])]
F [#v] 7−→ F [v]

E[〈〈E′〉〉 v] 7−→ E[#E′[v]]

E[S(λk.e)] 7−→ error:MissingReset

FIGURE 4.1: Syntax and semantics of the shift/reset language LSR

Using our original (incorrect) operational semantics, we would expect an uncaught

MissingReset exception via the following reduction sequence:

(#shift(λk.k)) 0 Original expression

7−→ (#(k[〈〈[]〉〉/k])) 0

= (#〈〈[]〉〉) 0

7−→ 〈〈[]〉〉0 MissingReset

After removing the erroneous rule from our semantics, we see the following reduction:

40

(#shift(λk.k)) 0 Original expression

7−→ (#(k[〈〈[]〉〉/k])) 0

= (#〈〈[]〉〉) 0

7−→ 〈〈[]〉〉 0
7−→ #0

7−→ 0

which produces a value of 0.

In the process of convincing ourselves that composable continuations are indistinguish-

able from ordinary functions, we evaluated the above example using several different tech-

niques, which we present here and in the Appendix.

4.2.1 Confirmation via ML

We wrote an ML version of the example using both Filinski’s implementation of shift/re-

set, as well as our improved implementation. Both implementations behaved as predicted;

using a captured composable continuation is completely safe. See the Appendix ML Imple-

mentations and Examples for the implementations used. The example Composable Con-

tinuation Usable Outside of Reset has the test example we used. Both the original Filinksi

implementation and our improved implementation support this behavior.

4.2.2 Confirmation via the metacontinuation ECPS semantics

In the Representing Monads [11] and its predecessor Abstracting Control [5], there is a

denotational semantics presented called Extended Continuation Passing Style (ECPS). This

denotational semantics is the original specification of the shift and reset operators; the

operational semantics that we use was developed later. Out of curiousity and a desire for

completeness, I encoded the example (#shift(λk.k)) 0 into the ECPS and performed the

reduction, confirming once again that composable continuations act like ordinary functions.

The detailed translation and reduction are presented in Appendix Extended Continua-

tion Passing Style.

41

4.2.3 Confirmation via the Danvy Abstract Machine

As yet another way to confirm this result, and an opportunity to explore a different spec-

ification mechanism, I used an abstract machine operational semantics to encode the ex-

ample program (#shift(λk.k))0). The abstract machine for shift/reset was originally

defined by Biernacka, Beirnacki, and Danvy [1]. We are actually using the revised version

presented in [3, 2]. Using this machine produced the expected result. The detailed evalua-

tion sequence and the definition of the machine is in the Appendix, The shift/reset abstract

machine.

4.3 Summary

We have shown how composable continuations differ from their abortive counterparts, and

how the shift and reset operators can be used to perform similar control operations to

their abortive counterparts control and prompt. In the next two chapters, we will be

illustrating how these two suites of operators can be encoded into languages that lack these

operators, and some of the issues that arise.

42

CHAPTER V

Improved Encoding of Abortive Continuations

As we showed in Abortive Continuations, we can encode the undelimited Cu in a language

with callcc and abort. In this chapter, we discuss the reverse, where we encode callcc

in a language containing the Cu operator. In the first section, we discuss a traditional en-

coding and describe some of its problems. In the second section, we present an improved

encoding, one of the contributions of this research.

5.1 Traditional Encoding of callcc as Cu
We begin by considering a well-known encoding of callcc into Cu, shown below:

callcc(λk.e) , Cu(λk.k e)

Notice how the context that would normally remain behind with callcc is first removed

by the C operator, and then reestablished by the application of the captured continuation in

k e. In the example below, we compare the evaluation of a program and its encoding. The

original program:

(1 + callcc(λk.(k 2))) + 4

7−→ (1 + (k 2)) + 4 where k = 〈(1 +�) + 4〉
7−→ ((1 +�) + 4)[2/�]

= ((1 + 2) + 4)

7−→ 3 + 4

7−→ 7

43

The encoded version of the above example:

(1 + C(λk.(k(k 2))) + 4

7−→ k(k 2) where k = 〈(1 +�) + 4〉
7−→ ((1 +�) + 4)[2/�]

= ((1 + 2) + 4)

7−→ 3 + 4

7−→ 7

In the above example, both the original and the encoded version of the program result

in the same value, although the paths by which they reach that result differ. We can choose

to observe the amount of space overhead used during a computation, which is a practical

consideration in a real computer. When we observe the space our programs use, then we

see that our encoding has a problem: we can construct programs where the encoded version

has a dramatically different space overhead than the original. This can be so significant as

to make the encoding unusable for large problems.

We present an example of such a space leak below. Consider the following definition

of a loop function:

loop 1 = 1

loop n = callcc(λk.loop(n− 1))

Using this definition, the program loop 3 has the following reduction sequence:

loop 3

7−→ callcc(λk.loop(3− 1))

7−→ loop(3− 1)

7−→ callcc(λk.loop(2− 1))

7−→ loop(2− 1)

7−→ 1

Using the encoding provided above, the loop definition becomes:

loop 1 = 1

loop n = C(λk.k (loop(n− 1)))

and the reduction sequence for loop 3 is:

44

loop 3

7−→ Cu(λk.k loop(3− 1))

7−→ k loop(3− 1) where k = 〈�〉
7−→ k loop(2) Notice how the argument to k

is being reduced

7−→ k Cu(λk.k loop(2− 1))

7−→ k (k loop(2− 1)))

7−→ k (k loop(1)))

7−→ k (k 1)) k is an abortive continuation

7−→ 1

The result is the same, but the encoded result suffers from a space overhead that is in

this case proportional to the value of the initial argument to loop. Notice how the reduction

sequence builds up a sequence of k (k . . .) until it finally evaluates the base case of loop 1,

where it finally begins unwinding the stack of k-invocations. This means that not only does

the encoded version suffer from a space problem, but that the number of continuation invo-

cations is different. In other words, if we choose to make space or number of invocations

an observable, we can distinguish the original program from its encoding.

As a practical example, when I run the program loop 1000000 using the traditional

encoding of C into ML, I use an enormous amount of memory (on the order of gigabytes),

which drastically affects the elapsed time performance of what should be a very fast loop,

turning it into a several-minute rather than a several-millisecond operation.

This encoding also suffers in the presence of other effects, such as exceptions. Consider

the following program, and its reduction, which produces 0 as its answer:

callcc(λk => raise Fail) handle Fail => 0

7−→ (raise Fail) handle Fail => 0

7−→ 0

When we contrast the above with the encoded version below, we see a difference; the

encoded version produces an uncaught exception Fail.

Cu(λk => k (raise Fail)) handle Fail => 0

7−→ k (raise Fail) where k = 〈� handle Fail => 0〉
7−→ Uncaught Exception: Fail

45

This error is due to the fact that the invocation of k in the second example is strict,

forcing the argument raise Fail to be evaluated before the control transfer via the k-

invocation occurs. The whole point of the k-invocation in the encoding is to reestablish the

context that was deleted by Cu, so that we can emulate callcc, which does not delete the

context. However, the strictness of the k forces the evaluation to occur prior to us reestab-

lishing this context. In this example, the consequence is that the exception handler is not in

place when the exception is raised. Both of the types of problems above can be attributed

to the encoding improperly evaluating the body of the control operator prior to establishing

the correct execution context. In the next section, we introduce our contribution, an im-

proved encoding that correctly establishes the context before executing the encoded body.

5.2 An Improved Encoding

In the encoding above, the original body ebody of the callcc(λk.ebody) is encoded as an

expression which is being passed as an argument to the abortive continuation k in the

encoding. Because the continuation k is defined as a strict operation, this body expression

is evaluated before the continuation k is able to abort the current context and establish the

continuation’s saved context. This results in the body e being evaluated in the unintended

pre-abort context, which can result in the problems above.

Once we were able to characterize these problems as being due to strictness in the

encoded version of our operators, it was straightforward to conceive and implement a solu-

tion. The solution is to encode the body ebody in such a way that we can defer its execution

until the proper context has been established by the encoded operator. This is done by en-

coding the body ebody in callcc(λk.ebody) as a function λ .ebody. The identifier in this

case means that we will not use the argument to this function in ebody; it is simply a place-

holder or dummy variable. The functional abstraction is being used to delay the execution

of ebody, and not to perform any parameter substitution. When we use a function in this way

to delay execution, we call it a thunk and the process of delaying code is called thunking.

We will usually use a dummy argument indicated as () (often called unit or nil) to invoke a

thunk function. This programming pattern is often known as a delay/force transformation,

where the construction of a thunk delays the code, which is later forced by the application

of the thunk to ().

46

Here is our improved encoding, where the body has been replaced with a thunk, and

context now includes the execution of a thunk:

callcc(λk.e) , C(λk′.(k′ λ .e[λx.(k′ λ .x)/k])) ()

Or alternatively, using a reduction instead of an explicit substitution:

callcc(λk.e) , C(λk′.(k′ λ .((λk.e)(λx.(k′ x)))) ()

Notice that the context that is captured by the encoded C operator will be 〈[] ()〉, which

means that the context is expecting a function that takes a dummy argument (indicated as

() here). This gives us the ability to pass code to the context, filling the hole and causing

the execution of the code to happen in the context, rather than happening before the context

is established.

Given our improved encoding, we can reconsider the space leak example above. The

loop definition under the new encoding becomes:

loop 1 = 1

loop n = C(λk′.k′ λ .loop(n− 1)[(k λ .x)/k])) ()

= C(λk′.k′ λ .loop(n− 1)) ()

and the reduction sequence for loop 3 is:

loop 3

7−→ C(λk′.k′ λ .loop(3− 1)) ()

7−→ k′ λ .loop(3− 1) where k′ = 〈� ()〉
7−→ λ .loop(3− 1) ()

7−→ loop(3− 1)

7−→ loop(2)

7−→ C(λk′.k′ λ .loop(2− 1)) ()

7−→ k′ λ .loop(2− 1) where k′ = 〈� ()〉
7−→ λ .loop(2− 1) ()

7−→ loop(2− 1)

7−→ loop(1)

7−→ 1

As can be seen above, the improved encoding has a fixed space overhead, independent

of the loop parameter. We do not accumulate a stack of k-invocations.

47

If we revisit the exception example above, we can encode the program:

callcc(λk => raise Fail) handle Fail => 0

using our improved encoding as:

(Cu(λk′ => k′ λ .(raise Fail)[λx.(k′ λ .x)/k]) ()) handle Fail => 0

= (Cu(λk′ => k′ λ .(raise Fail)) ()) handle Fail => 0

7−→ (k′ λ .(raise Fail))

where k′ = 〈(� ()) handle Fail => 0〉
7−→ (λ .(raise Fail)) ()) handle Fail => 0

7−→ (raise Fail) handle Fail => 0

7−→ 0

As shown above, our improved encoding results in 0, which is faithful to the original se-

mantics callcc, rather than the erroneous uncaught exception Fail that we obtained using

the traditional encoding.

5.3 A Proof of Correctness

The final step in establishing our improved encoding is to prove a theorem showing that for

any program P ∈ Lcc, it will produce the same result as its encoding JP K ∈ LCu . We also

wish to know that an encoding diverges (does not halt) if its source expression diverges, and

that if an encoding diverges, then its source diverges. We use the notation e ⇑ to indicate

that there is no value v such that e 7−→→ v.

Because an encoding may take a different number of steps to reach an answer, and

because the expression in the encoding is not identical with the source expression, we

define a simulation relation between source and encoding. This relation is indicated as

dee ∼ e, which means that the encoding of e, called dee, simulates e.

This simulation relation is defined inductively on the structure of the source language.

We can prove a theorem which establishes that for each configuration e we have in a source

reduction sequence, there is a configuration (expression) in the encoded expression’s re-

duction sequence that simulates e, and vice versa.

Theorem 5.3.1. Given source expression e0, the following properties hold:

48

1. ∀em.e0 7−→→ em ⇒ ∃e′n.de0e 7−→→ e′n ∧ e′n ∼ em

2. ∀en.de0e 7−→→ e′n ⇒ ∃em.e0 7−→→ em ∧ e′n ∼ em

3. e0 ⇑ ⇐⇒ de0e ⇑

5.4 Summary

We described the two stages of the traditional Filinski encoding, and showed problems with

both stages. The LSR → LAK encoding had space and effect problems which we addressed

using a delay/force transformation. The problems with the second stage were addressed

because the new encoding prevented the corruption of the metacontinuation stack.

The appendix to this report contains Standard ML implementations of both the original

and the improved versions of these operators, as well as implementations of the above test

cases.

49

CHAPTER VI

Improved Encoding of Composable Continuations

In previous chapters, we have introduced abortive and composable continuations and their

associated operators callcc, control, prompt, abort, shift and reset. These opera-

tors capture and replace context with respect to either an explicit delimiter called a prompt

(#) or an implicit delimiter called the top level. The previous chapter dealt with the encod-

ing of abortive continuation operators, the particular problems that occur, and our research

contribution in the form of a new encoding. In this chapter, we study an analogous problem

in the realm of composable continuation operators.

We consider the encoding of the delimited operators shift and reset within a lan-

guage containing only the undelimited operator callcc and a single mutable storage lo-

cation. Filinski’s Representing Monads [11] paper revealed one possible version of this

encoding. The first section of this chapter will describe Filinski’s original encoding as a

two-stage encoding; the first stage from LSR to LAK and the second stage from LAK to

Lcc. The second section will illustrate some problems with the encoding and these will

motivate our improved encoding, which we present in the third section of this chapter.

6.1 A traditional encoding of shift and reset

The operators shift and reset can be encoded into a language that contains only an

undelimited callcc, and a single mutable storage variable. This was shown by Andrzej

Filinski in his important Representing Monads paper, where he develops this encoding in

two stages.

50

The first stage of the encoding is to transform a program containing the composable

control operators shift and reset into an equivalent program that uses the abortive de-

limited operators K, A, and #. In the second stage, this program is translated into an

equivalent program that uses only undelimited callcc and a single mutable storage cell.

Formally, the first stage will be translating a program P from the language LSR into the

language LAK , while the second stage will translate from LAK into Lcc. This is quite a dra-

matic result, and has provided the practical ability to implement shift and reset within

those languages containing only callcc, including Standard ML, Scheme, Haskell, and

Ruby.

In our source language LSR, an invocation of a composable continuation (k x) can be

encoded as an abortive continuation in LAK by surrounding the invocation with a prompt,

#(k x). This ensures that when the abortive continuation in LAK is invoked, it will only

abort the newly delimited context, passing its result back as if it were a normal composable

function.

In the following example, we wrap one invocation of the abortive continuation k with

a prompt; this ensures that the invocation returns a value, which we pass to the second

invocation, which then aborts to the outermost prompt:
2 + #(1 + C(λk.k (#(k 2))))

7−→ 2 + #(〈1 + []〉 (#(〈1 + []〉 2)))

7−→ 2 + #(〈1 + []〉 (1 + 2)))

7−→ 2 + #(〈1 + []〉 3)

7−→ 2 + (1 + 3)

7−→ 2 + 4

Building upon this ability to encode a composable invocation, we can provide the tra-

ditional encoding of shift in terms of C, which transforms abortive invocations into com-

posable ones:

S(λk.e) , C(λk.e[λx.#(k x)/k]))

There is an equivalent encoding in LAK , which we will be using in our subsequent de-

scriptions. In this LAK encoding, we passively capture the continuation with K and then

immediately abort to remove the surrounding context, as demanded by S:

51

S(λk.e) , K(λk.A e[λx.#(k x)/k]))

In the above encoding, the A is the delimited abort operator described in the Abortive

Continuations chapter. Note that this A is not strict, it does not evaluate its argument

expression to a value; it instead uses the argument expression to replace the delimited

context, where it will be evaluated. However, in the process of realizing the encoding in a

call-by-value language such as ML, Filinski treats this operator as a strict abort, which we

will call As. The semantics of this strict abort require that its argument is evaluated to a

value prior to performing the abort. Formally:

F [#E[As v]] 7−→ F [#v]

making the encoding:

S(λk.e) , K(λk′.As e[λx.#(k′ x)/k]))

The consequences of this choice are that effect reordering can occur because of the

strictness of the abort operator. We will expand upon this in the next section, after we

present the second stage of the encoding below.

We showed above how LSR programs are encoded into LAK via the traditional encod-

ing; we now examine the second stage, which is the encoding of a LAK program into the

language Lcc containing only the callcc operator and a single storage variable. This is

done by using a single global variablemk to store an undelimited continuation correspond-

ing to the most recent prompt. The delimitedK will be encoded as callcc, the prompt (#)

operator will update mk, and the As operator will read mk.

We extend the language Lcc presented in the Abortive Continuations chapter with the

capability to read and write a storage variable mk. We present the syntax and semantics

of this augmented version of Lcc in Figure 6.1. Notice that a new syntactic form has been

introduced called Configuration, which is a pairing of an Expression which is the current

program, and a Value which is the current contents of the mk storage variable. The op-

erational semantics has been extended to specify how a Configuration transitions to its

successor.

52

The second stage of the encoding, that from LAK to Lcc, follows:

K , callcc

As , !mk

#e , callcc(λk.letm =!mk in

(mk := λx.(mk := m; k x);

As e))
We present the combined two-stage encoding as:

As , !mk

#e , callcc(λk.letm =!mk in

(mk := λx.(mk := m; k x);

As e))
S(λk.e) , callcc(λk.(As e[λx.#(k x)/k]))

Given these two encodings that are based upon Filinski’s encodings, we know that

any program in LSR can be translated into an equivalent program in Lcc. Practically, this

enables the implementation of shift and reset in conventional functional programming

languages such as Scheme and ML, both of which contain mutable storage and callcc

features. In the next section, we show some problems with each of the two stages of this

encoding.

6.2 Problems with the Traditional Encoding

Both stages of the encoding above have some problems, which we will describe here. Using

the LSR → LAK encoding (first stage), we can observe a space leak similar to that in the

previous chapter. Consider the following definition of a loop function:

loop 1 = 1

loop n = S(λk.loop(n− 1))

Using the operational semantics of LSR, we can consider the reduction of the program

loop 3. Filinski points out that in order to compute an expression, it should be wrapped in

an outermost reset; so our actual initial program is #(loop 3)

53

Var (Variables) x ::= a | b | . . .

Val (Value) v ::= x | λx.e | 〈E〉

Expr (Expression) e ::= v | (e e) | callcc(λx.e) | !mk |mk := e | MissingReset

Ans (Answer) e ::= λx.e | 〈E〉

Ctx (Context) E ::= [] | E e | v E |mk := E

Cfg (Configuration) c ::= e, v | MissingReset, v

E[(λx.e) v], v′ 7−→ E[e[v/x]], v′

E[callcc(λk.e)], v′ 7−→ E[e[〈E〉/k]]], v′

E[〈E′〉 v]], v′ 7−→ E′[v], v′

E[!mk], v′ 7−→ E′[v′], v′

E[mk := v], v′ 7−→ E′[v], v

E[MissingReset], v′ 7−→ MissingReset, v′

FIGURE 6.1: The Lcc language features callcc and a single mutable storage variable mk

#(loop 3)

7−→ #(S(λk.loop(3− 1)))

7−→ #(loop(3− 1))

7−→ #(loop(2))

7−→ #(S(λk.loop(2− 1)))

7−→ #(loop(2− 1))

7−→ #(loop(1))

7−→ #(1)

7−→ 1

54

When we consider the encoded version in LAK , we notice the same space leak that we

observed when encoding abortive continuations in the previous chapter. The loop definition

under this LAK encoding becomes:

loop 1 = 1

loop n = K(λk′.As loop(n− 1)[(k′ x)/k]))

= K(λk′.As loop(n− 1))

and the reduction sequence for loop 3 is:

#(loop 3)

7−→ #(K(λk′.As loop(3− 1)))

7−→ #(As loop(3− 1))

7−→ #(As loop(2))

7−→ #(As K(λk′.As loop(2− 1)))

7−→ #(As (As loop(2− 1)))

7−→ #(As (As loop(1)))

7−→ #(As (As 1))

7−→ #(1)

7−→ 1

Notice how we develop a stack of pending As operations above: #(As (As . . .). The size

of this stack is proportional to the value of the loop argument. In other words, we have the

same space leak using the LAK encoding here, as we did with the encoding of Lcc into LCP
in the previous chapter. Our improved encoding presented in the next section addresses this

problem.

Using the traditional encoding of LSR into LAK , we can also observe unfaithfulness by

using effects in a way similar to the example in the previous chapter. Consider the example:

#(S(λk.raise Fail) handle Fail⇒ 99) handle Fail⇒ 0

and its reduction sequence in LSR:

#(S(λk.raise Fail) handle Fail⇒ 99) handle Fail⇒ 0

7−→ #(raise Fail) handle Fail⇒ 0

7−→ (raise Fail) handle Fail⇒ 0

7−→ 0

Instead, running the encoded version:

55

#(K(λk.As (raise Fail)) handle Fail⇒ 99) handle Fail⇒ 0

results in the following sequence:

#(K(λk.As (raise Fail)) handle Fail⇒ 99) handle Fail⇒ 0

7−→ #((As (raise Fail)) handle Fail⇒ 99) handle Fail⇒ 0

7−→ #(99) handle Fail⇒ 0

7−→ 99 handle Fail⇒ 0

7−→ 99

Once again, we see that the encoded version performs an action (in this case, raising an

exception) in a context that is incorrect with respect to the original semantics. This results

in the encoded raised exception seeing a different world (set of handlers) than the original

raised exception would see. In the next section of this chapter, we will present an improved

version of this encoding that does not have these problems.

When we consider the LAK → Lcc encoding, we do not find any problems with Filin-

ski’s version, provided that any expression is preprocessed by surrounding it with a prompt,

as suggested by Filinski [11]:

We also need to initialize mk to the initial continuation; the easiest way to do
this is to simply wrap a reset around any top-level expression to be evaluated.

What we expected was that if we failed to provide such a surrounding prompt, the

encoded version would issue a MissingReset error if a prompt was necessary and not

found. Indeed, if the expression S(λk.99) is evaluated using this encoding, the result is

a MissingReset error:

S(λk.99)

= callcc(λk′.(As 99))

7−→ As 99

7−→ MissingReset

But a similar program returns the value 99, and does not raise the error:

56

S(λk.k 99)

= callcc(λk′.(As (k 99)[λx.#(k′ x)/k]))

= callcc(λk′.(As ((λx.#(k′ x)) 99)))

7−→ As ((λx.#(k′ x)) 99)

where k′ = 〈�〉
7−→ As (#(k′ 99))

7−→ As (#(k′ 99))

7−→ As 99

7−→ NOT YET COMPLETE

However, if the previous encoded program is executed in ML using the Filinski imple-

mentation, then executing S(λk.99) again will result in an ML error:

Error: throw from one top-level expression into another.

This means that the use (or misuse) of a S outside of an enclosing prompt can po-

tentially corrupt the data structure mk, such that subsequent uses of S exhibit incorrect

behavior.

Our contribution is described in the next section, where we present improved versions

of both stages of the Filinski encoding; these versions address both the problems with

reordering of effects and with the above inconsistency.

6.3 An Improved Encoding of Composable Continuations

We described two stages of the traditional encoding above, and showed problems with each

stage. Our research contribution is to provide improved encodings for each of these stages.

First, we will present the improved LSR → LAK encoding, followed by the improved

LAK → Lcc encoding. Finally, we combine the encodings into a unified LSR → Lcc

encoding, and demonstrate its correctness.

In the case of encoding the composable LSR, we found the same problems of space

leak and effect reordering as when we were encoding the abortive Lcc into LCP . And our

solution is similar: we will encode the body of the S operator so that it is a thunk, which

we can execute at the proper time, after the needed context has been established.

57

We can concisely specify this transformation as a preprocessing step, where we trans-

form our LSR program into one in which the bodies of the S operators have been encoded

as thunks, and the contexts delimited by # have been encoded as thunk applications. This

will ensure that all S operations in the preprocessed program have bodies that are thunk

values. After a program is preprocessed into thunks, we can proceed with the original

Filinski encoding of this into LAK , and then into Lcc.

The preprocessing transformation is described formally below; we use a restricted op-

erator Ss to emphasize the fact that the S operator is strict:

e , (#(λv.λ .v) e) ()

S(λk.e) , Ss(λk′.λ .(# e[λv.(k′ v ())/k]))

Notice how the expression e delimited by the prompt has been changed into an expres-

sion (λx.λ .x) e, which will evaluate e, and use its result value v , JeK to build a thunk

λ .v. Under normal circumstances, this thunk would become the result of the prompt, and

would then be applied to (), resulting in v, which is what we would expect. In the case

where e contains a S operation, the encoding ensures that any invocation of the continua-

tion is passed a thunk, to conform to the encoded shape of the context, which is expecting

a thunk.

The following example illustrates the preprocessed version of #(1 + S(λk.k 2) + 3),

and its reduction sequence in LSR (where all occurrences of S are thunked and replaced

with Ss):

58

J#(1 + S(λk.k 2) + 3)K

= #((λv.λ .v) (1 + Ss(λk′.λ . (#((λv.(k′ v ())) 2))) + 3) ()

7−→ #(λ .(#((λv.(k′ v ())) 2))) ()

where k′ = 〈〈(λv.λ .v) (1 +�+ 3)〉〉.
7−→ (λ .(#((λv.(k′ v ())) 2))) ()

7−→ #((λv.(k′ v ())) 2)

7−→ #(k′ 2 ())

= #(((λv.λ .v) (1 + 2 + 3)) ())

= #(((λv.λ .v) 6) ())

7−→ #(((λ .6) ())

7−→ #(6)

7−→ 6

6.4 A Proof of Correctness

The final step in establishing our improved encoding is to prove a theorem showing that for

any program P ∈ LSR, it will produce the same result as its encoding JP K ∈ Lcc. As in

the previous chapter, we also wish to know that an encoding diverges (does not halt) if its

source expression diverges, and that if an encoding diverges, then its source diverges. We

use the notation c ⇑ to indicate that there is no value v such that c 7−→→ v.

Because an encoding may take a different number of steps to reach an answer, and

because the expression in the encoding is not identical with the source expression, we

define a simulation relation between source configurations and encoded configurations.

This relation is indicated as dce ∼ c, which means that the encoding of c, called dce,
simulates c.

This simulation relation is defined inductively on the structure of the source language.

We can prove a theorem which establishes that for each configuration c we have in a source

reduction sequence, there is a configuration dce in the encoded configuration’s reduction

sequence that simulates c, and vice versa.

Theorem 6.4.1. Given source configuration c, the following properties hold:

59

1. ∀c′.c 7−→→ c′ 67−→⇒ ∃c′′.dce 7−→→ c′′ ∧ c′′ ∼ c′

2. ∀c′′.dce 7−→→ c′′ 67−→⇒ ∃c′.c 7−→→ c′ ∧ c′′ ∼ c′

3. c ⇑ ⇐⇒ dce ⇑

6.5 Summary

We were able to build an encoding that faithfully preserves the order of evaluation of the

original expression. We did this by removing an implicit evaluation that was being forced

by a strict abortive continuation, and replacing it with a thunk that allowed us to explicitly

force the execution to occur after the context was aborted and the new context established.

The appendix to this report contains Standard ML implementations of both the original

and the improved versions of these operators, as well as implementations of the above test

cases.

60

CHAPTER VII

Conclusion

We have presented a family of functional programming languages, L0, LCP , LSR, and oth-

ers, each of which features a particular suite of control operators. We have shown how to

encode the operators of a source language into expressions in a target language containing

different operators. The primary encodings we described are the encoding of a the undelim-

ited, abortive language Lcc into the undelimited, abortive language LCu , and the encoding

of the delimted, composable LSR into the undelimited, abortive language Lcc (with a single

mutable variable).

Our contribution includes test programs that highlight errors in these encodings, im-

proved versions of these encodings, and a characterization of the systematic nature of these

errors. We discovered that operators in the source language that are not strict must be

handled with care during the encoding. If a non-strict operator is encoded using a target

language expression that is strict, then it is important to be aware of when the expression is

collapsed to a value, possibly using delay/force to control the order of evaluation.

The presence of effects that are context-dependent (e.g., exceptions, I/O, state) requires

that we are careful about controlling this collapse and ensuring that it occurs in the intended

context. In both of our improved encodings, we do this by abstracting the expression as a

function (a thunk), which enables us to execute the expression (collapse it to a value) in the

desired context.

61

APPENDIX I

Reading List

Listed below are the sources that have served as the core material for my research. I have

distinguished between the general background material common to most programming lan-

guage research, and the specific articles related to the subject of control operators.

1.1 Programming Languages Background

• Theories of Programming Languages [22] (1998) by John C. Reynolds is a textbook

describing many of the techniques and principles underlying programming language

research. I have focused on the following chapters: 1, 2, 5, 6, 10, 11, 12, 13, 14,

and the Appendix. The major emphasis of this book is upon denotational semantics,

although the later chapters illustrate how to develop an operational semantics from a

denotational semantics.

• Programming Languages and Lambda Calculi (draft) [9] (2003) by Matthias Felleisen

and Matthew Flatt is a book that coherently describes many of the formal methods

and results used in programming language research. Specifically, the book develops

the lambda calculus and refines Landin’s ISWIM model of an abstract language and

machine. It rigorously uses formal translations and proofs of simulation to describe

execution of a variety of programming language features such as exceptions, contin-

uations, storage, and control operators in general. This book emphasizes operational

semantics.

62

• A Structural Approach to Operational Semantics [19] (1981) by Gordon R. Plotkin is

a collection of notes that have served to introduce Structured Operational Semantics

to the community and are still very relevant.

• On the Expressive Power of Programming Languages[8] (1991) by Matthias Felleisen

defines various notions of expressibility and reviews several encodings.

• Programming Language Semantics [24] (1997) by David A. Schmidt is a very read-

able introduction to denotational semantics. He also provides some interesting per-

spectives on programming language design and structure.

• Fundamental Concepts in Programming Languages [28] (1967) by Christopher Stra-

chey.

• Call-by-Name, Call-by-Value and the Lambda-Calculus [18] (1975) by Gordon R.

Plotkin.

• Definitional Interpreters for Higher-Order Programming Languages [21] (1998) by

John C. Reynolds.

• From Language Concepts to Implementation Concepts [16] (2000) by Robert Milne.

1.2 Continuations and Control Operators

• Adding Delimited and Composable Control to a Production Programming Environ-

ment [12] (2000) by Matthew Flatt and Gang Yu and Robert Bruce Findler and

Matthias Felleisen. This describes the use of continuation marks within Scheme

and how this general facility can be used to implement delimited and composable

control and a variety of other effects within a programming language. The main con-

tribution that I find is the idea that dynamically scoped variables capture most of the

interesting effects that are described in the other papers below.

• Delimited Dynamic Binding [15] (2006) by Oleg Kiselyov and Chung-chieh Shan

and Amr Sabry. This paper describes the delimited control and dynamic binding

features of programming languages, and then demonstrates that the dynamic binding

63

feature can be macro-expressed in a language containing delimited control. This

paper also refers to problems that occur when a control operator is embedded in a

language with strict semantics, and provides an example of a fix that resembles ours.

• Functional Pearl: The Great Escape [14] (2007) by David Herman describes some

of the problems with raw callcc and its interactions with exception handling. This

paper also provides a useful simulation model and proofs for Filinski’s encoding.

• Abstracting Control [5] (1990) by Olivier Danvy and Andrzej Filinski. The authors

show how various effects such as mutable storage, exceptions, threads, and contin-

uations, can all be expressed as by a suitable translation into a monadic language

framework, which itself can be implemented in a language containing only shift

and reset.

• Representing Control [6] (1992) by Olivier Danvy and Andrzej Filinski.

• Representing Monads [11] (1994) by Andrzej Filinski. The author reviews the monadic

translation as described in Abstracting Control, and then provide a translation from

shift and reset into callcc and a mutable storage location. This translation is

then used to construct an ML implementation of shift and reset.

• The Theory and Practice of First-Class Prompts [7] (1998) by Mattias Felleisen

seems to be a good starting point. This paper describes the control and prompt

constructs, which are similar in purpose to shift and reset.

• The Discoveries of Continuations [20] (1993) by John C. Reynolds.

• The Revised Report on the Syntactic Theories of Sequential Control and State [10]

(1992) by Matthias Felleisen and Robert Hieb. This is the canonical description of

the control and prompt operators, and is cited by the Delimited Dynamic Binding

paper for its use of a trampoline to avoid the premature by-value conversion.

• Reasoning about Programs in Continuation-Passing Style [23] (1993) by Amr Sabry

and Matthias Felleisen.

64

• Continuations Revisited [31] (2000) by Christopher P. Wadsworth.

• Continuations: A Mathematical Semantics for Handling Full Jumps [29] (2000) by

Christopher Strachey and Christopher P. Wadsworth.

1.3 Historical and Biographical

• Christopher Strachey and Fundamental Concepts [27] (2000) by Joseph E. Stoy.

• Induction, Domains, Calculi: Strachey’s Contributions to Programming-Language

Engineering [25] (2000) by David A. Schmidt.

• Christopher Strachey - Understanding Programming Languages [4] (2000) by Rod

Burstall.

• A Foreword to ‘Fundamental Concepts in Programming Languages’ [17] (2000) by

Peter D. Mosses.

• Some Reflections on Strachey and His Work [26] (2000) by Dana Scott.

65

APPENDIX II

ML Implementations and Examples

SML/NJ Implementations

Listing II.1 contains Filinski’s original ML implementation of escape, which allows for

the capture of undelimited continations (via SMLofNJ.callcc) and translates the native

SMLofNJ.Cont.cont into an invokable function. Both Filinski’s and our improved

encoding use this implementation of escape.

Listing II.1: escape.sml
s i g n a t u r e ESCAPE = s i g

t y p e vo id
v a l c o e r c e : vo id −> ’ a
v a l e s c a p e : ((’1 a −> vo id) −> ’1 a) −> ’1 a

end

s t r u c t u r e Escape : ESCAPE = s t r u c t
l o c a l

v a l c a l l c c = SMLofNJ . Cont . c a l l c c
v a l throw = SMLofNJ . Cont . th row

i n
d a t a t y p e vo id = VOID of vo id
fun c o e r c e (VOID v) = c o e r c e v

fun e s c a p e f = c a l l c c (fn k => f (fn x => th row k x))
end
end

Listing II.2 contains several functors which implement the CONTROL signature. We

have extended this signature with the C and A operators, to reduce the amount of source

files we needed to maintain.

66

Listing II.2: control.sml
use ” e s c a p e . sml ” ;

(∗ F i l i n s k i ’ s CONTROL e x t e n d e d wi th i n i t i a l i z e , a b o r t and C ∗)

s i g n a t u r e CONTROL = s i g
t y p e ans
v a l i n i t i a l i z e : (u n i t −> u n i t) ;
v a l a b o r t : (u n i t −> ans) −> ’1 a
v a l C : ((’1 a −> ans) −> ans) −> ’1 a
v a l r e s e t : (u n i t −> ans) −> ans
v a l s h i f t : ((’1 a −> ans) −> ans) −> ’1 a

end

(∗ F i l i n s k i ’ s C o n t r o l e x t e n d e d wi th i n i t i a l i z e , a b o r t and C ∗)

f u n c t o r C o n t r o l (t y p e ans) : CONTROL = s t r u c t
l o c a l

open Escape
e x c e p t i o n M i s s i n g R e s e t

i n
v a l m k I n i t i a l : (ans −> vo id) = fn => r a i s e M i s s i n g R e s e t ;
v a l mk = r e f (m k I n i t i a l) ;

fun i n i t i a l i z e () = (mk := m k I n i t i a l) ;

fun a b o r t x = c o e r c e (!mk (x ())) (∗ I n c o r r e c t s e m a n t i c s ∗)
fun abor tV x = c o e r c e (!mk x)

t y p e ans = ans

fun r e s e t t =
e s c a p e (fn k =>

l e t
v a l m = !mk

i n
mk := (fn r =>

(mk := m; k r)) ;
abor tV (t ())

end)
fun s h i f t h =

e s c a p e (fn k =>
abor tV (h (fn v =>

r e s e t (fn () =>
c o e r c e (k v)))))

fun C h =
e s c a p e (fn k =>

abor tV (h (fn v =>
c o e r c e (k v))))

67

end
end

(∗
∗ NewControl c o n t a i n s v e r s i o n s o f s h i f t and r e s e t t h a t assume
∗ t h a t t h e a b o r t () d e l e t e s t h e prompt , which must be compensa ted
∗ f o r by i n s e r t i n g a new prompt i n t o t h e m e t a c o n t i n u a t i o n .
∗ Thi s i s t h e v e r s i o n t h a t c o r r e s p o n d s t o t h e LPAR s u b m i s s i o n .
∗)

f u n c t o r NewControl (t y p e ans) : CONTROL = s t r u c t
l o c a l

open Escape
e x c e p t i o n M i s s i n g R e s e t

i n

v a l m k I n i t i a l : ((u n i t −> ans) −> vo id) =
fn r => (r a i s e M i s s i n g R e s e t) ;

v a l mk = r e f (m k I n i t i a l) ;

fun i n i t i a l i z e () = (mk := m k I n i t i a l) ;
fun a b o r t thunk = c o e r c e (!mk thunk)

t y p e ans = ans

fun r e s e t t =
e s c a p e (fn k =>

l e t
v a l m = !mk

i n
mk := (fn x =>

(mk := m; k x)) ;

l e t
v a l r e s u l t = (t ())

i n
a b o r t (fn () => r e s u l t)

end
end) ()

fun s h i f t h =
e s c a p e (fn k =>

a b o r t (fn () =>
r e s e t (fn () =>

h (fn v =>
r e s e t (fn () => c o e r c e (k v))

)
)

)

68

)

fun C h =
e s c a p e (fn k =>

a b o r t (fn () =>
r e s e t (fn () =>

h (fn v => c o e r c e (k v))
)

)
)

end
end

(∗
∗ Thi s v e r s i o n o f c o n t r o l assumes t h a t a b o r t does
∗ n o t d e l e t e t h e meta−c o n t i n u a t i o n u n t i l a f t e r
∗ s u c c e s s f u l l y e x e c u t i n g i t . Th i s o b v i a t e s t h e need t o
∗ i n s e r t an e x t r a prompt .
∗
∗ Thi s i m p l e m e n t a t i o n may p e r h a p s be an o p t i m i z a t i o n ;
∗ however , i t i s n o t p roven c o r r e c t y e t .
∗)

f u n c t o r NewCont ro lOpt imized (t y p e ans) : CONTROL = s t r u c t
l o c a l

open Escape
e x c e p t i o n M i s s i n g R e s e t

i n
v a l m k I n i t i a l : ((u n i t −> ans) −> vo id) =

fn r => (r a i s e M i s s i n g R e s e t) ;
v a l mk = r e f (m k I n i t i a l) ;

fun i n i t i a l i z e () = (mk := m k I n i t i a l) ;
fun a b o r t thunk = c o e r c e (!mk thunk)

t y p e ans = ans

fun r e s e t t =
e s c a p e (fn k =>

l e t
v a l m = !mk

i n
mk := (fn e =>

(k (fn () =>
l e t

v a l v = (e ())
i n

mk := m;
v

69

end))) ;
l e t

v a l r e s u l t = (t ())
i n

a b o r t (fn () => r e s u l t)
end

end) ()

fun s h i f t h =
e s c a p e (fn k =>

a b o r t (fn () =>
h (fn v =>

r e s e t (fn () => c o e r c e (k v))
)

)
)

fun C h =
e s c a p e (fn k =>

a b o r t (fn () =>
h (fn v => c o e r c e (k v))

)
)

end
end

Listing ?? contains several functors which implement the CALLCC signature. (Should

this be called K, once it is in a reset context?)

Listing II.3: label
use ” c o n t r o l . sml ” ;

s i g n a t u r e CALLCC = s i g
t y p e ans
v a l c a l l c c : ((ans −> ans) −> ans) −> ans

end

(∗
Cal lCCNat ive i s a s i m p l e wrapper a round t h e SMLofNJ c a l l c c . I t
s i mp ly a l l o w s t h e c o n t i n u a t i o n t o be invoked , r a t h e r t h a n
r e q u i r i n g a ’ throw ’

∗)

f u n c t o r Ca l lCCNat ive (s t r u c t u r e c o n t r o l : CONTROL) : CALLCC =
s t r u c t

l o c a l
open c o n t r o l

i n

70

t y p e ans = ans

fun c a l l c c h =
SMLofNJ . Cont . c a l l c c (fn k =>

h (fn v => SMLofNJ . Cont . th row k v))
end
end

(∗
CallCCOldC i s t h e ’ t r a d i t i o n a l ’ i m p l e m e n t a t i o n o f c a l l c
on t o p of C

∗)

f u n c t o r CallCCOldC (s t r u c t u r e c o n t r o l : CONTROL) : CALLCC = s t r u c t
l o c a l

open c o n t r o l
i n

t y p e ans = ans

fun c a l l c c h =
C(fn (k ’) =>

l e t
v a l r e s u l t = h (fn v => k ’ v)

i n
k ’ r e s u l t

end)
end
end

(∗
CallCCNewC i s t h e New i m p l e m e n t a t i o n o f c a l l c on t o p o f C t h a t
u s e s t h u n k i n g t o d e l a y e x e c u t i o n u n t i l a f t e r t h e jump .

Note t h a t t h e i m p l e m e n t a t i o n below u s e s be t a−r e d u c t i o n v i a
a p p l i c a t i o n as t h e means t o pe r fo rm t h e s u b s t i t u t i o n demanded by
t h e e n c o d i n g i n t h e p a p e r .

To pe r fo rm an a c t u a l s u b s t i t u t i o n would r e q u i r e a f u l l y−
r e f l e c t i v e

l a n g u a g e l i k e Scheme , where t h e p a r a m e t e r t o c a l l c c c o u l d be
decomposed and e d i t e d .

One of t h e q u e s t i o n s t h a t Zena has posed i s whe the r t h i s
i m p l e m e n t a t i o n v i a be t a−r e d u c t i o n i s e q u i v a l e n t t o t h e
s u b s t i t u t i o n −based e n c o d i n g i n t h e p a p e r on page 6 .

∗)

f u n c t o r CallCCNewC (s t r u c t u r e c o n t r o l : CONTROL) : CALLCC = s t r u c t

71

l o c a l
open c o n t r o l

i n
t y p e ans = ans

fun c a l l c c h =
C(fn (k ’) =>

k ’ (fn =>
h (fn x =>

(k ’ (fn => x))
)

)
) ()

end
end

SML/NJ Examples

Composable Continuation Usable Outside of Reset

As referenced in the chapter on composable continuations, Figure II.4 is the example we

used to confirm to ourselves that a composable continuation is safely usable outside of any

delimiter. Note that the union type in the example is needed to allow the expression to

typecheck in ML.

Listing II.4: ShiftedContUsedOutsideReset
use ” c o n t r o l . sml ” ;

l o c a l
d a t a t y p e bu nd l e = Val o f i n t | Cont o f (i n t −> bu nd l e) ;
s t r u c t u r e F = C o n t r o l (t y p e ans = bu nd l e) ;
s t r u c t u r e N = NewControl (t y p e ans = bu nd l e) ;
s t r u c t u r e O = NewCont ro lOpt imized (t y p e ans = bu nd l e) ;
open F

i n
v a l zz =

l e t
v a l b = r e s e t (

fn () => Val (s h i f t (
fn k => Cont k

)
)

)
i n

c a s e b of
Cont kk =>

72

(
p r i n t ” [1]\ n ” ;
kk 0

)
|
Val v =>

(
p r i n t ” [2]\ n ” ;
Val v

)
end

end ;

73

APPENDIX III

Extended Continuation Passing Style

In the chapter Composable Continuations, we made the case that composable continuations

act like normal functions, and that they can be invoked outside of any delimiter. In this

appendix, we encode an example into the original ECPS semantics of Danvy and Filinski.

First we must translate the expression into the meta-continuation semantics by using the

denotational semantics in [11] and reproduced in 3.1. We take this translation and apply it

to our program P = (#S(λk.k)) 0 in Figure 3.2.

74

To run program P, evaluate:

EJP K ρ0 κ0 γ0

where ρ0 is the initial store

where κ0 is the initial continuation, λx.λγ.γx

where γ0 is the initial metacontinuation, usually λx.x

EJxK ρ = λκ.λγ.κ (ρx) γ

EJλx.EK ρ = λκ.λγ.κ(λv.λκ′.λγ′. EJEK(ρ[x 7→ v]) κ′ γ′) γ

EJE1E2K ρ = λκ.λγ.EJE1K ρ(λf.λγ′.EJE2K ρ(λa.λγ′′.f a κ γ′′) γ′) γ

EJKEK ρ = λκ.λγ.EJEK ρ(λf.λγ′.f [λv.λκ′.λγ′′.κ v γ′′] κγ′) γ

EJSEK ρ = λκ.λγ.EJEK ρ(λf.λγ′.f [λv.λκ′.λγ′′.κ v (λw.κ′ w γ′′)] (λx.λγ′′.γ′′x) γ′) γ

EJ#EK ρ = λκ.λγ.EJEK ρ (λx.λγ′.γ′x) (λr.κ r γ)

FIGURE 3.1: This is the meta-continuation semantics for a language containing the shift

and reset operators. This is the version described in Danvy’s and Filinksi’s Representing

Monads.

75

Name Expression

ρ0 , λv.error Initial environment

κ0 , λx.λγ.γ x Initial continuation

γ0 , λx.x Initial metacontinuation

P , (#shift(λk.k)) 0 Original program

P0 , EJP K ρ0 κ0 γ0 Wrap P in an initial execution context

EJP K = EJ(#shift(λk.k)) 0K

= EJE1E2K

where E1 , (#shift(λk.k))

where E2 , 0

= (λρ.λκ.λγ.EJE1K ρ(λf.λγ′.EJE2K ρ(λa.λγ′′.f a κ γ′′) γ′) γ)

EJE1K = EJ(#shift(λk.k))K

= EJ(#E3)K

where E2 , E3, shift(λk.k)

= λρ.λκ.λγ.EJE3K ρ(λx.λγ′.γ′x) (λr.κ r γ)

EJE3K = EJshiftE4K

where E4 , λk.k

= λρ.λκ.λγ.EJE4K ρ

(λf.λγ′.f [λv.λκ′.λγ′′.κ v (λw.κ′ w γ′′)] (λx.λγ′′.γ′′x)γ′) γ

EJE4K = EJλk.kK
= λρ.λκ.λγ.κ (λv.λκ′.λγ′. EJkK(ρ[k 7→ v]) κ′ γ′) γ

EJkK = λρ.λκ.λγ.κ (ρ k) γ

EJE2K = EJ0K
= λρ.λκ.λγ.κ 0 γ

FIGURE 3.2: ECPS metacontinuation interpretation of (#S(λk.k)) 0

76

P0 , EJP K ρ0 κ0 γ0

= EJE1E2K ρ0 κ0 γ0

= (λρ.λκ.λγ.EJE1K ρ(λf.λγ′.EJE2K ρ(λa.λγ′′.f a κ γ′′) γ′) γ)

ρ0 κ0 γ0

7−→β EJE1K ρ0 (λf.λγ′.EJE2K ρ0 (λa.λγ′′.f a κ0 γ
′′) γ′) γ0

= (λρ.λκ.λγ.EJE3K ρ (λx.λγ′.γ′x) (λr.κ r γ))

ρ0 (λf.λγ′.EJE2K ρ0 (λa.λγ′′.f a κ0 γ
′′) γ′) γ0

7−→β EJE3K ρ0 (λx.λγ′.γ′x) (λr.(λf.λγ′.EJE2K ρ0 (λa.λγ′′.f a κ0 γ
′′) γ′) r γ0)

= (λρ.λκ.λγ.EJE4K ρ

(λf.λγ′.f [λv.λκ′.λγ′′.κ v (λw.κ′ w γ′′)] (λx.λγ′′.γ′′x)γ′) γ)

ρ0 (λx.λγ′.γ′x) (λr.(λf.λγ′.EJE2K ρ0 (λa.λγ′′.f a κ0 γ
′′) γ′) r γ0)

7−→β EJE4K ρ0

(λf.λγ′.f [λv.λκ′.λγ′′.(λx.λγ′.γ′x)v (λw.κ′ w γ′′)] (λx.λγ′′.γ′′x)γ′)

(λr.(λf.λγ′.EJE2K ρ0 (λa.λγ′′.f a κ0 γ
′′) γ′) r γ0)

= (λρ.λκ.λγ.κ (λv.λκ′.λγ′. EJkK(ρ[k 7→ v])κ′γ′)γ)

ρ0

(λf.λγ′.f [λv.λκ′.λγ′′.(λx.λγ′.γ′x)v (λw.κ′ w γ′′)] (λx.λγ′′.γ′′x)γ′)

(λr.(λf.λγ′.EJE2K ρ0 (λa.λγ′′.f a κ0 γ
′′) γ′) r γ0)

7−→β (λf.λγ′.f [λv.λκ′.λγ′′.(λx.λγ′.γ′x)v (λw.κ′ w γ′′)] (λx.λγ′′.γ′′x) γ′)

(λv.λκ′.λγ′. EJkK (ρ0[k 7→ v]) κ′ γ′)

(λr.(λf.λγ′.EJE2K ρ0 (λa.λγ′′.f a κ0 γ
′′) γ′) r γ0)

7−→β (λv.λκ′.λγ′. EJkK (ρ0[k 7→ v]) κ′ γ′)

κ1

(λx.λγ′′.γ′′x)

(λr.(λf.λγ′.EJE2K ρ0 (λa.λγ′′.f a κ0 γ
′′) γ′) r γ0)

where κ1 , λv.λκ′.λγ′′.(λx.λγ′. γ′x) v (λw.κ′ w γ′′)

7−→β EJkK (ρ0[k 7→ κ1])

(λx.λγ′′.γ′′x)

(λr.(λf.λγ′.EJE2K ρ0 (λa.λγ′′.f a κ0 γ
′′) γ′) r γ0)

7−→β (λρ.λκ.λγ.κ (ρ k) γ)

(ρ0[k 7→ κ1])

(λx.λγ′′.γ′′ x)

(λr.(λf.λγ′.EJE2K ρ0 (λa.λγ′′.f a κ0 γ
′′) γ′) r γ0)

7−→β (λx.λγ′′.γ′′ x) κ1 (λr.(λf.λγ′.EJE2K ρ0 (λa.λγ′′.f a κ0 γ
′′) γ′) r γ0)

7−→β (λγ′′.γ′′ κ1) (λr.(λf.λγ′.EJE2K ρ0 (λa.λγ′′.f a κ0 γ
′′) γ′) r γ0)

7−→β (λr.(λf.λγ′.EJE2K ρ0 (λa.λγ′′.f a κ0 γ
′′) γ′) r γ0) κ1

7−→β (λf.λγ′.EJE2K ρ0 (λa.λγ′′.f a κ0 γ
′′) γ′) κ1 γ0

7−→β (λγ′.EJE2K ρ0 (λa.λγ′′.κ1 a κ0 γ
′′) γ′) γ0

7−→β EJE2K ρ0 (λa.λγ′′.κ1 a κ0 γ
′′) γ0

= (λρ.λκ.λγ.κ 0 γ) ρ0 (λa.λγ′′.κ1 a κ0 γ
′′) γ0

7−→β (λa.λγ′′.κ1 a κ0 γ
′′) 0 γ0

7−→β κ1 0 κ0 γ0

= (λv.λκ′.λγ′′.(λx.λγ′. γ′ x) v (λw.κ′ w γ′′)) 0 κ0 γ0

7−→β (λx.λγ′.γ′ x) 0 (λw.κ0 w γ0)

7−→β (λw.κ0 w γ0) 0

7−→β κ0 0 γ0

= (λx.λγ.γ x) 0 (λx.x)

7−→β (λx.x) 0

7−→β 0

FIGURE 3.3: ECPS reduction of (#S(λk.k)) 0

77

APPENDIX

The shift/reset Abstract Machine

In the chapter Composable Continuations, we made the case that composable continuations

act like normal functions, and that they can be invoked outside of any delimiter. In this

appendix, we encode an example into the abstract machine semantics originally defined by

Biernacka, Beirnacki, and Danvy [1]. We are actually using the revised version presented in

[3, 2]. This machine is presented in Figure 3.5. Using this machine produced the expected

result. The detailed evaluation sequence is in the Figure 3.4.

78

Name Expression

P , (#shift(λk.k)) 0 Original program

ι 〈 (#shift(λk.k)) 0, ρ0, END, • 〉eval Injected configuration

7−→ 〈 (#shift(λk.k)), ρ0, ARG((0, ρ0), END), END · • 〉eval
= 〈#shift(λk.k), ρ0, ARG((0, ρ0), END), END · • 〉eval
7−→ 〈 shift(λk.k), ρ0, END, ARG((0, ρ0), END) · END · • 〉eval
7−→ 〈 k, ρ0[k 7→ END], END, ARG((0, ρ0), END) · END · • 〉eval
7−→ 〈 END, ρ0[k 7→ END](k), ARG((0, ρ0), END) · END · • 〉cont1
7−→ 〈 ARG((0, ρ0), END) · END · •, ρ0[k 7→ END](k) 〉cont2
= 〈 ARG((0, ρ0), END) · END · •, END 〉cont2
7−→ 〈 ARG((0, ρ0), END), END, END · • 〉cont1
7−→ 〈 0, ρ0, FUN(END,END), END · • 〉eval
7−→ 〈 FUN(END,END), ρ0(0), END · • 〉cont1

Above, constants are being treated as names in ρ0

7−→ 〈 END, 0, END · END · • 〉cont1
7−→ 〈 END · END · •, 0 〉cont2
7−→ 〈 END, 0, END · • 〉cont1
7−→ 〈 END · •, 0 〉cont2
7−→ 〈 END, 0, • 〉cont1
7−→ 〈 •, 0 〉cont2
7−→ 0 Final result

FIGURE 3.4: Abstract Machine Interpretation of (#S(λk.k)) 0

79

• Terms: t ::= x | λx .t | t0 t1 | 〈〈〈t〉〉〉 | Sk .t

• Values (closures and captured continuations): v ::= [x , t, e] | C1

• Environments: e ::= eempty | e[x #→ v]

• Evaluation contexts: C1 ::= END | ARG ((t, e), C1) | FUN (v, C1)

• Meta-contexts: C2 ::= • | C1 · C2

• Initial transition, transition rules, and final transition:

t ⇒ 〈t, eempty , END, •〉eval
〈x , e, C1, C2〉eval ⇒ 〈C1, e (x), C2〉cont1

〈λx .t, e, C1, C2〉eval ⇒ 〈C1, [x , t, e], C2〉cont1

〈t0 t1, e, C1, C2〉eval ⇒ 〈t0, e, ARG ((t1, e), C1), C2〉eval
〈〈〈〈t〉〉〉, e, C1, C2〉eval ⇒ 〈t, e, END, C1 · C2〉eval

〈Sk .t, e, C1, C2〉eval ⇒ 〈t, e[k #→ C1], END, C2〉eval

〈END, v, C2〉cont1 ⇒ 〈C2, v〉cont2

〈ARG ((t, e), C1), v, C2〉cont1 ⇒ 〈t, e, FUN (v, C1), C2〉eval
〈FUN ([x , t, e], C1), v, C2〉cont1 ⇒ 〈t, e[x #→ v], C1, C2〉eval

〈FUN (C′
1, C1), v, C2〉cont1 ⇒ 〈C′

1, v, C1 · C2〉cont1

〈C1 · C2, v〉cont2 ⇒ 〈C1, v, C2〉cont1

〈•, v〉cont2 ⇒ v

Figure 1: A call-by-value environment-based abstract machine for the λ-calculus
extended with shift (S) and reset (〈〈〈·〉〉〉)

• an application t0 t1 is processed by pushing t1 and the environment onto the
context and switching to a new eval -state to process t0;

• a reset-expression 〈〈〈t〉〉〉 is processed by pushing the current context on the cur-
rent meta-context and switching to a new eval -state to process t in an empty
context, as an intermediate computation;

• a shift-expression Sk .t is processed by capturing the context C1 and binding
it to k , and switching to a new eval-state to process t in an empty context.

The transitions of a cont1-state are defined by cases on its first component:

3

FIGURE 3.5: Abstract machine for shift/reset from Biernacki, Danvy, and Shan. TYPESET

THIS IN LATEX AND REPLACE e WITH ρ. ADD IN SUPPORT FOR CONSTANTS.

80

BIBLIOGRAPHY

[1] M. Biernacka, D. Biernacki, and O. Danvy. An Operational Foundation for Delimited
Continuations in the CPS Hierarchy. CoRR, abs/cs/0508048, 2005.

[2] D. Biernacki and O. Danvy. Theoretical Pearl: A simple proof of a folklore theorem
about delimited control. J. Funct. Program., 16(3):269–280, 2006.

[3] D. Biernacki, O. Danvy, and C. chieh Shan. On the static and dynamic extents of
delimited continuations. Sci. Comput. Program., 60(3):274–297, 2006.

[4] R. M. Burstall. Christopher Strachey - Understanding Programming Languages.
Higher-Order and Symbolic Computation, 13(1/2):51–55, 2000.

[5] O. Danvy and A. Filinski. Abstracting Control. In Proceedings of the 1990 ACM
Conference on LISP and Functional Programming, Nice, pages 151–160, New York,
NY, 1990. ACM.

[6] O. Danvy and A. Filinski. Representing Control: A study of the CPS transformation.
Mathematical Structures in Computer Science, 2(4):361–391, 1992.

[7] M. Felleisen. The theory and practice of first-class prompts. In POPL ’88: Proceed-
ings of the 15th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 180–190, New York, NY, USA, 1988. ACM.

[8] M. Felleisen. On the Expressive Power of Programming Languages. Sci. Comput.
Program., 17(1-3):35–75, 1991.

[9] M. Felleisen and M. Flatt. Programming Languages and Lambda Calculi (draft).
August 2003.

[10] M. Felleisen and R. Hieb. The Revised Report on the Syntactic Theories of Sequential
Control and State. Theor. Comput. Sci., 103(2):235–271, 1992.

[11] A. Filinski. Representing Monads. In Conf. Record 21st ACM SIGPLAN-SIGACT
Symp. on Principles of Programming Languages, POPL’94, Portland, OR, USA, 17–
21 Jan. 1994, pages 446–457. ACM Press, New York, 1994.

[12] M. Flatt, G. Yu, R. B. Findler, and M. Felleisen. Adding Delimited and Composable
Control to a Production Programming Environment. In ICFP, pages 165–176, 2007.

81

[13] R. Harper. Practical Foundations for Programming Languages (draft). 2008.

[14] D. Herman. Functional Pearl: The Great Escape or, How to jump the border without
getting caught. In ICFP ’07: Proceedings of the 2007 ACM SIGPLAN international
conference on Functional programming, pages 157–164, New York, NY, USA, 2007.
ACM.

[15] O. Kiselyov, C. chieh Shan, and A. Sabry. Delimited dynamic binding. In J. H. Reppy
and J. L. Lawall, editors, ICFP, pages 26–37. ACM, 2006.

[16] R. Milne. From Language Concepts to Implementation Concepts. Higher-Order and
Symbolic Computation, 13(1/2):77–81, 2000.

[17] P. D. Mosses. A Foreword to ‘Fundamental Concepts in Programming Languages’.
Higher-Order and Symbolic Computation, 13(1/2):7–9, 2000.

[18] G. D. Plotkin. Call-by-Name, Call-by-Value and the lambda-Calculus. Theor. Com-
put. Sci., 1(2):125–159, 1975.

[19] G. D. Plotkin. A Structural Approach to Operational Semantics. Technical Report
DAIMI FN-19, University of Aarhus, 1981.

[20] J. C. Reynolds. The Discoveries of Continuations. Lisp and Symbolic Computation,
6(3-4):233–248, 1993.

[21] J. C. Reynolds. Definitional Interpreters for Higher-Order Programming Languages.
Higher-Order and Symbolic Computation, 11(4):363–397, 1998.

[22] J. C. Reynolds. Theories of Programming Languages. Cambridge University Press,
1998.

[23] A. Sabry and M. Felleisen. Reasoning about Programs in Continuation-Passing Style.
Lisp and Symbolic Computation, 6(3-4):289–360, 1993.

[24] D. A. Schmidt. Programming Language Semantics. In The Computer Science and
Engineering Handbook, pages 2237–2254. 1997.

[25] D. A. Schmidt. Induction, Domains, Calculi: Strachey’s Contributions to
Programming-Language Engineering. Higher-Order and Symbolic Computation,
13(1/2):89–101, 2000.

[26] D. S. Scott. Some Reflections on Strachey and His Work. Higher-Order and Symbolic
Computation, 13(1/2):103–114, 2000.

[27] J. E. Stoy. Christopher Strachey and Fundamental Concepts. Higher-Order and Sym-
bolic Computation, 13(1/2):115–117, 2000.

82

[28] C. Strachey. Fundamental Concepts in Programming Languages. Higher-Order and
Symbolic Computation, 13(1/2):11–49, 2000.

[29] C. Strachey and C. P. Wadsworth. Continuations: A Mathematical Semantics for
Handling Full Jumps. Higher-Order and Symbolic Computation, 13(1/2):135–152,
2000.

[30] A. M. Turing. On Computable Numbers, with an application to the Entschei-
dungsproblem. Proc. London Math. Soc., 2(42):230–265, 1936.

[31] C. P. Wadsworth. Continuations Revisited. Higher-Order and Symbolic Computation,
13(1/2):131–133, 2000.

