
Using the Mean Shift Algorithm to Make Post Hoc 
Improvements to the Accuracy of Eye Tracking Data 
Based on Probable Fixation Locations
Yunfeng Zhang  6/2/10

Directed Research Project (DRP)

University of Oregon

Computer and Information Science Department

Abstract 2

Introduction 2

Systematic Error In Eye Movement Data  4

Eve Movement Data Analysis And Error Correction 7

Eye Movement Data Analysis Procedure 7

Error Correction Based On Hidden Markov Models 8

Error Correction Based On Required Fixation Locations 8

The Experiment With Moving Visual Stimuli 11

A General Method for Removing Systematic Errors 13

Mapping Fixations To Their Probable Locations 14

Visualizing Disparities To Find Their Pattern 14

Applying the Mean Shift Algorithm To Identify the Error Signature 17

Validation of The Method 20

Visualizations of Corrected Data 20

Objective Validation 23

Ground Truth Mappings 23

Comparison to Corrected Data 23

-1-



Possible Extensions 26

Error Signatures Over Time 26

Error Signatures Across Multiple Regions 28

Conclusion 31

Bibliography  32

Appendix 34

Ground Truth Mapping Rules 34

Abstract
If they choose to look for it, eye tracking researchers will almost  always see disparities between 
the participants’ actual gaze locations and the locations recorded by the eye trackers.  Sometimes 
these discrepancies are so great that they dramatically affect the validity of the theoretical and 
empirical claims made based on the eye tracking data.  Much of the disparity is in fact a type of 
eye tracking error—systematic error—which tends to stay constant over time.  A challenge in 
identifying the size and direction of the systematic error is to determine the participants’ actual 
gaze locations from the raw data.  Mapping gazes to incorrect locations (not their actual 
locations) would result in misleading disparities and hence inaccurate estimate of the systematic 
error.  In this paper, we propose a general method that can reliably reduce the systematic error 
and restore the eye movements to their true locations.  The method addresses the difficulty in 
finding mappings between gazes and their correct locations by embracing a typical characteristic 
of the eye movement data—that the disparities of the correct  mappings tend to be similar to each 
other and hence they  form the highest density cluster among all disparities.  The method then 
uses a variant of the mean shift algorithm to locate the cluster and its center, and to reduce the 
errors by subtracting the center disparity  from the eye movement data.  This paper presents the 
method, an extended demonstration, and a validation of the efficacy of the error correction 
technique.

Introduction
In usability  and psychological studies, researchers often want to know users’ and participants’ 
internal states of mind in order to understand the efficiency of the interfaces or how humans 
respond to particular stimuli.  States of mind can either be inferred by analyzing a user’s external 
sequence of actions such as mouse-clicks and key-presses, or they can be revealed through 
verbal reporting.  When using the latter method, the users are asked to say whatever they are 
looking at, thinking, doing, and feeling.  The advantage of the verbal reporting method is that it 
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can provide abundant direct information regarding a user’s cognitive processes (Newell & 
Simon, 1972).  But the method also has many drawbacks, e.g., the verbalization might interfere 
with task processing and hence delay a user’s response time (Ericcson & Simon, 1980).  
Recording a user’s observable interactions with a device is less intrusive and avoids the problems 
associated with verbal reports.  But there is rarely  a precise mapping between people’s internal 
cognitive processes and mouse clicks and key presses.  For example, there might  be several 
approaches to solve an algebra equations, and if researchers only  recorded the clicks and key 
presses, it may be difficult to figure out which approach people used.

As eye trackers become more accurate, researchers increasingly record eye movements as a 
source of behavioral data (Jacob & Karn, 2003).  This particular type of data provides special 
insight into people’s internal cognitive processes.  Eye movement data has two advantages over 
the traditional behavioral data of reaction time and accuracy.  The first  advantage is that eye 
movements are closely  related to one important aspect of human information processing—visual 
attention.  Studies have shown that, although people can attend to stimuli that are not in the 
foveal vision (also known as covert attention), when doing real-world tasks, they tend to move 
their eyes to things that they are attending to (Findlay & Gilchrist, 2003).  None of the traditional 
behavioral data can map so closely between external actions and internal states of mind.  The 
second advantage of eye movement data is that the duration of a fixation (in which the gaze is 
maintained around a single location) generally  ranges from 150 ms to 600 ms, which provides 
for many tasks a much smaller grain size of temporal data points than provided by mouse clicks, 
key presses, or reaction time data.  Smaller time scales isolate individual strategic decisions and 
hence permit researchers to more easily infer specific strategies that people adopt (Newell, 
1990).  For example, eye movement data for solving an algebra equation can show the order in 
which the participant looked at the numbers and variables, and how long he or she spent on each, 
which can in turn reveal the task strategy (Salvucci & Anderson, 2001).  Due to the above 
reasons, eye tracking is used increasingly  in usability studies to replace or complement verbal 
reports (Goldberg et al., 2002; Burke, Hornof, Nilsen & Gorman, 2005).

However, researchers should not be overly optimistic about using eye tracking as an easy means 
to answer difficult  questions, because eye tracking data is inherently noisy.  Unlike mice, which 
are directly controlled by users and thus reflect the actual locations that users are pointing to, eye 
trackers estimate people’s gaze locations through indirect measures.  For example, video-based 
eye trackers, which are most widely  used in usability studies, work by reflecting infrared light 
onto the corneal, and use the vector between the pupil-center and corneal reflection to calculate 
gaze locations.  The computer vision algorithms used in the procedure are not perfect and errors 
occur.  As well, some eye trackers still cannot handle head movements very well (Li, Babcock & 
Parkhurst, 2006). 

There are generally three types of eye tracking errors (Hornof & Halverson, 2002).  First, the eye 
tracker may not be able to acquire an image of the eyes (e.g. when the users are not sitting at an 
appropriate distance) which results in complete data loss.  Second, random error occur due to 
inaccurate estimations of gaze locations.  These random errors are often less than 0.5º of visual 
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angle (the angle that a viewed object subtends at the eye) and can be reduced by averaging the 
gaze points (LC Technologies, 2000).  The last type of eye tracking data error—systematic errors 
or bias errors—result from bad calibrations, head movements, astigmatism and other sources, 
and stay constant from time to time (LC Technologies, 2000).  Systematic errors can sometimes 
reach many degrees of visual angle.  The good news is that systematic errors can be 
systematically removed with techniques such as that presented here.

The remainder of the article will discuss the issues of systematic errors, including their 
influences on eye movement data analysis; some previous methods that can deal with these 
errors; and a new method which can reliably reduce systematic errors.

Systematic Error In Eye Movement Data
Figure 1 illustrates what systematic error looks like.  The data are from a test of the Tobii T60 
eye tracker, which has a reported accuracy of 0.5º of visual angle and is widely used in usability 
studies.  In the test, the participant was asked to look at  the four corners of the rectangle 
consecutively.  But unlike a typical experiment, the participant was asked to adjust her head 
position in order to test  the sensitivity  of the tracking accuracy to head movements.  As can be 
seen in Figure 1, the four fixations are all somewhat above the corners by a similar amount of 
disparity.  The systematic errors that can be seen in the figure is very large—roughly 2.3º of 
visual angle on average, well over the manufacture’s stated accuracy.  The figure shows a typical 
pattern in data with systematic errors—the recorded eye movement data are all altered by a 
similar vector.

Although systematic errors are common in eye tracking data, they are rarely reported in any  form 
(as in Blignaut, Beelders & So, 2008; Smith, Ho, Ark & Zhai, 2000).  Yet, in any scientific 
measurement it is critical to know the accuracy of the measuring instrument.  If no error report  is 
provided based on the actual data collected, it is difficult to determine whether the study 
examined, explored, or realized the severity of the error, and whether the data are truly  accurate.  

Figure 1.  The participant looked at the four 
corners of the rectangle, but the eye tracking data 
are all above the corners due to systematic errors.  
Circles represent fixations.
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The error may not be a problem in usability studies in which the areas of interests (AOIs) extend 
to a large area (e.g. 8º of visual angle) and are also separated by a large distance.  But in studies 
that pertain to reading, visual search of dense displays, and cockpit  usability evaluation, 
researchers often want to know precisely at what objects participants looked.  The visual stimuli 
in these studies (such as labels and buttons) and the space between them tend to be only about 1º 
to 3º of visual angle.  In these circumstances, if the systematic error is as large as 2º of visual 
angle, a fixation is likely  to be incorrectly interpreted on an object adjacent to the one that a 
participant actually looked at.  For example, in Figure 1, if only the lower two fixations are 
recorded or the task requirement—look at four corners—is not known, one would think that the 
lower two fixations were on the top corners because they appear closer to the top corners.  
However, they are in fact on the bottom corners, just shifted by systematic error.  Thus, it is 
perhaps impossible to draw any  reliable conclusions in an eye tracking study without first 
addressing the systematic error.  Ignoring the error can dramatically affect the validity of 
empirical and theoretical claims made based on the eye tracking data.

When researchers indeed find systematic error in their data, or realize that it is possible that such 
errors might occur in their experiments, they tend to address the errors in two ways.  First, they 
exclude the eye tracking data from the trials in which they  have found errors.  Many studies 
adopt this approach.  For instance, Mello-Thoms, Nodine & Kundel (2002) conducted an eye 
tracking experiment to examine how radiologists search breast cancer.  They found in some 
trials, such as shown in Figure 2, the lesion did not attract any fixations, whereas the dark 
background was fixated for a fairly long time.  The eye movement data of such trails were 
excluded from the analysis.  Although Mello-Thoms et al. did not attribute these data to 
systematic error in the eye tracker, it is likely this is the source, because there are no stimuli on 
the dark background that could attract  and maintain visual attention for such a long time.  One 
might argue that the participants may have used covert attention here, but task constraints and 
human physiology would motivate fixations directly on the relevant visual objects (Findlay & 
Gilchrist, 2003).
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The second approach that researchers typically use to reduce the impact of systematic error is to 
recalibrate their eye trackers periodically.  This is often done, mid-experiment, by first using a 
simple calibration check to determine if there is a large disparity between the stimulus and the 
fixation location.  If there is, then a full recalibration is invoked.  This method is typically 
employed in experiments that require highly  accurate data, such as in reading studies.  For 
example, Juhasz, Liversedge, White, and Rayner (2006) reported that “calibration was checked 
for each eye individually  after every two trials and recalibated as necessary.”  A similar 
procedure was adopted in Abrams & Jonides (1988).

Although the above two methods—discarding data and intermediary calibration checks—are 
widely  applied, they  clearly have drawbacks and limitations.  The first approach, removing the 
problematic data, often results in throwing away information needed to complete the 
experimental design and to draw valid conclusions.  Also, determining whether systematic errors 
occurred requires researchers’ subjective judgments, which can be influenced by their own biases 
and understanding of the task.  The second method of dealing with eye tracking systematic errors
—recalibrating at regular intervals—cannot be applied in many studies in which the user’s 
performance, such as task completion time, could be adversely affected by interruptions.  For 
example, a continuous task such as driving may last for several minutes and hence may not be 
interruptible without interfering with the driver’s attention on the main task.  Also, in many 
usability studies, there are numerous dependencies among a series of tasks such that interruptions 
would introduce uncontrolled variability, influence a user’s performance, and adversely impact 
the validity  of the study.  For example, when doing an air traffic control task, participants 
maintain a lot of context information in their memory.  Recalibration could cause them to lose 
this information and hence impair their performance.  Even in experiments with frequent 
recalibrations, the accuracy of the eye movement data still cannot be guaranteed to be perfect.    
Clearly, an objective and principled technique to reduce or remove systematic error is preferred 
and needed.

Figure 2.  Fixations superimposed on a breast 
image.  Small circles represent fixations, the light 
circle indicates the location of lesion, and the 
bright circle indicates a prolonged (> 1000 ms) 
dwell.  Image from Mello-Thoms, Nodine & 
Kundel (2002).
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In this paper, we propose a post hoc method to reduce the systematic error in eye movement data.  
Because the error correction is done after collecting data, it would not interfere with task 
execution.  This method also provides an objective measure of the accuracy of the raw data.

Eve Movement Data Analysis And Error Correction
This section introduces two previous methods that have been proposed to deal with error in eye 
movement data.  The first method calculates a fixation’s true location using not  only the 
fixation’s recorded location but also he fixation’s role in task execution (Salvucci & Anderson, 
2001).  The second method studies the nature of the systematic errors and reduces them 
accordingly  (Hornof & Halverson, 2002).  The error correction technique presented in this paper 
follows the general approach of the second.

Eye Movement Data Analysis Procedure

Before delving into the details of the two error correction methods, we shall first revisit the two 
basic stages of automated eye movement data analysis.  This brief introduction provides a 
context that helps to show when the error correction should be carried out and how much should 
be done to rigorously analyze eye movement data.

Fixation Detection.  The first stage of eye movement data analysis is to group  the raw gaze 
samples into fixations.  The raw data collected by  eye trackers are sampled at  a constant rate, 
often 60 Hz.  In some experiments, researchers can work directly with the raw gaze samples.  
But generally, the samples are grouped into fixations.  There are several algorithms for detecting 
fixations (Salvucci & Goldberg, 2000).  The dispersion-based and velocity-based algorithm are 
the two main ones.  The dispersion-based algorithm has two parameters: maximum dispersion 
size and minimum fixation duration.  The velocity-based algorithm has one parameter: the 
velocity  threshold.  When analyzing data, it is wise to try a range of values for these parameters 
to determine the optimum settings for different tasks.  Karsh & Breitenbach (1983) provide an 
excellent illustration of how different parameter settings of the dispersion-based algorithm can 
dramatically affect the fixation detection outcome.

Fixation Assignment.  The second stage of automated eye movement analysis is to find each 
fixation’s target object, i.e. to assign fixations to their intended stimuli.  The most commonly 
used fixation-assignment method is to map each fixation to its nearest object.  The idea of this 
method is easy to understand:  The closer a fixation is to an object, the better the object is 
perceived.  However, when the eye movement data have systematic errors, this nearest-object 
assignment method could very likely make mistakes, because the fixations are not at their actual 
locations.  For example, if this fixation assignment method is used for the eye movement data in 
Figure 1, both two fixations on the left would be assigned to the top-left corner of the rectangle, 
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and the two fixations on the right would be assigned to the top-right corner.  Here, the systematic 
error has caused two wrong mappings.

Error Correction Based On Hidden Markov Models

Based on hidden Markov models, Salvucci and Anderson (2001) designed a fixation assignment 
method that is resistant to the effect of eye tracking error, but the method has a few drawbacks.  
In this method, the strategies that  might be used to successfully  complete the task, which can be 
obtained by  task analysis, are formally  coded into a hidden Markov model.  Then the fixation 
sequences are compared with the hidden Markov model to obtain fixation assignments.  Two 
factors determine a fixation’s assignment: (a) the fixation location and (b) the probability that the 
fixation would be on a stimulus at  a point in time according to the model.  Thus, even if a 
fixation is further from its intended stimulus than it is from another stimulus, perhaps due to the 
systematic error, it will still be assigned to the intended visual stimulus if this match yields a 
higher probability in the hidden Markov model.  One of the important contributions of Salvucci 
and Anderson’s method is that it takes advantage of a powerful mathematic tool, hidden Markov 
modeling, to formally represent possible strategies.  However, it  is complex to implement a 
hidden Markov model and sometimes impossible to decide what transition probabilities should 
be used.  There is little evidence in the literature that this approach is routinely  used in any  eye 
tracking studies, even for those subsequently  conducted by  the creators of the technique 
themselves.  The error correction method presented here offers an easier-to-use alternative.

Error Correction Based On Required Fixation Locations

This section discusses Hornof & Halverson’s (2002) error correction method, including the 
concept of required fixation locations as well as some limitations of this method. The error 
correction method presented in this paper takes a similar approach, but offers substantial 
improvements.  Similarities include:  First, both methods reduce the systematic errors before the 
fixation assignment stage; this way, the nearest-object fixation assignment method would less 
likely make many wrong mappings. Second, both methods extract the size and direction of the 
systematic errors by studying the disparities between fixations and their intended locations.  The 
difference is that Hornof & Halverson’s method chooses the fixations more conservatively  and 
thus has some limitations as discussed later, whereas the technique presented here can estimate 
locations for most of the fixations.

In Hornof & Halverson (2002), the authors thoroughly studied the nature of systematic errors in 
a set of eye tracking data collected from a visual search experiment.  They found that  the 
systematic error tends to be constant within a region of the display for each participant.  
Specifically, the magnitude of the disparities between the target  visual stimuli and the 
corresponding fixations were “somewhat evenly  distributed around 40 pixels (about 1º of visual 
angle) and that most were between 15 and 65 pixels”.  The variation in the magnitude of the 
disparity was even smaller if broken down by participant.  Horizontal and vertical disparities 
remained somewhat constant for each participant.  Thus, systematic error was not  randomly 
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distributed across all directions or sizes but was, as the name implies, systematic.  The error was 
illustrated with a vector plot that forms each participant’s error signature in which the vectors 
change gradually across the display area (Figure 3).

Because the systematic error is relatively constant within a region, it is possible to reduce the 
error for each region—and even each point—individually.  The key  idea of Hornof and 
Halverson (2002) is that  researchers can determine how to offset each recorded fixation by 
calculating a weighted average of the error vectors that are closet to that recorded fixation, and 
by shifting that fixation based on the error signature calculated for that location.  Consequently, 
the gaze points are shifted toward their true locations, and systematic error is reduced.  For 
example, in Figure 3, the eye movement data that are close to each column would be corrected 
based on the vectors of the nearest  column.  Thus, the eye movement data for fixations near the 
left column should be shifted upward, and those near the middle and right column should be 
moved up and to the right.  

To obtain an accurate estimate of the direction and size of the systematic error, the disparities 
used to generate the error signatures must capture the difference between recorded fixations and 
their true intended stimuli, rather than just the closet and potentially  unrelated stimuli.  These 
correct mappings are not easy to acquire considering that the uncorrected data may have large 
systematic errors.  To solve this problem, Hornof and Halverson (2002) developed the concept of 
required fixation locations (RFLs), which are locations on the screen that the analyst can be 
relatively certain that a participant fixated at  a specific point in time, provided that the participant 
completed the trial accurately.  Some RFLs are easy to find.  For example, an RFL can be a set of 
crosshairs that a participant is specifically instructed to fixate.  However, not  all tasks permit 
such explicit  RFLs.  Researchers need to conduct thoughtful and accurate task analyses to find 
opportunities in which participants are implicitly required to fixate an RFL.  For instance, for a 
participant to correctly key-in a small number that is displayed on a visual target, the participant 
must fixate that target at some point in the trial.  In Hornof and Halverson’s visual search 
experiment, the to-be-found target items served as implicit RFLs.  It was reasonable to assume, 

 

Figure 3.  A screen shot of visual search targets 
with one participant’s error signatures (the vector 
plot).  Notice that the error signature gradually 
changs for different display locations.  Image 
from Hornof & Halverson (2002).

-9-



based on task design (such as monetary rewards for fast  responses, and no time pressure between 
trials), that participants were looking at the target when they clicked on it with the mouse. 

Hornof and Halverson’s RFL technique successfully reduc systematic error for a visual search 
experiment in which all visual stimuli are fixed on a grid.  As shown in Figure 4, the eye 
movement data after error correction (in black) is more plausible than the raw data (in gray), 
given the assumption of active vision (that the point-of-gaze is directed to visually-attended 
objects) because all of the corrected fixations now land on the labels.  Note that  the eye 
movement data shown in Figure 4 were corrected only using the disparities in the final fixation 
of each trial (in Figure 4, the large fixation near the RUB label).  Across the experiment, the 
mean uncorrected systematic error size was about 0.73º of visual angle.  Considering that  the 
labels in their experiment only subtend 1º of visual angle, and that there is no space between 
adjacent labels, reducing systematic error by 0.73º could have been critical for the subsequent 
data analysis.

Hornof and Halverson’s method could potentially be used in a wide range of eye tracking 
studies, but it has four limitations.  First, it still relies on a researcher’s subjective judgement to 
determine the potential RFLs.  In Hornof and Halverson’s visual search experiment, the RFLs are 
the targets that were being clicked by the mouse.  This way of finding RFLs will not always be 
practical or possible because some tasks may not need a mouse at all.  Second, the way that they 
chose RFLs is based on a reasonable task analysis—people tend to look at the objects that they 
select—but the method is a bit conservative in that it limits RFLs to items selected with a mouse 
while under time pressure.  Other ways of choosing RFLs will be needed for  different tasks, but 
a tradeoff exists—the more confident researchers want to be about the true locations of fixations, 
the fewer RFLs they can identify.  Third, defining RFLs for moving visual stimuli is even harder 
because it  requires knowing what objects participants may look at and at exactly what time 
would they look at them.  Fourth, the existing RFL technique does not reliably  correct eye 
movement data when the systematic error changes over time.  Because of the above limitations, 

Figure 4.  Light gray circles indicate fixation data 
recorded by the eye tracker, and the black circles 
indicate the data after error correction. Circle 
diameter reparents fixation duration.  Image from 
Hornof & Halverson (2002).
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exploration is needed to find more opportunities not for required fixation locations but for 
probable fixation locations.

With regards to the problem of not reliably correcting errors that change over time, Hornof & 
Halverson (2002) stated: “An interesting question is whether we could take the analysis further 
and determine how a participant’s error signature changes over time—from calibration to 
calibration or even from trial to trial.” (p. 600)  The assumption that error signatures stay 
constant may hold for short experiments, it  is not  clear how the systematic errors will change for 
long experiments.  The fact that eye tracking accuracy  deteriorates over time (such as implied in 
experiments that invoke recalibration at  regular intervals) suggests that error signatures should 
also change over time.  One reason that Hornof and Halverson did not address this issue is 
perhaps because detecting a change in an error signature across a period of time would require a 
substantial number of RFLs across the task display for numerous windows of time and, as 
discussed before, Hornof and Halverson chose their RFLs conservatively and hence somewhat 
sparsely.

Hornof and Halverson’s approach is appropriate for an initial exploration of the RFL technique, 
but the method needs to be extended to accommodate tasks in which visual objects can appear 
anywhere on the display (not just on a grid) and even move across the display during a task.  The 
extensions to the RFL technique presented here are developed in the context of exactly such a 
task, the Naval Research Laboratory dual task, discussed next.

The Experiment With Moving Visual Stimuli
This section describes the Naval Research Laboratory (NRL) dual task experiment, which was 
the context in which the new error correction technique was developed to address the four 
limitations of the existing RFL technique discussed in the previous section.  The NRL dual task 
experiment has many moving visual stimuli, and hence it  is very difficult to apply the existing 
RFL technique as-is to the eye tracking data from the experiment.  However, good eye tracking 
data for the task could reveal important details and insights regarding fundamental human 
information processing.  

The NRL dual task experiment consists of two subtasks performed in parallel: the classification 
task and the tracking task.  Figure 5 shows an overview of the task display.  In the classification 
task, the participants examine blips (the small icons on the left display in Figure 5) that move 
down the screen, and key-in the blip number (the digit displayed on the icon) followed by “H” or 
“N” for a hostile or neutral classification.  The classification can be keyed-in after the blip 
changes from black to green, red or yellow, indicating that it is active and “ready  to be 
classified.”  The hostility can be determined by studying the blip’s color:  Red indicates hostile 
and green indicates neutral; if the blip  is yellow, the participant needs to study its shape, speed 
and direction to determine its hostility.  Fifty-seven blips are grouped into 16 waves, in which 1, 
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2, 4, 6, or 8 blips are visible at the same time.  In the tracking task (on the right display in Figure 
5), the participant simply uses a joystick to keep the circle on the moving target.  

Figure 5 shows how the two task displays are arranged on a single monitor, with the 
classification task displayed on the left and the tracking task displayed on the right.  Other 
conditions such as the presence of sound and peripheral visibility are manipulated, but they are 
not terribly relevant to the development or evaluation of the eye movement data correction 
method.  See Hornof, Zhang & Halverson (2010) for a more detailed description of the 
experiment.

Twelve participants from the University of Oregon and surrounding communities successfully 
completed the experiment.  They completed four sessions of the experiment on each of three 
consecutive days.  Participants were financially  motivated to perform as quickly as possible 
while maintaing very  high accuracy.  Given the practice and motivation, participants’ 
performance by day three approach that of an expert.

The eye tracking instrumentation settings were kept as consistent and reliable as possible to 
reduce systematic error.  The screen resolution was set  to 1280x1024.  A chinrest was used to 
maintain a constant eye position 610 mm from the display.  One degree of visual angle extended 
to about 40 pixels on the display.  The size of blip  icons was 32x32 pixels, i.e. 0.8ºx0.8º of visual 
angle.  Blip movements were designed to maintain a 2º separation.  Eye movements were 
recorded using an LC Technologies dual camera eye tracker, which has a sampling rate of 120 
Hz.  Each session of the experiment took about 8 minutes on average to complete.  Because the 
task is continuous across these 8 minutes, the eye tracker cannot be recalibated during a session.  
Despite all of these efforts to reduce systematic error, when collecting eye movement data for 
such a long duration without recalibration, systematic errors are still likely to occur.

Task-Constrained Interleaving of Perceptual and Motor Processes

in a Time-Critical Dual Task as Revealed Through Eye Tracking
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Yunfeng Zhang (zywind@cs.uoregon.edu)

Computer and Information Science, University of Oregon
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Abstract

A multimodal dual task experiment that contributed to the 
original development and tuning of the EPIC cognitive 
architecture is revised and revisited with the collection of new 
high  fidelity human performance data, most notably detailed 
eye movement data, that  reveal the complex overlapping of 
perceptual and motor processes within and between the two 
competing tasks.  The data permit a new detailed evaluation 
of assumptions made in previous models of the task, and 
contribute to the development  of new models that explore 
opportunities for overlapping visual-perceptual, auditory-
perceptual, ocular-motor, and manual-motor activities.  Three 
models are presented:   (a) A hierarchical, task-switching 
model in which each task  locks out the other;  the model 
explains reaction time but does not account for eye movement 
data.  (b) A maximum-overlap perceptually-driven model that 
maximizes parallel processing and predicts the trends in the 
eye movement data, but  performs too quickly.  (c) A 
moderately-overlapped perceptually-driven model that 
introduces task-motivated constraints  and predicts both 
reaction time and eye movement data.  The best-fitting model 
demonstrates the complex task-constrained interleaving of 
perceptual and motor processes in a time-pressured dual task.

Keywords: Cognitive strategies, EPIC cognitive architecture, 
eye tracking, multimodal dual task, multitasking.

Introduction

A critical task domain for the research enterprise of 
cognitive modeling—the practice of building computer 
programs that account for aspects of human information 
processing—is that of multimodal (auditory and visual) 
multitasking.  Psychologists and cognitive modelers puzzle 
over the question of how people engage in two or more 
time-pressured tasks that compete for perceptual,  cognitive, 
and motor processes, such as for air-traffic control or in-car 
navigation (Byrne & Anderson, 2001; Howes, Lewis, & 
Vera, 2009; Meyer & Kieras,  1997; Salvucci & Taatgen, 
2008).  Gaining an understanding and ability to predict 
aspects of multimodal multitasking is of critical scientific 
and practical importance.  This paper advances an 
understanding of such tasks by presenting cognitive models 
of time-critical multimodal multitasking and evaluates these 
models in great detail using eye tracking data.

The Time-Critical Multimodal Dual Task

An earlier version of the experiment that forms the basis of 
this theoretical exploration was conducted in the early 1990s 
at the Naval Research Laboratory (NRL) (Ballas, 
Heitmeyer, & Perez, 1992).  The experiment produced 

human speed and accuracy data that proved useful for 
developing detailed computational cognitive models of dual 
task performance (Kieras, Ballas, & Meyer, 2001).   In the 
NRL dual task, participants use a joystick to track a moving 
target on one display and, in parallel, key-in responses to 
objects that appear on a secondary “radar” display.   This 
paper presents an experiment that extends the original NRL 
dual task in numerous important ways, including that (a) eye 
movements are recorded, (b) eye tracking is used in some 
conditions to hide objects on the not-currently-looked-at 
display, (c) auditory cues relate more directly to required 
responses, and (d) participants are rigorously trained, 
financially motivated, and given extensive feedback so that 
performance approaches that of an expert.

Figure 1 shows an overview of the two displays used in 
the multimodal dual task modeled in this paper.   Two tasks 
(or subtasks) were performed in parallel: a tracking task and 
a radar classification task.  The tracking task consisted of 
keeping a small circle on a moving target using a joystick.  
When the circle was positioned as such, it turned green, and 
the participant was financially rewarded at a constant rate.  
The classification task consisted of monitoring groups of 
small icons or “blips” (fifty-seven blips across an nine-
minute scenario) that moved down the screen, and keying-in 
the blip number and “hostile” or “neutral” as soon as the 
blip changed from black to red, green, or yellow, indicating 
that it was “ready to classify”.  At the point a blip ready to 
classify, a financial bonus was awarded though it diminished 
at a constant rate until the blip was keyed-in, or classified.  
Red blips were hostile; green were neutral; yellow blips 
were classified based on their shape, speed, and direction, 
following practiced rules.
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Figure 1: An overview of the visual and auditory displays 
and input devices used in the multimodal dual task.

21 3

4 5 6

7 8 9

H

N
chproducts.com

Classification Task
Tactical Radar Display

 
Tracking Task

Figure 5.  An overview of the components and input 
devices of the dual task experiment.  Image from 
Hornof & Zhang (2010, to appear).
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The first stage of automated eye movement data analysis—fixation detection—was carried out 
with parameter studies as discussed in the previous section.  The dispersion based fixation 
detection algorithm was used to find fixations.  The first parameter, minimum fixation duration, 
was set to 100 ms, as suggested by Karsh & Breitenbach (1983).  For the second parameter, 
several dispersion window thresholds were tested, and the threshold 0.7º of visual angle was 
found to be best.  The threshold is small enough to characterize a smooth pursuit in the tracking 
task as a sequence of short fixations rather than as one long fixation as would happen with a 
larger dispersion threshold.  The threshold is large enough to correctly identify a fixation as a 
single fixation in the classification task instead of breaking it up to several small fixations.  These 
observations were made using the eye movement visualization software VizFix1 developed in the 
Cognitive Modeling and Eye Tracking Lab at the University of Oregon.

Although the new error correction technique is developed in the context of this specific 
experiment, the resulting error correction method is generalizable.  The moving stimuli in the 
classification task present a difficult challenge for data analysis and error correction as would 
any moving stimuli.  Because the blips appeared at different locations and moved in different 
directions with different speeds, the technique entails a general approach to handle moving 
objects.  (Of course, the approach can also be adapted for experiments with static visual stimuli.)  
In the following sections, we present the details of the error correction method and demonstrate 
how it is applied to the eye tracking data from the experiment. 

A General Method For Removing Systematic Errors
The post hoc error correction method presented here consists of two steps: mapping fixations to 
their probable intended locations, and calculating the error signature by distinguishing correct 
mappings and incorrect  mappings.  The first step—mapping fixations to their probable intended 
locations—must be done by a generalizable method if the error correction technique is to be 
easily adapted to any eye tracking experiment.  Because closet-mappings are not one hundred 
percent accurate (mapping some fixations to the wrong locations), the second step requires a 
robust algorithm to determine which mappings are correct so that the error signature can be 
calculated from only those mappings.
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1 VizFix was designed to visualize eye movement data and visual stimuli for many types of experiments.  
It can replay an experimental session with real-time eye movement data superimposed on the display.  It 
can also provide a summary visualization for a period of time.  Currently, the summary visualization 
shows the fixation scan path, but it is possible to incorporate other visualization methods such as a heat 
map.  The dispersion-based fixation-detection algorithm was implemented in VizFix.  Researchers can 
easily adjust its two parameters and use it to detect fixations in eye movement data.  To use VizFix for 
any eye tracking experiment, a plug-in is needed to translate the experimental data format into VizFixʼs 
own data format.  In addition to the plug-in built for the data from the NRL dual task experiment, 
presented here, we have also built a program to import eye movement data generated by the E-Prime 
Tobii extension.  VizFix can be used to define AOIs and generate a range of statistics from eye movement 
data.



Mapping Fixations To Their Probable Locations

A nearest-object fixation assignment method is developed to identify the probable location of 
each fixation.  This method maps each fixation to its closet stimulus and uses the center of the 
stimulus as the probable intended location, provided that the distance between them does not 
exceed a threshold.  The threshold parameter helps exclude rare situations in which a short 
fixation was not on any stimulus but just landed on the blank background.  Another way to think 
about the threshold is that it is the longest distance from an object and the point of gaze such that 
the high resolution vision at the point of gaze can still encode the object.  To estimate this 
distance, researchers should consider two factors—the theoretical longest distance from the 
point-of-gaze at which an object can be discerned, and the maximum size of the systematic 
errors.  The first factor depends on the feature to be encoded and the size of the object.  The 
second factor—the maximum size of the systematic errors—should be considered because in the 
uncorrected data, the distance between a fixation and its intended location is now extended by 
the systematic error.  The sum of the two factors is the maximum possible distance between a 
fixation and its intended stimulus in the uncorrected data.  In the NRL dual task experiment, the 
participant needs to study the small digit (less than 0.8º) on the blip.  Because the small character 
is only easily discriminable in the fovea, the first factor—the theoretical longest distance 
between a fixation and a target object—is set to 1º (Kieras & Meyer, 1997).  After examining the 
data visualization, the maximum systematic error was estimated to be 3º.  Thus, the longest 
distance between a fixation and its target object is set to 4º in the NRL dual task experiment data.

There are two reasons to use the nearest-object fixation assignment method to find the probable 
locations of fixations.  First, the method is applicable to virtually all experiments without the 
need of careful task analysis.  Second, because nearly  all fixations are assigned a mapping, the 
method can generate a substantial number of mappings which enable a more finely-tuned error 
correction for different screen regions and time periods.  Also, a more reliable error signature can 
be acquired by incorporating more disparities from the mappings.

The downside of the nearest-object fixation assignment method is that it can assign many 
incorrect mappings due to systematic error—the very error that the technique is designed to 
reduce.  However, it is exactly  for this reason that the second step of the error correction 
procedure is introduced—to exclude the effect of the incorrect mappings.  Note that at the error 
correction stage, fixations are not really assigned to visual objects.  These mappings are merely 
used to determine the pattern of the systematic error.  The actual fixation assignment will be 
carried out after reducing the error.  

Visualizing Disparities To Find Their Pattern

Visualizing disparities is not a required step for applying the error correction method, but it helps 
to reveal the patterns of disparities and is thus useful for developing the method, especially for 
finding an appropriate algorithm to exclude the effect of incorrect mappings.  Figure 6 shows a 
disparity graph for a session of the NRL dual task experiment in which the disparities are plotted 
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in terms of their x and y deviations.  In this graph, the nearest-object  fixation assignment method 
has found 233 disparities (black dots).  Among them, there is a cluster of dots around (10, 35) 
which occupies only  a small area of the graph.  Note that if there were no systematic errors in 
this data, all the fixations should be very close to their targets and so the disparities should be 
around (0, 0).  Although there is no clear boundary between the cluster and other dots, the cluster 
is apparently much denser than other area.  The graph suggests that a large portion of the 
fixations in that session are off their targets by  roughly 10 pixels horizontally and 35 pixels 
vertically.  

The disparity graphs for other sessions of the experiment have a similar pattern—one small area 
is crowded with dots and other dots are sparsely scattered over the graph.  This pattern emerges 
because the fixation assignment method finds many correct mappings and some incorrect 
mappings.  For the correct mappings, the disparities tend to be similar, hence they form a cluster 
in the graph, and the vector from the origin to the center of the cluster is the error signature of the 
systematic error.  For the incorrect mappings, the disparities would not follow any  certain 
pattern.  Thus they are randomly distributed over many directions.  Understanding this particular 
pattern of disparities would help enormously with finding a suitable algorithm that would be 
robustly remove the effect of the wrong mappings.
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Locating the center of the cluster in the disparity  graph is a hard problem because many 
disparities are randomly  distributed, but it would be incorrect to use the centroid of all the dots 
instead.  In Figure 6, a red dot marks the centroid.  However, the centroid is not at the center of 
the cluster.  This is because the disparities from wrong mappings are not evenly  distributed 
around the center of the cluster.  Taking the average of all disparities would mean treating each 
as equally important regardless of whether they are from correct or incorrect mappings.  In 
Figure 6, there are more disparities on the right side of the graph, some of which are from wrong 
mappings.  The centroid is affected by these disparities and is somewhat to the right of the center 
of the cluster.  The effect of the wrong mappings here may not be significant, but it  could be if a 
large portion of the mappings are wrong.

Because the cluster in a disparity graph usually  has the highest  density, locating its center can be 
considered as a global mode-finding problem, for which established solutions exist.  For 
example, Figure 7 shows the same disparities as in Figure 6, with contours connecting points that 
have equal densities.  As the space between adjacent contours gets smaller, the density of the 
disparities becomes higher.  The highest density  in Figure 7 is the center of the cluster.  The 
assumption that the disparities from all the correct mappings form the highest density in the 
disparity graph should be correct even when the majority of the disparities are from wrong 

Figure 6.  Black dots represent disparities from one session of the NRL dual 
task experiment.  The coordinates of a disparity indicate how far away  the 
fixation is from its mapped target in terms of horizontal and vertical distances.  
The vector from (0, 0) to the center of the cluster is the error signature for the 
eye movement data of this session, which is similar to the error signatures 
shown in Figure 3.  The red dot indicates the centroid of all the disparities.  
Since it is not at  the center of the cluster, it cannot be used to form an accurate 
error signature.  This is why the mean shift algorithm is needed.
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mappings, because the wrong disparities tend to be scattered all over the graph and thus have 
lower densities.

The global mode-finding problem has already been studied in other areas, and the error 
correction method adopts one of the existing solutions—the annealed mean shift algorithm 
(Shen, Brooks & Hengel, 2007).  The following section first presents the standard mean shift 
procedure, which is used to find the local modes, and then discusses how the annealed mean shift 
algorithm can reliably find the global mode.

Applying the Mean Shift Algorithm To Identify the Error Signature

A procedure called the mean shift algorithm which is used in computer vision for feature space 
analysis (Comaniciu & Meer, 2002) can be adapted to solve the problem of identifying the error 
signature.  Although the disparities of the eye movement data do not follow a certain distribution, 
the mean shift  algorithm can still work because it does not rely  on a particular distribution.  The 
mean shift method is derived from a nonparametric density  estimator, specifically the kernel 
density estimator.  Because nonparametric statistics can work with any  distribution, it makes the 
error correction technique more robust as it now relies on fewer assumptions.

The kernel density estimation method works by estimating the density  at a given location from 
its neighboring points.  The size of the “neighborhood” is controlled by a bandwidth matrix H 
and the weights associated with the neighboring points are determined by the kernel function.  

Figure 7.  Densities of the disparities in Figure 6.  
Blue contours connect equal density  points.  The 
cluster center has the greatest density, and is 
likely to be the error signature from (0, 0).

x deviation (pixels)

y
 d

e
v
ia

ti
o
n
 (

p
ix

e
ls

)

-100

-50

0

50

-50 0 50 100

-17-



With some simplification on the bandwidth matrix H, the following kernel density estimator is 
obtained:

where the xi terms are n data points in the d-dimensional space Rd, h is a scalar derived from the 
bandwidth matrix H, k(⋄) is the profile of the actual kernel function, and ck is a normalization 
constant.  In practice, two kernel functions have been widely  applied, the Epanechnikov kernel 
and the multivariate normal kernel.  Given a d-dimensional point x, the above formula returns 
the density estimation at point x.  

Once the density function is acquired through the kernel density estimation procedure, the local 
modes (local maximum points) can be found by setting the gradient equal to zero.  This is 
equivalent to setting the following term to zero:

where g(x) = –k´(x), and mG(x) is the mean shift  vector.  Starting from any  random location, the 
following scheme can be applied iteratively to stop at a local maximum point:

For a more detailed discussion of the standard mean shift procedure, see Comaniciu & Meer 
(2002).  

The standard mean shift procedure has been proven to reliably find local mode points, but a 
better method is needed in order to find the global mode, as is required here to determine the 
error signature.  In the context of eye movement error correction, a local mode point could 
potentially be the center of a small cluster formed by wrong disparities, and if the mean shift 
procedure stops at such a point instead of the global mode, it would generate a wrong error 
signature.  To combat this, we use the annealed mean shift algorithm, presented by Shen, Brooks 
& Hengel (2007), which finds the global mode reliably.

The annealed mean shift  procedure finds the global mode by applying multiple passes of the 
standard mean shift process with a sequence of decreasing bandwidths to gradually zoom in on 
the global mode.  Initially a very large bandwidth hM is used, which can be selected to cover all 
the data points.  Applying the standard mean shift procedure using this bandwidth would likely 
stop somewhere near the centroid because the large hM basically  treats every point equally  (or 
nearly equally if using the multivariate normal kernel).  Then the mean shift procedure is applied 
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Figure 1: Multi-bandwidth density estimate on 1D galaxy velocity data.
(left) Curves from outside to inside indicate the annealing process with
successively decreasing bandwidths. In this case, the optimal bandwidth
is h0 = 450. The evolution of the modes is clearly shown: with a multi-
bandwidth mean shift mode detection, it is possible to find the global max-
imum without being distracted by local modes. (right) Convergence posi-
tions at each bandwidth are marked with circles in the last curve. Note that
the unit of the vertical axis is arbitrary.

where KH(x) = |H|− 1
2 K(H− 1

2 x). Here K(·) is a ker-
nel function (or window) with a symmetric positive defi-
nite bandwidth matrix H ∈ IRd×d. A kernel function is
bounded with support satisfying the regularity constraints
as described in [8, 9]. For simplicity one usually assumes
an isotropic bandwidth which is proportional to the identity
matrix, i.e. H = h2I. Employing the profile definition, the
kernel density estimator becomes
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where k(·) is the profile of the kernel K(·) and ck is a nor-
malisation constant. The optimisation problem of seeking
the local modes is solved by setting the gradient equal to
zero. Thus we have
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and g(x) = −k′(x). Here k(·) is defined to be the shadow
of the profile g(·) [10], and mG(x) is the mean shift vector.
Clearly ∇̂fK(x) = 0 ! mG(x) = 0, and the incremental
iteration scheme is obtained immediately:
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1. Determine the set of values for hm, (m = M · · · 0)
(a.k.a. the annealing schedule).

2. Randomly select an initial starting location for the
first annealing run and get the convergence location of
f̂hM ,K(·), which is x̂(M), using mean shift.

3. for each m = M − 1,M − 2, · · · , 0, run mean shift
to get the convergence position x̂(m) with the initial
position x̂(m+1), i.e., the convergence position from
the previous bandwidth. x̂(0) is then the final global
mode.

Figure 2: The ANNEALEDMS algorithm.

3. Annealed Mean Shift

Let hm(m = M,M − 1, · · · , 0) be a monotonically de-
creasing sequence of bandwidths such that h0 is the op-
timal bandwidth for the considered data set and usually
hM % h0.4 A series of kernel density functions f̂hM ,K(·),
f̂hM−1,K(·), · · · , f̂h0,K(·) are applied to the sample data,
where the subscripts of f̂h,K(·) denote the bandwidth and
kernel type respectively.

Figure 1 illustrates a 1D example5, where M = 6. With
a large bandwidth, the function f̂hM ,K(·) is uni-modal,
merely representing the overall trend of the density func-
tion. Thus the starting point of the first annealing run does
not affect the mode detection.

The ANNEALEDMS algorithm is given in Figure 2.

3.1. Remarks

1. Apparently the annealing schedule is a trade off be-
tween efficiency and efficacy: slow annealing is more
likely to find a global maximum, but could also be pro-
hibitively expensive.

2. A justification of why ANNEALEDMS works is that
the number of modes of a kernel density estimator with
a Gaussian kernel is monotonically non-increasing
[22]. In order to convey convergence information,
the monotonicity of number of modes with respect to
bandwidths is compulsory. Note that the monotonicity
result only applies to the Gaussian kernel: compactly
supported kernels such as the Epanechnikov kernel
may not have this property. However, as pointed out
in [22], the lack of monotonicity happens only for rel-
atively very small bandwidths. The notion of a crit-
ical bandwidth6 for the popular kernels such as the

4There is a tremendous amount of literature on how to select the opti-
mal bandwidth in order to produce a minimum AMISE estimate (see, e.g.,
[20, 21].) In this work, we assume h0 can be obtained by existing tech-
niques.

5The 1D galaxy velocity data set is also used in [10].
6The smallest bandwidth above which the number of modes is mono-

tone.
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Figure 1: Multi-bandwidth density estimate on 1D galaxy velocity data.
(left) Curves from outside to inside indicate the annealing process with
successively decreasing bandwidths. In this case, the optimal bandwidth
is h0 = 450. The evolution of the modes is clearly shown: with a multi-
bandwidth mean shift mode detection, it is possible to find the global max-
imum without being distracted by local modes. (right) Convergence posi-
tions at each bandwidth are marked with circles in the last curve. Note that
the unit of the vertical axis is arbitrary.
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to get the convergence position x̂(m) with the initial
position x̂(m+1), i.e., the convergence position from
the previous bandwidth. x̂(0) is then the final global
mode.
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timal bandwidth for the considered data set and usually
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where the subscripts of f̂h,K(·) denote the bandwidth and
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Figure 1 illustrates a 1D example5, where M = 6. With
a large bandwidth, the function f̂hM ,K(·) is uni-modal,
merely representing the overall trend of the density func-
tion. Thus the starting point of the first annealing run does
not affect the mode detection.

The ANNEALEDMS algorithm is given in Figure 2.

3.1. Remarks

1. Apparently the annealing schedule is a trade off be-
tween efficiency and efficacy: slow annealing is more
likely to find a global maximum, but could also be pro-
hibitively expensive.

2. A justification of why ANNEALEDMS works is that
the number of modes of a kernel density estimator with
a Gaussian kernel is monotonically non-increasing
[22]. In order to convey convergence information,
the monotonicity of number of modes with respect to
bandwidths is compulsory. Note that the monotonicity
result only applies to the Gaussian kernel: compactly
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may not have this property. However, as pointed out
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4There is a tremendous amount of literature on how to select the opti-
mal bandwidth in order to produce a minimum AMISE estimate (see, e.g.,
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Figure 1: Multi-bandwidth density estimate on 1D galaxy velocity data.
(left) Curves from outside to inside indicate the annealing process with
successively decreasing bandwidths. In this case, the optimal bandwidth
is h0 = 450. The evolution of the modes is clearly shown: with a multi-
bandwidth mean shift mode detection, it is possible to find the global max-
imum without being distracted by local modes. (right) Convergence posi-
tions at each bandwidth are marked with circles in the last curve. Note that
the unit of the vertical axis is arbitrary.

where KH(x) = |H|− 1
2 K(H− 1

2 x). Here K(·) is a ker-
nel function (or window) with a symmetric positive defi-
nite bandwidth matrix H ∈ IRd×d. A kernel function is
bounded with support satisfying the regularity constraints
as described in [8, 9]. For simplicity one usually assumes
an isotropic bandwidth which is proportional to the identity
matrix, i.e. H = h2I. Employing the profile definition, the
kernel density estimator becomes

f̂K(x) =
ck

nhd

n∑

i=1

k

(∥∥∥∥
x − xi

h

∥∥∥∥
2
)

, (2)

where k(·) is the profile of the kernel K(·) and ck is a nor-
malisation constant. The optimisation problem of seeking
the local modes is solved by setting the gradient equal to
zero. Thus we have

∇̂fK(x)def=∇f̂K(x) =
2ck

h2cg
f̂G(x) · mG(x) = 0, (3)

where

f̂G(x) =
cg

nhd

n∑

i=1

g

(∥∥∥∥
x − xi

h

∥∥∥∥
2
)

, (4)

mG(x) =

∑n
i=1 xig

(∥∥x−xi
h

∥∥2
)

∑n
i=1 g

(∥∥x−xi
h

∥∥2
) − x, (5)

and g(x) = −k′(x). Here k(·) is defined to be the shadow
of the profile g(·) [10], and mG(x) is the mean shift vector.
Clearly ∇̂fK(x) = 0 ! mG(x) = 0, and the incremental
iteration scheme is obtained immediately:
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1. Determine the set of values for hm, (m = M · · · 0)
(a.k.a. the annealing schedule).

2. Randomly select an initial starting location for the
first annealing run and get the convergence location of
f̂hM ,K(·), which is x̂(M), using mean shift.

3. for each m = M − 1, M − 2, · · · , 0, run mean shift
to get the convergence position x̂(m) with the initial
position x̂(m+1), i.e., the convergence position from
the previous bandwidth. x̂(0) is then the final global
mode.

Figure 2: The ANNEALEDMS algorithm.

3. Annealed Mean Shift

Let hm(m = M,M − 1, · · · , 0) be a monotonically de-
creasing sequence of bandwidths such that h0 is the op-
timal bandwidth for the considered data set and usually
hM % h0.4 A series of kernel density functions f̂hM ,K(·),
f̂hM−1,K(·), · · · , f̂h0,K(·) are applied to the sample data,
where the subscripts of f̂h,K(·) denote the bandwidth and
kernel type respectively.

Figure 1 illustrates a 1D example5, where M = 6. With
a large bandwidth, the function f̂hM ,K(·) is uni-modal,
merely representing the overall trend of the density func-
tion. Thus the starting point of the first annealing run does
not affect the mode detection.

The ANNEALEDMS algorithm is given in Figure 2.

3.1. Remarks

1. Apparently the annealing schedule is a trade off be-
tween efficiency and efficacy: slow annealing is more
likely to find a global maximum, but could also be pro-
hibitively expensive.

2. A justification of why ANNEALEDMS works is that
the number of modes of a kernel density estimator with
a Gaussian kernel is monotonically non-increasing
[22]. In order to convey convergence information,
the monotonicity of number of modes with respect to
bandwidths is compulsory. Note that the monotonicity
result only applies to the Gaussian kernel: compactly
supported kernels such as the Epanechnikov kernel
may not have this property. However, as pointed out
in [22], the lack of monotonicity happens only for rel-
atively very small bandwidths. The notion of a crit-
ical bandwidth6 for the popular kernels such as the

4There is a tremendous amount of literature on how to select the opti-
mal bandwidth in order to produce a minimum AMISE estimate (see, e.g.,
[20, 21].) In this work, we assume h0 can be obtained by existing tech-
niques.

5The 1D galaxy velocity data set is also used in [10].
6The smallest bandwidth above which the number of modes is mono-

tone.

-18-



again but with a smaller bandwidth.  This time, instead of starting from a random point, the 
procedure starts from the local mode point obtained from the last mean shift  process.  Because in 
many cases, the local mode point that is obtained by using a large bandwidth is very close to the 
global mode, starting from this local mode would allow the procedure to at least get closer to the 
global mode.  By  iterating the above procedure many times while decreasing the bandwidth, the 
method can generate an increasingly accurate estimate of the global mode.  Shen, Brooks and 
Hengel have applied this algorithm to the problems of visual tracking and object localization.  
They  empirically showed that the algorithm can reliably find the true global mode even when the 
starting position of mean shift  is far from the global maximum.  The formal process is defined in 
Table 1.

In order to apply the annealed mean shift algorithm to eye movement data error correction, the 
parameters need to be set appropriately.  The first and hence the largest bandwidth hM should be 
set as the the maximum distance between any two disparities such that a circle with this 
bandwidth can cover all the disparities regardless of where the center of the circle is on the 
disparity graph.  In this way, the initial pass of the mean shift procedure should stop somewhere 
near the centroid which would be close to the global mode.  The smallest bandwidth should be 
set as the estimated variation in systematic errors (the radius of the cluster) because, in the final 
pass of the mean shift  procedure, only good estimation of the cluster size would lead to correct 
estimation of the cluster center.  For the NRL dual task eye tracking data, the smallest bandwidth 
is set to 1º of visual angle for all sessions.  For the number of iterations M, it  is certainly better to 
run more iterations so that the procedure can smoothly converge to the global mode.  For the 
NRL dual task experiment, 10 iterations were run for each session.

To summarize, the error correction method has two steps:  First, use the nearest-object fixation 
assignment method to generate a large number of mappings and disparities; second, use the 
annealed mean shift procedure to find the global mode from the disparities.  The vector from the 
origin to the global mode is the signature of the systematic error.  The eye movement data is then 
shifted toward their true locations by subtracting the error signature.  The next section presents 
the validation of the technique in the context of NRL dual task experiment.

1. Determine the set of values for hm, (m = M ··· 0) (a.k.a. the annealing schedule).
2. Randomly select  an initial starting location for the first annealing run and get the convergence 
location of 
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Figure 1: Multi-bandwidth density estimate on 1D galaxy velocity data.
(left) Curves from outside to inside indicate the annealing process with
successively decreasing bandwidths. In this case, the optimal bandwidth
is h0 = 450. The evolution of the modes is clearly shown: with a multi-
bandwidth mean shift mode detection, it is possible to find the global max-
imum without being distracted by local modes. (right) Convergence posi-
tions at each bandwidth are marked with circles in the last curve. Note that
the unit of the vertical axis is arbitrary.

where KH(x) = |H|− 1
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2 x). Here K(·) is a ker-
nel function (or window) with a symmetric positive defi-
nite bandwidth matrix H ∈ IRd×d. A kernel function is
bounded with support satisfying the regularity constraints
as described in [8, 9]. For simplicity one usually assumes
an isotropic bandwidth which is proportional to the identity
matrix, i.e. H = h2I. Employing the profile definition, the
kernel density estimator becomes
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where k(·) is the profile of the kernel K(·) and ck is a nor-
malisation constant. The optimisation problem of seeking
the local modes is solved by setting the gradient equal to
zero. Thus we have
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and g(x) = −k′(x). Here k(·) is defined to be the shadow
of the profile g(·) [10], and mG(x) is the mean shift vector.
Clearly ∇̂fK(x) = 0 ! mG(x) = 0, and the incremental
iteration scheme is obtained immediately:
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1. Determine the set of values for hm, (m = M · · · 0)
(a.k.a. the annealing schedule).

2. Randomly select an initial starting location for the
first annealing run and get the convergence location of
f̂hM ,K(·), which is x̂(M), using mean shift.

3. for each m = M − 1, M − 2, · · · , 0, run mean shift
to get the convergence position x̂(m) with the initial
position x̂(m+1), i.e., the convergence position from
the previous bandwidth. x̂(0) is then the final global
mode.

Figure 2: The ANNEALEDMS algorithm.

3. Annealed Mean Shift

Let hm(m = M,M − 1, · · · , 0) be a monotonically de-
creasing sequence of bandwidths such that h0 is the op-
timal bandwidth for the considered data set and usually
hM % h0.4 A series of kernel density functions f̂hM ,K(·),
f̂hM−1,K(·), · · · , f̂h0,K(·) are applied to the sample data,
where the subscripts of f̂h,K(·) denote the bandwidth and
kernel type respectively.

Figure 1 illustrates a 1D example5, where M = 6. With
a large bandwidth, the function f̂hM ,K(·) is uni-modal,
merely representing the overall trend of the density func-
tion. Thus the starting point of the first annealing run does
not affect the mode detection.

The ANNEALEDMS algorithm is given in Figure 2.

3.1. Remarks

1. Apparently the annealing schedule is a trade off be-
tween efficiency and efficacy: slow annealing is more
likely to find a global maximum, but could also be pro-
hibitively expensive.

2. A justification of why ANNEALEDMS works is that
the number of modes of a kernel density estimator with
a Gaussian kernel is monotonically non-increasing
[22]. In order to convey convergence information,
the monotonicity of number of modes with respect to
bandwidths is compulsory. Note that the monotonicity
result only applies to the Gaussian kernel: compactly
supported kernels such as the Epanechnikov kernel
may not have this property. However, as pointed out
in [22], the lack of monotonicity happens only for rel-
atively very small bandwidths. The notion of a crit-
ical bandwidth6 for the popular kernels such as the

4There is a tremendous amount of literature on how to select the opti-
mal bandwidth in order to produce a minimum AMISE estimate (see, e.g.,
[20, 21].) In this work, we assume h0 can be obtained by existing tech-
niques.

5The 1D galaxy velocity data set is also used in [10].
6The smallest bandwidth above which the number of modes is mono-

tone.

, which is 

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Gaussian kernel, bandwidth:3800,3200,2600,2000,1300,800,450.

D
en

si
ty

 e
st

im
at

e 
(a

rb
itr

ar
y 

un
its

)

x
0 2000 4000 6000 8000 10000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Gaussian kernel, bandwidth:450 (h
0
)

D
en

si
ty

 e
st

im
at

e 
(a

rb
itr

ar
y 

un
its

)

x

Figure 1: Multi-bandwidth density estimate on 1D galaxy velocity data.
(left) Curves from outside to inside indicate the annealing process with
successively decreasing bandwidths. In this case, the optimal bandwidth
is h0 = 450. The evolution of the modes is clearly shown: with a multi-
bandwidth mean shift mode detection, it is possible to find the global max-
imum without being distracted by local modes. (right) Convergence posi-
tions at each bandwidth are marked with circles in the last curve. Note that
the unit of the vertical axis is arbitrary.

where KH(x) = |H|− 1
2 K(H− 1

2 x). Here K(·) is a ker-
nel function (or window) with a symmetric positive defi-
nite bandwidth matrix H ∈ IRd×d. A kernel function is
bounded with support satisfying the regularity constraints
as described in [8, 9]. For simplicity one usually assumes
an isotropic bandwidth which is proportional to the identity
matrix, i.e. H = h2I. Employing the profile definition, the
kernel density estimator becomes
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where k(·) is the profile of the kernel K(·) and ck is a nor-
malisation constant. The optimisation problem of seeking
the local modes is solved by setting the gradient equal to
zero. Thus we have

∇̂fK(x)def=∇f̂K(x) =
2ck
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f̂G(x) · mG(x) = 0, (3)

where
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and g(x) = −k′(x). Here k(·) is defined to be the shadow
of the profile g(·) [10], and mG(x) is the mean shift vector.
Clearly ∇̂fK(x) = 0 ! mG(x) = 0, and the incremental
iteration scheme is obtained immediately:

x ←
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1. Determine the set of values for hm, (m = M · · · 0)
(a.k.a. the annealing schedule).

2. Randomly select an initial starting location for the
first annealing run and get the convergence location of
f̂hM ,K(·), which is x̂(M), using mean shift.

3. for each m = M − 1, M − 2, · · · , 0, run mean shift
to get the convergence position x̂(m) with the initial
position x̂(m+1), i.e., the convergence position from
the previous bandwidth. x̂(0) is then the final global
mode.

Figure 2: The ANNEALEDMS algorithm.

3. Annealed Mean Shift

Let hm(m = M,M − 1, · · · , 0) be a monotonically de-
creasing sequence of bandwidths such that h0 is the op-
timal bandwidth for the considered data set and usually
hM % h0.4 A series of kernel density functions f̂hM ,K(·),
f̂hM−1,K(·), · · · , f̂h0,K(·) are applied to the sample data,
where the subscripts of f̂h,K(·) denote the bandwidth and
kernel type respectively.

Figure 1 illustrates a 1D example5, where M = 6. With
a large bandwidth, the function f̂hM ,K(·) is uni-modal,
merely representing the overall trend of the density func-
tion. Thus the starting point of the first annealing run does
not affect the mode detection.

The ANNEALEDMS algorithm is given in Figure 2.

3.1. Remarks

1. Apparently the annealing schedule is a trade off be-
tween efficiency and efficacy: slow annealing is more
likely to find a global maximum, but could also be pro-
hibitively expensive.

2. A justification of why ANNEALEDMS works is that
the number of modes of a kernel density estimator with
a Gaussian kernel is monotonically non-increasing
[22]. In order to convey convergence information,
the monotonicity of number of modes with respect to
bandwidths is compulsory. Note that the monotonicity
result only applies to the Gaussian kernel: compactly
supported kernels such as the Epanechnikov kernel
may not have this property. However, as pointed out
in [22], the lack of monotonicity happens only for rel-
atively very small bandwidths. The notion of a crit-
ical bandwidth6 for the popular kernels such as the

4There is a tremendous amount of literature on how to select the opti-
mal bandwidth in order to produce a minimum AMISE estimate (see, e.g.,
[20, 21].) In this work, we assume h0 can be obtained by existing tech-
niques.

5The 1D galaxy velocity data set is also used in [10].
6The smallest bandwidth above which the number of modes is mono-

tone.
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Figure 1: Multi-bandwidth density estimate on 1D galaxy velocity data.
(left) Curves from outside to inside indicate the annealing process with
successively decreasing bandwidths. In this case, the optimal bandwidth
is h0 = 450. The evolution of the modes is clearly shown: with a multi-
bandwidth mean shift mode detection, it is possible to find the global max-
imum without being distracted by local modes. (right) Convergence posi-
tions at each bandwidth are marked with circles in the last curve. Note that
the unit of the vertical axis is arbitrary.

where KH(x) = |H|− 1
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2 x). Here K(·) is a ker-
nel function (or window) with a symmetric positive defi-
nite bandwidth matrix H ∈ IRd×d. A kernel function is
bounded with support satisfying the regularity constraints
as described in [8, 9]. For simplicity one usually assumes
an isotropic bandwidth which is proportional to the identity
matrix, i.e. H = h2I. Employing the profile definition, the
kernel density estimator becomes
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where k(·) is the profile of the kernel K(·) and ck is a nor-
malisation constant. The optimisation problem of seeking
the local modes is solved by setting the gradient equal to
zero. Thus we have
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and g(x) = −k′(x). Here k(·) is defined to be the shadow
of the profile g(·) [10], and mG(x) is the mean shift vector.
Clearly ∇̂fK(x) = 0 ! mG(x) = 0, and the incremental
iteration scheme is obtained immediately:
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1. Determine the set of values for hm, (m = M · · · 0)
(a.k.a. the annealing schedule).

2. Randomly select an initial starting location for the
first annealing run and get the convergence location of
f̂hM ,K(·), which is x̂(M), using mean shift.

3. for each m = M − 1,M − 2, · · · , 0, run mean shift
to get the convergence position x̂(m) with the initial
position x̂(m+1), i.e., the convergence position from
the previous bandwidth. x̂(0) is then the final global
mode.

Figure 2: The ANNEALEDMS algorithm.

3. Annealed Mean Shift

Let hm(m = M,M − 1, · · · , 0) be a monotonically de-
creasing sequence of bandwidths such that h0 is the op-
timal bandwidth for the considered data set and usually
hM % h0.4 A series of kernel density functions f̂hM ,K(·),
f̂hM−1,K(·), · · · , f̂h0,K(·) are applied to the sample data,
where the subscripts of f̂h,K(·) denote the bandwidth and
kernel type respectively.

Figure 1 illustrates a 1D example5, where M = 6. With
a large bandwidth, the function f̂hM ,K(·) is uni-modal,
merely representing the overall trend of the density func-
tion. Thus the starting point of the first annealing run does
not affect the mode detection.

The ANNEALEDMS algorithm is given in Figure 2.

3.1. Remarks

1. Apparently the annealing schedule is a trade off be-
tween efficiency and efficacy: slow annealing is more
likely to find a global maximum, but could also be pro-
hibitively expensive.

2. A justification of why ANNEALEDMS works is that
the number of modes of a kernel density estimator with
a Gaussian kernel is monotonically non-increasing
[22]. In order to convey convergence information,
the monotonicity of number of modes with respect to
bandwidths is compulsory. Note that the monotonicity
result only applies to the Gaussian kernel: compactly
supported kernels such as the Epanechnikov kernel
may not have this property. However, as pointed out
in [22], the lack of monotonicity happens only for rel-
atively very small bandwidths. The notion of a crit-
ical bandwidth6 for the popular kernels such as the

4There is a tremendous amount of literature on how to select the opti-
mal bandwidth in order to produce a minimum AMISE estimate (see, e.g.,
[20, 21].) In this work, we assume h0 can be obtained by existing tech-
niques.

5The 1D galaxy velocity data set is also used in [10].
6The smallest bandwidth above which the number of modes is mono-

tone.
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Figure 1: Multi-bandwidth density estimate on 1D galaxy velocity data.
(left) Curves from outside to inside indicate the annealing process with
successively decreasing bandwidths. In this case, the optimal bandwidth
is h0 = 450. The evolution of the modes is clearly shown: with a multi-
bandwidth mean shift mode detection, it is possible to find the global max-
imum without being distracted by local modes. (right) Convergence posi-
tions at each bandwidth are marked with circles in the last curve. Note that
the unit of the vertical axis is arbitrary.
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2 x). Here K(·) is a ker-
nel function (or window) with a symmetric positive defi-
nite bandwidth matrix H ∈ IRd×d. A kernel function is
bounded with support satisfying the regularity constraints
as described in [8, 9]. For simplicity one usually assumes
an isotropic bandwidth which is proportional to the identity
matrix, i.e. H = h2I. Employing the profile definition, the
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where k(·) is the profile of the kernel K(·) and ck is a nor-
malisation constant. The optimisation problem of seeking
the local modes is solved by setting the gradient equal to
zero. Thus we have
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and g(x) = −k′(x). Here k(·) is defined to be the shadow
of the profile g(·) [10], and mG(x) is the mean shift vector.
Clearly ∇̂fK(x) = 0 ! mG(x) = 0, and the incremental
iteration scheme is obtained immediately:
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1. Determine the set of values for hm, (m = M · · · 0)
(a.k.a. the annealing schedule).

2. Randomly select an initial starting location for the
first annealing run and get the convergence location of
f̂hM ,K(·), which is x̂(M), using mean shift.

3. for each m = M − 1,M − 2, · · · , 0, run mean shift
to get the convergence position x̂(m) with the initial
position x̂(m+1), i.e., the convergence position from
the previous bandwidth. x̂(0) is then the final global
mode.

Figure 2: The ANNEALEDMS algorithm.

3. Annealed Mean Shift

Let hm(m = M,M − 1, · · · , 0) be a monotonically de-
creasing sequence of bandwidths such that h0 is the op-
timal bandwidth for the considered data set and usually
hM % h0.4 A series of kernel density functions f̂hM ,K(·),
f̂hM−1,K(·), · · · , f̂h0,K(·) are applied to the sample data,
where the subscripts of f̂h,K(·) denote the bandwidth and
kernel type respectively.

Figure 1 illustrates a 1D example5, where M = 6. With
a large bandwidth, the function f̂hM ,K(·) is uni-modal,
merely representing the overall trend of the density func-
tion. Thus the starting point of the first annealing run does
not affect the mode detection.

The ANNEALEDMS algorithm is given in Figure 2.

3.1. Remarks

1. Apparently the annealing schedule is a trade off be-
tween efficiency and efficacy: slow annealing is more
likely to find a global maximum, but could also be pro-
hibitively expensive.

2. A justification of why ANNEALEDMS works is that
the number of modes of a kernel density estimator with
a Gaussian kernel is monotonically non-increasing
[22]. In order to convey convergence information,
the monotonicity of number of modes with respect to
bandwidths is compulsory. Note that the monotonicity
result only applies to the Gaussian kernel: compactly
supported kernels such as the Epanechnikov kernel
may not have this property. However, as pointed out
in [22], the lack of monotonicity happens only for rel-
atively very small bandwidths. The notion of a crit-
ical bandwidth6 for the popular kernels such as the

4There is a tremendous amount of literature on how to select the opti-
mal bandwidth in order to produce a minimum AMISE estimate (see, e.g.,
[20, 21].) In this work, we assume h0 can be obtained by existing tech-
niques.

5The 1D galaxy velocity data set is also used in [10].
6The smallest bandwidth above which the number of modes is mono-

tone.
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Figure 1: Multi-bandwidth density estimate on 1D galaxy velocity data.
(left) Curves from outside to inside indicate the annealing process with
successively decreasing bandwidths. In this case, the optimal bandwidth
is h0 = 450. The evolution of the modes is clearly shown: with a multi-
bandwidth mean shift mode detection, it is possible to find the global max-
imum without being distracted by local modes. (right) Convergence posi-
tions at each bandwidth are marked with circles in the last curve. Note that
the unit of the vertical axis is arbitrary.

where KH(x) = |H|− 1
2 K(H− 1

2 x). Here K(·) is a ker-
nel function (or window) with a symmetric positive defi-
nite bandwidth matrix H ∈ IRd×d. A kernel function is
bounded with support satisfying the regularity constraints
as described in [8, 9]. For simplicity one usually assumes
an isotropic bandwidth which is proportional to the identity
matrix, i.e. H = h2I. Employing the profile definition, the
kernel density estimator becomes

f̂K(x) =
ck

nhd

n∑

i=1

k

(∥∥∥∥
x − xi

h

∥∥∥∥
2
)

, (2)

where k(·) is the profile of the kernel K(·) and ck is a nor-
malisation constant. The optimisation problem of seeking
the local modes is solved by setting the gradient equal to
zero. Thus we have
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and g(x) = −k′(x). Here k(·) is defined to be the shadow
of the profile g(·) [10], and mG(x) is the mean shift vector.
Clearly ∇̂fK(x) = 0 ! mG(x) = 0, and the incremental
iteration scheme is obtained immediately:
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1. Determine the set of values for hm, (m = M · · · 0)
(a.k.a. the annealing schedule).

2. Randomly select an initial starting location for the
first annealing run and get the convergence location of
f̂hM ,K(·), which is x̂(M), using mean shift.

3. for each m = M − 1,M − 2, · · · , 0, run mean shift
to get the convergence position x̂(m) with the initial
position x̂(m+1), i.e., the convergence position from
the previous bandwidth. x̂(0) is then the final global
mode.

Figure 2: The ANNEALEDMS algorithm.

3. Annealed Mean Shift

Let hm(m = M,M − 1, · · · , 0) be a monotonically de-
creasing sequence of bandwidths such that h0 is the op-
timal bandwidth for the considered data set and usually
hM % h0.4 A series of kernel density functions f̂hM ,K(·),
f̂hM−1,K(·), · · · , f̂h0,K(·) are applied to the sample data,
where the subscripts of f̂h,K(·) denote the bandwidth and
kernel type respectively.

Figure 1 illustrates a 1D example5, where M = 6. With
a large bandwidth, the function f̂hM ,K(·) is uni-modal,
merely representing the overall trend of the density func-
tion. Thus the starting point of the first annealing run does
not affect the mode detection.

The ANNEALEDMS algorithm is given in Figure 2.

3.1. Remarks

1. Apparently the annealing schedule is a trade off be-
tween efficiency and efficacy: slow annealing is more
likely to find a global maximum, but could also be pro-
hibitively expensive.

2. A justification of why ANNEALEDMS works is that
the number of modes of a kernel density estimator with
a Gaussian kernel is monotonically non-increasing
[22]. In order to convey convergence information,
the monotonicity of number of modes with respect to
bandwidths is compulsory. Note that the monotonicity
result only applies to the Gaussian kernel: compactly
supported kernels such as the Epanechnikov kernel
may not have this property. However, as pointed out
in [22], the lack of monotonicity happens only for rel-
atively very small bandwidths. The notion of a crit-
ical bandwidth6 for the popular kernels such as the

4There is a tremendous amount of literature on how to select the opti-
mal bandwidth in order to produce a minimum AMISE estimate (see, e.g.,
[20, 21].) In this work, we assume h0 can be obtained by existing tech-
niques.

5The 1D galaxy velocity data set is also used in [10].
6The smallest bandwidth above which the number of modes is mono-

tone.

 is then 
the final global mode.

Table 1:  The AnnealedMS algorithm.  From Shen, Brooks & Hengel (2007).

-19-



Validation of The Method
The error correction method discussed above was applied to the eye movement data on the 
classification task display of the NRL dual task experiment.  Specifically, for each session, the 
global mode of the disparities was found using the annealed mean shift procedure, and the eye 
movement data across the whole classification task display were shifted based on the error 
signature—the vector from (0, 0) to the global mode.  This section demonstrates the 
effectiveness of the error correction method, first directly and qualitatively  with visualizations 
that illustrate the improvement, and second with quantitative and objective measures of the 
improvement.

Visualizations of Corrected Data

The visualizations of eye movement data are compared before and after error correction using 
VizFix.  Figure 8 shows such an example.  The screenshot is taken at a single point  in time so 
that the moving blips are shown as still images.  The small circles represent the fixation from the 
raw data (white) and the same fixation after error correction (purple).  In this wave of the 
session, there are two blips to be classified—a black diamond and a red oval.  (The digits on the 
blips are not shown here.)  Since the oval-shaped blip  just changed from black to red, it is ready 
to be classified, and the participant is motivated to look at it immediately.  Thus, the fixation 
location is more believable after error correction than before.  Further, without error correction, it 
is hard to tell on which blip the uncorrected fixation (white circle) landed because it  is roughly 
equidistant from both blips.

The visualizations of the entire wave further suggests that the error correction method is 
effective.  Figure 9 (top frame) shows the wave containing the blips shown in Figure 8.  All of 

Figure 8.  The locations of a fixation before error correction (white 
circle) and after error correction (purple circle on the tip of the red 
blip).  A gray circle with the radius of 1º of visual angle is drawn 
around each blip.  The solid arrow shows the error signature applied 
for this session.  The error correction procedure shifted the fixation 
horizontally by  0.64º, and vertically by 1.83º.  The location of the 
purple circle is more believable because it is on an active blip.
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the uncorrected fixations (white circles) are shifted to the new locations (purple circles) by the 
same error correction vector.  Although the uncorrected fixations are close to the white blips, 
they  are unlikely  intended for them for two reasons:  First, in the NRL dual task experiment, 
there is no benefit to look at the white blips because they have already been classified; second, at 
the time the fixations occurred, the blips have not yet  changed to white.  The summary 
visualization cannot show the temporal dimension of the wave, but after examining the playback 
of the wave, these uncorrected fixations were found to occur at the same time when the blips 
were red, yellow or green, but were just a little far from them.  Hence, the locations of the 
corrected fixations are more likely.  The same pattern occurred in Figure 9 (bottom frame), but 
the effect is more prominent: The uncorrected fixations are far from any blip location, whereas 
the corrected fixations are all near green or yellow icons.  Thus, all fixations are shifted to more 
believable locations—the locations of the red, yellow, or green icons, which suggests that the 
post error correction worked effectively.  

Figure 9.  Summary visualizations of two waves for the eye movement data before 
(white circles) and after (purple circles) error correction.  The top frame shows two blips 
classified by P11 (Participant 11, Day 3, Session 2, Wave 4).  The bottom frame shows 
four blips classified by P20 (Day 3, Session 2, Wave 11).  The locations of the moving 
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blips are shown as a series of icons.  For each sampled location, a circle with the radius of 
1º of visual angle is shown around it.  As can be seen, each blip  started as black; changed 
to yellow, red or green as it moving down; and then changed to white after it was 
classified.  Based on task constraints, most of the fixations should be intended to the 
yellow, red or green sampled locations.  The arrows represent error signatures.  (The 
purple and white lines going off the right edge are eye movements to or from the tracking 
display.)

The visualizations of forty-seven of the forty-eight sessions confirmed the effectiveness of the 
error correction method.  Figure 10, however, shows a wave from the odd forty-eighth session in 
which the error correction actually  increased systematic error.  The error correction reduced the 
error for Wave 11 (shown in Figure 9 bottom frame), but increased the error for Wave 1 (Figure 
10) from the same session.  In Figure 10, the uncorrected fixations are closer to the green, yellow 
and red icons, whereas the locations of the corrected fixations are clearly  wrong.  The fact that 
the error correction only works for the later part of the session suggests that systematic error 
patterns changed at some point in time during the session.  The error signature is very small or 
nonexistent at the beginning of the session, but at some point increased to roughly  0.5º horizontal 
and 2.0º vertical.  It is possible to extend the error correction method to error signatures that 
change over time; the solution is discussed later in Possible Extensions.

Figure 10.  The summary  visualization of Wave 1 of the same session as 
shown in Figure 9 (bottom frame).  Given, task constraints, the raw 
fixations (white circles) are more probable than the corrected fixations 
(purple circles).  The same error signature as in Figure 9 (bottom) is 
used for this wave.  In this one out of the forty-eight sessions, the 
corrected data was worse than the raw data.
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Objective Validation

The above visualizations help to show the effect of post hoc error correction intuitively, but 
quantitative and objective validation is needed.  The effect of the error correction method is 
measured in two ways: (a) the mean distance between fixations and their intended targets and (b) 
the number of incorrect mappings.  The validation that follows demonstrates that the error 
correction method is effective and robust in terms of both two measures.

Ground Truth Mappings

To acquire the above two measurements— the mean distance between fixations and their 
intended targets and the number of incorrect mappings—it is necessary to know which fixation-
target mappings are truly  correct.  In other words, it would be useful to know the ground truth of 
exactly  where people were looking.  It turns out that, based on careful task analysis, it is possible 
to identify ground truth mappings for a subset of the fixations in this experiment.  Several 
constraints are established regarding the temporal relation between a fixation and its target blip, 
the overall data quality and the circumstances when the blip is fixated, and these constraints 
(detailed in the Appendix) can be used to programmatically identify the mappings.

It might seem that, if ground truth mappings can be found directly, there is no need for the mean 
shift error correction technique.  However, the way that the ground truth mappings are identified 
(a) requires a careful task analysis of this specific experiment, and (b) can only find the 
mappings for a small subset of all fixations (for some sessions of the NRL dual task experiment, 
the program did not find).  Whereas the mean shift error correction method can correct the entire 
set of eye tracking data of any experiment.  As will be seen below, a partial set of ground truth 
are sufficient to evaluate the error correction method.

Ground truth mappings were identified for 23% of the fixations on the classification task display.  
Specifically, 1237 ground truth mappings out of 5426 fixations have been found in 42 sessions. 
Only the data from Day 3 were used in the evaluation (see the Appendix for the reason of this 
restriction), and 6 out of 48 session were discarded because no ground truth mappings were 
found for them. 

Comparison to Corrected Data

The error correction method can reduce systematic error down to nearly 0º.  The decrease in the 
systematic error can be examined by comparing the disparities of the correct mappings in the 
uncorrected data with those in the corrected data.  Because the disparities of different sessions 
may have different  directions, taking their average directly  would perhaps cancel out some 
disparities and is thus not  an appropriate measure.  A more effective measure is to only consider 
the magnitude of disparity.  In other words, the absolute distance between a fixation and its 
mapped object.  The average magnitude of the disparities across 42 sessions is 1º of visual angle 
for uncorrected data, and 0.5º of visual angle for corrected data.  The 0.5º average magnitude of 
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the disparities in the corrected data might be caused by the normal variation in the absolute 
distance between a fixation and a target object, considering that humans’ foveal vision is about 1º 
of visual angle.  The remaining 0.5º deviation in the uncorrected data, however, is likely to be 
caused by the eye tracking systematic error, and they are removed after applying the mean shift 
error correction method.  

Figure 11 and 12 illustrate the horizontal and vertical components of the disparities in the 
uncorrected and corrected data.  Only forty-two of the forty-eight sessions are shown because six 
yielded no ground truth mappings.  Similar to the number of wrong mappings, the size of the 
disparities also varies dramatically  in the raw data.  As shown in Figure 11, many  of the median 
deviations, especially the vertical deviations, reached 1º to 2º of visual angle.  However, as can 
be seen in Figure 12, the median deviations of the corrected data align at 0º (except for the last 
session in which the error signature changed over time; this session will be addressed below).  
The median deviations of over two thirds of sessions in the corrected data are now within 0.1º, 
and all (except for that of the odd forty-second session) are within 0.2º.  Compared to the 
uncorrected data, the median deviations were reduced by  more than 0.5º for half of the sessions, 
and they were reduced by more than 1º for thirty percent of sessions.  This result demonstrates 
that no matter how large the systematic error, as long as the error signature did not change over 
time, the method successfully removes nearly all error.  
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Figure 11.  The horizontal and vertical components of the disparity between the 
uncorrected fixations and their intended locations as determined by ground truth 
mappings.  Each box shows the quartiles of the deviation in each session.  The median 
deviation is marked by a line in the box.  The black dots mark the outliers.
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Figure 12.  The horizontal and vertical components of the disparity  between the error-
corrected fixations and their intended locations as determined by ground truth mappings.

The ground truth mappings are also compared against the mappings that were generated by 
applying the nearest-object fixation-assignment method to the uncorrected and corrected data set, 
and the result shows that the mappings from the corrected data set  are more accurate.  
Specifically, for the uncorrected data, 97% of the fixations in the ground truth mappings were 
assigned to their intended targets.  Whereas for the data after error correction, the percentage of 
correct mappings increased to 99.4%.  Thus, for the fixations of the ground truth mappings, the 
error correction brought 2.4% accuracy improvement in terms of fixation assignments.  Note that 
in this experiment, the accuracy of the uncorrected data seems already high.  This is partly due to 
the effort in the instrument setup to keep the systematic error as small as possible.  It is also 
because the distance between the visual stimuli was kept relatively large (2º in the blips’ start 
positions), which makes this experiment more resistant to small systematic error (less than 1º).  
Such design details might not be feasible in other studies, and hence the effect of the error 
correction method would be greater for them.

Although there are only a few wrong mappings in this experiment (3% in the uncorrected data), 
post error correction is still critical for the subsequent data analysis.  This is because that  the 
number of wrong mappings varied dramatically  for different sessions; and for some sessions, 
they  account for much more than 3%.  For example, 15% of the mappings are wrong for the data 
of one participant.  This high error rate is likely  to influence the data analysis for this participant.  
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Moreover, the difference in the number of wrong mappings for different participants might create 
illusory individual difference in the analysis.

Both the eye movement visualizations and the quantitative measures confirm the effectiveness of 
the error correction method.  When the error signature stay constant within a session, the method 
works effectively and reduces the systematic error down to nearly 0º.  In the following section, 
we show how to extend the method to incorporate dynamic error signatures.

Possible Extensions
This section presents two possible ways to extend the error correction method to handle 
situations in which systematic error can change (a) over time and (b) across regions.  Each 
extension is applied as follows:  (1) Run the core error correction procedure for all fixations to 
remove the majority  of the systematic error; (2) group fixations based on time or regions; and (3) 
apply  the error correction method again for each group.  It is necessary to first run the core 
method because it  will remove a large part of the systematic error which will allow the extension 
to start with a better set of initial mappings.

Error Signatures Over Time

A key step for removing systematic error that changes over time is to identify  at what point in 
time the error signature changed.  One way is to go through eye movement visualizations such as 
shown in Figure 9 and 10 to check whether all corrected fixation locations are believable.  For 
instance, we used VizFix to examine the problematic session (P20, Day 3, Session 2) and found 
that the distance between corrected fixations and possible targets increased for the first three 
waves of that session.  Examining eye movement visualizations is an effective way for 
researchers to directly see the patterns of the data, but it can be time-consuming when the data 
set is very large.  One challenge of analyzing eye movement data is to develop  visualization and 
analysis techniques so that such trends can be found quickly and easily.

Figure 13(a) shows a variant of the disparity  graph that can be used to identify the shifting of the 
error signature over time.  The figure incorporates the temporal order of the disparities shown in 
the disparity  plot alongside in Figure 13(b).  As can be seen, after applying the initial error 
correction method for all fixations, most of the disparities are now centered at (0, 0).  That  is, 
most of the fixations are now within 1º to their intended targets.  Some disparities are relatively 
far from the cluster, such as those below y = –100.  From Figure 13(b), it  is difficult to determine 
whether the disparities below y = –100 correspond to another error signature or they merely 
come from incorrect mappings.  However, from Figure 13(a), we can see that these disparities 
are adjacent to each other not only in space, but also in time.  If they are from incorrect 
mappings, they would occur randomly from time to time instead of all happening within a short 
time period.  Thus, they are more likely  to be caused by  a different error signature for a short 
span of time. 

-26-



After identifying the point in time at which systematic error changed, the fixations can be 
divided by the time-shift points, and the error correction procedure can be applied again for each 
group of fixations independently.  For instance, from Figure 13(a), we found that the systematic 
error changed around 90 seconds after the session started.  Thus, the fixations are divided into 
two groups at the 90 seconds mark.  Figure 14 shows the disparities of the two groups, before 
adjusting based on time.  For the first group (Figure 14, top  panel), the mean shift algorithm 
found the error signature to be –0.95 pixels horizontal and –108.06 pixels vertical; for the second 
group, the error signature is 0.85 pixels horizontal and 5.77 pixels vertical.  After applying the 
two error signatures, the median disparities of the ground truth mappings in that session changed 
from 5.71 to 6.66 pixels in horizontal direction, and from -106.39 to -1.95 pixels in vertical 
direction.  This fixes the odd Session 42 box plot in Figure 12, and the error correction now 
works for all forty-eight sessions.
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   (a)       (b)
Figure 13.  Horizontal and vertical disparity between each recorded fixation location and the 
closet target  after applying the initial error correction for all fixations of P20, Day 3, Session 
2.  Graph (a) adds additional temporal orderings to the disparities shown in graph (b).  Each 
line segment connects a pair of successive disparities.  Color denotes the time the fixation 
occurred, with time moving from blue to red.  Forty pixels is equal to 1º of visual angle.
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The temporal disparity graph (Figure 13a) is very useful for detecting changing error signatures, 
and may be an appropriate visualization technique to consider applying every time that the error 
correction method is used, to look for time-based shifts in error signatures.  

Error Signatures Across Multiple Regions

After the core error correction procedure is applied to remove the majority of systematic errors, 
visualizations of the corrected fixations can also be studied to decide whether the systematic 
errors differ across regions.  To explore such a possibility in the context of the NRL dual task 
experiment, we divided the classification task display into three regions.  Figure 15 shows the 
three regions, each of which covers a third of the display: top-left, top-right and bottom.  These 
regions were selected for two reasons.  First, the task display  has a fairly large area (16ºx13º of 
visual angle), and after going through the eye movement data visualizations, the disparities were 
found to be somewhat different for the three regions.  Second, the number of fixations in each of 
the three regions is similar, which provides a roughly equivalent number of disparities for 
identifying the error signature in each region.  Figure 16 shows an example of the disparities 
form the three regions.  Note that the three cluster centers are all around (0, 0), which suggests 
that this additional region-based correction might not be needed for this session.

Figure 14.  Disparities of P20, Day 3, Session 2, 
grouped by time windows, before correcting 
again for each window.  The first panel shows 
disparities for fixations before 90 seconds, and 
second panel shows the disparities for fixations 
after 90 seconds.
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The region-based error correction provides a slight improvement over the original corrected data.   
Figure 17 shows the mean absolute deviations of the three data sets: uncorrected, corrected with 
the core method, and corrected by regions.  As can be seen, the mean absolute deviations are 

Figure 15.  The classification task display was 
divided into three regions and an additional pass 
of error correction was applied to each region 
individually. 

Figure 16.  Each panel shows the disparities 
(black dots) from each of the three regions.
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generally  large in the uncorrected data.  For the two corrected data sets, the mean absolute 
deviations and their variations are much smaller, but there is not much difference between them.  
The measure—the number of correct mappings—shows that the error correction by region 
provides no accuracy improvement; the additional correction identifies only one new correct 
mapping, and seven previously  correct  fixations were lost.  The fixation loss happened because 
eye movement shifts across the region boundaries separated gaze points that initially comprised 
fixations at the region boundaries.  Considering that the correction by regions did not provide 
much improvement in accuracy, for this experiment it is better to just use the initial error 
correction with the extension of error signatures that change over time.

In summary, the error correction method presented here can reliably identify the true error 
signature for experiments with or without moving objects, and it can also be extended to find the 
changing error signatures across different screen regions or different time windows.  The core 
error correction method, in which only a single error signature was applied to the whole display, 
works sufficiently well.  In order to clean up systematic error that  changes over time, researchers 
can visually examine the temporal disparity  graph to look for a shifting point of the error 
signature.  For the NRL dual task experiment data, there seems to be little benefit by doing an 
additional pass of error correction for subregions, but it might be needed for larger displays.

Unlike Hornof and Halverson’s RFL technique, the core error correction method presented here 
applies a single error vector across the whole display.  This single-vector approach might be less 
accurate considering that systematic error can vary  across different areas.  However, it is difficult 
to obtain multiple error vectors that cover many regions in an experiment with stimuli that 
appear at non-fixed locations.  Also, the method presented here provides a way to the fixations to 
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Figure 17.  The range of mean absolution 
deviation for each session in different data sets.
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their intended targets without careful task analysis, making it  valuable for many eye tracking 
experiments.

Conclusion
When doing scientific research, instrumentation error needs to be studied and considered, but 
this important practice is not followed in eye tracking studies.  Many eye tracking studies, for 
example, overestimate the accuracy  of the eye tracker used in the study.  This paper discusses the 
adverse influence of systematic errors in eye tracking and presents a general and robust method 
for post hoc error correction to improve the accuracy of eye movement data.  The error 
correction method harnesses the special pattern that has been found in the fixation-target 
disparity plot, i.e. the disparities of the correct  fixation-target mappings tend to form a cluster in 
the plot whereas disparities of incorrect mappings tend to be randomly distributed.  By using a 
modified mean shift procedure, the method is able to find the center of the cluster, which 
becomes the error signature of the systematic error.  The error signature is then used to shift the 
eye movement data to their true locations.  

The error correction method can be easily generalized because it requires little task analysis.  
Because it is task independent, it can be adapted to various experiments without much effort.  
There is a minor assumption about  this method though, and researchers should be cautious to 
consider whether the assumption is met.  The technique assumes that a sufficient number 
(perhaps more than thirty  percent) of correct mappings can be obtained from the uncorrected data 
to allow their disparities to form the highest density  cluster.  If the correct mappings are only a 
small subset (e.g. less than ten percent) of the data, the density of their disparities might be lower 
than the density of the disparities from incorrect mappings, and hence the vector from the origin 
to the global mode would not be the correct error signature.  The above assumption is less likely 
to be met when the systematic error is larger than the distance between objects.  However, in 
such cases, researchers might still use Hornof and Halverson’s RFL technique to trim down the 
systematic error to an acceptable size (e.g. less than half of the distance between objects) for the 
method presented here to do finer error correction.

A future direction to further develop this method would be to explore the disparity graphs more, 
such as using the graphs to automatically  find the regions or periods of time in which the error 
signature changes.  Currently, this step still requires researchers to make their own judgements 
by examining the data visualizations.  Another direction would be to explore the raw gaze sample 
data rather than fixations to generate the disparity graphs.  Because there would be many more 
gaze samples, the method might become more robust.  

Applying a post hoc error correction method to eye movement data requires a certain dedication 
to the science and art  of eye tracking, especially if it is applied with the level of rigor as 
described here.  For this experiment, numerous parameter studies were conducted to determine, 
for example, how many different  error signatures should be calculated for the temporal periods 
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of an eight-minute task and for different spatial regions of the display.  It is much easier to 
simply  report  the eye tracker accuracy reported by the manufacturer, and from then on to ignore 
any possible error in the eye tracking data or, if error happens to be noticed in some trials, to just 
discard those trials.  However, we believe that a bold, daring, and honest look at eye movement 
data and a commitment to attacking error is critical for the advancement of eye tracking research 
and application.
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Appendix
Ground Truth Mapping Rules

The following constraints were applied to identify the “ground truth” blips that participant 
directly  fixated.  These mappings were used to evaluate the eye movement data accuracy after 
error correction.
1. Only eye movement data from the last day were used.  Because on the last day, participants 

acquired expert strategies for doing the dual task, the performance were more stable and 
predictable.

2. Only trials with more than 98% valid eye movement data rate were used.  Losing more than 
2% eye movement data would bring uncertainty  to the process of finding ground truth 
mappings.

3. The associated blip must have been correctly classified.  If a blip was correctly classified, 
there should be at least one fixation on the blip to get its ID number.

4. During the time of the fixation, there should be only one active blip (ready  to be classified) 
on the classification task display.  Two or more active blips might compete for visual 
attention, hence bringing uncertainty.

5. The fixation following the fixation should be on the tactical task display.  This is a strategy 
that all participants adopted.  Immediately  after perceiving an active blip, they return back to 
the tracking task and then key in the classification.  We use this rule to avoid undershoot and 
overshoot fixations because after such fixations, there is generally another fixation on the 
target blip as opposed to on the tracking task display.

6. The fixation should be the longest  fixation on the classification display during its associated 
blip’s active time.  This is because that the longest fixation was almost certainly perceiving a 
blip’s classification.

7. The distance between the fixation and its associated blip  should be no more than 4º of visual 
angle.
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