
Linux Provenance Modules:
Secure Provenance Collection for the Linux Kernel

Adam Bates, Kevin R. B. Butler
Department of Computer and Information Science

University of Oregon, Eugene, OR
{amb, butler}@cs.uoregon.edu

Thomas Moyer
Lincoln Laboratory

Massachusetts Institute of Technology, Lexington, MA
thomas.moyer@ll.mit.edu

Abstract—In spite of a growing interest in provenance-aware
systems, mechanisms for automated provenance collection have
failed to win acceptance in mainstream operating systems. This
is due in part to a lack of consensus within disparate provenance
development communities on a single general solution – prove-
nance collection mechanisms have been proposed at a variety
of operational layers wthin host systems, collecting metadata at
a variety of scopes and granularities. Since provenance-aware
systems must meet the needs of a variety of users in academic,
enterprise, and government sectors, any provenance mechanisms
must be capable of supporting many different provenance models
while simultaneously ensuring the security of the provenance they
collect. We present the Linux Provenance Modules (LPM), the
first general framework for the development of provenance-aware
systems that imposes as little as 0.6% performance overhead on
system operation. A key feature of LPM is its ability to leverage
Linux’s existing security features to provide strong provenance
security assurances. We go on to introduce a mechanism for
policy-reduced provenance that reduces the costs of provenance
collection by up to 74% by identifying a system’s trusted
computing base. To our knowledge, this is the first working policy-
based provenance monitor proposed in the literature.

I. INTRODUCTION

Provenance is a well-known concept in the art world, but is
relatively new to computer science. The idea is that a system
can gather and report metadata that describes the history of
each object being processed. This allows system users to track,
and understand, how a piece of data came to exist in its current
state on the system. The application of provenance is presently
of enormous interest at different scopes and levels in a variety
of disparate communities including scientific data processing,
databases, software development, storage [1], [15], operating
systems [14], [20], access control [17], [19], and distributed
systems [5], [30], [31]. In spite of many proposed models and
frameworks, mainstream operating systems still lack support
for provenance collection and reporting. This may be due to the
fact that the community has yet to reach a consensus on how to
best prototype new provenance proposals, leading to redundant
efforts, slower development, and a lack of adoptability.

Exacerbating this problem is that, due to a lack of
better alternatives, researchers often choose to implement
their provenance-aware systems by overloading other system
components [15], [20]. Unfortunately, this introduces further
security and interoperability problems; in order to enable
provenance-aware systems, users currently need to disable their
MAC policy [20], instrument applications [12], [30], gamble
on experimental storage formats [15], or sacrifice other critical

system functionality. These issues point to a pressing need for
a dedicated platform for provenance development. We present
the design of a Linux Provenance Monitor framework
(LPM), the first generalized framework for the development of
automated, whole-system provenance collection on the Linux
operating system. LPM was designed with consideration for a
variety of automated provenance systems that have been pro-
posed in the literature, and in fact includes a re-implementation
of the Hi-Fi system [20]. The framework is designed in such
a way to allow for experimentation with new provenance
collection mechanisms, and permits interoperability with other
security mechanisms.

Using LPM as a starting point, we go on to address
another major obstacle to the adoption of automated prove-
nance systems – excessive storage overhead [7]. We do so
by presenting a novel scheme for policy-reduced provenance;
we make the surprising discovery that a system’s existing
security contexts can be utilized in order to record complete
provenance over a subset of system operations. We call this
provenance monitor Provenance Walls, because it extends
Jaeger et. al.’s Integrity Walls [25] work by leveraging the
confinement properties of a mandatory access control policy to
record a complete provenance history inside (or outside) of an
application’s trusted computing base (TCB). In evaluation, we
observe up to a 74% reduction in storage overhead when using
Provenance Walls instead of an LPM-based Hi-Fi module,
and no more than 2.8% performance overhead on under
realistic workloads. As a result, Provenance Walls significantly
decreases the performance barriers that currently hinder the
widespread deployment provenance-aware systems.

Our contributions can thus be summarized as follows:

• Linux Provenance Modules (LPM) Framework, a
patch for Red Hat Linux that permits the secure de-
velopment of provenance-aware Linux systems. LPM
supports the needs of many past proposals while being
minimally invasive to the rest of the Linux kernel.

• Policy-reduced provenance. We show that a sys-
tem’s existing MAC policy can be used to record
complete provenance over a policy-specified subset of
system activities. Using this approach our Provenance
Walls system reduces both the storage requirements
and computational overhead of automated provenance
collection. To our knowledge, this is the first policy-
based provenance monitor that has been proposed in
the literature.

• Performance Analysis. We perform microbench-
marks on Linux system calls, as well as macrobench-
marks based on compiled the Linux kernel. We show
that the LPM patch introduces negligible overhead
to system operation, and that LPM modules also
introduce minimal system costs. LPM also facilitates
independent evaluation, which we show by comparing
the performance of Hi-Fi [20] to a novel provenance
collection mechanism.

The rest of this paper is organized as follows. In Section II
we survey past proposals for automated provenance collection
systems. We unify the functional needs of these disparate
projects in Section III, where we present our design for the
LPM Framework, including a full security model and analysis
for a provenance-aware adversary. Section V introduces Prove-
nance Walls, an LPM module that performs policy-reduced
provenance collection. Section VI includes case studies of
provenance use cases in which we visualize whole-system
provenance collected by LPM, as well as our performance
analysis. Discussion follows in Section VII, and we conclude
in Section VIII.

II. AUTOMATED PROVENANCE COLLECTION

In this work, we consider the security of observed-
provenance systems that perform automated collection of
provenance, requiring little to no user intervention [7]. We refer
to such systems as provenance monitors. In past proposals,
provenance monitors have operated under a variety of different
scopes, assumptions, and goals. We argue that each of these
proposals operates under different implicit provenance models,
and that our development framework must anticipate and
support all of these models.

A. Operational Layer

Provenance collection mechanisms have been implemented
at a variety of host layers. To date, we have seen provenance-
driven forensic systems that have been implemented as net-
work monitors [4], applications [3], [12], [26], [30], platforms
[9], operating systems and kernels [1], [15], [20].

The choice of operational layer is closely linked to the
granularity and expressiveness of the provenance collected.
Network monitors such as SNooPy [30] and PVP [4] track the
provenance of network events, but treat internal host events
as opaque. Application layer monitors such as REDUX [3]
and Trio [26] excel at capturing workflow context, but cannot
observe the underlying system events. PASS [15] and Hi-Fi
[20] are able to view workflows within kernel space, and even
replay command line workflows in some circumstances [15],
but their core mechanisms are unable to understand higher
level application functionality. For example, PASS does not
understand SQL Engines, and therefore would not be able to
replay a workflow that inserts a record into a SQL database.

In spite of the great diversity of these proposals, many are a
poor foundation for a trustworthy provenance-aware system. In
particular, application-level provenance monitors are popular
as easy proof-of-concept implementations, but cannot offer
any meaningful assurance that the monitor is tamperproof.
For example, Hasan et. al.’s SProv library relies on users
to instrument their programs with alternate stdio functions

[12]; a malicious user could easily forge false provenance
records in this scheme, even without root access to the host.
Zhou et. al.’s SNooPY scheme for network provenance also
relies on application instrumentation [30]. While they account
for the possibility of compromised hosts through a checks-
and-balances system between nodes, they also fail to detect
forgeries when multiple compromised hosts collude. Even the
proposals for kernel layer provenance monitors suffer from
fundamental security concerns. Highly influential works such
as Muniswamy-Reddy et. al.’s PASS [15] and Lineage FS [1]
do not address the matter of securing provenance metadata.
Hi-Fi’s LSM-based instrumentation protects its monitor, but
fails to protect the userspace components in its TCB, and in
fact reduces system security by preventing a MAC policy or
capabilities system from being enabled [20]. As a result, any
adversary that can compromise a root-owned process is able
to subvert the provenance monitor.

For security reasons, it is important that all provenance
monitors be anchored in protected kernel space. More gener-
ally, provenance monitors should be protected at the lowest
possible system layer. This is a necessary prerequisite to
providing a tamperproof provenance monitor. However, an
unfortunate consequence of this decision is that valuable
context is sacrificed at the application layer. To account for
this, the PASS system permits the annotation of volunteered
provenance data from higher operational layers [15]. We note
that this is also an attack vector, and discuss how to securely
implement such a mechanism in Section III.

B. Scoping

Beyond operational layer, provenance monitors also con-
sider a variety of combinations of system events, representing
a scope of interest, while considering activity on other parts of
the system to be opaque. For example, PASS’ primary goal is
to associate provenance metadata with system files; however,
since most system objects are represented in Linux as file
abstractions, PASS can also capture IPC and network events
[15]. Other systems, particularly those that operate above the
kernel layer, collect provenance with a reduced scope. The
SProv library almost exclusively collects the provenance of
file writes [12], while SNooPy treats host-level events as
opaque [30], choosing instead to record only the provenance of
network packet exchanges. Limited scopes of interest are often
valuable, as they are associated with reduced system overhead,
and the intended application of the provenance was used to
inform the system design.

Using an alternate approach, systems such as Hi-Fi [20]
and PASS [15] adopt a wide scope, attempting to offer a
comprehensive provenance monitor that observes all system
events. However, it is important to note that these proposals
cannot anticipate the needs of every provenance application.
For example, PASS struggles in handling memory mapping
operations, while Hi-Fi elects not to monitor a variety of
system events, using just 25 of the LSM Framework’s 170
function hooks. One might imagine that these design decisions
may render these systems unsuitable for performing malware
analysis, or reasoning about an enterprise’s attack surface. It
is unlikely that any single proposal will ever produce a one-
size-fits-all provenance monitor, due to the great variety of
desirable provenance applications.

2

Proposal Layer A
pp

lic
at

io
n

Co
nt

ex
t?

Fi
le

Sy
ste

m
?

IP
C?

M
em

or
y?

N
et

w
or

k?

Pr
oc

es
se

s?

HI-FI [20] Kernel (LSM) 3 3 3 3 3
Lineage [1] Kernel 3 3 3 3
PASS [15] Kernel (VFS) Optional 3 3 3 3
PrIMe [16] Application 3 3
QUIRE [9] Platform 3
REDUX [3] Application 3
PVP [4] Network (SDN) 3
SNooPy [30] Application 3
SOA [22], [23] Distributed 3
SProv [12] Application 3
Trio [26] Application 3

TABLE I: Automated Provenance-Aware Systems vary by scope, purpose, and operational layer.

C. Collection Paradigms

Another means of describing a provenance monitor is
through the method of which the provenance is generated. That
is, once the monitor observes a system event, what does it do?

Cryptographic Commitment is a popular paradigm for
creating immutable, append-only provenance-aware systems.
This is especially the case for application-layer monitors
that seek to provide some assurance against adversaries. The
SProv library implements Hasan et. al.’s provenance chain
concept, which creates a tamper-evident chain of provenance
records. In this way, a host that becomes compromised is
unable to forge provenance records from events that occurred
prior to the compromise. SNooPy achieves similar properties
by generating append-only tamper-evident logs of network
events, and goes a step forward by detecting host compromise
by relying on other uncompromised nodes in the network.
However, cryptography creates additional overhead, and cannot
defend against a compromised host that forges new provenance
entries. Moreover, when it is reasonable to place the prove-
nance monitor within the system’s trusted computing base,
cryptographic commitments are not necessary.

Provenance Stream monitors generate provenance across
a variety of simultaneous system events, placing the output into
a single stream to be processed by other system components.
Stream systems are well suited to the kernel layer. Streams are
implemented in the Lineage file system through instrumenting
the kernel with printk’s, and in Hi-Fi through writing
provenance out to user space via a relay buffer. Provenance
streams are advantageous in that they reduce complexity and
can be stored efficiently, especially when piped through a
deduplication algorithm [29]. However, they also require a
mechanism for securing the stored provenance. Some pro-
posals have considered this task to be out-of-scope, or have
identified the security mechanism as future work [15].

Inline Provenance mechanisms immediately associate
generated provenance with the data object that it describes,
either by embedding it in the file system or storing it in
a database. This is a popular strategy in application layer
monitors such as Trio and REDUX. PASS performs inline
storage of provenance by associating it with system objects in-
memory before eventually writing the provenance to a database
on disk. Inline storage can improve query efficiency because
provenance is co-located with its data. However, it introduces
security challenges as well. Provenance often requires a sep-

arate security policy than the data it describes, prompting the
need for a provenance-aware security mechanism. In contrast,
stream systems like Hi-Fi can store provenance in a single
directory, making it more intuitive to protect .

III. LINUX PROVENANCE MODULE FRAMEWORK

In this section, we present the design of the LPM Frame-
work, bearing in mind the purposes and security needs of past
proposals for automated provenance collection. We first present
a threat model, demonstrating that provenance monitors’ secu-
rity requirements are similar to those of the classic reference
monitor. Next, we leverage the insights of past proposals in
this space to define a design space for provenance monitors,
ensuring that LPM supports the needs of all stakeholders.

A. Threat Model

In this work, we consider an adversary that has gained
access to a provenance-aware host or distributed system.
We make no assumption about the manner in which access
was obtained; they may be an insider with legitimate access
credentials, or an outsider that has compromised a network
application. Once inside of the system, the attacker attempts
to go about their business without leaving evidence of their
actions in the provenance records. They may attempt to remove
those records, insert spurious information into those records,
or find gaps in the provenance monitor’s ability to record
information flows. Because the purpose of provenance is
eventually to apply it to an important system function, the
adversary’s purpose on the system may even be to target
the provenance monitor itself. The implications and methods
of such an attack are area-specific, and so to gain a better
understand of them we consider a few examples here:

1) Scientific Computing: An adversary may wish to
manipulate the provenance records of an e-Science
application in order to commit academic fraud, or
inject confusion into those records in order to trigger
“Climategate”-like controversy [21].

2) Access Control: In Provenance-Based Access Con-
trol systems, provenance is inspected in the process
of mediating over access decisions [19]. An adversary
could seek to tamper with provenance history in order
to gain unauthorized access, or perform a denial-of-
service attack on other users by artificially escalating
the security level of data objects.

3

3) Networks: Provenance metadata can also be associ-
ated with packets in order to better understand net-
work events in distributed systems [30]. Coordinating
multiple compromised hosts, an attacker may attempt
to send unauthenticated messages so as to avoid
provenance generation and perform data exfiltration.

B. Security Goals

In considering the design of provenance-aware systems, it
is vitally important that the security of both the provenance
monitor and its records be assured [10]. Generally, we assert
that the set of security-sensitive operations in a system are a
strong base from which to build a set of provenance-sensitive
operations. We are not the first to make this observation;
McDaniel et. al. liken the needs of a provenance monitor
to the reference monitor requirements [14]: tamperproofness,
complete mediation, and verifiability [2]. We explore the
similarities and dissimilarities between a provenance monitor’s
needs and reference monitor guarantees below:

Tamperproofness. As the provenance will eventually be ap-
plied in some way to help users better understand their data, it
naturally follows that provenance monitors are an adversarial
target. Adversaries may attempt to tamper with provenance
records in order to hide their tracks, such as removing records
of their illicit activities or injecting confusion with false
records. It is therefore important that the provenance monitor
be tamperproof; that is, the provenance mechanism cannot
be modified or manipulated by processes in user space. This
requirement extends to the entire trusted computing base of
the provenance monitor (e.g., logs, policy, helper processes).

Complete Observation. If the provenance monitor is not
able to capture all forms of information flow on a system,
adversaries may also attempt to evade detection by only taking
actions that do not appear in the provenance record. This means
that provenance monitors seem to require complete mediation
of a system in order to be effective; however, there are two
problems with this assertion. First, since provenance monitors
exist to passively record system events, complete mediation is
an unnecessary amount of power. Controlling access to system
resources is not needed to collect provenance. Second, as a
practical matter, there cannot be two system mechanisms that
possess the complete mediation property. Because provenance
only needs to watch all flows, not control them, we instead
argue that provenance monitors require complete observation
of system activity. To enforce this distinction, provenance
monitors should be placed within the protected domain of
the reference monitor, record provenance only on actions that
have been authorized by the reference monitor, and avoid
interference with the mediation of the reference monitor.

Verifiability. If a provenance monitor was conceptually com-
plex, it would be difficult to ensure that it was tamperproof,
or that it observed all provenance-sensitive system flows. This
underscores the importance of having a provenance mechanism
that is small enough to be verifiably correct. In this context,
correctness means that the mechanism can be shown to collect
accurate provenance over all provenance-sensitive tasks. In the
presence of a policy component, correctness implies that the
mechanism strictly follows the collection procedure defined
by the policy specification. The verifiability requirement also
extends to the entire TCB of the provenance monitor.

VFS

security layer

userspace

system calls

kernelspace

kernel
objects

sshd vim

provenance
layer

Fig. 1: The LPM Framework runs within the LSM Framework,
observing system activity without interfering with the work of
the security mechanism.

We know from decades of research and development that
these properties are surprisingly hard to obtain. Rather than
start from scratch with provenance, we present a design in
Section III-C that leverages the established Linux Security
Module (LSM) Framework [27], [28] in order to bootstrap
trust in provenance-aware systems.

The requirements of a provenance monitor extend be-
yond the classic goals of a reference monitor. Past work in
provenance-aware systems has also identified several addi-
tional desirable properties:

Secure Channel. Many existing provenance collection mech-
anisms require a secure communication between networked
hosts [5], [14], [20], [30]. Failure to provide such a channel
could result in corrupt provenance records or the leakage of
sensitive provenance information. Provenance monitors must
be able to communicate over an adversary-controlled network
without being vulnerable to eavesdropping or tampering at-
tacks.

Secure Annotation. While operating at a lower operational
layer enhances the completeness and security of provenance
collection, this comes at the sacrifice of fine-grained appli-
cation layer information. In PASS, Muniswamy-Reddy et. al
provide a mechanism that allows for applications to volunteer
provenance to the kernel mechanism, allowing for the recovery
of this context. Unfortunately, PASS did not provide a means
of ensuring integrity and authenticity of these annotations. This
introduces new vulnerabilities to PASS, as an attacker could
exploit the annotation mechanism, violating the tamperproof
requirement. In order to safely accommodate application layer
annotations, a provenance monitor must feature gateways that
permit secure annotation of volunteered application prove-
nance in such a way that preserves the integrity of the
provenance history.

4

user spaceUser Level process

kernel spaceopen system call

look up inode

error checks

DAC checks

LSM hook

LPM hook

access inode

Examine context.
Does request pass policy?
Grant or deny.

Examine context.
Collect provenance.
If successful, grant.

LSM Module

LPM Module

"Ok with you?"
Yes or No

"Prov collected?"
unlikely(no),
likely(yes)

Fig. 2: LPM Hook Architecture for the open system call.

Hooks Count Purpose
BPRM 05 Observe program execution operations.
SB 19 Observe filesystem operations.
Inode 38 Observe inode operations.
File 11 Observe file operations.
Dentry 01 Observe dentry open.
Task 30 Observe task operations.
Netlink 02 Observe Netlink Message.
Unix 02 Observe Unix Domain Networking.
Socket 35 Observe socket operations.
IPC 10 Observe System V IPC Message Queues.
SHM 05 Observe System V Shared Memory Segments.
SEM 19 Observe System V Semaphores.

TABLE II: Summary of LPM’s Function Hooks.

C. Design

Gaining confidence in the security of a system takes time,
requiring community access and independent review. In order
to expedite this process, we choose to implement LPM as a par-
allel framework to LSM. This makes LPM easy to understand,
and allows it to benefit from the decade of community review
that LSM has enjoyed. Where LSM seeks to mediate access to
internal kernel objects, LPM seeks to observe access to those
objects, creating provenance records that make assertions such
as ”Subject S performed kernel operation OP on internal kernel
object OBJ."

Like LSM, our provenance framework is “truly generic"
[28], in that loading a different provenance monitor is as simple
as loading a new kernel module. It is also minimally invasive,
requiring roughly the same amount of kernel instrumentation
as was required by LSM. A diagram of LPM’s observation
point can be found in Figure 1. This Figure is an update
to the design in the original Hi-Fi work, in which there was
not a dedicated provenance layer and the security layer was
overloaded to collect provenance [20].

Provenance Hooks

The LPM patch introduces a set of provenance hook
functions in the Linux kernel. These hooks behave similarly
to the LSM Framework’s security hooks in that they facilitate
modularity, and take no action unless a module is enabled.

1 int vfs_readdir(struct file *file, filldir_t
filler, void *buf){

2 struct inode *inode =
file->f_path.dentry->d_inode;

3 int res = -ENOTDIR;
4 if (!file->f_op || !file->f_op->readdir)
5 goto out;
6
7 res = security_file_permission(file, MAY_READ);
8 if (res)
9 goto out;

10
11 res = provenance_file_permission(file, MAY_READ);
12 if (res)
13 goto out;
14
15 res = mutex_lock_killable(&inode->i_mutex);
16 if (res)
17 goto out;
18
19 res = -ENOENT;
20 if (!IS_DEADDIR(inode)) {
21 res = file->f_op->readdir(file, buf, filler);
22 file_accessed(file);
23 }
24 mutex_unlock(&inode->i_mutex);
25 out:
26 return res;
27 }
28
29 EXPORT_SYMBOL(vfs_readdir);

Fig. 3: Example provenance hook from the vfs_readdir func-
tion in fs/readdir.c. Our framework inserts Line 12.

Throughout the kernel, the LPM patch places a provenance
hook directly beneath each security hook. In doing, we assure
that the provenance hooks avoid time to check to time of
use (TOCTOU) races [6], and that provenance is collected
just before the kernel actually performs the requested service
[28]. By first checking to ensure that the LSM has permitted
the operation, we fulfill the complete observation requirement
while simultaneously ensuring the accuracy of the collected
provenance, as rejected access attempts will not be included in
the record. An overview of the hook architecture is depicted in
Figure 2, and the complete list of provenance hooks is shown
in Table II.

An example hook placement is shown in Figure 3.
The vfs_readdir functions attempts to read a file’s
directory, placing it in the buf pointer. LPM intro-
duces Line 12 of the function; immediately after the
security_file_permission affirms that the sub-
ject has permission to take this action (Lines 7-9),
provenance_file_permission is called so that LPM
can record the event.

Striving for complete observation, LPM hooks are not
intended to mediate system access, or alter the control path
of the function in any way. In designing LPM, we considered
enforcing this requirement structurally by having hooks return
void, as checking a return value could alter the control
flow of the function. Additionally, hooks could be passed
const parameters as often as possible, so that developers
did not accidentally modify system objects. Unfortunately,
provenance hooks need to return error codes, such as when

5

1 policy_module(hifid, 1.0.0)
2
3 ##
4 #
5 # Declarations
6 #
7
8 type hifid_t;
9 type hifid_exec_t;

10 init_daemon_domain(hifid_t, hifid_exec_t)
11
12 permissive hifid_t;
13
14 type hifid_log_t;
15 logging_log_file(hifid_log_t)
16
17 type hifid_rw_t;
18 files_type(hifid_rw_t)
19
20 ##
21 #
22 # hifid local policy
23 #
24 allow hifid_t self:process { signal };
25
26 allow hifid_t self:fifo_file rw_fifo_file_perms;
27 allow hifid_t self:unix_stream_socket

create_stream_socket_perms;
28
29 manage_dirs_pattern(hifid_t, hifid_log_t,

hifid_log_t)
30 manage_files_pattern(hifid_t, hifid_log_t,

hifid_log_t)
31 logging_log_filetrans(hifid_t, hifid_log_t, { dir

file })
32
33 manage_dirs_pattern(hifid_t, hifid_rw_t, hifid_rw_t)
34 manage_files_pattern(hifid_t, hifid_rw_t,

hifid_rw_t)
35
36 domain_use_interactive_fds(hifid_t)
37
38 files_read_etc_files(hifid_t)
39
40 miscfiles_read_localization(hifid_t)

Fig. 4: SELinux Policy Module for Hi-Fi: Type Enforcement
for protecting Hi-Fi’s user space daemon.

an attempt to allocate memory for provenance record creation
fails. When this error occurs, the associated system call cannot
be permitted to continue, or else the provenance history would
be incomplete.

We identify an important exception to the passive ob-
servation rule, where LPM must modify system objects. In
order to provide a secure channel for communication between
provenance monitors, LPM must be permit the modification of
network messages. Several existing proposals require the abil-
ity to securely embed or encapsulate provenance information
within network packets [20], [30]. We see this as a neces-
sary requirement for facilitating provenance-aware distributed
systems, as such systems require the ability for provenance
monitors to securely communicate. Therefore, LPM leverages
Netfilter hooks that permit packet modification as messages
enter and exit the system. Pre-empting other functions, LPM is
nearly the last function to process packets before transmission,
and nearly the first function to process packets on reception,

1 # Hi-Fi Daemon reads from LPM Buffer Relay
2 /sys/kernel/debug/provenance0 --

gen_context(system_u:object_r:hifid_r_t,s0)
3
4 # File context for Hi-Fi Daemon on disk
5 /usr/bin/hifid --

gen_context(system_u:object_r:hifid_exec_t,s0)
6
7 # Hif-Fi Daemon writes provenance to /var/log
8 /var/log(/.prov-log-*)?

gen_context(system_u:object_r:hifid_log_t,s0)

Fig. 5: SELinux Policy Module for Hi-Fi: File Contexts for
protecting Hi-Fi’s user space daemon.

making this procedure transparent to the rest of the host
system.

LPM hooks are not limited to those that mirror security
hooks. While the primary hook set for LPM will be the ap-
proximate 170 hooks that are included in the LSM Framework,
we identify at least once instance in which the introduction of
new hooks is necessary: Hi-Fi identifies a fundamental need for
provenance to ensure the correct ordering of packets received
by networked hosts, ensuring this property by introducing a
new security hook, socket_post_recvmsg. The absence
of such a security hook implies that packet ordering is not
security-sensitive, and LPM modules must be trusted anyway,
so the new provenance hook does not impact the security
of the system. As we introduce the LPM framework, we
will continue to investigate new LPM hooks in response to
developer needs; however; we note that our design constraints
may make it impossible to fully satisfy every provenance
project. The original LSM project made a similar concession,
opting for a primarily restrictive hook set in order to minimize
invasiveness, sacrificing full support for permissive security
models such as POSIX.1e capabilities logic [28].

Securing the Provenance Monitor

Provenance security is its own rich area of study [5],
[10], [11], [12], [30], and yet proposals for provenance-aware
systems have at times failed to incorporate security into the
foundations of their design [15]. Through the LPM Framework,
developers no longer need worry about implementing their own
security mechanisms. Instead, they can simply write policies
for existing mandatory access control (MAC) mechanisms in
order to protect the provenance TCB. We envision a future
in which new provenance modules will be released with an
associated MAC policy, thus allowing for faster, more secure
deployment of provenance-aware systems. We demonstrate this
ability by creating an SELinux policy module for an LPM-
based re-implementation of Hi-Fi, a portion of which is shown
in Figures 4 and 5. This interplay between provenance modules
and security policy allows for fantastic new opportunities for
provenance. We introduce a new method of leveraging this
mechanism in Section V through creating a policy-driven
provenance module.

Disclosed Provenance

Collecting provenance at the kernel layer leads to some loss
in application context. This is because data representations in
an application often do not map perfectly to kernel objects. For

6

1 [2678] (500) exec
cbaadf33-c28f-4336-b3679b9028edef42 917695
./annotate
/sys/kernel/security/provenance/annotation <ENV>

2 [2678] (500) fperm R
cbaadf33-c28f-4336-b3679b9028edef42 83281
/lib/libc-2.12.so

3 [2678] (500) fperm W
cbaadf33-c28f-4336-b3679b9028edef42 917694
annotation

4 [2678] (500) setattr
cbaadf33-c28f-4336-b3679b9028edef42 917694
500:500 m=100440

5 [2678] (500) link
cbaadf33-c28f-4336-b3679b9028edef42
917843:/sys/kernel/security/provenance to
917694:/sys/kernel/security/provenance/annotation

Fig. 6: A provenance-aware application annotate writes
the file annotation to an LPM-owned directory in
securityfs.

example, a database engine organizes data in records, but may
write the records to a single flat file; the kernel is oblivious to
the manner in which each individual record was derived. To
address this problem, PASS supports annotating kernel layer
provenance with disclosed provenance that is volunteered from
user space [15]. However, they do not provide a mechanism
to evaluate the integrity and authenticity of the volunteered
provenance.

We propose that provenance itself can be used as a means to
validate volunteered provenance. If an object representing vol-
unteered provenance was generated on an LPM-instrumented
system, provenance was collected that describes the history
of that object. If LPM was given out-of-band knowledge
of how the volunteered provenance was supposed to have
been generated, it would be able to evaluate the integrity of
the annotation prior to accepted it into the official history.
This would restrict an attacker’s ability to exploit volunteered
provenance as a means of subverting the provenance monitor.

LPM will support this functionality by providing a gateway
that upgrades volunteered provenance to a high integrity state
before appending it to the official provenance history. When
developers release a provenance-aware application, they can
make it compatible with LPM in the following way. First, the
application is instructed to write each annotation out as a sep-
arate file to a provenance directory in the securityfs file
system. Second, the developer releases a generalized external
specification that describes the system-level provenance of the
application’s annotations. This specification is distinct from the
MAC policy that was previously discussed in this section, and
is also different from the provenance policy we make use of
in V. When LPM receives the annotation file, it reconstructs
a provenance graph of the file using provenance that was
collected by the kernel. It then compares the graph to the
external specification, appending the annotation to the official
history if validation is successful. Optionally, annotations that
fail validation can be appended but marked as untrusted.

We will now explain in greater detail how LPM performs
this validation. Figure 6 shows the raw provenance records
associated with the file annotation, which was written

1 [provid1] (uid) exec <root_partition> <inode1>
annotate <d_SECURITYFS>/<dentry1> <ENV>

2 [provid1] (uid) fperm R <root_partition>
<inode2>:/lib/libc-2.12.so

3 [provid1] (uid) fperm R <root_partition>
<inode3>:<d_SECURITYFS>/<dentry1>

4 [provid1] (uid) setattr <root_partition> <inode5>
uid:gid m=100440

5 [provid1] (uid) link <root_partition>
<i_SECURITYFS>:<d_SECURITYFS> to
<inode3>:<SECURITYFS>/<dentry1>

Fig. 7: An external specification that validates the volunteered
provenance shown in Figure 6.

Fig. 8: LPM modules can be enabled under “Security Options”
in the kernel configuration menu.

by a provenance-aware application annotate. Each record
includes a provenance identifier in brackets, the user control-
ling the event in parenthesis, the event type, and then the
partition identifier, inodes, and dentries. This program loads
libc-2.12.so (Line 2), writes annotation (Line 3),
changes the permissions of the file (Line 4), and then links
the newly created inode to an LPM-controlled directory in
securityfs (Line 5). LPM is able to automatically recover
this provenance when it reads the file annotate.

Figure 7 contains an external specification that de-
scribes the volunteered provenance created by the program
annotate. Each line is a generalized description that maps
to the corresponding line in Figure 6. The i_SECURITYFS
and d_SECURITYFS map to stored configuration values for
the inode and full path of the securityfs directory, while
all other variables are wildcards that are assigned based on
the raw provenance at the time of validation. We are currently
developing a script that processes raw provenance in order to
produce these specifications.

D. Prototype Modules

Coinciding with the release of the LPM Framework, we
will be releasing a re-implementation of the Hi-Fi system.
By acquiring source code from the authors, we were able to
transform Hi-Fi from an LSM into an LPM. The original Hi-
Fi code base required 2278 lines of code; 723 lines needed to
be modified in the transition. These changes were primarily

7

cosmetic, e.g., the security_file_permission func-
tion was renamed to provenance_file_permission.
We also modified Hi-Fi’s packet header modification routines
to make them more consistent with the Red Hat Kernel’s
network stack.

Administrators and developers can enable, disable, and
choose between provenance modules using the menuconfig
user interface prior to kernel compilation. Similar to the
Integrity Measurement Architecture (IMA), provenance op-
tions can be found as a submenu under security options. A
screenshot of the modified “Security Options" menu can be
found in Figure 8.

IV. SECURITY ANALYSIS

In designing LPM, we set out to provide 5 security as-
surances: tamperproofness, complete observation, verifiability,
secure channel, and secure annotation. Here, we measure
the extent to which LPM achieves these goals against a
provenance-aware adversary. We anchor our trust of LPM
security in a Linux Security Module, meaning that we make the
assumption that a system administrator has selected, enabled,
and properly deployed a MAC policy. This MAC policy must
protect the kernel and enforce least privilege over the LPM’s
trusted computing base.

Tamperproofness. Because of the MAC policy, an attacker that
takes control of a user space process would not be able to
subvert the provenance monitor. MAC policies must prevent
the loading or unloading of kernel modules (e.g., SELinux
default policy), meaning that even with root privilege the
attacker could not access kernel space to modify or disable
LPM. Likewise, the attacker would not be able to edit the
provenance logs. We demonstrated in Section III-C that a MAC
policy could be created that limited the ability to write to
these logs to just the provenance monitor’s user space daemon.
Our daemon implementation contains only 143 lines of code,
making it unlikely that an attacker would be able to find an
exploitable bug. The only influence an attacker could exert on
the provenance system would be to take actions on the system,
which would be correctly recorded into the log. This creates
the potential for a denial of service attack, but this is not useful
ability to a covert adversary.

Complete Observation. LPM monitors a superset of the system
events that have been deemed to be security-sensitive by the
LSM project [28], which has benefited from over a decade of
community review. As a result, we provide strong assurances
that LPM can observe all accesses to internal kernel objects,
provided that they are of a security-sensitive nature. As in-
terest provenance-aware systems grow, it may be that systems
accesses of an exclusively provenance-sensitive nature come to
light. LPM is positioned to easily accommodate these needs
through the introduction of additional provenance hooks. A
known family of exclusively provenance-sensitive operations
is high-level application context that is not observable from
the kernel; to accommodate this need, LPM provides support
for secure annotation of application layer provenance.

Verifiability. LPM’s modular composition means that a prove-
nance monitors’s logic is centrally located, our adoption of the
LSM security hooks means that many kernel developers would
be able to readily understand the functionality of the module.

The verifiability of a particular LPM module is bounded by
its complexity. LPM modules need be no larger than LSM
modules; our Hi-Fi implementation is 1400 lines of code, and
our Provenance Wall implementation is 2500 lines of code.

Secure Channel. Through use of Netfilter hooks [24], LPM
is able to mangle network messages in order to support
distributed provenance collection. LPM can embed provenance
data immediately before a packet is sent, and immediately after
a packet is received, making it impossible for an adversary-
controlled application running in user space to interfere. In the
event that secrecy is also required, an LPM module can im-
plement a user space component that establishes an TLS/SSL
tunnel to other provenance-aware hosts. This component can
also be secured with a MAC policy. It is also worth noting
that many security-critical system components rely on a user
space helper process (e.g., SELinux, TPMs).

Secure Annotation. Provenance that is volunteered from the
application layer is an attack vector, as the provenance monitor
did not observe the events first hand or collect the resulting
provenance. Fortunately, we have shown that the integrity of
volunteered provenance can be evaluated by leveraging our
trust in the kernel layer provenance monitor. LPM includes a
gateway that allows applications to write a provenance file
out to a securityfs directory, resulting in provenance
collection within the kernel. Before including the volunteered
provenance in the official history, the monitor can validate
the system-level provenance of the volunteered provenance
file against a developer-provided external specification. When
making use of this gateway, it is important to note that
the provenance-aware application falls into the provenance
monitor’s TCB. If the application contains exploitable bugs, an
adversary could take control of the application in order to forge
provenance records. However, the adversary would still be
unable to edit or remove previously-collected provenance, and
their access to internal kernal objects would still be accurately
recorded.

Because LPM modules have full access to the kernel’s
address space, the security and trustworthiness of any prove-
nance module will depend on the skill and diligence of the
developer. In order to ensure complete observation, an LPM
module must be able to send an access-denying error code
if they are unable to successfully generate a new provenance
record for an event. Otherwise, the provenance history would
be incomplete. Moreover, This weak module safety means that
an administrator must rust the module provider before making
the decision to load an LPM. However, this limitation is shared
by any other fully privileged kernel module.

V. POLICY-REDUCED PROVENANCE

A fundamental issue in automated provenance collection is
the introduction of storage overhead. Provenance can quickly
grow to dwarf the data it describes. For example, [15] shows
that a small change to a Linux kernel source file generates
an extra 2 KB of provenance in PASS. Even worse, auto-
mated provenance monitors are prone to collecting information
that is completely uninteresting or irrelevant to the system’s
purpose [7], making it harder to justify the incurred storage
costs. Provenance pruning has been proposed as a method
of reducing this overhead, in which the provenance monitor

8

Ke
rn
el
	 S
pa

ce
	

U
se
r	 S

pa
ce
	

MAC
Policy

Pr
ot
ec
te
d	

Provenance	 Policy	
Generator

What	 applica*ons	 do	 I	 want	 to	
Collect	 provenance	 for?	

Administrator	

Applica6on	

Prov.
Policy

Prov.
Log

Provenance	
Daemon	

Reference	 	
Monitor

Provenance	
Monitor

Kernel	
Objects	

If	 access	 granted…	

Fig. 9: Provenance Wall Design Overview.

automatically reduces storage costs by omitting or contracting
provenance. The notion of interesting provenance is often
domain-specific, leading Braun et. al. to call for a policy-
driven method of provenance pruning, but unfortunately such
a proposal has yet to appear in the literature.

Leveraging the LPM Framework, we now introduce a novel
method of policy-reduced provenance that only collects meta-
data over an administrator-defined subset of system activities.
We do so by leveraging the insight that, on many systems, an
existing MAC policy can be used to quickly identify the in-
teresting system components. For example, Jaeger et. al. show
that SELinux policies can be mined to discover application-
specific trusted computing bases (TCB) [25]. Alternately, an
administrator may be interested in tracking system resources
that are potentially under adversary control, which is also
captured by MAC labels (e.g., unconfined_t in SELinux).

We now introduce a new provenance monitor, Provenance
Walls, that implements this functionality. Provenance Walls is
designed to collect a complete provenance history over any
set of SELinux labels that is provided by an administrator.
When a hook is triggered in the kernel, the provwall LPM
module collects the security context of each system object
involved in the event, then selectively generates provenance
after comparing these contexts to a policy. Provenance Walls
relies on both a kernel-level provenance monitor and an
active Linux Security Module, which would not have been
possible prior to the introduction of the LPM Framework. The
module introduces two components, a policy generator and
a policy-driven provenance monitor, which are shown in a
design overview in Figure 9. This system allows administrators
to provide a policy that can describe as little as a single
application, resulting in dramatic runtime and storage savings.

A. Policy Generation

Because provenance must offer a complete history of the
data it describes, selective provenance collection is a difficult
problem. Failure to collect all of the necessary information
could result in gaps in a provenance history, rendering it unfit
for later use. For this reason, it is important that our method

for policy generation be able to produce complete provenance
records.

To do so, we extending Jaeger et. al.’s Integrity Walls
method of mining SELinux policies to identify attack surfaces
and TCBs [25], adapting it in order to create a set of labels that
produce complete provenance records. Integrity Walls builds a
TCB for subject applications s by partitioning a system policy
P into a set of trusted labels Is and an untrusted set Os. Given
a base SELinux policy, an application policy module, and its
dependency modules, Integrity Walls identifies the following
groups of labels: executable writers that have permission to
write s’s executable file, kernel subjects with permission to
write s’s underlying kernel objects, and helper subjects, which
are distinct applications whose subject labels appear in s’s
policy module and are trusted by s. Together, these labels from
a trusted computing base of the subject application of s.

There are several ways that this methodology can be ap-
plied to provenance collection. First, a provenance policy can
be created using Is that allows an administrator to reason about
the core functions of a system. Is captures kernel activity, as
well as the activity of a given set of applications s, while
avoiding extraneous activity that falls outside of the TCB.
This provenance could be used assist in code optimization,
attack impact analysis, or system configuration. Second, a
provenance policy can be created using Os, allowing an
administrator to monitor the activities of users and potentially
adversary-controlled resources. This provenance could be used
in attack surface analysis, assessing data quality, enforcing data
segmentation and performing malware analysis.

While both approaches are valid, we adopt the latter
approach. By performing additional processing Os, we are able
to extend the forensic abilities of Integrity Walls; rather than
simply identifying attack surfaces [25], Provenance Walls can
produce provenance graphs of adversary-controlled inputs into
a system’s TCB.While we use SELinux types as the basis for
our policy, we believe that our approach is generally applicable
to other kinds of security contexts as well.

B. Policy-Driven Provenance Monitor

Provenance Walls introduces Provwall, a new LPM-based
module for provenance collection. Provwall makes use of
the same hooks as Hi-Fi for observing file system, IPC,
memory, network, and process events. Rather than naïvely
generating provenance for all system event, however, it first
performs an efficient check that compares an administrator-
defined policy against the security contexts of all the system
objects associated with the event. If any of the objects appear
in the policy, provenance is generated; otherwise, no further
action is taken.

1) Loading the Policy: Similar to many LSMs, Provwall
loads its policy through a special-purpose virtual filesystem,
securityfs, that is created in memory during system boot.
The policy is automatically written into securityfs by up-
rovd [20], the user space daemon responsible for reading
provenance records out of a kernel buffer and writing them
into memory. The uprovd launch command is included in
/etc/rc.local, and immediately writes policy to secu-
rityfs upon being executed. Each time a provenance hook is
triggered in the Provwall module, a check is performed to see

9

1 /*
2 * Sending a message to an XSI message queue
3 */
4 static int provwall_msg_queue_msgsnd(struct

msg_queue *msq, struct msg_msg *msg,
5 int msqflg) {
6 const struct cred_provenance *curprov =

current_provenance();
7 const struct msg_provenance *msgprov =

msg->provenance;
8 struct provmsg_mqsend logmsg;
9

10 if (curprov->flags & CPROV_OPAQUE)
11 return 0;
12
13 if (policy_check_ipc(&msq->q_perm) == 0
14 && policy_check_msg(msg) == 0
15 && policy_check_current_creds() == 0)
16 return 0;
17
18 msg_initlen(&logmsg.msg, sizeof(logmsg));
19 logmsg.msg.type = PROVMSG_MQSEND;
20 logmsg.msg.cred_id = curprov->cpid;
21 logmsg.msgid = msgprov->msgid;
22
23 write_to_relay(&logmsg, sizeof(logmsg));
24 return 0;
25 }

Fig. 10: Provwall checks system objects’ security contexts
against a policy before generated provenance records. In the
example above, these checks occur in Lines 13-16.

if the policy file has yet been written by uprovd. Once the
policy file is detected, the module parses the SELinux types
and loads them into a linked list.

2) Policy Checks: Prior to generating a provenance record
of an event, each Provwall hook function first checks the se-
curity contexts of the associated objects. If any of the contexts
match the policy, a provenance record is created. Otherwise,
the function returns. An example of this functionality for the
msg_queue_msgsnd provenance hook is shown in Figure
10; if any of the policy_check functions return true, a
record is generated.

Policy checks work as follows. Inside of the function, each
of the object’s security ids (SIDs) is mapped into a security
context character string. To simplify this process, we exported
a new function from SELinux, selinux_sid_to_string.
We do not feel that this impacts system security, as
selinux_string_to_sid is already exported, and these
security labels can also be accessed from the command line via
the getfattr utility. After the context is recovered, it is parsed
to recover the SELinux type. This type is then compared to
the types in the policy linked list. If a match is discovered, the
policy check returns true, otherwise it returns false.

Performing string comparisons during the policy check is
suboptimal; it would have been much faster and more desirable
to perform integer comparisons of SIDs. Unfortunately, in
addition to defining a set of SELinux types in the TCB,
SID comparisons would have required enumerating the space
of possible SELinux roles, domains, and security levels that
were also pertinent to the TCB. This would have drastically
increased the size and complexity of the policy, leaving us

open to the possibility of misconfiguration. Instead, we reduce
the number of string comparisons required by our system by
embedding a boolean tracking flag in each object’s provenance
struct. When the object is first inspected by Provwall, it is set
to either true or false, after which time the policy decision
becomes static. The tracking flag need only be re-evaluated in
the event of a policy update, which requires a system re-boot
in our current implementation.

3) Early Boot Provenance: The Linux kernel’s security
subsystem, which loads and registers an LSM and then an
LPM, is initialized before both the virtual file system layer
and user space. As a consequence, both the policy and the
provenance stream relay are not available on start. To address
this problem, [20] stores early boot provenance in a separate
boot buffer, and registers a callback function to be executed
once the VFS has been initialized. Once called, the function
flushes the buffer into the relay. We extend this solution to
account for the fact that Provwall needs to wait for the policy
to be loaded before it can write provenance.

In early boot, Provwall conservatively creates provenance
records for each system event, storing them in the buffer along
with the associated SIDs of the event. Once Provwall is notified
that the policy is loaded, it replays the buffer and performs
policy checks of each of the associated SIDs, flushing only
those events to the relay that represent a policy match. This
leads to a larger early boot buffer when compared to [20].

VI. TESTING AND FUNCTIONALITY

A. Case Study: Provenance Visualization

The fundemental application of provenance is to understand
the derivation of a data object. Here, we include several visual-
izations of object lineage that illustrate the power of collecting
whole-system provenance with LPM. Each visualization serves
as a succinct sumary of the object it describes. The provenance
for these visualizations was collected using the Hi-Fi and
Provwall LPM modules. The visualizations were generated
automatedly using a Python script that output provenance
graphs in the GraphViz dot format. The script accepted a
provenance log and a query in the form of a dentry, inode,
or process for which to generate lineage. For the purpose of
a succinct visualization, we omitted much of the contextual
information being collected by the LPM module. For example,
the following graphs omit the iperm X records that represent
a process crawling through directories before opening a file,
but the fperm records in which the file is opened have been
included.

Benchmark script: Provenance can be used to explain
the behavior of an application. In Section VI-B1, we use
a script that microbenchmarks the Linux system calls using
strace. The provenance of this script is shown in Figure
12. The bench binary runs a user-specified number of times
by reading the counter file. After executing, it decrements
counter and then forks a new version of itself. bench loads
libc-2.12 and ld.so.cache each time it executes.

Malicious script: Provenance can also explain the impact
of an attack. Figure 11 shows the provenance graph of a ma-
licious script that has been executed on our provenance-aware
system. The script makes several attempts to obtain persistence

10

attack

user

controlled_by

/etc/ld.so.cache

read

/lib/libc-2.12.so

read

/etc/rc.local

read

/bin/ps

read

/var/spool/cron/root

read

/etc/passwd

read

/etc/shadow

readwritten_by written_by written_by written_by written_by

Fig. 11: A provenance graph for a malicious script that obtains persistent access and creates a machine backdoor.

./bench counter

counter

read

user

controlled_by ld.so.cache

read

libc-2.12.so

readmodified_by

modified_by

Fig. 12: A provenance graph for the microbenchmark routine
that we use in Section VI-B1.

on the system, adding a line to /etc/rc.local, rewriting
/bin/ps, and adding a cron job in /var/spool/cron. It
then creates machine backdoor by modifying /etc/shadow
and /etc/passwd to create a new root user.

B. Performance

We evaluated the performance of LPM, Provenance Walls,
and our Hi-Fi re-implementation, first by microbenchmarking
Linux system calls with different modules enabled, and then
by performing a kernel compilation macrobenchmark. Bench-
marking was performed on a KVM virtual machine whose
kernel was recompiled between trials. The VM was provi-
sioned with 4 GB memory, 4 VCPUs, and a qcow-formatted
virtual disk that was stored on a RAID. When benchmarking
Provenance Walls, we a policy containing 2015 security types.
Provenance Walls was benchmarked under 2 conditions: once
when the events fell within the policy (tracked), and once when
the events fell outside of the policy (untracked).

1) Microbenchmarks: We performed two sets of mi-
crobenchmarks, one with LMBench and one that measured
system call latency with strace. The reason for this is
that we encountered stability issues with LMBench when
Provenance Walls was enabled. When LMBench began to
measure bandwidth, Provenance Walls triggered a kernel panic.
While we investigate this problem, we created an alternate
benchmark script: a small binary that we ran with strace.
The binary triggered each major system call 100,000 times,
and the resultant strace output was parsed and averaged upon
completion. LMBench and Strace results were confirmed to be
representative by repeating 10 iterations of the full benchmark
suite.

Test Type RH
EL

2.
6.

32

RH
EL

2.
6.

32
-

LP
M

RH
EL

2.
6.

32
-

H
iF

i

Process tests, times in µseconds,
smaller is better:

null call 0.65 0.6 (-2%) 0.6 (-2%)
null I/O 0.78 0.8 (3%) 0.8 (0%)

stat 4.72 4.4 (-7%) 4.4 (-7%)
open/close 7.13 7.0 (-1%) 7.2 (1%)

sig inst 1.1K 1.1 (1%) 1.1 (0%)
sig handl 2.37 2.3 (-1%) 2.4 (2%)
fork proc 695 689 (-1%) 742 (7%)
exec proc 1940 1971 (2%) 1999 (3%)

sh proc 5520 5376 (-3%) 5523 (0%)
File and VM system latencies in µseconds,
smaller is better:
0k file creat 47.50 45.8 (-4%) 46.0 (-3%)

0k file del 17.20 17.6 (2%) 16.6 (-3%)
10k file creat 87.70 84.3 (-4%) 84.6 (-4%)

10k file del 24.70 24.4 (-1%) 25.0 (1%)
mmap lat 40.8K 41.4 (1%) 40.7 (0%)
prot fault 0.75 0.7 (-7%) 0.8 (8%)

page fault 2.29 2.6 (14%) 2.3 (1%)

TABLE III: Microbenchmarks for LPM Framework and mod-
ules, taken with LMBench: RHEL2.6.32 is an unmodified
kernel; RHEL2.6.32-LPM is a kernel with the patch applied,
but no module enabled; RHEL2.6.32-HiFi is a kernel with our
Hi-Fi re-implementation enabled; RHEL2.6.32-Provwall (Out)
is a kernel with Provwall enabled, but the policy does not
track the microbenchmarks; RHEL2.6.32-Provwall (In) is a
kernel with Provwall enabled and the policy does track the
microbenchmarks.

Table III show the LMBench results for each provenance-
aware kernel, with a percent overhead calculation against the
vanilla Red Hat Enterprise Linux 2.6.32 kernel. The perfor-
mance of both the LPM architecture and the Hi-Fi module
fall well within the experimental error; it isn’t clear from
these measurements that there is any observable performance
costs of LPM from user space. Table IV shows that, for the
strace microbenchmarks, performance was actually best for
Provenance Walls in the tracking condition. We attribute this
result to experimental error, perhaps due to cache collision
anomalies [13]. However, there is one valuable measurement
shown in this table – overhead is exceptionally high for the
create system call, regardless of whether the call is in
the tracked or untracked condition. This is intuitive, because
Provenance Walls cannot used cached results for a newly
created file. This results in the module needing to traverse
the entire policy.

11

Test Type Base LPM Hooks Hi-Fi Provwall (Untracked) Provwall (tracked)
open 32.20 29.9 (-7%) 32.7 (2%) 34.1 (6%) 24.1 (-25%)
close 21.30 19.8 (-7%) 20.4 (-4%) 20.9 (-2%) 16.2 (-24%)
read 28.50 27.2 (-5%) 28.8 (1%) 28.5 (0%) 22.3 (-22%)
write 46.40 43.8 (-6%) 45.2 (-3%) 45.7 (-2%) 35.6 (-23%)
creat 91.9K 85.1 (-7%) 85.9 (-7%) 161.8 (76%) 128.0 (39%)
rename 44.60 41.6 (-7%) 46.3 (4%) 48.2 (8%) 33.9 (-24%)
unlink 59 58.4 (-2%) 61.4 (4%) 61.7 (4%) 46.2 (-22%)
execve 563 560.0 (-1%) 591.0 (5%) 585.0 (4%) 465.0 (-17%)

TABLE IV: Overhead for the LPM Framework and modules: Base refers to benchmarks from the vanilla RHEL 2.6.32 kernel;
LPM Hooks to the modified kernel without a module enabled; Hi-Fi to our LPM-based Hi-Fi re-implementation; Provwall
(Untracked)/(tracked) to Provenance Walls depending on whether or not the benchmark routine triggered a policy hit.

Kernel Build Time Overhead
Base 8.7 min
LPM 8.7 min
Hi-Fi 8.9 min 2.2%
Provwall (Untracked) 8.95 min 2.8%
Provwall (Tracked) 8.9 min 2.2%

TABLE V: Kernel Compilation Macrobenchmarks

Ke
rn
el
	 S
pa

ce
	

U
se
r	 S

pa
ce
	

MAC
Policy

Pr
ot
ec
te
d	

MAC	 Policy	
Engine

Applica6on	 Prov.
Log

Provenance	
Daemon	

LSM	
Module

LPM	
Module

Kernel	
Objects	

Examined	 Provenance	
	

to	 grant/deny	 access	

Administrator	

Fig. 13: A design sketch for an LPM/LSM system that imple-
ments provenance-based access control.

2) Macrobenchmarks: The results of the kernel compila-
tion macrobenchmark appear in Table V. The first and most
important observation we make is that, in spite of the excessive
overhead for the create call, Provenance Walls fairs very
well under realistic workload. It performs comparably to Hi-Fi.
Our Hi-Fi benchmarks are also consistent with those from the
original study [20]. Interestingly, Provenance wall fairs better
in the tracked condition than in the untracked condition. We
attribute this to to the fact that failed policy checks are more
expensive than successful policy checks.

VII. DISCUSSION

A. Enabling New Provenance Applications

The LPM Framework has opened the doors to a vari-
ety of exciting new provenance applications. Through the
introduction of Provenance Walls, we have shown that the
interplay between security and provenance permits exciting
new possibilities in the area of attack surface analysis. For
example, another application for provenance that has received
great interest is access control [5], [8], [17], [18], [19].
Through the introduction of LPM, a practical path to the
deployment of such systems is now available. Figure 13

shows a possible design for provenance-based access control
in Linux; provenance is collected in an LPM module and then
flows into a policy engine that updates a MAC policy for the
LSM module. The presence of LPM permits the advantages
of modular composition for both the security and provenance
modules, and allows the developers to make use of established
security modules instead of implementing a new, untested one.

B. Future Work

Through the introduction of the Linux Provenance Module
Framework, we have placed the ability to rapidly deploy
provenance-aware systems in the hands of researchers and
developers. LPM’s architecture provenance hooks, MAC pol-
icy, and modules are already implemented as described in this
paper. One exception is that we are currently developing the
gateway for high-integrity volunteered provenance annotations.
We intend to use the LPM platform to continue to explore
the challenges and opportunities that whole-system prove-
nance monitors represent, particularly further optimizations
to provenance storage and application. Due to the growing
interest in provenance-aware systems, we are also pursuing
incorporating the LPM framework into Linux distributions
and/or the mainline kernel.

VIII. CONCLUSION

The Linux Provenance Module Framework represents an
exciting step forward for the provenance community, allowing
for rapid prototyping of provenance-aware systems and greater
collaboration between researchers. LPM is now fully devel-
oped, and will be released upon publication. LPM’s release
will coincide with the release of several provenance modules,
including a re-implementation Hi-Fi as well as the innovative
new Provenance Wall module. Through Provenance Walls,
we have demonstrated that provenance can be leveraged to
discover new attack surfaces in applications, and gain deeper
insight into known attack surfaces. The Linux Provenance
Module Framework significantly decreases the barriers to the
development and adoption of provenance-aware systems.

REFERENCES

[1] Lineage FS. http://crypto.stanford.edu/~cao/lineage.html.
[2] J. P. Anderson. Computer Security Technology Planning Study. Tech-

nical Report ESD-TR-73-51, Air Force Electronic Systems Division,
1972.

[3] R. S. Barga and L. A. Digiampietri. Automatic capture and efficient
storage of e-Science experiment provenance. Concurr. Comput. : Pract.
Exper., 20:419–429, April 2008.

12

[4] A. Bates, K. Butler, A. Haeberlen, M. Sherr, and W. Zhou. Let SDN
Be Your Eyes: Secure Forensics in Data Center Networks. In NDSS
Workshop on Security of Emerging Network Technologies, SENT, Feb.
2014.

[5] A. Bates, B. Mood, M. Valafar, and K. Butler. Towards Secure
Provenance-based Access Control in Cloud Environments. In Proceed-
ings of the 3rd ACM Conference on Data and Application Security and
Privacy, CODASPY ’13, pages 277–284, New York, NY, USA, 2013.
ACM.

[6] M. Bishop and M. Dilger. Checking for Race Conditions in File
Accesses. USENIX Computing Systems, 9(2):131–152, 1996.

[7] U. Braun, S. Garfinkel, D. A. Holland, K. Muniswamy-Reddy, and
M. Seltzer. Issues in Automatic Provenance Collection. In Proceed-
ings of the 2006 International Provenance and Annotation Workshop,
Chicago, Illinois, May 2006.

[8] T. Cadenhead, V. Khadilkar, M. Kantarcioglu, and B. Thuraisingham.
A Language for Provenance Access Control. In CODASPY ’11:
Proceedings of the first ACM Conference on Data and Application
Security and Privacy, pages 133–144, San Antonio, TX, USA, 2011.
ACM Press.

[9] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wallach. QUIRE:
Lightweight Provenance for Smart Phone Operating Systems. In
Proceedings of the 20th USENIX Security Symposium, 2011.

[10] R. Hasan, R. Sion, and M. Winslett. Introducing secure provenance:
problems and challenges. In Proceedings of the 2007 ACM workshop on
Storage security and survivability (StorageSS ’07), pages 13–18, New
York, NY, USA, 2007. ACM.

[11] R. Hasan, R. Sion, and M. Winslett. SPROV 2.0: A Highly-Confgurable
Platform-Independent Library for Secure Provenance. In ACM CCS,
Nov. 2009.

[12] R. Hasan, R. Sion, and M. Winslett. The Case of the Fake Picasso:
Preventing History Forgery with Secure Provenance. In FAST ’09:
Proceedings of the 7th USENIX Conference on File and Storage
Technologies, 2009.

[13] J. Inouye, R. Konuru, J. Walpole, and B. Sears. The effects of virtually
addressed caches on virtual memory design and performance. SIGOPS
Oper. Syst. Rev., 26(4):14–29, Oct. 1992.

[14] P. McDaniel, K. Butler, S. McLaughlin, R. Sion, E. Zadok, and
M. Winslett. Towards a Secure and Efficient System for End-to-End
Provenance. In TaPP ’10: Proceedings of the 2nd USENIX Workshop
on the Theory and Practice of Provenance, 2010.

[15] K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. Seltzer.
Provenance-Aware Storage Systems. In Proceedings of the 2006
USENIX Annual Technical Conference, 2006.

[16] S. Munroe, S. Miles, L. Moreau, and J. Vázquez-Salceda. PrIMe: A
Software Engineering Methodology for Developing Provenance-aware
Applications. In Proceedings of the 6th International Workshop on
Software Engineering and Middleware, SEM, pages 39–46, New York,
NY, USA, 2006. ACM.

[17] D. Nguyen, J. Park, and R. Sandhu. Dependency Path Patterns As
the Foundation of Access Control in Provenance-aware Systems. In
Proceedings of the 4th USENIX Conference on Theory and Practice of
Provenance, TaPP’12, pages 4–4, Berkeley, CA, USA, 2012. USENIX
Association.

[18] Q. Ni, S. Xu, E. Bertino, R. Sandhu, and W. Han. An Access
Control Language for a General Provenance Model. In Secure Data
Management, Aug. 2009.

[19] J. Park, D. Nguyen, and R. Sandhu. A Provenance-Based Access
Control Model. In Proceedings of the 10th Annual International
Conference on Privacy, Security and Trust (PST), pages 137–144, 2012.

[20] D. Pohly, S. McLaughlin, P. McDaniel, and K. Butler. Hi-Fi: Collect-
ing High-Fidelity Whole-System Provenance. In Proceedings of the
2012 Annual Computer Security Applications Conference, ACSAC ’12,
Orlando, FL, USA, 2012.

[21] A. C. Revkin. Hacked E-mail is New Fodder for Climate Dispute. New
York Times, 20, 2009.

[22] M. Szomszor and L. Moreau. Recording and Reasoning over Data
Provenance in Web and Grid Services. In R. Meersman, Z. Tari,
and D. Schmidt, editors, On The Move to Meaningful Internet Systems

2003: CoopIS, DOA, and ODBASE, volume 2888 of Lecture Notes in
Computer Science, pages 603–620. Springer Berlin Heidelberg, 2003.

[23] V. Tan, P. Groth, S. Miles, S. Jiang, S. Munroe, S. Tsasakou, and
L. Moreau. Security issues in a soa-based provenance system. In
L. Moreau and I. Foster, editors, Provenance and Annotation of Data,
volume 4145 of Lecture Notes in Computer Science, pages 203–211.
Springer Berlin Heidelberg, 2006.

[24] The Netfilter Core Team. The Netfilter Project: Packet Mangling for
Linux 2.4. http://www.netfilter.org/, 1999.

[25] H. Vijayakumar, G. Jakka, S. Rueda, J. Schiffman, and T. Jaeger. In-
tegrity Walls: Finding Attack Surfaces from Mandatory Access Control
Policies. In Proceedings of the 7th ACM Symposium on Information,
Computer and Communications Security, ASIACCS ’12, pages 75–76,
New York, NY, USA, 2012. ACM.

[26] J. Widom. Trio: A System for Integrated Management of Data,
Accuracy, and Lineage. Technical Report 2004-40, Stanford InfoLab,
Aug. 2004.

[27] C. Wright, C. Cowan, J. Morris, S. Smalley, and G. Kroah-Hartman.
Linux Security Module Framework. In Ottawa Linux Symposium, page
604, 2002.

[28] C. Wright, C. Cowan, S. Smalley, J. Morris, and G. Kroah-Hartman.
Linux security modules: General security support for the linux kernel.
In Proceedings of the 11th USENIX Security Symposium, pages 17–31,
Berkeley, CA, USA, 2002. USENIX Association.

[29] Y. Xie, K.-K. Muniswamy-Reddy, D. Feng, Y. Li, and D. D. E. Long.
Evaluation of a Hybrid Approach for Efficient Provenance Storage.
Trans. Storage, 9(4):14:1–14:29, Nov. 2013.

[30] W. Zhou, Q. Fei, A. Narayan, A. Haeberlen, B. T. Loo, and M. Sherr.
Secure Network Provenance. In ACM Symposium on Operating Systems
Principles (SOSP), 2011.

[31] W. Zhou, M. Sherr, T. Tao, X. Li, B. T. Loo, and Y. Mao. Efficient
Querying and Maintenance of Network Provenance at Internet-Scale.
In ACM SIGMOD International Conference on Management of Data
(SIGMOD), June 2010.

13

	Introduction
	Automated Provenance Collection
	Operational Layer
	Scoping
	Collection Paradigms

	Linux Provenance Module Framework
	Threat Model
	Security Goals
	Design
	Prototype Modules

	Security Analysis
	Policy-Reduced Provenance
	Policy Generation
	Policy-Driven Provenance Monitor
	Loading the Policy
	Policy Checks
	Early Boot Provenance

	Testing and Functionality
	Case Study: Provenance Visualization
	Performance
	Microbenchmarks
	Macrobenchmarks

	Discussion
	Enabling New Provenance Applications
	Future Work

	Conclusion
	References

