
Lazy Functions as Processes

Luke Maurer

University of Oregon
maurerl@cs.uoregon.edu

Abstract
CPS transforms have long been important tools in the study of programming languages, especially those related
to the λ-calculus. Recently, it has been shown that encodings into process calculi, such as the π-calculus, can
also serve as semantics, in the same way as CPS transforms. It is known that common encodings of the call-by-
value and call-by-name λ-calculi into the π-calculus can be seen as CPS transforms composed with a naming
transform that expresses sharing of values.

We review this analysis and extend it to call-by-need. The new call-by-need CPS transform requires extending
the target λ-calculus with an effect, which we call constructive update. We present a proof of the correctness of
the call-by-need CPS transform, which is hence a new proof of the correctness of the call-by-need π-calculus
encoding. Also, we derive abstract machines from the CPS transforms discussed.

1. Introduction
Continuations and continuation-passing style (CPS) provide powerful and versatile tools for understanding
programming languages [24]. By representing the “future of the program” as a first-class entity, a CPS transform
gives a denotational semantics for a programming language in terms of a simple, well-understood low-level
language. In a particularly influential use of continuations, Plotkin [23] demonstrated how a CPS transform can
weave an implementation strategy for a program into the syntax of the program itself. This methodology gave
rise to the call-by-value λ-calculus and was instrumental in closing the gap between the theory and practice of
functional languages.

Since that time, CPS transforms have continued to further our understanding of programming languages. The
call-by-value CPS transform was more descriptive than Plotkin’s original call-by-value λ-calculus, motivating a
more thorough study of strict functional languages; in turn, this lead to more advanced techniques for reasoning
about programs in continuation-passing style and to a more complete development of the call-by-value λ-
calculus [25, 26]. CPS transforms and related techniques have also provided a formal method for reasoning
about effects, such as mutable references and non-local jumps, that lie outside of the pure model of the λ-
calculus. Of particular note is delimited control, especially the shift and reset operators [11], which were
originally developed by defining them in continuation-passing style.

As an alternative to CPS transforms, we can instead encode a language in a process calculus such as the
π-calculus. A π-encoding represents computation as a form of interaction between independent processes, thus
providing another view of run-time behavior. Since the π-calculus naturally expresses certain phenomena such
as concurrency, nondeterminism, and distributed computation, a π-encoding is particularly suited to studying
languages with these features. Processes which are deterministic and sequential, however, correspond to an
environment-based presentation of a CPS language, as observed by Sangiorgi [27] and Amadio [3]. This
correspondence has been studied largely in the context of the call-by-name and call-by-value λ-calculi. The
aim of this paper is to extend the study to call-by-need evaluation [5, 7].

We start, in Section 2, with an introduction of the call-by-name and call-by-value lambda-calculi. We present
their operational semantics and a uniform CPS transform, from which we derive CBN and CBV π-encodings,
along with abstract machines. In Section 3, we consider call-by-need evaluation; we present a novel call-by-

Evaluation Contexts: E ::= []
∣∣ EM

(λx.M)N −→ M{N/x} βn

Figure 1. The call-by-name λ-calculus, λn

Values: V ::= x
∣∣ λx.M

Evaluation Contexts: E ::= []
∣∣ EM ∣∣ V E

(λx.M)V −→ M{V/x} βv

Figure 2. The call-by-value λ-calculus, λv

need CPS transform, which leads to an interesting concept in its own right: the notion of constructive update.
From the new CPS transform, we derive the call-by-need π-encoding and an abstract machine in much the same
way as we did for CBN and CBV.

2. The Call-by-Name and Call-by-Value λ-Calculi
The λ-calculus, defined by Church [10] in the 1930s, is a simple yet powerful model of computation. It consists
of only three parts: functions from inputs to outputs, variables that stand for the inputs, and applications that
invoke the functions:

Terms: M,N ::= λx.M
∣∣ x ∣∣MN

As the λ-calculus can be a foundation of both strict and lazy languages, a λ-term M can be evaluated according
to different evaluation strategies, which dictate the operation to be performed first. The two most studied
evaluation strategies are call-by-name (CBN) and call-by-value (CBV). In CBN evaluation, the argument to
a function is kept unevaluated as long as possible, then evaluated each time its value is required for computation
to continue. In CBV evaluation, the argument is always evaluated before the function receives it. It is usually
better to precompute arguments, as CBV does, since then an argument will not be evaluated more than once;
however, if the function does not actually use the value, computing it is wasteful. In the extreme case, if the
argument diverges (that is, loops forever) but is never used by the function, CBV diverges when CBN does not.

The distinct CBN and CBV reduction strategies are captured by the two reduction rules, βn and βv (see
Figs. 1 and 2). A βn-reduction starts from a term (λx.M)N , then proceeds by substituting the unevaluated
argument N into the body wherever x appears. Thus the function call precedes the evaluation of the argument.
In contrast, a βv-reduction evaluates the argument first: Only a value may be substituted into the body. A value
is either a variable or a function literal (also called a λ-abstraction).

A term that pattern-matches the left-hand side of a reduction rule is called a redex, short for reducible
expression. For instance, (λx. xx)((λy. y)(λz. z)) is a call-by-name redex. However, it is not a call-by-value
redex, because the argument (λy. y)(λz. z) is not a value. If a redex somewhere in M is reduced, and the
resulting term is N , we write M −→ N and say that M reduces to N ; we also write −→−→ for zero or more
reductions and −→+ for one or more reductions.

To complete the semantics, one has to specify where a reduction should take place. Felleisen and Fried-
man [15] introduced a concise way to do so, using evaluation contexts. A context is a “term with a hole”: It
is the outer portion of some term, surrounding a single occurrence of the symbol []. A language’s evaluation

contexts delineate the places in a term where evaluation may take place. For instance, consider the grammar for
evaluation contexts in Fig. 1: An evaluation context can be either just a hole (the trivial or top-level context,
[]) or EM , a subcontext applied to an argument. Thus CBN evaluation can take place either at the top level
or within the operator in a function application, but not within the argument (since arguments are left unevalu-
ated). The CBV calculus also has contexts V E, so once the function in an application has become a value, CBV
evaluation proceeds within the argument.

Given an evaluation context E, we write E[M] for E with the term M in place of the hole, and we say M is
plugged into E. (This notation applies to general contexts as well.) The inverse of the “plugging in” operation
is decomposition, and it plays a critical role in evaluation by finding where to perform the next reduction. For
example, we can decompose (λx. xx)((λy. y)(λz. z)) in CBN as E[M] where E is the top-level context [] and
M is the entire term. In CBV, we can decompose it with E being (λx. xx)[] and M being (λy. y)(λz. z), since
the next step of CBV evaluation is to reduce the argument.

IfM ≡ E[M ′] andM ′ is a redex reducing toN ′, then we writeM 7−→ N whereN , E[N ′]. In other words,
7−→ denotes reduction only within an evaluation context, which we call standard reduction or evaluation. Often
we will say that M steps or takes a step in this case. As before, we write 7−→−→ for the reflexive and transitive
closure and 7−→+ for the transitive closure.

Finally, we introduce notations for the possible observations one can make about a term. These are the
potential outcomes of computation, without regard to the particular steps taken. If M is a λ-abstraction, which
we also call an answer, we write M ↓. If M evaluates to an answer (perhaps because it is one), we write M ⇓.
A term M with no possible evaluation step, but which is not an answer, is called stuck, written M 6 ↓; a term M
that evaluates to a stuck term gets stuck, written M 6⇓. If M never finishes evaluating—that is, it takes infinitely
many evaluation steps—it is said to diverge, written M ⇑.

Example 1. Consider the term (λx. xx)((λy. y)(λz. z)). CBN and CBV evaluate the term differently (the redex
at each step is shaded):

(λx. xx)((λy. y)(λz. z)) (λx. xx)((λy. y)(λz. z))

7−→ ((λy. y)(λz. z))((λy. y)(λz. z)) 7−→ (λx. xx)(λz. z)

7−→ (λz. z)((λy. y)(λz. z)) 7−→ (λz. z)(λz. z)

7−→ (λy. y)(λz. z) 7−→ (λz. z)

7−→ (λz. z)

CBN reduces the outer β-redex immediately, substituting the argument as is. This duplicates work, since the
βn-redex (λy. y)(λz. z) now appears for each x in the body of λx. xx. Instead, CBV evaluates the argument
first, reducing it to a value before substituting, thus saving one reduction.

2.1 A Uniform Continuation-Passing-Style Transform
As an alternative to specifying the semantics of a language in terms of rewrite rules for programs, one can
specify a function that “compiles,” or transforms, programs into some lower-level form. The advantage is that
analyzing a lower-level form is easier, since the syntax itself prescribes how a program should be executed,
just as assembly code specifies not only calculations but which registers, including the program counter, to use
to perform them. A transform into continuation-passing style, called a CPS transform, is an example of such
a compilation function. It produces λ-terms whose evaluation order is predetermined: The same calculations
will be performed, in the same order, by call-by-name or call-by-value evaluation. The trick is to pass only
precomputed values as arguments to functions, making the question of when to evaluate arguments moot. Then,
rather than returning its result in the usual way, a CPS function passes the result to one of its arguments, the
so-called continuation. A continuation represents the evaluation context in which a function was invoked; hence
it plays a similar role to the call stack used in most computer architectures. Since their evaluation contexts differ,

CJxK , λk. xk
CJλx.MK , λk. k(λ(x, k′). CJMKk′)

CJMNK ,

{
λk. CJMK(λv. v(λk′. CJNKk′, k)) CBN
λk. CJMK(λv. CJNK(λw. v(λk′. k′w, k))) CBV

Figure 3. A uniform CPS transform for call-by-name and call-by-value

we can elucidate the difference between CBN and CBV evaluation by translating each to continuation-passing
style.

We focus on a uniform CPS transform C, given in Fig. 3, so called because the translations for variables
and abstractions are the same between CBN and CBV. This uniformity highlights the differences in evaluation
order by varying only the translation of applications. Specifically, once M has evaluated to a function v, the
continuation in the CBN transform invokes v immediately, passing it the unevaluated CPS term λk′. CJNKk′

as x. Evaluating a variable is done by invoking it with a continuation, so each invocation of x within the body
of v will evaluate the argument. The CBV transform evaluates M the same way, but its continuation does not
use v immediately; instead, it evaluates N to a function w, and only its continuation invokes v. This time, the x
argument is a function that immediately passes w to the continuation; therefore each invocation of x within the
body of v immediately returns the precomputed argument value w.

Example 2. Consider the term (λx. xx)((λy. y)(λz. z)) from above, calling it M for now. In CBN (the redex is
always the whole CPS term, so we omit the shading):

CJMKk , CJλx. xxK(λv. v(λk′. CJ(λy. y)(λz. z)Kk′, k))

, (λk. k(λ(x, k′). CJxxKk′))(λv. v(λk′. CJ(λy. y)(λz. z)Kk′, k))

7−→ (λv. v(λk′. CJ(λy. y)(λz. z)Kk′, k)(λ(x, k′). CJxxKk′)

The function has evaluated to v; we invoke it immediately:

7−→ (λ(x, k′). CJxxKk′)(λk′. CJ(λy. y)(λz. z)Kk′, k)

, (λ(x, k′). (λk. CJxK(λv. v(λk′. CJxKk′, k)))k′)(λk′. CJ(λy. y)(λz. z)Kk′, k)

, (λ(x, k′). (λk. (λk. xk)(λv. v(λk′. (λk. xk)k′, k)))k′)(λk′. CJ(λy. y)(λz. z)Kk′, k)

7−→ (λk. (λk. (λk′. CJ(λy. y)(λz. z)Kk′)k))(λv.

v(λk. (λk′. CJ(λy. y)(λz. z)Kk′, k)))k))k

This last reduction step duplicates work, as the evaluation of CJ(λy. y)(λz. z)K must now occur twice.
Now for CBV:

CJMKk , CJλx. xxK(λv. CJ(λy. y)(λz. z)K(λw. v(λk. kw, k)))

, (λk. k(λ(x, k′). CJxxKk′))(λv. CJ(λy. y)(λz. z)K(λw. v(λk. kw, k)))

7−→ (λv. CJ(λy. y)(λz. z)K(λw. v(λk. kw, k)))(λ(x, k′). CJxxKk′)

The function has evaluated to v, but this time we evaluate the argument next:

7−→ CJ(λy. y)(λz. z)K(λw. (λ(x, k′). CJxxKk′)(λk. kw, k))

Once the argument is computed as w, then the function will be invoked, but this time with x being a function
that immediately passes along the precomputed value w.

Values: V ::= λx.M

Evaluation Contexts: E ::= []
∣∣ EM ∣∣ V E

(λx.M)V −→ M{V/x} βv

Figure 4. A revised call-by-value λ-calculus

The uniform CPS transform reflects the behavior of common language implementations: Evaluation always
stops at a λ, and a variable always causes a lookup (hence a free variable halts execution). However, these
behaviors don’t faithfully represent the full theory of the λ-calculus. For instance, the calculus is often
considered with the η rule in addition to β. An η-reduction takes λx.Mx to just M whenever x does not
appear in M . For a free variable y, then, the term λx. yx would become stuck after one reduction, whereas the
uniform CPS transform gives a term that immediately returns the value λx. yx.

The η rule is often considered unimportant for language implementations: Nearly all compilers and inter-
preters for functional languages stop evaluating when they find a λ. Many well-studied CBN CPS transforms,
such as that of Plotkin [23], do not validate η; in fact, the CBN fragment of the uniform CPS transform is very
similar to Plotkin’s transform. The CBV fragment, however, differs more fundamentally: It doesn’t follow the
conventional βv rule, either. In the CBV λ-calculus, a variable is considered a value, yet few compilers or inter-
preters operate this way: The term (λx. λy. y)z should reduce to λy. y, but a typical implementation would raise
an error on seeing the free variable z. Accordingly, the CBV portion of the uniform CPS transform produces a
term that becomes stuck on z rather than reducing to a value.

Therefore the CBV language truly implemented by the uniform CPS transform is not the one given in Fig. 2.
Rather, it implements a calculus that further restricts the βv rule to apply only to a λ-abstraction as an argument.
Equivalently, this revised calculus consideres only a λ-abstraction to be a value. From now on, then, when we
speak of the call-by-value calculus, we will refer to the version in Fig. 4. In particular, 7−→ will refer to the
restricted notion of evaluation context.

In most cases, our departure from orthodoxy will make no difference. In standard reductions of closed terms,
it never happens that a free variable appears as an argument, and thus it does not matter whether we consider it
a value or not.

2.2 The CPS Language λcps
The terms produced by the uniform CPS transform comprise a restricted λ-calculus. The grammar is given in
Fig. 5. In an application, the function must be a value, and it can take one or two arguments, which must also be
values; we denote this V (W+) (we will omit parentheses when there is one argument). A value is a variable, a
λ-abstraction, or the constant ret. Note that the body of an abstraction must again be a CPS term—that is, an
application. In CPS, a function never returns to its caller; it only performs more function calls. Accordingly, the
only evaluation context is the trivial context [], as the redex is always at the top level.

There are three kinds of value that appear in a CPS term:

Thunks A thunk is a suspended computation. In CPS terms, this is a function λk.M that takes a continuation,
calculates a result, then passes the result to the continuation. Each term of the form CJMK is a thunk. In the
uniform CPS transform, variables are represented by thunks.

Continuations A continuation is a handler for a result; it has the form λv.M . It takes a computed source value
and performs the next step of evaluation. We can see it as a reification of a term’s evaluation context from the
source language.

Terms: M,N ::= V (W+)

Values: V,W ::= x
∣∣ ret ∣∣ λ(x+).M

Evaluation Contexts: E ::= []

(λ(x+).M)(V +) −→ M{V +/x+} β

Figure 5. The syntax and semantics of the CPS λ-calculus, λcps

Source Values Each value from the source calculus has a CPS encoding. As we are translating from calculi
having only functions as values, we need only consider how to encode a function. Namely, a source function
becomes a binary function λ(x, k).M that takes a thunk x for computing the argument and a continuation k
to invoke with the result.

Before we consider observations, we should consider what it means for a CPS program to be evaluated. A
term CJMK is an inert λ-abstraction; it must be given a continuation as its argument for evaluation to occur.
This argument represents the context in which to evaluate M . If we consider M to be the whole program, we
need an initial continuation to represent the top-level context. Thus we introduce the constant ret; to evaluate
M as a CPS program, then, one writes CJMK ret. If one thinks of a term CJMK as meaning “evaluate M and
then,” CJMK ret then reads “evaluate M and then return.” Thus ret is analogous to the C function exit, which
terminates execution and yields its argument as the result of the program.

Since an answer is the result of successful computation, then, a CPS answer is a term of the form retV , for
a λ-abstraction V .1 Thus M ↓ means that M has the form ret(λ(x+). N), and M ⇓ means that M evaluates to
such a term. As before, M 6 ↓ means that M is stuck (hence not an answer); M 6⇓ means that M gets stuck; and
M ⇑ means that M diverges.

2.3 Environment-Based CPS Transform
So far, we have expressed argument passing by substitution: Each β-reduction substitutes the arguments for
the free occurences of the corresponding variables. Effectively, a copy is made of each argument for each
occurrence. Interpreters typically operate differently: Each argument is put into an environment, indexed by the
variable it is bound to. Then, when a variable appears as a function being invoked, its value is retrieved from the
environment.

We can simulate this mechanism by giving a name to each abstraction in argument position, substituting
only names during β-reduction, and copying the value only as necessary. This is analogous to graph rewriting
and can be captured by extending the syntax with a let construct [6]: A bound name identifies a node in a
graph. However, we prefer an alternative syntax which expresses the dynamic allocation of names. We write
νx. x := λ(x+).M inN to indicate that a new name x is generated and a λ-abstraction is bound to it. Note that
we will always bind an abstraction to a name immediately after allocation and only then. The value-named CPS
λ-calculus, λcps,vn , is given in Fig. 6. Each term is now an application inside some number of bindings, which
effectively serve as the environment. Each argument to an application must be a variable.

Note that we now have nontrivial evaluation contexts, unlike with λcps , whose only evaluation context was [].
However, the contexts in λcps,vn do not specify work to be done but simply bindings for variables. To emphasize
this, we call a context providing only bindings a binding context, and say that a CPS calculus has only binding
contexts as evaluation contexts.

1 In principle, we could avoid adding a constant by simply using some free variable k for the initial continuation. We would then have
to have a predicate ⇓k for each name k, and correctness theorems would be quantified over k. Thus ret is merely a convenience.

Terms: M,N ::= V (x+)
∣∣ νx. x := λ(x+).M inN

Values: V ::= x
∣∣ ret ∣∣ λ(x+).M

Binding Contexts: B ::= []
∣∣ νx. x := λ(x+).M inB

Eval. Contexts: E ::= B

(λ(x+).M)(y+) −→ M{y+/x+} β

νf. f := λ(x+).M

in E[f(y+)]
−→

νf. f := λ(x+).M

in E[(λ(x+).M)(y+)]
deref

Figure 6. The value-named CPS λ-calculus, λcps,vn

CvnJxK , λk. xk
CvnJλx.MK , λk. νf. f := λ(x, k′). CvnJMKk′ in kf

CvnJMNK ,

λk. νk′. k′ :=
(
λv.

νx. x := λk′′. CvnJNKk′′

in v(x, k)
)
in CvnJMKk′

CBN

λk. νk′. k′ :=
(
λv. νk′′. k′′ := (λw.

νx. x := λk′. k′w in v(x, k))
in CvnJNKk′′

)
in CvnJMKk′

CBV

Figure 7. Uniform CPS transform in named form

To convert an unnamed term to a named term, we introduce a naming transform, N . The naming transform
goes through all arguments appearing in a term, moving each λ-abstraction into a new variable.

N JV (λ(x+).M)K , νy. y := λ(x+).N JMK inN JV (y)K

N JV (λ(x+).M,W)K , νy. y := λ(x+).N JMK inN JV (y,W)K

N JV (y, λ(x+).M)K , νz. z := λ(x+).N JMK inN JV (y, z)K

N J(λ(x+).M)(y+)K , (λ(x+).N JMK)(y+)

N Jf(y+)K , f(y+)

For clarity, here we assume that each function has at most two arguments, as is true for our CPS terms; N
generalizes straightforwardly by iteration.

The uniform CPS transform under the naming transform is given in Fig. 7.

Proposition 3. CvnJMK ≡ N JCJMKK.

Proof. Straightforward induction on M . �

2.4 Preservation of Observations
We show correctness of the value-named uniform CPS transform in two steps. We start with the correctness of
the unnamed transform, then prove the correctness of the naming step.

2.4.1 Proof Methodology
For a CPS transform to be considered correct, we would want it to preserve termination [19]:

Criterion 4. M ⇓ iff CJMK ret ⇓.

In order to prove this criterion, generally one proceeds by induction on the evaluation steps. In order for the
induction to go through, we need to establish an invariant: Something that is true at the beginning of evaluation
and remains true after each step. For C, the simplest invariant one can imagine would be this:

M N

CJMKK CJNKK

(1)

In words, for any continuation K, whenever M reduces to N , CJMKK reduces to CJNKK.2 However, this
invariant does not hold. One reason is that the CPS transform introduces many administrative redexes into the
term. These are intermediate computations that do not correspond to actual β-reductions in the source language.
(Non-administrative redexes are called proper.) Hence one step for M may correspond to many in CJMKK.
Thus consider:

M N

CJMKK CJNKK

(2)

Unfortunately, there is a more serious issue with (2). As noted by Plotkin [23], administrative reductions
do not line up with the CPS transform in the way that the diagram suggests. Because CJNKK introduces
administrative redexes of its own, we cannot say that CJMKK 7−→−→ CJNKK; we can only say that CJMKK 7−→−→
P for some P that CJNKK can reduce to, perhaps through non-standard reductions. In fact, since CJNK is an
abstraction, CJNKK is itself an administrative redex, so there is always at least one such step. The true situation
is this:

M N

CJMKK P CJNKK

(3)

Plotkin’s solution was to derive a new transform that eliminated these initial administrative redexes, thus
regaining (2). The problem with this and similar solutions [12, 13] is that the resulting transforms are more
complex and difficult to reason about than the original CPS transform. For instance, usually such administration-
free CPS transforms are non-compositional [13].

Instead of changing the transform, we can further loosen the invariant using the bisimulation technique.
Bisimulation is an alternative approach to soundness and completeness that requires only that we find some
suitable relation to act as the invariant. Given a relation ∼, we can use it to prove Criterion 4 so long as the

2 Ultimately, of course, we observe what happens when K is ret. But there is nothing special about ret; we expect our diagrams to
hold for any K.

following hold:3

M

CJMK ret

∼

M N

P Q

∼ ∼

M N

P Q

∼ ∼

M ↓

P Q ↓

∼

M N ↓

Q ↓

∼

(4)

So, M is related to its image under the transform; when either related term takes a step, the other can take some
number of steps to remain in the relation; and if either is an answer, the other evaluates to an answer.

We have that evaluation to an answer is preserved; however, what can we say about a stuck term? It could
happen that M is stuck but CJMK ret loops forever, or vice versa. Thus we consider an additional criterion:

Criterion 5. M 6⇓ iff CJMK ret 6⇓.

To prove Criterion 5, we require two more properties of the simulation ∼, in addition to those in (4):

M 6 ↓ M N 6 ↓

P Q 6 ↓ P 6 ↓

∼ ∼ (5)

In words, if either M or P is stuck, then the other must get stuck.
The final observation that we want to preserve is divergence:

Criterion 6. M ⇑ iff CJMK ret ⇑.

However, because evaluation is deterministic in our calculi, we can get Criterion 6 “for free” from Criteria 4
and 5: If one term diverges, it can neither reduce to an answer nor get stuck, and hence the other term can only
diverge.

We can further simplify the proof methodology thanks to Leroy’s observation [18] that if the source language
is deterministic, the forward simulation may be sufficient. However, we need to strengthen the invariant by
requiring that each source evaluation step maps to at least one step in the CPS term; if we allow the CPS term
to “spin in place” indefinitely, then a diverging source term could translate as an answer. In short, it will suffice
to show:

M

CJMK ret

∼

M N

P Q

∼ ∼

+

M ↓

P Q ↓

∼

M 6 ↓

P Q 6 ↓

∼

(6)

From these properties and determinacy, we can prove both directions of Criteria 4 to 6. The forward direction
follows directly by induction. For the backward direction of Criterion 4, we can argue by contraposition: If M
does not reduce to an answer, then it must either diverge or get stuck. If it diverges, then by the second diagram
3 Technically, it is the second and third diagrams that characterize a bisimulation. The others are additional properties that we need in
order to finish the proof. The fourth and fifth are very similar to the requirements on a barbed bisimulation[21].

in (6), it must hold that CJMK ret diverges, and hence by determinacy it cannot reduce to an answer. Similarly, if
M gets stuck, CJMK ret must get stuck, and hence cannot reduce to an answer. The reasoning for the backward
direction of Criteria 5 and 6 is similar.

2.4.2 Correctness of the CPS Transform
We define the simulation∼ by comparing terms in a way that ignores all administrative reductions. We consider
a λ-abstraction administrative when it always forms an administrative redex. We mark these administrative
λ-abstractions by placing a line over the λ, as in λ̄k.M . The explicitly marked uniform CPS transform is then:

CJxK , λ̄k. xk
CJλx.MK , λ̄k. k(λ(x, k′). CJMKk′)

CJMNK ,

{
λ̄k. CJMK(λ̄v. v(λ̄k′. CJNKk′, k)) CBN
λ̄k. CJMK(λ̄v. CJNK(λ̄w. v(λ̄k′. k′w, k))) CBV

Notice that the only proper λ-abstractions are the ones that correspond to a λ-abstraction from the original
term, since these are the abstractions whose reductions correspond to the actual β-reductions in the source
language. To distinguish administrative computation, we introduce the reduction relation −→ad, defined by the
administrative β-rule:

(λ̄(x+).M)(V +) −→ad M{V +/x+} βad

Keeping to our notational conventions, the reflexive and transitive closure of−→ad is−→−→ad and its transitive
closure is −→+

ad. Also, its reflexive, symmetric, and transitive closure is =ad . Furthermore, 7−→ad stands for a
standard administrative reduction, which is to say an administrative reduction in the empty context (at top level),
and 7−→−→ad are 7−→+

ad are the usual closures. We will also use the subscript pr in place of ad to denote a proper
reduction. Finally, 7−→+

pr1 is short for 7−→−→ad 7−→pr 7−→−→ad, which is to say, some number of standard reductions,
exactly one of which is proper.

If a term cannot take an administrative standard reduction, then for the moment, the administrative work in
that term is finished. Hence, if we consider the administrative subcalculus of λcps , such a term is the result, or
answer, of administrative computation. Therefore let a term with no administrative standard reduction be called
an administrative answer. In the following, we rely on some known properties of the λ-calculus, which also
apply to the administrative subset of the CPS λ-calculus.

Proposition 7. Administrative reduction in λcps :

1. is confluent, so that if M =ad M
′, then there is some N such that M −→−→ad N and M ′ −→−→ad N ; and

2. has the standardization property, so that if M −→−→ad N and N is an administrative answer, then there is an
administrative answer M ′ such that M 7−→−→ad M

′ −→−→ad N .

Next we need to know how non-standard, or internal, administrative reductions interact with proper standard
reductions. In short, they don’t—administrative reductions commute with proper standard reductions (see
Fig. 8).

Proposition 8.

1. If M −→−→ad M
′ 7−→pr N and M is an administrative answer, then there is N ′ with M 7−→pr N

′ −→−→ad N .
2. If M ←−←−ad M

′ 7−→pr N , then there is N ′ with M 7−→pr N
′ ←−←−ad N .

Proof.

1. If M is an administrative answer, then it is a proper β-redex; let M , (λ(x+). P)(V +). Any administrative
reductions in M must take place either in P or in V +; in general, they could take P to some P ′ and V + to
some V ′+. Hence M ′ ≡ (λ(x+). P ′)(V ′+). Since M ′ 7−→pr N , this means N ≡ P ′{V ′+/x+}, and we take
N ′ , P{V +/x+}.

M N ′

M ′ N

pr

ad ad

pr

(a) Proposition 8.1

M N ′

M ′ N

pr

ad

pr

ad

(b) Proposition 8.2

M N

M ′ N ′

pr

ad ad

pr +

(c) Lemma 9

Figure 8. Diagrams of Proposition 8 and Lemma 9.

2. Similar. �

As a consequence, we have that =ad , which can involve arbitrary administrative reductions in either direction,
commutes with proper standard reduction.

Lemma 9. If M =ad M
′ 7−→pr N , then there is N ′ such that M 7−→+

pr1 N
′ =ad N .

This is a crucial lemma; we will prove it later.
Now that we know what administrative reductions don’t do, we should see what they can do: They serve to

bring the standard redex in the source term to the top of the CPS term. This entails reifying the evaluation context
as a continuation, so that we begin with CJE[M]K ret and build toward CJMKK, whereK is a continuation that
“represents” E somehow. We can formalize this intuition:

Proposition 10. For each evaluation context E in λn or λv and each continuation K, there is a continuation
K ′ such that for every term M we have CJE[M]KK 7−→−→ad CJMKK ′.

Proof. By induction on the structure of E in each calculus. For call-by-name, we have two cases:

• If E ≡ [], take K ′ , K.
• For E ≡ E′N , we have:

CJE′[M]NKK 7−→ad CJE′[M]K(λ̄v. v(CJNK,K))

7−→−→ad CJMKK ′ (by I.H.)

For call-by-value, we have three cases:

• If E ≡ [], take K ′ , K.
• For E ≡ E′N , we have:

CJE′[M]NKK 7−→ad CJE′[M]K(λ̄v. CJNK(λ̄w. v((λ̄k′. k′w),K)))

7−→−→ad CJMKK ′ (by I.H.)

• Finally, suppose E ≡ V E′. In our modified CBV calculus, V must be a λ-abstraction and not a variable, so
we have:

CJ(λx.N)(E′[M])KK
7−→ad (λ̄k. k(λ(x, k′). CJNKk′))(λ̄v. CJE′[M]K(λ̄w. v((λ̄k. ′′k′′w),K)))

7−→−→ad CJE′[M]K(λ̄w. (λ̄k. k(λ(x, k′). CJNKk′))((λ̄k′′. k′′w),K))

Note that if V could be a variable, then the CPS transformation would get stuck after the first step, and we
would not be able to bring E′[M] to the top of the transformed term. �

We now want to show that observations in the λn and λv calculi line up with observations of the CPS-
transformed terms. In other words, we prove that C meets Criteria 4 to 6.

We define our forward simulation ∼ as follows:

Definition 11. For a λ-term M (either CBN or CBV) and CPS term P , let M ∼ P when CJMK ret =ad P .

Our task is to prove that ∼ satisfies the diagrams in (6), making it a forward simulation. To begin, we first
prove that “answerness” and “stuckness” are preserved by administrative operations:

Proposition 12. If P =ad P
′ and P ↓, then P ′ ⇓.

Proof. By confluence, there must be a term Q such that P −→−→ad Q and P ′ −→−→ad Q. Since P is an answer it
must have the form retV , therefore the reductions in−→−→ad must have been within V , soQmust have the form
retV ′. Finally, by standardization, since P ′ −→−→ad retV ′, there must be R with P ′ 7−→−→ad R −→−→ad retV ′;
since non-standard reductions cannot disturb the top redex, we must have R ≡ retV ′′, so P ′ ⇓. �

Proposition 13. If P =ad P
′ and P 6 ↓, then P ′ 6⇓.

Proof. Similar to Proposition 12, again invoking confluence and standardization. �

We are now ready to prove the third and forth commuting diagrams of Eq. (6), showing that∼ relates answers
to answers and stuck terms to stuck terms (up to some remaining steps in the CPS term):

Lemma 14. If M ∼ P and M ↓, then P ⇓.

Proof. Let M , λx.N for some N . Since (λx.N) ∼ P , we know that P =ad CJλx.NK ret =ad

ret(λ(x, k′). CJNKk′), so the result is immediate by Proposition 12. �

Lemma 15. If M ∼ P and M 6 ↓, then P 6⇓.

Proof. A stuck λ-term, in either CBN or CBV, is one of the form E[x] for some free x. By Proposition 10,
CJE[x]K ret 7−→−→ad CJxKK 7−→ad xK 6 ↓. So CJE[x]K ret 6⇓, and hence by Proposition 13, P 6⇓. �

We also have the first commuting diagram, showing that ∼ relates a source term to its translation:

Lemma 16. M ∼ CJMK ret.

Proof. Unfolding definitions, we need that CJMK ret =ad CJMK ret, which is immediate since =ad is
reflexive. �

To show correctness of C it remains to satisfy the second commuting diagram, showing that our invariant ∼
is preserved under reduction. We prove this in three steps:

1. Show that, if M 7−→ N by a β-reduction in the empty context, then we have CJMKK 7−→−→=ad CJNKK
(Proposition 18).

2. Allow the reduction M 7−→ N to occur in any evaluation context, not only at the top of the term
(Proposition 19).

3. Let the CPS term be any P =ad CJMK ret (Lemma 20).

We can get the first step using a simple proposition concerning substitution:

Proposition 17.

1. CJMK{CJNK/x} −→−→ad CJM{N/x}K
2. CJMK{(λ̄k. CJNKk)/x} −→−→ad CJM{N/x}K
Proof.

1. By induction on the structure ofM . The most interesting case is whenM ≡ x, and thus we actually substitute
N for x:

CJxK{CJNK/x} , λ̄k. CJNKk

By inspection of C, CJNK must be some administrative λ-abstraction of the form (λ̄k′. P):

, λ̄k. (λ̄k′. P)k

−→ad λ̄k. (P{k/k′})
≡ λ̄k′. P
≡ CJNK

2. Similar, only with one extra reduction at the beginning:

CJxK{λ̄k. CJNKk/x} , (λ̄k. xk){(λ̄k. CJNKk)/x}
, (λ̄k. (λ̄k. CJNKk)k)

−→ad λ̄k. CJNKk
−→ad CJNK (as before) �

And now:

Proposition 18. If M 7−→ N by a reduction in the empty context, then CJMKK 7−→+
pr1=ad CJNKK.

Proof. Since the reduction takes place at the top level, we must have that M is a redex. From here, we must
consider CBN and CBV separately:

• In CBN, M must have the form (λx.M ′)N ′ with N ≡M ′{N ′/x}, and:

CJMKK ≡ CJ(λx.M ′)N ′KK
7−→−→ad (λ(x, k′). CJMKk′)(λk. CJNKk,K)

7−→pr (CJMKk){λk. CJNKk/x}
−→−→ad CJM ′{N ′/x}KK (by Proposition 17)

≡ CJNKK

• In CBV, M must have the more specific form (λx.M ′)V with N ≡M ′{V/x}. Let V , λy.N ′.

CJMKK ≡ CJ(λx.M ′)(λy.N ′)KK
7−→−→ad (λ(x, k′). CJM ′Kk′)((λ̄h. h(λ(y, h′). CJN ′Kh′)),K)

, (λ(x, k′). CJM ′Kk′)(CJλy.N ′K,K)

, (λ(x, k′). CJM ′Kk′)(CJV K,K)

7−→pr CJM ′K{CJV K/x}K
−→−→ad CJM ′{V/x}KK (by Proposition 17)

≡ CJNKK �

The second step is to show that a reduction in an evaluation context is performed faithfully by the CPS-
transformed term.

Proposition 19. If M 7−→ N , then CJMKK 7−→+
pr1=ad CJNKK.

Proof. By definition of 7−→, we have that M ≡ E[M ′] and N ≡ E[N ′], where M ′ 7−→ N ′ at top level.

CJMK ret ≡ CJE[M ′]KK
7−→−→ad CJM ′KK ′ (by Proposition 10)

7−→+
pr1=ad CJN ′KK ′ (by Proposition 18)

←−←− [ad CJE[N ′]K ret (property of K ′ from Proposition 10)

≡ CJNKK �

M M ′ Nad pr

(a) Hypothesis

M ′ N

M M ′′

pr

ad
ad

ad

(b) Confluence

M ′ N

M M ′′

M ′′′

pr

ad
ad

ad

ad
ad

(c) Standardization

M ′ N

M M ′′ ·

M ′′′ N ′

pr

ad ad
ad

ad

ad

pr

ad

pr

ad

(d) Commutation

Figure 9. A summary of the proof of Lemma 9.

The third step of the proof is the most difficult: We must generalize the hypothesis of Proposition 19 so that
it may be chained through multiple reduction steps. This hinges on the commutation lemma, which we now
prove:

Proof (of Lemma 9). By Proposition 7.1, we know there must be some M ′′ such that M −→−→ad M
′′ ←−←−ad M

′.
By Proposition 8, M ′′ can take a proper standard reduction, so Proposition 7.2 applies, giving M ′′′ with
M 7−→−→ad M

′′′ −→−→ad M
′′. From there, we use Proposition 8 to “fill in the arrows” (see Fig. 9). �

From there, we have that reduction preserves the invariant ∼:

Lemma 20. If M 7−→ N and M ∼ P , then there is Q such that P 7−→+ Q and N ∼ Q.

Proof. Since M ∼ P , we have P =ad CJMK ret. By Proposition 19, then, CJMK ret 7−→+=ad CJNK ret, so
P =ad 7−→+

pr1=ad CJNK ret. Since 7−→+
pr1 is short for 7−→−→ad 7−→pr 7−→−→ad, we have P =ad 7−→pr=ad CJNK ret.

By Lemma 9, we have Q such that P 7−→+ Q =ad CJNK ret, so P 7−→+ Q and N ∼ Q. �

And finally, we can show that the uniform CPS transform preserves observations forward:

Theorem 21. For any λ-term M and variable k:

1. If M ⇓ then CJMK ret ⇓.
2. If M ⇑ then CJMK ret ⇑.
3. If M 6⇓ then CJMK ret 6⇓.

Proof. By Lemma 16, we can generalize CJMK ret to any P with M ∼ P . From there, 1 and 3 follow by
induction on the reduction sequence and Lemmas 14, 15, and 20. 2 is immediate from Lemma 20, since P must
take at least as many steps as M . �

Corollary 22. For any λ-term M and variable k:

1. M ⇓ iff CJMK ret ⇓.
2. M ⇑ iff CJMK ret ⇑.
3. M 6⇓ iff CJMK ret 6⇓.

Proof. The forward directions are Theorem 21. For the backward direction of 1, assume M does not reduce to
an answer. Then it must either diverge or become stuck. By Theorem 21, in either case, CJMK ret must do the
same, and thus (by determinism) it cannot reduce to an answer; by contraposition, CJMK ret ⇓ implies M ⇓.
The other clauses are similar. �

2.4.3 Correctness of the Naming Transform
Passing names instead of values has a subtle effect on the execution of a program: The CPS terms now express
sharing. Since values aren’t copied but are shared among subterms, relating reductions of unnamed terms to
those of named terms requires care. For instance, consider this CPS term:

M , (λx. f(x, x))(λx.N)

It β-reduces and duplicates (λx.N):
M 7−→ f(λx.N, λx.N)

Now consider M under the naming transform :

N JMK , νy. y := λx.N JNK in (λx. f(x, x))y

It only duplicates the name y:

N JMK 7−→ νy. y := λx.N JNK in f(y, y)

Notice, however, that if we reduce M and then translate, we get something different:

N Jf(λz.N, λz.N)K , νx. x := λz.N JNK in νy. y := λz.N JNK in f(x, y)

Now there is no sharing of the value λz.N .
In short, reduction does not commute with naming: Reducing the named term can produce shared references

that do not appear when naming the reduced term. However, differences in sharing do not affect the outcome
of the computation. Therefore we seek a way to reason up to sharing—that is, we want to consider a term
with the same computational content, but more sharing, as “close enough.” A straightforward way to remove
sharing from the picture is to consider terms under a readback function that “flattens” a term’s bound variables,
returning it to the unnamed form:

N−1〈〈f(x+)〉〉 , f(x+)

N−1〈〈νx. x := λ(x+). N inM〉〉 , N−1〈〈M〉〉{λ(x+).N−1〈〈N〉〉/x}

We can now define our invariant as follows:

Definition 23. For an unnamed CPS term M and a named CPS term P , let M ∼ P when M ≡ N−1〈〈P 〉〉.

To show correctness of the naming step we will show that ∼ is a backward simulation: If M ∼ P and
P 7−→ P ′ then there is M ′ with M 7−→−→ M ′ and M ′ ∼ P ′. Note that, because deref reductions disappear
underN−1, the correspondence between reductions is not one-to-at-least-one, as it was in (6). We relied on this
property in proving Theorem 21.2, so we will have to adjust our reasoning this time.

First, we prove that reductions are preserved:

Proposition 24. Given a λcps,vn term P :

1. If P 7−→β P
′, then N−1〈〈P 〉〉 7−→ N−1〈〈P ′〉〉.

2. If P 7−→deref P
′, then N−1〈〈P 〉〉 ≡ N−1〈〈P ′〉〉.

Proof. Given any context E in the named CPS language, let σE be the substitution built up by the unnaming
function as it traverses E. (In other words, σE is the substitution such that N−1〈〈E[P]〉〉 ≡ N−1〈〈P 〉〉σE .)

1. If P 7−→ P ′ by the β rule, we have that:

P ≡ E[(λ(x+). Q)(y+)]

P ′ ≡ E[Q{y+/x+}]
N−1〈〈P 〉〉 , (λ(x+).N−1〈〈Q〉〉)(y+)σE

7−→ N−1〈〈Q〉〉{y+/x+}σE
≡ N−1〈〈E[Q{y+/x+}]〉〉
≡ N−1〈〈P ′〉〉

2. If P 7−→ P ′ by the deref rule, we have that:

P ≡ E[νf. f := λ(x+). Q in E′[f(y+)]

P ′ ≡ E[νf. f := λ(x+). Q in E′[(λ(x+). Q(y+)]]

N−1〈〈P 〉〉 , f(y+)σE′{λ(x+). Q/f}σE
≡ (λ(x+). Q)(y+)σE′{λ(x+). Q/f}σE
≡ N−1〈〈P ′〉〉 �

Now we can show that N−1 preserves observable behavior:

Theorem 25.

1. If N JMK ⇓ then M ⇓.
2. If N JMK ⇑ then M ⇑.
3. If N JMK 6⇓ then M 6⇓.

Proof. The initial condition M ∼ N JMK follows from the fact that N and N−1 form a retraction pair: for any
unnamed CPS term M , N−1〈〈N JMK〉〉 ≡ M . The invariant holds by Proposition 24. Since answers and stuck
terms are virtually the same between unnamed and named terms, the final conditions are trivial. It only remains
to show that divergence is preserved. This is easy, however, as each deref -reduction always produces a β-redex,
so M and N JMK must take the same number of β-reductions. �

As we did for the uniform CPS transform (only in reverse), we get the forward directions from the backward
ones, completing the correctness proof.

Corollary 26.

1. M ⇓ iff N JMK ⇓.
2. M ⇑ iff N JMK ⇑.
3. M 6⇓ iff N JMK 6⇓.

Proof. The backward directions are Theorem 25. The forward directions use case analysis and determinism in
the same way as Corollary 22. �

2.5 CPS and Processes
The π-calculus describes computation as the exchange of simple messages by independent agents, called
processes. Each term in the π-calculus describes a process, and processes are built by composing them together
in parallel, prefixing them with I/O actions, and replicating them. Communication takes place over channels,
each of which has a name; processes interact when one is writing to a channel and, in parallel, another is reading

Processes: P,Q ::= x〈y+〉
∣∣ x(y+). P

∣∣ (P |Q)
∣∣ !P

∣∣ νz P
x〈y+〉 | x(z+). P −→ P{y+/z+}
P =st P

′ P ′ −→ Q′ Q′ =st Q

P −→ Q

P −→ P ′

P |Q −→ P ′ |Q
P −→ P ′

νz P −→ νz P ′

P |Q =st Q | P !P =st !P | P
(P |Q) |R =st P | (Q |R) (νz P) |Q =st νz (P |Q)

νx νy P =st νy νx P if z not free in Q

Figure 10. A fragment of the π-calculus.

from it. The values sent over the channels are themselves channel names, so processes can discover each other
dynamically. Names act much like variables in the λ-calculus, with α-equivalent terms identified in the same
way. They can be allocated by the ν construct, which guarantees that the name it binds will be distinct from any
other allocated or free name.

The syntax and semantics for the fragment of the π-calculus we are considering are given in Fig. 10. This
fragment is called the asynchronous π-calculus because there are no processes of the form x〈y〉. P . In other
words, no process is ever blocked waiting for a write operation to complete. This property reflects the behavior
of CPS terms: They never wait for a subterm to compute, instead providing a continuation that performs the
remaining work.

Processes in the π-calculus are meant to be considered up to a relation called structural congruence, which
we write as =st .4 The rules (other than those making =st an equivalence relation and a congruence) are given in
Fig. 10. Reductions are closed up to structural congruence (as well as parallel composition and name allocation).
Besides eliminating unimportant differences such as the order of parallel composition, structural congruence
accounts for the spawning of replicated processes and the scoping of allocated names.

2.5.1 π from CPS
Despite the radically different approaches to expressing computation, CPS transforms and π-encodings are
interrelated. In particular, given a CPS transform, one can systematically derive a π-encoding from it [27, 28].
The major difficulty in deriving a π-encoding from a CPS transform arises from an important difference:
Functions in the λ-calculus can take functions as arguments, but processes in the π-calculus do not send
processes over channels, only names. In other words, λ is higher-order, but π is first-order.

But we have already addressed this mismatch: The value-named CPS language λcps,vn is “first-order” in
much the same way. In fact, nearly every construct in the named CPS calculus λcps,vn corresponds directly to a
construct in the π-calculus:

• An application x(y+) becomes a process x〈y+〉, which performs a write on channel x, then halts. The tuple
(y+) is transmitted over x.
• Each binding νx. x := λ(y+). N in M becomes a process of the form νx (P | !x(y+). Q). This process

allocates a fresh channel name x, then runs a process P in parallel with the process !x(y+). Q. The latter acts

4 In the π-calculus literature, structural congruence is usually written as ≡.

as a “server”: It listens on the channel x for a request, then runs the process Q with the request’s values as
arguments. The ! makes the server process replicated, so that it handles any number of requests over time.

The only terms without couterparts are applications with λ-abstractions in head position—that is, β-redexes.
But we can handle these by reducing them during translation.

Thus we can faithfully translate λcps,vn to the π-calculus:

PJV (y+)K , PJV Ky+

PJνx. x := λ(y+). N inMK , νx (PJMK | !x(y+).PJNK)

PJfKy+ , f〈y+〉
PJretKy+ , ret〈y+〉

PJλ(x+).MKy+ , PJMK{y+/x+}

The subscripted form of P translates a term, given the arguments it is being applied to, performing β-reduction
as needed. To translate ret, we simply assume some fresh π-calculus channel name ret.

Finally, we obtain the π-calculus encoding (Fig. 11) by running the uniform CPS transform C through
the naming transform N and then through the π-calculus translation P . The final product coincides with the
established uniform π-encoding [28].5

2.5.2 Correctness
For a π-calculus term P , if P is capable of performing a write on the free channel name k (possibly after some
reductions), we write P ⇓k. A named CPS term signals termination by invoking initial continuation ret, which
is translated to a write on ret. Hence we expect the π-encoded term to write on ret if and only if the named
CPS term would invoke ret:

Lemma 27. For any λcps,vn term M , M ⇓ iff PJMK ⇓ret.

Proof. We need only that our syntactic embedding of λcps,vn into π is also a semantic embedding—in other
words, that reductions in the CPS term correspond to reductions in the π-term and vice versa. The only catch is
that β-redexes from the CPS term disappear under P; however, P is still a bisimulation.

Note that any CPS term E[M] will translate to processes representing the bindings in E in parallel with the
process representing M . Thus we can consider translating E and M separately. Then:

νf. f := λ(x+).M in E[f(y+)] 7−→−→ νf. f := λ(x+).M in E[M{y+/x+}]

corresponds to

νf (f〈y+〉 | PJEK | !f(x+).PJMK) 7−→ νf (M{y+/x+} | PJEK | !f(x+).PJMK).

It is straightforward to construct a grammar of possible π-terms produced by P to show that the correspondence
works in both directions. �

Finally, we have the complete proof of the correctness of the uniform π-encoding, simply by composing:

Theorem 28. For any λn or λv term M , M ⇓ if and only if EJMKret ⇓ret.

Proof. Note that EJMKret ≡ PJN JCJMK retKK; the result follows by Corollaries 22 and 26 and Lemma 27. �

2.6 Uniform Abstract Machine
In addition to the π-encoding, we can derive other artifacts from the uniform CPS transform. In particular,
through the functional correspondence [2], we obtain a uniform abstract machine for CBN and CBV. See Fig. 12.
5 In fact, the final transform in Fig. 11 differs slightly from the uniform π-encoding in the literature, in that all input processes are
replicated, even those used at most once (e.g. continuation processes). However, this is harmless, as garbage collection is sound in the
π-calculus (up to bisimulation). The call-by-need π-encoding will keep some processes unreplicated, as this is necessary for correctness.

CJxK , λk. xk
CJλx.MK , λk. k(λ(x, k′). CJMKk′)

CJMNK ,

{
λk. CJMK(λv. v(λk′. CJNKk′, k)) CBN
λk. CJMK(λv. CJNK(λw. v(λk′. k′w, k))) CBV

CvnJxK , λk. xk
CvnJλx.MK , λk. νf. f := λ(x, k′). CvnJMKk′ in kf

CvnJMNK ,

λk. νk′. k′ := (λv. νx. x := λk′. CvnJNKk′ in
v(x, k)) in CvnJMKk′ CBN

λk. νk′. k′ :=

λv. νk′′. k′′ := (λw.
νx. x := λk′. k′w in
v(x, k)) in CvnJNKk′′

 in

CvnJMKk′
CBV

EJxKk , x〈k〉
EJλx.MKk , νf (k〈f〉 | !f(x, k). EJMKk)

EJMNKk ,

νk′ (EJMKk′ |

!k′(v).νx (v〈x, k〉 | !x(k′′). EJNKk′′))
CBN

νk′ (EJMKk′ | k′(v).νk′′ (EJNKk′′ |
!k′′(w).νx (v〈x, k〉 | !x(k′). k′〈w〉))) CBV

Figure 11. The CPS transform, named CPS transform, and π-encoding for CBN and CBV

The CBN fragment of the machine is essentially the same as the well-known Krivine machine for CBN
evaluation [17]. On closed terms, the CBV fragment strongly resembles the CEK machine [16] (without control
operators). Unlike most environment-based abstract machines, ours does not exclude open terms, and thus its
behavior can meaningfully be more finely specified: Variable lookup happens when a variable is evaluated, and
only λ-abstractions are treated as values. We could instead delay the variable lookup until a λ-abstraction is
required; this machine would implement the full CBV β-rule. Much as with the uniform CPS transform, we
can observe the difference using a term such as (λx. λy. y)z, which is stuck according to the uniform abstract
machine.

3. Call-by-Need and Constructive Update
As we have seen, CBV usually takes fewer evaluation steps to reach an answer than CBN. However, CBV
evaluation wastes work whenever a function does not use its argument. The call-by-need λ-calculus [5, 7]
is efficient in both cases: Unneeded arguments are never computed, yet each argument is evaluated at most
once. Hence call-by-need models efficient implementations of lazy evaluation, which memoize, or cache, each
computed value.

The syntax and semantics are given in Fig. 13. Rather than perform a substitution, the βneed rule suspends the
argument in a let binding. The grammar for evaluation contexts expresses lazy evaluation order: Given a term
letx=M inN , we evaluate N until it becomes either a value or a term of the form F [x] for some evaluation
context F . Such a term needs the value of x to continue, so now we evaluate the term M that x is bound to. But
since this computation is done in place, it only needs to be done once: After M becomes a value, this value will

Terms: M,N ::= x
∣∣ λx.M ∣∣MN

Continuations: k ::= Ret〈〉
∣∣ ApplyN〈M,k, ρ〉

∣∣
ApplyV1〈M,k, ρ〉

∣∣ ApplyV2〈λx.M, k, ρ〉
Environments: ρ ::= ε

∣∣ ρ[x = Clos〈M,ρ〉]
States: S ::= 〈M,k, ρ〉M

∣∣ 〈k, λx.M, ρ〉K
∣∣ 〈λx.M, ρ〉H

M 7−→ 〈M,Ret〈〉, ε〉M

〈x, k, ρ〉M 7−→ 〈M,k, ρ′〉M
where ρ(x) ≡ Clos〈M,ρ′〉

〈λx.M, k, ρ〉M 7−→ 〈k, λx.M, ρ〉K
〈MN, k, ρ〉M 7−→ 〈M,k′, ρ〉M

where k′ ,

{
ApplyN〈N, k, ρ〉 CBN
ApplyV1〈N, k, ρ〉 CBV

〈Ret〈〉, λx.M, ρ〉K 7−→ 〈λx.M, ρ〉H
〈ApplyN〈N, k, ρ′〉, λx.M, ρ〉K 7−→ 〈M,k, ρ[x = Clos〈N, ρ′〉]〉M
〈ApplyV1〈N, k, ρ′〉, λx.M, ρ〉K 7−→ 〈N,ApplyV2〈λx.M, k, ρ〉, ρ′〉M

〈ApplyV2〈λy.N, k, ρ′〉, λx.M, ρ〉K 7−→ 〈N, k, ρ
′[y = Clos〈λx.M, ρ〉]〉M

Figure 12. Uniform abstract machine for CBN and CBV

simply be substituted directly (by the deref rule) if x is needed again. If N instead becomes a value, then we
say the whole term is an answer—a value surrounded by a number of let bindings.

An answer in call-by-need is “almost a value.” Evaluation stops when a term becomes an answer, but it’s not
a value for the purposes of the β or deref rule. When a subterm evaluates to an answer, either the lift or the
assoc rule moves each binding into the outer environment.

To illustrate, we turn to our previous example, (λx. xx)((λy. y)(λz. z)). It reduces as follows:

(λx. xx)((λy. y)(λz. z))

7−→βneed letx= (λy. y)(λz. z) in xx

7−→βneed letx= (let y = λz. z in y) in xx

7−→deref letx= (let y = λz. z in λz. z) in xx

7−→assoc let y = λz. z in letx= λz. z in xx

7−→deref let y = λz. z in letx= λz. z in (λz. z)x

7−→βneed let y = λz. z in letx= λz. z in let z = x in z

7−→deref let y = λz. z in letx= λz. z in let z = λz. z in z

7−→deref let y = λz. z in letx= λz. z in let z = λz. z in λz. z

Expressions: M,N ::= x
∣∣ λx.M ∣∣MN

∣∣ letx=M inN

Values: V ::= λx.M

Answers: A ::= V
∣∣ letx=M inA

Evaluation Contexts: E,F ::= []
∣∣ EM ∣∣ letx= E in F [x]

∣∣
letx=M in E

(λx.M)N −→ letx=N inM βneed

(let y = L inA)N −→ let y = L inAN lift

letx= V in E[x] −→ letx= V in E[V] deref

letx= (let y = L inA) in E[x] −→ let y = L in letx=A in E[x] assoc

Figure 13. The call-by-need λ-calculus, λneed , of Ariola et al.[7]

Evaluation begins in a call-by-name manner, in the sense that the outer β-redex is reduced immediately. The
argument is suspended in a let binding. Next, since x is in head position in the body, we need to evaluate it, and
so we reduce the inner β-redex. However, since the reduction is done in place, this step will only be done once.
In all, three β-reductions are performed, as few as is done by call-by-value.

Unlike call-by-value, when a function ignores its argument, call-by-need does not waste work. In extreme
cases, call-by-value never finishes when call-by-name or call-by-need would. For example, consider the term

(λx. λy. y)Ω,

where Ω is a term (λx. xx)(λx. xx) that diverges. Call-by-name substitutes the Ω immediately (the substitution
is trivial since x does not occur in the body). Call-by-need similarly suspends the Ω without attempting to
evaluate it. Call-by-value insists on computing the argument first, and thus is caught in an infinite loop.

3.1 Continuation-Passing Style
There does exist a call-by-need CPS transform due to Okasaki et al. [22] It requires mutable storage, which
our CPS languages do not support. However, suppose we borrow the assignment syntax from the named CPS
language λcps,vn . Then we can build on the uniform CPS transform (Fig. 3) and use a call-by-need application
rule:

CJMNK , λk. CJMK(λv. νx. x:=(
λk′. CJNK(λw. x := λk′′. k′′w in k′w)

)
in v(x, k))

This is roughly the same as in the Okasaki CPS transform. Unfortunately, this is not valid λcps,vn syntax,
as the assignment operator := is only allowed immediately inside a ν binding for the variable assigned to. As
a result, λcps,vn only allows an assignment to a variable that presently has no value. The inner continuation,
λw. x := λk′′. k′′w in k′w, violates this restriction by attempting to “overwrite” x. We will call this a double
assignment.

Of course, this is precisely what we wish to happen: The term bound to x should change, in order to cache
the computed value. But we don’t need the full power of mutable storage; a much weaker effect will suffice.

To see this, suppose for a moment we allow := anywhere, with the semantics of destructive update (that is,
each assignment overwrites any previous one). Inspecting the rule, we see that each variable is now assigned
to (at most) twice: Once when it is initialized with a thunk, and again when the thunk’s result is memoized.

CJxK , λk. xk
CJλx.MK , λk. k(λ(x, k′). CJMKk′)

CJMNK , λk. CJMK(λv. νx. x :=1(
λk′. CJNK(λw. x := λk′′. k′′w in k′w)

)
in v(x, k))

CJletx= L inMK , λk. νx. x :=1(
λk′. CJLK(λw. x := λk′′. k′′w in k′w)

)
in CJMKk

Figure 14. A call-by-need CPS transform using constructive update

However, after the second assignment, the stored value never changes again. Furthermore, note that the initial
thunk cannot refer to x, even indirectly, as x is not in the scope of the computation (our let is not recursive).
Therefore the initial thunk is only used once; since that very thunk performs the second assignment, the first
lookup must precede the second assignment, with no other accesses in between.

In the language of data-flow analysis, after the first lookup, x cannot be live. Hence its value does not matter.
In other words, it may as well have no value. If we clear x after the first lookup, then the second assignment is
just like the first: It is giving a value to a variable that currently has none. There is no double assignment.

This analysis suggests a special assignment operation that always clears the variable the next time it is used.
The assigned value will therefore only be used once, and thus the assignment is ephemeral, as opposed to
permanent. After a permanent assignment, the variable will never be cleared, so permanent assignments are
final.

3.1.1 The Transform
Writing x := M in N for a permanent assignment and x :=1 M in N for an ephemeral assignment, we can
modify the call-by-need CPS transform so that it does not require destructive update:

CJMNK , λk. CJMK(λv. νx. x :=1(
λk′. CJNK(λw. x := λk′′. k′′w in k′w)

)
in v(x, k))

Since the initial thunk is now assigned ephemerally, there is never a double assignment. In fact, we can prove so:
By the above data-flow analysis, x is unassigned before the second assignment. Each assignment is performed
by a term that is used at most once, and thus no further assignments will be attempted.

Note what has happened here: x takes on different values over time, due to multiple assignments. Therefore
it is fair to say it was updated. However, no previous value was destroyed by any update, and in fact a
previous value cannot be destroyed. In this language, updates only construct, never destroy; hence we call
the phenomenon constructive update.

This CPS transform, summarized in Fig. 14, is the one we will relate to the π-calculus. The syntax and
semantics for permanent and ephemeral assignment are given in Fig. 15. The deref 1 rule is similar to deref ,
only it removes the ephemeral assignment.

We have shown that terms produced by the call-by-need CPS transform never attempt a double assignment—
that is, they never reduce to a term such as x := V in x :=W inM . Let us call such terms safe:

Definition 29. A λ:=1
cps term M is safe when it does not reduce to a term with a subterm of the form

x :=∗ V in E[x :=∗W inN],

where :=∗ stands for either := or :=1 in each appearance.

Proposition 30. For any M and K, if K is a variable, ret, or λv. P where P is safe, then CJMKK is safe.

Terms: M,N ::= V (V +)
∣∣ νx.M ∣∣

x := λ(x+).M inN
∣∣

x :=1 λ(x+).M inN

Values: V ::= x
∣∣ ret ∣∣ λ(x+).M

Binding Contexts: B ::= []
∣∣ νx.B ∣∣ x := λ(x+).M inB

∣∣
x :=1 λ(x+).M inB

Evaluation Contexts: E ::= B

(λ(x+).M)(V +) −→ M{V +/x+} β

f := λ(x+).M in E[f(V +)] −→ f := λ(x+).M in

E[(λ(x+).M)(V +)] deref

f :=1 λ(x+).M in E[f(V +)] −→ E[(λ(x+).M)(V +)] deref 1

Figure 15. The CPS λ-calculus with constructive update, λ:=1
cps

Proof. See the above data-flow analysis. �

3.2 Naming and π-Encoding
Now that we have the call-by-need CPS transform, we need only adapt the development in Sections 2.3 and 2.5
to derive the π-calculus encoding.

In Section 2, we were somewhat sloppy in deriving a π-encoding from the CPS—all input processes in
the encoding were replicated, even those that are provably used at most once. Now that we have ephemeral
assignment, we can be more precise. Some λ-abstractions are affine, i.e. never duplicated; these are the ones
representing continuations or suspended computations. We can mark the λs in the CPS transform to indicate
which values are affine:

CJxK , λk. xk
CJλx.MK , λk. k(λ(x, k′). CJMKk′)

CJMNK , λk. CJMK(λ1v. νx. x :=1(
λk′. CJNK(λ1w. x := λk′′. k′′w in k′w)

)
in v(x, k))

CJletx= L inMK , λk. νx. x :=1(
λk′. CJLK(λ1w. x := λk′′. k′′w in k′w)

)
in CJMKk

Now we augment the naming transform to treat affine values specially:

N JV (λ1(x
+).M)K , νy. y :=1 λ(x+).N JMK inN JV (y)K

Finally, the π-calculus translation P should use an unreplicated process to simulate ephemeral assignment:

PJx :=1 λ(y+).M inNK , PJNK | x(y+).PJMK

Putting these transforms together (Fig. 16), we arrive at the same call-by-need π-encoding found in the
literature [8, 28].

CJxK , λk. xk
CJλx.MK , λk. k(λ(x, k′). CJMKk′)

CJMNK , λk. CJMK(λv. νx.

x :=1

(
λk′. CJNK(λw. x := λk′′. k′′w in k′v)

)
in v(x, k))

CJletx= L inMK = λk. νx. x :=1 (λk′. CJLK(λw. x := λk′′. k′′w in kw)) in CJMKk

CvnJxK , λk. xk

CvnJλx.MK , λk. νf. f := λ(x, k′). CvnJMKk′ in kf

CvnJMNK , λk. νh. h :=1 λv. νx. x :=1

λk′. νh′. h′ :=1

λv. x := λk′′. k′′v in k′v

in CvnJNKh′

 in v(x, k)

in CvnJMKh

CvnJletx= L inMK , λk. νx. x :=1

λk. νh′. h′ :=1

λv. x := λk. kv in kv

in CvnJLKh′

 in CvnJMKk

EJxKk , x〈k〉
EJλx.MKk , νf (k〈f〉 | !f(x, k). EJMKk)

EJMNKk , νh (EJMKh | h(v).νx (v〈x, k〉 |
x(k′).νh′ (EJNKh′ | h′(w). (k′〈w〉 | !x(k′′). k′′〈w〉))))

EJletx= L inMKk , νx (EJMKk | x(k′).νh′ (EJLKh′ | h′(w). (k′〈w〉 | !x(k′′). k′′〈w〉)))

Figure 16. The CPS transform, named CPS transform, and π-encoding for call-by-need

3.3 Correctness
Now we establish the correctness of the call-by-need CPS transform C. We do so by further decomposing it
into three steps: A switch to a call-by-need calculus with rules that act at a distance; an annotation step; and
simulation proofs for the CPS transform on annotated terms.

3.3.1 Distance Rules
As presented, λneed (Fig. 13) has certain reductions—the lift and assoc rules—that hardly seem to perform any
computation. They only shuffle bindings around in preparation for a βneed - or deref -reduction, respectively.
In fact, if CJMK is always an administrative λ-abstraction6, then lift- and assoc-reductions are simulated as
administrative reductions alone. In a sense, the lift and assoc rules are administrative: They only serve to bring
the parts of a redex together.

We can avoid administrative work in the source calculus by using a suggestion of Accattoli [1] for the π-
calculus: We express λneed using rules that apply at a distance, that is, where parts of a redex are separated
by an evaluation context.7 The new calculus, λdneed , supplants the fine-grained lift and assoc rules with coarser
β and deref rules. The syntax is the same as for λneed (Fig. 13), except that we specify that some evaluation
contexts are binding contexts; the reductions are given in Fig. 17.

6 We could always not mark these as administrative, but then we would lose the flexibility that administrative congruence provides.
7 Of course, the deref rule already works this way in part.

Binding Contexts: B ::= []
∣∣ letx=M inB

B[λx.M]N −→ B[letx=N inM] βd

letx=B[V] in E[x] −→ B[letx= V in E[V]] derefd

Figure 17. Reductions for the distance call-by-need λ-calculus, λdneed

Proposition 31. An λneed term reduces to an answer, diverges, or gets stuck by the distance rules if and only if
it does so by the original rules.

Proof. Since 7−→βd
is the same as 7−→−→lift 7−→βneed , 7−→derefd is the same as 7−→−→assoc 7−→deref, and the language

is deterministic, it suffices to define a backward simulation that compares terms up to lift and assoc. �

3.3.2 Annotations
The single let construct does not tell the full story of a standard reduction sequence in λneed : There is an implicit
statefulness that is made manifest by the CPS transform. Specifically, there are three stages in the life cycle of a
let binding:

Suspended Initially, the binding letx=M inN represents a suspended computation. Computation takes place
within N .

Active For x to be demanded,N must reduce to the form E[x]. Then the binding becomes active, with the form
letx=M in E[x], and computation takes place within M .

Memoized Eventually, M becomes an answer B[V], and the body E[x] receives V while the bindings in B are
added to the environment. Subsequently, the binding is letx= V inN , and computation takes place within
N .

The CPS translation exposes this state, which makes it difficult to relate a term to its CPS form: In what state
is letx=V inE[x]? In fact, it could be in any of the three states, and thus the running CPS program could have
any of three forms.

Therefore we annotate each let, giving it a subscript s, a, or v (for suspended, active, or value, respectively).
We will need new reduction rules, which we call act and deact , to represent binding state transitions; from the
perspective of λdneed , these will be administrative. See Fig. 18 for the resulting calculus λaneed . We write AJMK
for the annotation of a λdneed term M , which consists simply of tagging each let with s.

Proposition 32.

1. M ⇓ if and only if AJMK ⇓.
2. M ⇑ if and only if AJMK ⇑.
3. M 6⇓ if and only if AJMK 6⇓.

3.3.3 Annotated CPS Transform
Now we must show that the call-by-need CPS transform, as a function from λaneed to λ:=1

cps , is correct. First,
we need to extend the CPS transform to the annotated terms. See Fig. 19, where we have also marked which
λ-abstractions are administrative.

Most of the first part of Ca is unsurprising: A lets translates as a suspended computation, as appears in
CaJMNK. A letv translates as a memo-thunk. However, leta is a challenge. To see why, consider a suspended
computation:

CaJlets x=M inNKK =ad νx. x :=1 λ̄k. · · · in CaJNKK

Expressions: M,N ::= x
∣∣ V ∣∣MN

∣∣
lets x=M inN

∣∣
leta x=M in E[x]

∣∣
letv x= V inN

Evaluation Contexts: E,F ::= []
∣∣ EM ∣∣

lets x=M in E
∣∣

leta x= E in F [x]
∣∣

letv x= V in E

Binding Contexts: B ::= []
∣∣ lets x=M inB

∣∣
letv x= V inB

B[λx.M]N −→ B[lets x=N inM] βa

lets x=M in E[x] −→ leta x=M in E[x] act

leta x=B[V] in E[x] −→ B[letv x= V in E[V]] deact

letv x= V in E[x] −→ letv x= V in E[V] deref a

Figure 18. The annotated call-by-need λ-calculus, λaneed

The computation of x is suspended, pending its need. Then, x will be needed when N reduces to a term of
the form E[x]. At that point in the computation, we expect CaJE[x]K to have evaluated to some term E′[xK ′],
where E′ is a CPS evaluation context and K ′ is a continuation.

CaJlets x=M in E[x]KK =ad νx. x :=1 λ̄k. · · · in E′[xK ′]

What happens next is that the deref 1 rule fires:

νx. x :=1 λ̄k. · · · in E′[xK ′] 7−→ νx.E′[(λ̄k. · · ·)K ′]

Since this deref 1-reduction is what activates the computation of x, we expect that νx.E′[(λ̄k. · · ·)K ′] should
be the shape of the CPS term corresponding to an active let. But this means we must be able to translate
evaluation contexts as well as terms. For the uniform CPS transform, we were content to have a lemma
(Proposition 10) that merely asserted that there was someK that served to translate a source evaluation context.
Now that contexts are a crucial part of the CPS transform, we need to make the translation explicit. Hence the
context part of the CPS transform, which we write using round brackets, like CaLEM. Its definition is easily
derived from that of Ca, so that we have:

Proposition 33. CaJE[M]K ≡ CaLEM[CaJMK]

Proof. An easy induction on E. �

Again we define an administrative congruence relation. We will want to be able to rearrange bindings when
it is safe to do so; accordingly, we adopt a lift rule, a generalization of the lift rule from call-by-need:

E[E′[C]] −→ad E
′[E[C]] lift

(λ̄(x+).M)(V +) −→ad M{V +/x+} βad

CaJxK , λ̄k. xk
CaJλx.MK , λ̄k. k(λ̄(x, k′). CaJMKk′)

CaJMNK , λ̄k. CaJMK(λv. νx.

x :=1 λ̄k
′. CaJNK(λv. x := λk′′. k′′v in k′v)

in v(x, k))

CaJlets x=M inNK

, λ̄k. νx. x :=1 λ̄k
′. CaJMK(λv. x := λ̄k′′. k′′v in k′v)

in CaJNKk

CaJleta x=M in E[x]K

, λ̄k. νx. CaLEM[λ̄k′. CaJMK(λv. x := λ̄k′′. k′′v in k′v)]k

CaJletv x= V inNK

, λ̄k. νx. x := CaJV K in CaJNKk

CaL[]M , []

CaLENM , λ̄k. CaLEM(λv. νx.

x :=1 λ̄k
′. CaJNK(λv. x := λ̄k′′. k′′v in k′v)

in v(x, k))

CaLlets x=M in EM

, λ̄k. νx. x :=1 λ̄k
′. CaJMK(λv. x := λ̄k′′. k′′v in k′v)

in CaLEMk

CaLleta x= E in F [x]M

, λ̄k. νx. CaLF M[λ̄k′. CaLEM(λv. x := λ̄k′′. k′′v in k′v)]k

CaLletv x= V in EM

, λ̄k. νx. x := CaJV K in CaLEMk

Figure 19. The call-by-need CPS transform on annotated terms and contexts, Ca

As usual, the transitive closure of −→ad is −→+
ad, and its reflexive and transitive closure is −→−→ad. Its reflexive,

symmetric, and transitive closure, restricted8 to safe terms, is =ad .
We will also use 7−→ad to refer to an invocation of βad at the top level, which we call an administrative

standard reduction. (A lift-reduction is never proper, as it is never necessary.) As before, an administrative
answer is a term that cannot take an administrative standard reduction.

The confluence, standardization, and commutativity results we need are similar to before:

Proposition 34. The relation =ad

1. is confluent, so that if M =ad M
′, then there is some N such that M −→−→ad N and M ′ −→−→ad N ; and

2. has the standardization property, so that if M −→−→ad N and N is an administrative answer, then there is an
administrative answer M ′ such that M 7−→−→ad M

′ −→−→ad N .

8 The restriction is necessary because safety is not closed backward, i.e., there are unsafe terms that reduce to safe ones.

Proof.

1. Because lift and βad do not overlap and they are both left-linear, we can use modularity [4] to prove
confluence from the confluence of each rule separately. The lift rule is symmetric and thus trivially confluent.
The βad rule is simply the β rule restricted to a subcalculus, so it is also confluent.

2. Since lift and βad trivially commute (they do not even interact), we can perform the lift steps last, giving
M −→−→βad N ′ −→−→lift N . Since −→−→lift cannot create a proper standard reduction, N ′ must also be an
administrative answer; hence standardization of β-reduction applies, completing the proof. �

Proposition 35.

1. If M −→−→ad M
′ 7−→pr N and M is an administrative answer, then there is N ′ with M 7−→pr N

′ −→−→ad N .
2. If M ←−←−ad M

′ 7−→pr N , then there is N ′ with M 7−→pr N
′ ←−←− [ad N .

Proof. The lift rule can neither create nor destroy any redexes, and internal reductions still cannot destroy a
standard redex, so the proof is essentially the same as that of Proposition 8. �

Lemma 36. If M =ad 7−→pr N , then M 7−→+
pr1=ad N .

Proof. The same as the proof of Lemma 9, this time using Propositions 34 and 35. �

For the uniform CPS transform, we characterized the action of translation on contexts as Proposition 10:
CaJE[M]KK will reduce to CJMKK ′, where K ′ is some continuation that represents E. This case will be more
complex, however: In λneed , an evaluation context contains both bindings and work to be done.9 A continuation
alone only captures the latter. Therefore, for call-by-need, we will need to translate the bindings as well. Our
approach is to split context translation into a function B providing a CPS binding context and a function K
providing a continuation (in which the bindings from B are in scope). Putting them together, we will be able to
relate the original context transform CaL−M to the split transform.

BL[]M , []

BLEMM , BLEM

BLlets x=M in EM , νx. x :=1 λ̄k
′. CaJMK(λv. x := λ̄k′′. k′′v in k′v) in BLEM

BLleta x= E in F [x]M , νx.BLF M[BLEM]

BLletv x= V in EM , νx. x := CaJV K in BLEM

KL[]M : K , K

KLEMM : K , KLEM : λv. νx. x :=1 λ̄k
′. CaJMK(λv. x := λ̄k′′. k′′v in k′v) in v(x,K)

KLlets x=M in EM : K , KLEM : K

KLleta x= E in F [x]M : K , KLEM : λv. x := λ̄k′′. k′′v in (KLF M : K)v

KLletv x= V in EM : K , KLEM : K

The following proposition shows the relationship between Ca, B, and K. Note that, like Proposition 10, it
demonstrates the action of administrative reductions: In this case, they serve to bring the continuation inward
while preserving the bindings in the context. We use T here to denote a value that is, in particular, a thunk of
the form λk.M .
9 Danvy and Zerny [14] make a similar observation about call-by-need evaluation contexts; they then derive a call-by-need language that
separates the two parts.

Proposition 37. CaLEM[T]K ≡ BLEM[T (KLEM : K)]

Proof. By induction on E. First, some shorthand will clarify:

let` x= V in P , νx. x :=1 λ̄k. V (λv. x := λ̄k. kv in kv) in P

Now:

• For E ≡ []:

CaLEM[T]K ≡ [][T]K

, TK

, [][TK]

, BL[]M[T (KL[]M : K)]

≡ BLEM[T (KLEM : K)]

• For E ≡ E′M :

CaLEM[T]K ≡ CaLE′MM[T]K

, (λ̄k. CaLE′M(λv. let` x= CaJMK in v(x, k)))[T]K

≡ (λ̄k. CaLE′[T]M(λv. let` x= CaJMK in v(x, k)))K

7−→ad CaLE′[T]M(λv. let` x= CaJMK in v(x,K))

7−→−→ad BLE′M[T (KLE′M : λv. let` x= CaJMK in v(x,K))] (by I.H.)

, BLE′MM[T (KLE′MM : K)]

≡ BLEM[T (KLEM : K)]

• For E ≡ lets x=M in E′:

CaLEM[T]K ≡ CaLlets x=M in E′M[T]K

, (λ̄k. let` x= CaJMK in CaLE′Mk)[T]K

≡ (λ̄k. let` x= CaJMK in CaLE′[T]Mk)K

7−→ad let` x= CaJMK in CaLE′[T]MK
7−→−→ad let` x= CaJMK in BLE′M[T (KLE′M : K)k] (by I.H.)

, BLlets x=M in E′M[T (KLlets x=M in E′M : K)]

≡ BLEM[T (KLEM : K)]

• For E ≡ leta x= E′ in F [x]:

CaLEM[T]K ≡ CaLleta x= E′ in F [x]M[T]K

≡ (λ̄k. νx. CaLF M[λ̄k′. CaLE′M(λv. x := λ̄k′′. k′′v in k′v)]k)[T]K

≡ (λ̄k. νx. CaLF M[λ̄k′. CaLE′M[T](λv. x := λ̄k′′. k′′v in k′v)]k)K

7−→ad νx. CaLF M[λ̄k′. CaLE′M[T](λv. x := λ̄k′′. k′′v in k′v)]K

7−→−→ad νx.BLF M[(λ̄k′. CaLE′M[T](λv. x := λ̄k′′. k′′v in (KLF M : k′)v))K] (by I.H.)

7−→ad νx.BLF M[CaLE′M[T](λv. x := λ̄k′′. k′′v in (KLF M : K)v)]

7−→−→ad νx.BLF M[BLE′M[T (KLE′M : λv. x := λ̄k′′. k′′v in (KLF M : K)v))]] (by I.H.)

, νx.BLleta x= E′ in F [x]M[T (KLleta x= E′ in F [x]M : K)]

≡ BLEM[T (KLEM : K)]

• For E ≡ letv x= V in E′:

CaLEM[T]K ≡ CaLletv x= V in E′M[T]K

, (λ̄k. νx. x := CaJV K in CaLE′Mk)[T]K

≡ (λ̄k. νx. x := CaJV K in CaLE′[T]Mk)K

7−→ad νx. x := CaJV K in CaLE′[T]MK
7−→−→ad νx. x := CaJV K in BLE′M[T (KLE′M : K)] (by I.H.)

, BLletv x= V in E′M[T (KLletv x= V in E′M : K)]

≡ BLEM[T (KLEM : K)] �

Now we can show how a term in a context is transformed:

Corollary 38. CaJE[M]KK 7−→−→ad BLEM[CaJMK(KLEM : K)].

Proof. From Propositions 33 and 37. �

Not all λneed contexts affect the continuation. In particular, binding contexts never alter the continuation at
all. This is not surprising, since binding contexts are precisely those that do not affect the flow of control.

Proposition 39. For any λaneed binding context B and λ:=1
cps continuation K, KLBM : K ≡ K.

Proof. Trivial induction on B. Note that the clauses of K that do nothing but recurse are precisely those for the
parts of a binding context. �

Corollary 40. For any λaneed binding context B, λaneed term M , and λ:=1
cps continuation K, CaJB[M]KK 7−→−→ad

BLBM[CaJMKK].

Proof. Immediate from Corollary 38 and Proposition 39. �

Now we turn to correctness. Our forward simulation follows the same construction as that of the uniform
CPS transform:

Definition 41. For a λaneed term M and λ:=1
cps term P , let M ∼ P when CaJMK ret =ad P .

To prove that ∼ is a forward simulation, we go through the diagrams in Eq. (6) once again. The first, third,
and fourth are exactly as before:

Lemma 42. M ∼ CaJMK ret. �

Lemma 43. If M ∼ P and M ↓, then P ⇓. �

Lemma 44. If M ∼ P and M 6 ↓, then P 6⇓. �

The second diagram can be proved using much the same strategy as for Lemma 20, but the more complex
source and target languages make the calculations heavier. To review, the steps we take to prove the simulation
are:

1. Show that, if M 7−→ N by a reduction in the empty context, then we have CaJMKK 7−→−→=ad CaJNKK.

2. Allow the reduction to occur in any evaluation context, not only at the top of the term.

3. Let the CPS term be any P =ad CaJMK.

Now we begin with step one immediately:

Lemma 45. If M 7−→ N by a reduction in the empty context, then CaJMKK 7−→+
pr1=ad CaJNKK.

Proof. This time we have four reduction rules, so there are four cases.

• For a β-reduction:

CaJB[λx.M]NKK

, (λ̄k. (CaJB[λx.M]K(λv. let` x= CaJNK in v(x, k)))K

7−→ad CaJB[λx.M]K(λv. let` x= CaJNK in v(x,K))

7−→−→ad BLBM[CaJλx.MK(λv. let` x= CaJNK in v(x,K))] (by Corollary 40)

, BLBM[(λ̄k. k(λ̄(x, k′). CaJMKk′))(λv. let` x= CaJNK in v(x,K))]

7−→ad BLBM[(λv. let` x= CaJNK in v(x,K))(λ̄(x, k′). CaJMKk′)]
7−→pr BLBM[let` x= CaJNK in (λ̄(x, k′). CaJMKk′)(x,K)]

7−→ad BLBM[let` x= CaJNK in CaJMKK]

←− [ad BLBM[(λ̄k. let` x= CaJNK in CaJMKk)K]

←−←− [ad CaLBM[let` x= CaJNK in CaJMK]K (by Corollary 40)

←− [ad (λ̄k. CaLBM[let` x= CaJNK in CaJMK]k)K

, CaJB[lets x=N inM]KK

• For an act-reduction:

CaJlets x=M in E[x]KK

, (λ̄k. let` x= CaJMK in CaJE[x]K)K
7−→ad let` x= CaJMK in CaJE[x]KK
7−→−→ad let` x= CaJMK in BLEM[CaJxK(KLEM : K)] (by Corollary 38)

, let` x= CaJMK in BLEM[(λ̄k. xk)(KLEM : K)]

7−→ad let` x= CaJMK in BLEM[x(KLEM : K)]

, νx. x :=1 λ̄k
′. CaJMK(λv. x := λ̄k′′. k′′v in k′v) in BLEM[x(KLEM : K)]

7−→pr νx.BLEM[(λ̄k′. CaJMK(λv. x := λ̄k′′. k′′v in k′v))(KLEM : K)]

←−←− [ad (λ̄k. νx. CaLEM[λ̄k′. CaJMK(λv. x := λ̄k′′. k′′v in k′v)])K (by Corollary 38)

, CaJleta x=M in E[x]KK

• For a deact-reduction:

CaJleta x=B[V] in E[x]KK

, (λ̄k. νx. CaLEM[λ̄k′. CaJB[V]K(λv. x := λ̄k′′. k′′v in k′v)])K

7−→ad νx. CaLEM[λ̄k′. CaJB[V]K(λv. x := λ̄k′′. k′′v in k′v)]K

7−→−→ad νx.BLEM[(λ̄k′. CaJB[V]K(λv. x := λ̄k′′. k′′v in k′v))(KLEM : K)] (by Proposition 37)

7−→ad νx.BLEM[CaJB[V]K(λv. x := λ̄k′′. k′′v in (KLEM : K)v)]

7−→−→ad νx.BLEM[BLBM[CaJV K(λv. x := λ̄k′′. k′′v in (KLEM : K)v)]] (by Corollary 40)

Letting λ̄k. kW , CaJV K:

, νx.BLEM[BLBM[(λ̄k. kW)(λv. x := λ̄k′′. k′′v in (KLEM : K)v)]]

7−→ad νx.BLEM[BLBM[(λv. x := λ̄k′′. k′′v in (KLEM : K)v)W]]

7−→pr νx.BLEM[BLBM[x := λ̄k′′. k′′W in (KLEM : K)W]]

−→ad BLBM[νx.BLEM[x := λ̄k′′. k′′W in (KLEM : K)W]]

−→ad BLBM[νx. x := λ̄k′′. k′′W in BLEM[(KLEM : K)W]]

←− [ad BLBM[νx. x := λ̄k′′. k′′W in BLEM[(λ̄k. kW)(KLEM : K)]]

, BLBM[νx. x := CaJV K in BLEM[CaJV K(KLEM : K)]]

←−←− [ad BLBM[νx. x := CaJV K in CaJE[V]KK] (by Corollary 38)

←−←− [ad CaJB[letv x= V in E[V]]KK (by Corollary 40)

• For a deref -reduction:

CaJletv x= V in E[x]KK

, λ̄k. (νx. x := CaJV K in CaJE[x]Kk)K

7−→ad νx. x := CaJV K in CaJE[x]KK
7−→−→ad νx. x := CaJV K in BLEM[x(KLEM : K)] (by Corollary 38)

7−→pr νx. x := CaJV K in BLEM[CaJV K(KLEM : K)]

←−←− [ad νx. x := CaJV K in CaJE[V]KK (by Corollary 38)

←− [ad (λ̄k. νx. x := CaJV K in CaJE[V]Kk)K

, CaJletv x= V in E[V]KK �

Now we proceed to the second step, which allows the reduction to take place in a larger context:

Proposition 46. If M 7−→ N , then CaJMKK 7−→+
pr1=ad CaJNKK.

Proof. As before, by definition of 7−→, we have M ≡ E[M ′] and N ≡ E[N ′], where M ′ 7−→ N ′ at top level.

CaJMKK ≡ CaJE[M ′]KK
7−→−→ad BLEM[CaJM ′K(KLEM : K)] (by Corollary 38)

7−→+
pr1=ad CaLEM[CaJN ′K(KLEM : K)] (by Lemma 45)

←−←− [ad CaJE[N ′]KK (by Corollary 38)

≡ CaJNKK �

Finally, we use Lemma 36 to generalize, completing the third step:

Lemma 47. If M 7−→ N and M ∼ P , then there is Q such that P 7−→+ Q and N ∼ Q.

Proof. We have M ∼ P , so P =ad CaJMK ret. M 7−→ N , so CaJMK ret 7−→+
pr1=ad CaJNK ret by

Proposition 46. So P =ad 7−→+
pr1=ad CaJNK ret. Since 7−→+

pr1 is short for 7−→−→ad 7−→pr 7−→−→ad, we have
P =ad 7−→pr=ad CaJNK ret. Then, by Lemma 36, we have P 7−→+ Q =ad CaJNK ret for some Q. �

And now we have the correctness result for the CPS transform on annotated terms:

Lemma 48. For any λaneed -term M :

1. M ⇓ iff CaJMK ret ⇓.

2. M ⇑ iff CaJMK ret ⇑.
3. M 6⇓ iff CaJMK ret 6⇓.

Proof. By Lemmas 42 to 44 and 47, using determinacy. �

3.3.4 From λneed to λ:=1
cps

From these pieces, we assemble the correctness of the call-by-need CPS transform:

Theorem 49. For any λneed -term M :

1. M ⇓ iff CJMK ret ⇓.
2. M ⇑ iff CJMK ret ⇑.
3. M 6⇓ iff CJMK ret 6⇓.

Proof. Immediate from Propositions 31 and 32 and Lemma 48. �

3.3.5 Naming and π-encoding
Since we have introduced some of the naming mechanism into the “unnamed” CPS language λ:=1

cps , the
simulation proof for the naming transform needs to be more subtle. The readback function N−1 we defined
before undoes all assignments; now that the source CPS calculus is only mostly unnamed, this is too blunt an
instrument. Instead, we will use a relation that can selectively eliminate sharing.

First, we need to restrict our terms so that we can reason about what variables may be assigned to.

Definition 50. A λ:=1
cps term or value is localized if no variable appearing on the left of an assignment subterm

is bound by a λ.10

For example, the value λ(x, y). x := λk. ky in kx is not allowed, since x is bound by the λ. Since free and
ν-bound variables are not subject to substitution by β-reduction, localized terms are closed under reduction. In
particular, we can say with certainty which variables in a localized term may ever be assigned to, no matter the
context—only those assigned to by subterms of the term.

Proposition 51. If K is localized, then CaJMKK is localized. In particular, CaJMK ret is localized.

Proof. Easy induction on M . �

Now, keeping in mind that λ:=1
cps,vn is a subset of λ:=1

cps :

Definition 52. The relation ≺ is the restriction to λ:=1
cps × λ:=1

cps,vn of the reflexive, transitive, and congruent
closure of the following rules on localized terms:

M{λy+. N/x} ≺ νx. x := λy+. N inM (if x not assigned in M)

M{λ1y+. N/x} ≺ νx. x :=1 λy
+. N inM (if x is affine and not assigned in M or N)

M ≺ νx.M (if x not free in M)

This suffices to prove the correctness of the naming transform:

Lemma 53. For any λ:=1
cps -term M and variable k:

1. M ⇓ iff N JMK ⇓.
2. M ⇑ iff N JMK ⇑.
3. M 6⇓ iff N JMK 6⇓.

10 We borrow the term localized from the π-calculus literature. The localized π-calculus is a subcalculus that forbids processes from
listening on channels they have received from other processes. As in the π-calculus, this restriction can be made finer using a type
system.

Proof. As before, we show that M ≺ N JMK and that ≺ is a backward bisimulation that preserves outcomes in
the backward direction. The result follows as always from these observations and determinism.

Initial Condition That M ≺ N JMK can be found by an easy induction, as ≺ simply undoes the manipulations
performed by N .

Simulation We need that M ≺ P and P 7−→ Q imply that there is N with M 7−→−→ N and N ≺ Q.
If P 7−→ Q, then we have a reduction by β, deref , or deref 1. β-reductions are unchanged by ≺. For deref ,
we have P ≡ E[f := λ(x+). P ′ in E′[f(y+)] and Q ≡ E[f := λ(x+). P ′ in E′[(λ(x+). P ′)(y+)]]. Now
consider howM might relate to P : Applications of≺ inside E,M , or E′ would not interfere with the deref -
reduction (we can apply the rules in Q instead). If f was substituted into the body of P , then we can simply
take M = N . Otherwise, we can contract M to find N ; either way, N ≺ Q.
The case for deref 1 (i.e., for an ephemeral assignment rather than a permanent one) is similar, only to get
N ≺ Q at the end, we need to apply the third rule of ≺ to collect the ν as garbage.

Outcomes As with Corollary 26, ↓ and 6 ↓ are invariant under ≺, and every deref (or deref 1) creates a standard
β-redex, so answers, stuck states, and divergence are preserved. �

The augmentation of P for ephemeral assignment is easy to prove correct:

Lemma 54. For any λ:=1
cps,vn -term M , M ⇓ iff PJMK ⇓ret

Proof. To the proof of Lemma 27, we need only add consideration of ephemeral assignment, which corresponds
just as strongly as permanent assignment. �

Finally we have our proof of the correctness of the call-by-need π-encoding:

Theorem 55. For any λneed -term M , M reduces to an answer iff EJMKret ⇓ret.

Proof. Immediate from Theorem 49 and Lemmas 53 and 54, since EJMKk , PJN JCJMKkKK. �

3.4 Abstract Machine
Just as we did with the uniform CPS transform, we can derive an abstract machine from the call-by-need
transform. First, we represent ephemeral assignment in store-passing style: A thunk assigned ephemerally
should be erased from store when it is accessed. We use the symbol ⊥ to denote such a “missing” value;
the store will bind ⊥ to a variable that has been allocated (by a ν) but currently has no value.

Using this representation, the functional correspondence gives us the abstract machine in Fig. 20. There are
different machine states for examining a term, a thunk, a continuation, or a closure, and a halt state returning
the final value and store. The store is a map from locations to thunks, and the environment maps local variables
to locations in the store.

Notably, up to a few transition compressions, this abstract machine is the same as one derived by Ager,
Danvy, and Midtgaard [2]11, except that when a suspended computation is retrieved from the environment,
it is removed. In this way, it resembles the original call-by-need abstract machine by Sestoft [29]. Without a
letrec form in the source, however, this difference in behavior cannot be observed, since the symbol binding a
computation cannot appear free in the term being computed.

It is also quite similar to one derived recently by Danvy and Zerny [14], which they call the lazy Krivine
machine. The mechanisms are superficially different in a few ways. For them, a thunk is simply an unevaluated
term, whereas we remember whether the thunk has been evaluated before (and a few bookkeeping details).
However, this is merely a different choice for the division of responsibility: We hand control to the thunk, and
then the thunk determines whether to set up an update or simply return a value. The lazy Krivine machine
instead inspects the thunk when it is retrieved: If it is a value, it is returned immediately, and otherwise it is
evaluated. Hence our thunks are tagged and theirs are not. The tags are largely an artifact of the connection to

11 Specifically, it resembles the first variant mentioned in section 3 of [2].

Locations: `, . . .

Terms: M,N ::= x
∣∣ λx.M ∣∣MN

Thunks: t ::= Susp〈M, `, ρ〉
∣∣ Memo〈f〉

∣∣ ⊥
Continuations: k ::= Ret〈〉

∣∣ Apply〈M,ρ, k〉
∣∣ Update〈`, k〉

Closures: f ::= Clos〈x,M, ρ〉
Stores: σ ::= ε

∣∣ σ[` = t]

Environments: ρ ::= ε
∣∣ ρ[x = `]

States: S ::= 〈M,σ, ρ, k〉M
∣∣ 〈t, σ, k〉T ∣∣

〈k, f, σ〉K
∣∣ 〈f, `, σ, k〉F ∣∣

〈f, σ〉H

M 7−→ 〈M, ε, ε,Ret〈〉〉M

〈x, σ, ρ, k〉M 7−→ 〈t, σ, k〉T
where ρ(x) ≡ ` and σ(`) ≡ t

〈λx.M, σ, ρ, k〉M 7−→ 〈k,Clos〈x,M, ρ〉, σ〉K
〈MN,σ, ρ, k〉M 7−→ 〈M,σ, ρ,Apply〈N, ρ, k〉〉M

〈Susp〈M, `, ρ〉, σ, k〉T 7−→ 〈M,σ[` = ⊥], ρ,Update〈`, k〉〉M
〈Memo〈f〉, σ, k〉T 7−→ 〈k, f, σ〉K

〈Ret〈〉, f, σ〉K 7−→ 〈f, σ〉H
〈Apply〈M,ρ, k〉, f, σ〉K 7−→ 〈f, `, σ[` = Susp〈M, `, ρ〉], k〉F

where ` /∈ σ
〈Update〈`, k〉, f, σ〉K 7−→ 〈k, f, σ[` = Memo〈f〉]〉K

〈Clos〈x,M, ρ〉, `, σ, k〉F 7−→ 〈M,σ, ρ[x = `], k〉M

Figure 20. The abstract machine derived from C

the π-calculus translation—whether an argument has been evaluated is evident from the structure of the process
representing it. Another difference is that the lazy Krivine machine lacks an environment, relying entirely on
the store, but again this is superficial.

4. Related Work
Brock and Ostheimer [8] gave a proof of correctness for the call-by-need π-calculus encoding, but without
connecting it to CPS. Okasaki et al. [22] gave a CPS transform for call-by-need by targeting a calculus with
mutable storage.

The first proof that the λ-calculus could be encoded in the π-calculus was due to Milner [20], who gave
encodings (quite different from those considered here) for call-by-value and call-by-name. The connection to
CPS was developed by Sangiorgi [27], who showed that CBN and CBV CPS transforms could be translated into
the higher-order π-calculus, which can then be compiled to the usual first-order π-calculus. The compilation
is analogous to the naming transforms considered here. Our approach, where names and sharing are handled
outside of the π-calculus, was introduced by Amadio [3].

Accattoli [1] pursues a different approach to relating the CBN and CBV λ-calculi to π: Where we take the
CPS language and alter it to match the π-calculus, he refines the source calculus so that its reductions line up
with those in π. Namely, he reformulates the λ-calculus in terms of explicit substitutions and linear weak head
reduction. Terms in this linear substitution calculus can then readily be compared with their encodings in the
π-calculus, as substitution and sharing work in a similar way.

The advantages of using distance rules to eliminate administrative work have been explored by Chang and
Felleisen [9], who reformulate the call-by-need λ-calculus using a single β-rule; and by Accattoli [1], who
expresses the π-calculus using distance rules.

Finally, while the exact form of the annotated call-by-need λ-calculus considered here is new, such “prepro-
cessed” forms have been considered elsewhere and are similar. In particular, both Brock and Ostheimer [8] and
Danvy and Zerny [14] include versions of what we call leta, the “active let.”

5. Conclusion and Future Work
The connection between CPS transforms, the π-calculus, and graph reduction has been considered only in
the call-by-value and call-by-name worlds. We have shown that only a modest extension to the target CPS
calculus is required in order to put call-by-need on an equal footing. Hopefully, we can find further uses for the
constructive update calculus; for instance, given the closeness to π-calculus channel operations, it is possible
that other π-calculus encodings can be reinterpreted as CPS transforms as well. In another direction, since many
type systems for the π-calculus have been proposed [28], it seems worth exploring whether we can use the
techniques outlined here to consider a typed CPS transform and a typed encoding into the π-calculus.

References
[1] B. Accattoli. Evaluating functions as processes. In TERMGRAPH, pages 41–55, 2013.

[2] M. S. Ager, O. Danvy, and J. Midtgaard. A functional correspondence between call-by-need evaluators and lazy
abstract machines. Information Processing Letters, 90(5):223–232, 2004.

[3] R. Amadio. A decompilation of the pi-calculus and its application to termination. Technical Report UMR CNRS
7126, Université Paris Diderot, 2011.

[4] C. Appel, V. van Oostrom, and J. G. Simonsen. Higher-order (non-)modularity. In RTA, pages 17–32, 2010.

[5] Z. M. Ariola and M. Felleisen. The call-by-need lambda calculus. J. Functional Programming, 7(3):265–301, 1997.

[6] Z. M. Ariola and J. W. Klop. Lambda calculus with explicit recursion. Information and Computation, 139, 1996.

[7] Z. M. Ariola, M. Felleisen, J. Maraist, M. Odersky, and P. Wadler. A call-by-need lambda calculus. In POPL, pages
233–246. ACM, 1995.

[8] S. Brock and G. Ostheimer. Process semantics of graph reduction. In CONCUR, pages 471–485, 1995.

[9] S. Chang and M. Felleisen. The call-by-need lambda calculus, revisited. In Programming Languages and Systems,
pages 128–147. Springer, 2012.

[10] A. Church. A set of postulates for the foundation of logic. Annals of Mathematics, 2:33, 346–366, 1932.
[11] O. Danvy and A. Filinski. A functional abstraction of typed contexts. Technical Report 89/12, DIKU, University of

Copenhagen, Copenhagen, Denmark, 1989.
[12] O. Danvy and A. Filinski. Representing control: A study of the cps transformation. Mathematical structures in

computer science, 2(04):361–391, 1992.
[13] O. Danvy and L. R. Nielsen. A first-order one-pass cps transformation. Theoretical Computer Science, 308(1):

239–257, 2003.
[14] O. Danvy and I. Zerny. A synthetic operational account of call-by-need evaluation. In Proceedings of the 15th

Symposium on Principles and Practice of Declarative Programming, pages 97–108. ACM, 2013.
[15] M. Felleisen and D. Friedman. Control operators, the secd machine, and the lambda calculus. In Formal Descriptions

of Programming Concepts, pages 193–219, 1986.
[16] M. Felleisen and D. P. Friedman. Control operators, the SECD-machine, and the λ-calculus. Technical Report 197,

Indiana University, Computer Science Department, 1986.
[17] J.-L. Krivine. A call-by-name lambda-calculus machine. Higher-Order and Symbolic Computation, 20(3):199–207,

2007.
[18] X. Leroy. A formally verified compiler back-end. Journal of Automated Reasoning, 43(4):363–446, 2009.
[19] A. Meyer and S. Cosmadakis. Semantical Paradigms: Notes for an Invited Lecture. Technical report, MIT Laboratory

for Computer Science, 545 Technology Square, Cambridge, MA 02139, July 1988.
[20] R. Milner. Functions as processes. Mathematical Structures in Computer Science, 2(02):119–141, 1992.
[21] R. Milner and D. Sangiorgi. Barbed bisimulation. In Automata, Languages and Programming, pages 685–695.

Springer, 1992.
[22] C. Okasaki, P. Lee, and D. Tarditi. Call-by-need and continuation-passing style. Lisp and Symbolic Computation, 7

(1):57–81, 1994.
[23] G. D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoretical Computer Science, 1(2):125–159, 1975.
[24] J. C. Reynolds. The discoveries of continuations. Lisp and Symbolic Computation, 6(3-4):233–248, 1993.
[25] A. Sabry and M. Felleisen. Reasoning about programs in continuation-passing style. Lisp and Symbolic Computation,

6(3-4):289–360, 1993.
[26] A. Sabry and P. Wadler. A reflection on call-by-value. ACM Transactions on Programming Languages and Systems

(TOPLAS), 19(6):916–941, 1997.
[27] D. Sangiorgi. From λ to π; or, rediscovering continuations. Mathematical Structures in Computer Science, 9(4):367–

401, July 1999. ISSN 1469-8072. URL http://journals.cambridge.org/article_S0960129599002881.
[28] D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes. Cambridge Univ. Press, 2003.
[29] P. Sestoft. Deriving a lazy abstract machine. Journal of Functional Programming, 7(03):231–264, 1997.

http://journals.cambridge.org/article_S0960129599002881

	Introduction
	The Call-by-Name and Call-by-Value -Calculi
	A Uniform Continuation-Passing-Style Transform
	The CPS Language cps
	Environment-Based CPS Transform
	Preservation of Observations
	Proof Methodology
	Correctness of the CPS Transform
	Correctness of the Naming Transform

	CPS and Processes
	 from CPS
	Correctness

	Uniform Abstract Machine

	Call-by-Need and Constructive Update
	Continuation-Passing Style
	The Transform

	Naming and -Encoding
	Correctness
	Distance Rules
	Annotations
	Annotated CPS Transform
	From need to :-1.2mu=1cps
	Naming and -encoding

	Abstract Machine

	Related Work
	Conclusion and Future Work

