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Abstract. The basis for all network communication is the Address Res-
olution Protocol, which maps IP addresses to a device’s MAC identifier.
ARP resolution has long been vulnerable to spoofing and other attacks,
and past proposals to secure the protocol have focused on key owner-
ship rather than the identity of the machine itself. This paper introduces
arpsec, a secure ARP protocol that is based on host attestations of their
integrity state. In combination with bottom-up host measurement, we
define a formal ARP binding logic that bases additions of new ARP
responses into a host’s ARP cache on a set of operational rules and
properties, implemented as a Prolog engine within the arpsec daemon.
Our proof of concept implementation is designed within the Linux 3.2
kernel environment and we show that using commodity TPMs as our at-
testation base, arpsec incurs an overhead ranging from 7% to 15.4% over
the standard Linux ARP implementation. This formally-defined protocol
based on bottom-up trust provides a first step towards a formally secure
and trustworthy networking stack.

1 Introduction

The Address Resolution Protocol (ARP)[15] is a fundamental component of
network connectivity. Working below the network layer, ARP binds IP addresses
to the Media Access Control (MAC) identifier of a network device, e.g., an
Ethernet card or a WiFi adapter, and thus underpins all local network activity,
which in turn informs how wide-area routing occurs. ARP is subject to a variety
of attacks including spoofing and cache poisoning as originally described by
Bellovin [1]; tools such as dsniff [19] and nemesis [10] can be used to easily launch
these respective attacks. One could use simple scripts and tools like nemesis to
launch ARP cache poisoning attacks. An attack on ARP can subsequently enable
more sophisticated denial-of-service and man-in-the-middle [11] attacks.

Different methods have been proposed to make the ARP secure, including the
static ARP configuration[25], the ARP spoofing detection[8], the policy-based
ARP security[14,12] and the ARP extension using the Public Key Infrastruc-
ture (PKI) system[2,9,5]. Yet none of these methods is widely accepted by the
community or deployed in a large scale network; we thus have to reconsider the
challenges to securing ARP. First, the basic ARP protocol itself must remain



unchanged. There is no ”flag day” by which time all ARP implementations em-
bedded into the large variety of Internet-connected IPv4 devices will change.
Second, the overhead of the implementation should be as small as possible in
order to optimize performance. Any enhancement for the ARP security with the
overhead far beyond the original implementation is not acceptable. Third, the
ARP security mechanism should be flexible and reliable. Hard-coded security
policies may not satisfy the variant network environments. Last, we want to
know if the remote machine could be trusted. Trust here applies to both the
true identity and the system integrity state of the remote. Even if the MAC/IP
binding belongs to the remote machine, we may not want to add the binding into
our ARP cache (and further leak the secret data) if the remote does not install
up-to-date operating system patches or certain application software is modified.
In other words, the remote with identity impersonation or bad system integrity
state is not trusted.

In this paper, we propose arpsec - the ARP Security Based on the Logic
and Trusted Platform Module (TPM)[24]. arpsec does not change or extend the
ARP itself. Instead of hard-coded security policies, arpsec formalizes the security
requirement of the ARP using the logic. A logic prover then could reason about
the validness of an ARP/RARP reply from the remote based on the logic rules
and the previously stored binding history of the local system. A TPM attestation
protocol is also implemented to challenge the remote machine if the logic layer
fails to determine the trustiness of the remote. Using the TPM hardware, we
could figure out the true identity of the remote and if the remote machine is
in a good integrity state (thought to be not compromised). Besides the defense
from common ARP attacks, arpsec also rises the bar of security to the level of
trusted computing and contributes to the secure operating systems. We have
implemented arpsec in the Linux operating system. Our experiments show a
small system overhead no more than 15.4% comparing with the original system
and the other two popular methods. We also explore the way to deploy arpsec
in the wild and discuss some potential issues and challenges, as well as possible
solutions.

Note that the TPM hardware attack[20] is not considered in this paper. We
treat the TPM hardware (and the BIOS) as the Root of Trust and trust its re-
sults. Eventually, one can use the TPM (attestation) as a heavy weapon dealing
with the identification and trustiness of the remote machine. A lot of research
has been done by leveraging the power TPM for software in different layers of the
software stack[17,6,7,13]. However, here comes the tradeoff between the level of
trust and the system performance. The speed of the TPM attestation is limited
by the speed of the TPM hardware, which is usually slower than the current
CPU[18]. Comparing with the TPM attestation, the logic layer in arpsec is a
light-weighted framework which provides the logic reasoning for the ARP secu-
rity requirement examination. In the arpsec daemon (arpsecd) implementation,
the logic layer defends the ARP security once an ARP/RARP message arrives.
The TPM layer would not be invoked until the logic layer fails to determine the
trustworthiness of the message. However, for some attacks, the TPM attestation



may be the only reliable countermeasure. As we will see later, arpsec provides
the flexibility to tune its component to fit different security requirements.

The remainder of this paper is structured as follows. Section 2 outlines the
background on ARP security issues and Trusted Computing and discusses com-
mon vulnerabilities based on the current ARP design and implementation. Sec-
tion 3 details the design and architecture of arpsec, including the logic layer and
the TPM layer in the arpsecd. Section 4 shows details and tradeoffs during the
implementation. Section 5 describes a general procedure to deploy arpsec in the
wild. Section 6 provides the performance evaluation settings and results. Section
7 discusses some potential issues within arpsec and possible solutions. Section 8
recalls the past efforts on ARP security. Section 9 concludes.

2 Background

We first talk about ARP security issues based on the current ARP design and
implementations in general. Then we explain common attacks against the ARP
and high-level attacks based on ARP attacks. A brief review of Trusted Com-
puting and TPM is provided at the end of this section.

2.1 Address Resolution Protocol (ARP)

The ARP/RARP[15,4] is the glue between layer 3 and layer 2 in the IPv4 net-
works and usually implemented within the operating system for performance
and security considerations. Every time before an IP packet is sent out from
the Ethernet card, the ARP cache (table) will be queried to find the MAC ad-
dress given the target IP address of the packet. If the MAC/IP binding is not
found, an ARP request will be broadcasted to the whole network. Only the re-
mote with the target IP address should send back an ARP reply containing its
MAC address. In reality, however, every machine in the network could send an
ARP reply claiming that it has the requested MAC address. As there is no ARP
reply authentication mechanism, most operating systems would either accept
the first reply or the latest one if multiple replies respond to the same request.
Even worse, for better performance, most operating systems would also process
ARP requests from other machines and add the MAC/IP bindings for future
use. Though all the MAC/IP bindings in the ARP cache have some Time-To-
Live (TTL) control, the timer is usually large and designed for performance
considerations instead of security reasons. Take the Linux operating system as
an example. It always accepts the first ARP reply to the request and ignores
others. It also rejects the ARP reply without the request while processing ARP
requests from other machines. The TTL for each entry in the Linux ARP cache
is around 20 minutes[2]. Behaving a little bit different from the Linux operating
system, the Solaris and Windows operating systems suffer from the same ARP
security problems.

One basic ARP attack is the ARP message spoofing. The adversary could
inject a new MAC/IP binding into the victim’s ARP cache simply by sending



a forged ARP request or reply to the victim. The MAC address in the ARP
message usually belongs to the adversary and the IP address usually refers to
some other potential victim. The other basic ARP attack is the ARP cache
poisoning, where the adversary generates the ARP reply using certain MAC
address given the request from the victim. Actually, there is no big difference
between the ARP spoofing and ARP (cache) poisoning[25]. Both of them try
to have a malicious MAC/IP binding inserted in the victim’s ARP cache. We
explicitly distinguish the two attacks in order to help explain the design details
of arpsec in later sections.

Based on the ARP spoofing/poisoning, high-level attacks are enabled, includ-
ing MITM[11] attacks and DoS[25] attacks. For the DoS attack, the adversary
could inject the victim’s MAC address into a certain machine. Then all the IP
traffic from that machine targeting a certain IP address will be redirected to the
victim. When multiple machines have the victim’s MAC address in their ARP
caches, Distributed Denial of Service (DDoS) attack happens. Comparing with
DoS/DDoS, the MITM attack seems to be more serious from the security per-
spective. With the help of ARP spoofing/poisoning, the MITM attack is trivial
with a simple script no more than 100 lines. Yet once happens, it is often hard
to detect. Timing of the IP packet may help find this kind of attack if the packet
delay is obvious. For most cases, the MITM attack goes undetected. Figure 1
displays the ARP attack tree with the ARP spoofing/poisoning centered. While
leafs in the tree are the basic attacking means to fulfill the ARP attack, the roots
are the high-level attacks supported by the ARP attack mentioned before. Note
that, high-level attacks may also be enabled by other attacks, like DNS Pharm-
ing attack. Even without MITM attacks, the identity theft (impersonation) or
secret leakage may happen via ARP attacks directly.

2.2 Trusted Platform Module (TPM)

A Trusted Platform Module (TPM) is a cryptographic chip embedded in the
motherboard. Though implemented by various vendors, all the TPM chips follow
the TPM specification[24] designed by the Trusted Computing Group (TCG).
As TPM is the hardware designed for security, together with the BIOS, it could
be used as the Root of Security and to build the security chain for the soft-
ware along the software stack, including boot loaders, operating systems and
applications[17,6]. One key facility that TPMs provide is to securely store data,
such as private keys, digital signatures, passwords or even biometrics, like fin-
gerprints in Apple iPhone 5S.

With the help of TPM, we could know the true identity of the remote via
the Attestation Identity Key (AIK) verification during the TPM attestation. To
create an AIK pair, the TPM hardware has to talk to the Privacy Certification
Authority (PCA) or Attestation Certification Authority (ACA) using the infor-
mation embedded in itself to prove its identity and get the AIK credentials. We
could also know if the remote machine is in a good integrity state via the Plat-
form Configuration Registers (PCRs). Given the good value of PCRs, as long as
the PCR values from the remote during the TPM attestation are different, we
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Fig. 1. The ARP attack tree

assume the remote may be or have already been compromised and thus do not
trust it. Note that the AIK private key and the measurement of PCRs are all
stored in the TPM Non-volatile ROM (NVROM). Unless the TPM hardware is
compromised, currently from software, there is no way to hack into the TPM
and change the values in it.

3 Design of arpsec

Different with the latest work on the ARP security, like S-ARP and TARP,
which take the advantage of the PKI system and extend the original ARP,
arpsec formalizes the ARP security requirement using the logic and examines
the ARP/RARP message using a logic prover and the TPM attestation, with-
out changing the original ARP. arpsec is designed to respond to attacks below:

– ARP/RARP message spoofing: the adversary fabricates an ARP/RARP re-
quest/reply to inject a new MAC/IP binding into the victim’s ARP cache.

– ARP cache poisoning: the adversary fabricates an ARP/RARP reply to sub-
stitute/distorts the original MAC/IP binding in the victim’s ARP cache.

– identity theft/impersonation: the adversary uses the victim’s MAC/IP bind-
ing while the victim is offline.

– data leakage via the compromised remote: the adversary gets the (secret/privacy)
data of the victim machine from the connected and compromised remote ma-
chine.



The first two attacks are the basic ARP attacks on which many other high-
level attacks rely, like MITM attacks and DoS attacks. Note that both ARP
and RARP (requests and replies) are covered in our security scope. In the third
attack, the PKI system may help. However, as all these secret keys are saved
somewhere in the hard disk and once the key is stolen or broken, there is no
way to know the real identity of the remote. The last attack is common when
the target machine is hard to compromise. Instead, the ’trusted’ and connected
remote machine may be compromised and leak the sensitive data from from the
target machine if, for example, certain important security patch is missed in the
operating system or a buggy version of application is used. We address all these
vulnerabilities via arspec - ARP Security Based on the Logic and TPM. The
architecture of arspec is illustrated in Figure 2 as below.
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Fig. 2. The arspec Architecture

In the user space, arpsecd is the daemon process of arpsec running in the local
machine and taking the control of processing of all the ARP/RARP messages
from the kernel. There are three major components in the arpsecd - the CPU
read, the logic layer and the TPM layer. The CPU read component retrieves
all ARP/RARP request/reply messages from the kernel space and passes the
preprocessed, logic-friendly messages to the logic layer component. The logic
layer component then tries to handle these messages based on the message type,
system state and the logic rules. We will detail the logic layer in the following
section. For the ARP/RARP reply, if the logic layer is unable to validate the
message, the TPM layer will then challenge the remote machine using the TPM
attestation. Only the MAC/IP bindings (in the ARP/RARP reply) validated
by the logic layer or succeeded in the TPM attestation could be added into the



local ARP cache. The pseudo code of arpsecd ARP/RARP processing is listed
in Algorithm 1 as below.

while there is an ARP/RARP msg from the kernel do
check the msg type;
if msg.type == ARP request then

if msg is for us then
reply the request;

else
drop the request;

end

else if msg.type == ARP reply then
if msg is for us then

if msg passes the logic layer then
add the MAC/IP binding into the ARP cache;

else
if msg passes the TPM layer then

add the MAC/IP binding into the ARP cache;
else

drop the reply;
end

end

else
if msg passes the logic layer then

add the MAC/IP binding into the ARP cache;
else

drop the reply;
end

end

else
The same handling here for the RARP msg;

end

end

Algorithm 1: The arpsec ARP/RARP Message Processing

3.1 Logic Formulation

The logic layer in arpsec is the first filter used to testify the trustiness of an
ARP/RARP reply message. Though light-weighted comparing with the TPM
layer, the logic layer uses a logic prover which is built on solid logic rules. To
leverage the power of the logic reasoning, firstly, we introduce an ARP system
binding logic formulation.

An instance of an ARP binding system is defined as A = {N ,M, T ,S, S̄, R̄},
where



T = P
N = (ε, n0, . . . , na)
M = (ε,m0, . . . ,mb)
S = (s0, . . . , sc)
S̄ = S × T
R̄ = S ×N ×M× T

Intuitively, T is a set of all positive integers representing an infinite and totally
ordered set of time epochs. N is the collection of network addresses and M
is the collection of media addresses. For convenience and as described below,
both address sets contain a special address ε representing the lack of binding
assignment. S is the set of systems that making assertions about the address
bindings within the network. S̄ represents the timing of system trust validations
(e.g., system attestations); s̄i,j ∈ S̄ where system si was successfully vetted at
time tj . R̄ are the binding assertions made in the course of operation of the ARP
protocol, where R̄i,j,k,l ∈ R̄ if system si asserts the binding (nj ,mk) at time tl.
Lastly, for ease of exposition, we introduce the following derived binding and
trust time-state elements within the system:

A = (A0, . . . , A|P |)
B = (B0, . . . , B|P |)

Trust state : The trust state A of the system is a totally set of subsets of S
representing the instantaneous set of systems that have been determined to be in
trusted state in each epoch (e.g., have been vetted through system attestations).
The trust state of the A at time tk, Ak is:

Ak =
⋃
si ∈ S | ∃s̄i,j = 1, (k − h) ≤ j < k

Or simply, Ak is the set of all systems si ∈ S that have been vetted as trustworthy
within the last h epochs. The security parameter h represents the durability of
a system trust state. In the initial state of the system all systems are untrusted,
e.g., Ao = {∅}.

Binding state : We refer to the Bk as the binding state at time Tk. The states
of the binding system B are a totally ordered sequence of relations over N and
M representing the instantaneous binding of network to media addresses, where:

∀Bk ∈ B : Bk = N ×M

Note further that each Bk is constrained by a set of coherency properties that
define correct operation of the binding protocol. Namely, ∀Bk ∈ B:

(1) ∀ nl ∈ N : ∃(nl,mo),mo ∈M
(2) ∀ mo ∈M : ∃(nl,mo), nl ∈ N
(3) 6 ∃ (nl,mo), (np,mq) : nl = np 6= ε
(4) 6 ∃ (nl,mo), (np,mq) : mo = mq 6= ε



That is, all network addresses (constraint 1) and media addresses (2) must have
an assignment at each epoch. Further, the network address not bound to the
unassigned element ε must be bound to exactly one media address (3), and the
media address not bound to the unassigned element ε must be bound to exactly
one network address (4).

We also define the set of rules with operational properties for the binding set.
We state that (nj ,mk) ∈ Bl if and only if:

(5) ∃ R̄i,j,k,x ∈ R̄, x ≤ l, , si ∈ Ax,
6 ∃ R̄v,j,p,y ∈ R̄, p 6= k, y > x, sv ∈ Ay,
6 ∃ R̄v,q,k,y ∈ R̄, j 6= q, y > x, sv ∈ Ay

Constraint (5) indicates that any binding in Bl was asserted at or prior to time
tl by a trusted system, and no later assertion for that network or media address
was subsequently received at or before tl was asserted.

Finally, by definition, all network and media addresses are unassigned in the
initial state B0:

B0 = ∀nl ∈ N , (nl, ε)
⋃
∀mo ∈M, (ε,mo)

In general, constraint (5) is the core property used by the logic prover to
implement the ARP security. The logic layer stores all the verified bindings with
the remote system identifiers and the time epochs. For any given MAC/IP bind-
ing in the ARP/RARP reply message from the remote, If there exits a binding
record from the same (trusted) remote in the past and the time epochs of that
record is no more than the pre-defined number epochs (security parameter h)
before the current time epochs, the logic layer would trust this binding, add the
binding the to the local ARP cache and add this binding record into the logic
prover for future reasoning. The security parameter is also a tradeoff between
the reliability and the performance, as it determines the time range of the past
we would trust to validate the current event. Note that though the logic formu-
lation is used for the reasoning initially, it also provides the ARP cache data
provenance, thanks to its ability to store the history records.

3.2 TPM Attestation

The TPM layer in arpsec is a heavy weapon we could count on to prove the
trustworthiness of the remote once the logic layer fails. To get the trust to the
remote, the TPM attestation[24] is used. It is based on the Attestation Iden-
tification Key (AIK) authentication and the Platform Configuration Registers
(PCRs) verification. The AIK is used by the attestation to sign the data gener-
ated by the TPM hardware. To create an AIK pair, the TPM within the system
has to provide its hardware information to a Privacy Certification Authority
(PCA) following the procedure of AIK certificate enrollment scheme. PCRs are



the measurement of the boot loader, the operating system and even the applica-
tion software within the system. Unlike other PKI system, the AIK private key
and the PCRs values are are all saved in the TPM itself. Currently there is no
other way to change these values except the hardware attack. Because of these
merits of TPM, the AIK becomes the natural way for identification validation
and PCRs give the trustworthy information about the system integrity state.
We design the ARPSEC Attestation (AT) protocol for communication between
the local machine (the challenger) and the remote machine (the attester). The
AT request and reply look like below in Figure 3.

Nonce
Header - 3 bytes

{'a','t','q'}

PCRs list - 24 bytes
{1,1,1,1,1,1,1,1,0,...0}

Nonce - 20 bytes

Header - 3 bytes
{'a','t','p'}

ValidationPrefix - 8 bytes
PCRs Digest - 20 bytes

Nonce - 20 bytes

Signature - 256 bytes

AT Request AT Reply

Fig. 3. The AT Request/Reply

The whole TPM attestation procedure starts with an AT request from the
challenger - a local machine, where the arpsecd is running. The AT request
contains a 3-byte header, a 24-byte PCR list and a 20-byte nonce. The header
indicates that the message is an AT request. The PCR list is a byte-based bitmap.
It tells the attester the PCR indices the challenger is interested in. In Figure 3,
the challenger is interested in PCR 0-7. The nonce is generated by the TPM for
anti-replay. Once the attester receives this AT request, it checks for the header
at first to filter other network garbage. It then reads the PCRs based on the
PCR list in the request. When the PCR values and the nonce are ready, the
attester executes the TPM Quote command to generate the 256-byte signature.
This signature is actually a 48-byte validation data signed by the AIK private
key. The data is consisted of a 8-byte prefix, a 20-byte digest and the same 20-
byte nonce. The prefix is eventually the PCR bit masks and length information.
The digest is for the PCR values. The nonce here is exactly the one from the
AT request.

Upon receiving the AT reply from the attester, the challenger first examines
the header and then compares the locally generated nonce with the one in the AT
reply to prevent the replay attack. Moving forward, the challenger uses the SHA1
algorithm to compute the reference digest using the known good PCR values of
the remote. By comparing the PCR digest computed locally with the one in the
AT reply, the challenger could know if the remote is in a good integrity state since
the remote boots up. To further determine if the remote is the one it is talking



to, the challenger uses the AIK public key of the remote and the validation
prefix from the AT reply to generate the reference signature. By comparing
this signature with the one in the AT reply, the challenger then could know
if the identity of the remote is trustworthy. Once all these testings pass, the
challenger can make a reasonable argument that the remote could be trusted.
The challenger can then add the MAC/IP binding into its ARP cache. Note that
all these cryptographic operations use the TPM hardware instead of software,
like OpenSSL.

4 Implementation

We have implemented arpsec in the Linux operating system, with the kernel
version 3.2.0.55, using C and Prolog. The implementation details of the arpsecd
is shown in Figure 4. Note that arpsec is free and open-source. All the code is
available for download at OSIRIS lab code repository[21]. We have also developed
other versions using different architecture for reference, including the IPC version
(Prolog running as a standalone process) and libpcap version (using a kernel
module without direct kernel changes). The primary goal of the implementation
is the high performance. The overhead of arpsec should be as small as possible
comparing with the original ARP and other methods. We also consider the case
where arpsec and the original ARP coexist in the same network.
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Fig. 4. The Implementation of arpsec Daemon (arpsecd)

Like Figure 4 depict, in the kernel space, the kernel relay[26] is used to
transport all ARP/RARP messages from the kernel space to the user space.
Comparing with the netlink socket and the /proc file system, the kernel relay is
specially designed for the heavy traffic communication between the kernel space
and the user space. A netlink socket is also used in the arpsecd to manipulate the
ARP cache. It provides similar functionalities of the system call ioctl() for the



ARP cache management but uses the low-level kernel APIs to get rid of the extra
locking in ioctl(). By adding this new netlink socket into the kernel, we could
also trigger the kernel to send out the ARP/RARP reply given any request from
the user space. In a word, the kernel does not handle any ARP/RARP message
but relays them to the user space for arpsecd processing efficiently.

In the user space, the logic formulation of the ARP binding system is im-
plemented in GNU Prolog (GProlog)[3]. We integrate the GProlog-based logic
prover into our C-based arpsecd using the GProlog-C interfaces. Comparing
with the IPC architecture between the arpsecd and the GProlog interpreter,
this implementation improves the performance more than 50 times. The secu-
rity parameter in the logic formulation is 5 now, which means we only trust the
ARP binding history within the past 5 seconds. We have also implemented a
white list and two black lists in the front of the logic layer within the arpsecd.
The white list contains the MAC/IP bindings we trust under no conditions. The
two black lists contain potentially malicious MAC addresses or IP addresses re-
spectively. Currently, only the MAC/IP binding failed in the TPM attestation
will be added into the black list accordingly. All the entries in the black lists
have the same TTL - 200 seconds. A timer thread deletes the entry from the
black lists once its TTL expires. The arpsecd TPM component is built on the
top of Trousers API[23] following the TPM specification 1.2[24]. To store the
TPM information (PCRs and AIK public keys) of remotes, an internal database
is also implemented using a standard CSV configuration file. Note that this
configuration file is only for the testing and not for the real deployment.

A TPM daemon (tpmd) is also implemented for the remote machines to
process the TPM attestation from the arpsecd. The same as the arpsecd TPM
component, the tpmd is also built upon the Trousers API following the TPM
specification 1.2. To create the AIK pair and get the AIK credential for TPMs,
PrivacyCA[16] is used instead of the real PCA. In our current implementation
and testing environment, we are interested in the PCR 0-7. More PCRs could
be covered and extended if the measurement of applications is also cared.

5 Deployment

Besides the logic prover, arpsec relies on the knowledge of AIK and PCRs, which
are built upon the TPM hardware. Different with S-ARP and TARP networks,
where PKI system is bound to the MAC/IP binding in the ARP reply directly,
arpsec does not care the IP address and thus does not distinguish the static IP
network from the DHCP network. Instead, arpsec uses the MAC/AIK/PCRs
binding to validate the trust to the remote. We introduce the idea of the TPM
Information Management Server (TIMS) into the network. When a new machine
tries to join the network, it has to create the AIK pair and get the AIK credential
from the TIMS. In this step, the TIMS is acting as a Privacy CA or an Attes-
tation CA (ACA). The procedure follows the AIK certificate enrollment scheme
defined by the TCG Infrastructure Working Group. As one TPM could generate
multiple AIKs, we require each new machine to create a new AIK pair using



the TIMS when firstly joining the network. Once the AIK pair is created and
certified, the new machine has to send its MAC address and all the PCR values
(thought to be a good system integrity state) via a secure channel, like SSH,
to TIMS. The TIMS then creates a new entry for this new MAC/AIK/PCRs
binding in its database for this new machine and distributes this new TPM
Information Entry (TIE) to all arpsecd running on the machines within the net-
work via a secure channel again. Upon receiving the new TIE from the TIMS,
the arpsecd will insert it into its own internal TPM information database. Note
that the AIK/PCRs, bound with the MAC address, is also used for the TPM
attestation by the TIMS for the TIE management down below.

There are some cases we need to care in the arpsec network. If the MAC
address is changed for one machine, the machine has to let the TIMS be aware
about this. In this case, the machine could send a TIE Update message containing
the old and new MAC addresses to the TIMS. The TIMS should first launch a
TPM attestation (just like the arpsecd) towards the requesting machine. Only
upon the success of the attestation will the TIMS update the existing TIE with
the new MAC address and distribute the TIE Update to other arpsecds. If a new
MAC address is added into the machine, different actions will be taken based
on whether the existing AIK is reused or not. If the new MAC address is bound
with an existing AIK, a TIE Add message containing the new MAC address and
the existing AIK should be sent to the TIMS. Again the TIMS will do the TPM
attestation before creating a new TIE in its database and distributing this TIE
Add to other arpsecds. If the new MAC address tries to use a new AIK, then it
is the same procedure as a new machine joins into the network except an extra
TPM attestation by the TIMS before the new AIK pair generation, making sure
the machine is in a good integrity state. Anytime one machine wants to discard
its existing AIKs or change the TPM hardware or upgrade the BIOS/operating
system (and thus changing the PCRs), it has to send a TIE Remove with all
the registered MAC addresses before it starts a new registration. The TIMS will
then clear all the entries with those MAC addresses and notify all arpsecds to
remove those entries too. Though a hybrid network is not desired, the arpsecd has
implemented a white list for the machines which may not have TPM hardwares
but have to be trusted anyhow, like gateway routers or DNS servers.

6 Performance Evaluation

To fully understand the overhead of arpsec, we compare our implementation
with the original ARP and other two important methods, S-ARP and TARP.
We follow the experiment settings of TARP, providing two types of measure-
ment: the macro-benchmark and the micro-benchmark. The macro-benchmark
is the overall system overhead one can see from the application layer. The micro-
benchmark provides performance profiles of some important operations within
S-ARP, TARP and arpsec, including key generations and TPM interactions.

Our testing environment involves 4 Dell Optiplex 7010 desktop PCs. All
these machines have Quad-Core Intel i5-3470 3.20 GHz CPU, 8GB memory,



Intel Pro/1000 ethernet card (1000 Mbps full duplex) and are running on Ubuntu
LTS 12.04 (x86-64) with the Linux kernel version 3.2.0.55. All these machines are
equipped with the TPM hardware from STM (version 1.2 and firmware 13.12)
and using the Trousers API 1.2 rev 0.3. To eliminate the impact from the Internet
(DNS, routers, gateways), all the 4 machines are connected with a 1000-Mbps
HP ProCurve layer-2 switch, constructing a LAN network. Finally, as S-ARP
and TARP were written on old Linux kernel 2.6, we have ported the S-ARP and
TARP implementations to our testing environment without changing the core
functionalities. All the experiments down below share the same hardware and
software configurations.

6.1 Macro-benchmark

The macro-benchmark is based on the round-trip-time (RTT) from the ping

command. Instead of using certain profiler or direct measurement in the kernel,
we use the common ping command to evaluate the general overhead from the
view of applications. Though indirect measurement, the RTT from the ping

command actually shows the whole system overhead in the wild accurately. The
macro-benchmark we used is also consistent with the ones used by S-ARP and
TARP. Then can we have a better comparison among these different methods.

Like TARP, we also implemented a custom ping command: ncping (no-cache
ping), which clears the local ARP cache before each ICMP echo request is sent.
With the ncping command, we can get the performance evaluation in the worst
case and reveal the true overhead of different methods. We have performed three
groups of experiments including ping with the target MAC/IP binding in the
ARP cache, ping without the target MAC/IP binding in the ARP cache and
ncping. Each group has testings for the original ARP, S-ARP, TARP and arpsec
respectively. Each testing is consisted of 1000 ICMP echo requests or 10× 1000
requests for the ping without caching. Figure 5, 6 and 7 show the evaluation for
all these testings.

Figure 5 shows the RTT average (mean), min (mean−2σ2) and max (mean+
2σ2) from the ping command with the target binding in the ARP cache. All these
measurements are in millisecond. Note that in all our experiments, the internal
caching of S-ARP and TARP is always enabled to get the best performance.
As shown, once the target binding is in the ARP cache, RTT average values of
all these methods look similar ranging from 0.210 ms to 0.240 ms. The max
and min values among these methods are also comparable. This makes sense
as no ARP/RARP message processing happens in this case. However, S-ARP
introduces the biggest overhead among all these methods. Interestingly, arpsec
has the smallest ping RTT (0.018 ms faster than the original ARP). On one
hand, we attributes this to our kernel modification, where all ARP messages are
relayed to the user space rather than further processing in the kernel space. On
the other hand, this reveals the high efficiency of kernel relay.

Figure 6 demonstrates the most common scenario where the target binding
is not in the ARP cache at first. In this case, the first ping takes much more
time comparing with the followings as an ARP request will be broadcasted and



 0

 0.1

 0.2

 0.3

 0.4

 0.5

ARP S-ARP TARP ARPSEC

Ro
un

d 
Tr

ip
 T

im
e 

(R
TT

) i
n 

m
s

Fig. 5. The RTT (ms) of ping command with the target binding in the ARP
cache for 1000 ICMP echo requests

 0

 0.5

 1

 1.5

 2

ARP S-ARP TARP ARPSEC

Ro
un

d 
Tr

ip
 T

im
e 

(R
TT

) i
n 

m
s

Fig. 6. The RTT (ms) of ping command without the target binding in the ARP
cache for 10× 1000 ICMP echo requests



the corresponding reply will be handled before the MAC/IP binding could be
added into the ARP cache. Once the reply is processed and the binding is added
into the ARP cache, the whole system run into the same case in Figure 5 and
the RTT average values of all these methods converge to the similar level of the
original ARP. To show the average time of the first-ARP-Reply processing, we
repeated the 1000-run ping for 10 times. S-ARP, TARP and arpsec daemons
were restarted each time to show the real processing time without the help of
caching. As shown in the figure, for each method, the left bar is the average
of 10-time averages for 1000 runs and the right bar is the average of 10-time
first pings. The max and min values here are the real ones rather than the
confidence intervals. The left bars basically show the case in Figure 5. From the
right bars, one can see that comparing with the original ARP, arpsec has the
smallest overhead by 15.4%; TARP has a medium overhead by 54.7%. S-ARP,
without the help of caching, introduces the biggest overhead, taking average 64
ms for the new MAC/IP binding (and the value is not shown in the figure).
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Fig. 7. The RTT (ms) of ncping command for 1000 ICMP echo requests

Figure 7 displays the worst case using the ncping command, where the ARP
cache will be flushed before each ICMP echo request is sent. The max and min
values here are the confidence intervals like Figure 5. With the help of internal
caching and one-setup signature validation, TARP introduces a small overhead
by 19.9% comparing with the original ARP. Even with caching, S-ARP still
shows the biggest overhead with the RTT average value 8.4 ms (not shown in
the figure) because of the time synchronization and communication with the



AKD. Comparing with S-ARP and TARP, arpsec performs the best introducing
a 7% overhead. Note that the TPM attestation would not be triggered until the
logic prover fails. The security parameter used by the logic prover is 5 seconds in
our testing. Also, the RTT value of arpsec does not mean that the TPM operation
is fast. Moreover, because of the asynchronous TPM operation design, the RTT
value of arpsec is free from the degradation caused by the TPM attestation, but
only limited by the user vs. kernel space communication and the logic prover.
We will detail this in the later section.

6.2 Micro-benchmark

Using the GProlog-C interfaces, the logic prover could run as a pure C component
without dragging down the overall performance of the arpsecd. The prominent
bottle neck in arpsec then is the TPM hardware. In general, we know that the
TPM hardware is slow comparing with the normal CPU. But how slow? In the
micro-benchmark, we first compare the key generation time among all these
methods and then dive into different TPM operations used by arpsec. Table 1
and 2 give the details.

Protocol Min Avg Max Mdev

S-ARP 36.155 90.364 330.722 34.794

TARP 5.17 31.005 69.476 10.826

TARP* 0.47 1.007 1.068 0.022

arpsec 3879 12841 46759 6062

Table 1. The Time (ms) of 100 key generations with the key length 1024 bits

TPM Min Avg Max Mdev

AIKgen 864 9385 43716 5932

Rand 10.915 11.399 11.468 0.035

Quote 324.467 336.109 336.541 0.698

SigVerify 0.120 0.199 0.213 0.006

AttVerify 0.208 0.307 0.344 0.009

Table 2. The Time (ms) of different TPM operations used by arpsec with 100
repetitions

Table 1 shows the key generation time of different methods. Note that TARP*
stands for the ticket generation instead of the public/private key pair generation.
arpsec means the TPM AIK pair generation. As one can tell, S-ARP does well
with the mean time 90.364 ms. TARP is the fastest with the mean time 32.012
ms (public/private key pair + ticket). Comparing with local key generations of



S-ARP and TARP, arpsec is the slowest with the mean time 12.841 seconds,
because we use the PrivacyCA as the PCA to generate the AIK pair, following
the complicate AIK certificate enrollment scheme mentioned before. Fortunately,
the AIK generation is one-time effort. After this, the AIK private key is stored
in the TPM and could be used in a secure manner.

Table 2 profiles some TPM operations used by arpsec. AIKgen refers to
Trousers API Tspi TPM CollateIdentityRequest(). Rand refers to Tspi TPM GetRandom().
Quote refers to Tspi TPM Quote(). SigVerify refers to Tspi Hash VerifySignature().
Note that AttVerify includes all the function calls related with the TPM attesta-
tion verification for the arpsecd. Again, AIKgen is time consuming, like we saw
in Table 1. Besides it, the TPM Quote may be the slowest with the mean time
336.109 ms comparing with other TPM operations in this table. Be aware that
all these performance evaluations only apply to our testing environment using
TPM hardwares from STM (version 1.2 and firmware 13.12).

Combining the macro-benchmark and micro-benchmark, as well as design
and implementation details mentioned before, we summarize the general char-
acteristic comparison among S-ARP, TARP and arpsec, as shown in Figure 3.

Protocol Mechanism Formal
Prove

Remote
Integrity
Measurement

ARP
Change

Kernel
Change

Overhead

S-ARP PKI N N Y Y Huge

TARP Ticket-based PKI N N Y N Small

arpsec Logic+TPM Y Y N Y/N Small

Table 3. General characteristic summary

7 Discussion

As we talked before, arpsec relies on the logic prover and the TPM attestation.
The logic formulation for the ARP binding system we have created is simple,
straightforward and intuitive. This is partially because the original design of
ARP is simple. Even with the simple logic rules, we are able to record all the
ARP cache update events, which enables the ARP cache data provenance ’ac-
cidentally’. On the one hand, with the ability to ’remember’, the logic prover,
besides reasoning, could potentially serve other applications, like forensics or
machine learning. On the other hand, the logic system itself could be extended
based on the complexity of the protocol we are trying to formalize.

To enable the TPM attestation, we introduce a TPM daemon (tpmd) and
require each remote machine to install it. Note that an extra TPM daemon is
necessary based on the TPM specification and the Trousers API. The Trousers
API provides a tcsd daemon process with RPC interfaces. But these interfaces
are for the remote TPM management rather than the TPM attestation from a



challenger. Our tpmd follows the routine talking with the tcsd instead of calling
the TPM directly like libtpm. One may argue what if the tpmd is compromised.
In this case, the tpmd could forge the PCR values using the previous good values
(if they are saved in the disk). But it is unable to forge the results of the TPM
Quote command, which is executed by the TPM hardware using the PCRs and
the AIK private key only known and seen to the TPM hardware itself.

Even using the TPM attestation, arpsec still introduces a security hole in the
whole attestation procedure. Once the logic layer fails, the TPM layer tries to
send a challenge to the remote by adding the to-be-validated MAC/IP binding
to the local ARP cache temporarily. If the binding turns out to be trusted, that
is fine. Otherwise, before the binding is removed from the cache, we will trust
the adversary for around 300-500 ms because of TPM operations (Table 2). This
situation gets even worse when TCP transmission delay happens. Currently, we
set the TCP socket timeout to be 2 seconds. To eliminate this security hole, the
ARP request could carry the challenge and the ARP reply should include the
AT reply as well. However, by doing this, we had changed/extended the ARP
like S-ARP and TARP did.

The limitation of the TPM attestation is that it only attests to what was
loaded into the system during the boot time. It does not tell if the running
code has been compromised or not. To attest to the current integrity state of
a running system, a dynamic measurement of the whole Trusted Computing
Base (TCB) and target applications should be needed, which means we have to
measure the boot loader, the operating system, the libraries and applications
- almost everything in the memory. Besides the TCB size, secure storing and
fast execution of the measurement are the other two critical challenges of the
runtime integrity checking. Advanced TPM chips or cryptographic coprocessors
may provide elegant solutions without hurting the overall system performance.

Though not designed for DoS attacks, arpsec could handle certain DoS attack
in the ARP layer. As mentioned before, once the TPM attestation fails, the
malicious MAC address or IP address will be added into the corresponding black
list. When the same MAC address or IP address is contained in the following
ARP/RARP reply, the reply will be dropped without processing. However, if
the malicious MAC address or IP address keeps changing, arpsec has to examine
each message as the black list does not help in this case. Moreover, if the DoS
attack is triggered from the higher layer, like ICMP or even HTTP, arpsec is not
able to prevent that and those attacks are outside the scope of this paper.

The MITM attack is another one worth attention. As mentioned in the de-
ployment, each machine has to prove its identity using the TPM hardware and
provide the good PCRs for future reference before joining the network. As long
as the PCRs stay unchanged, we trust this machine. However, machines with
good PCRs could still play MITM attacks by injecting a new TIE with a new
MAC address into the TIMS. Making the TIE include the IP address could be
a solution but the IP address inclines to change in the wild. This solution would
also burden the management of the TIE and complicate the design of the TIMS.



Like other TPM related protocols, arpsec is not able to detect the TPM cuckoo
attack[13] either.

As shown in Table 2, arpsec performance is limited by the TPM hardware.
The TPM chip is designed to be cheap - only few dollars. While the low price
helps embed a TPM chip into each machine even in mobile phones, it limits the
scope of TPM usages. The ARP may (or maybe not) bear the 336 ms TPM
Quote command delay, the IP packet processing within the kernel would never
allow that happen. As the TPM 2.0 library specification is published for review
now, we are hoping that the new specification could promote and enhance the
TPM hardware performance and thus extend the usage scope.

8 Related Work

A lot of researches have been done trying to conquer the ARP security issues. The
easiest way with zero overhead is the static ARP cache configuration[25]. Pre-
defined MAC/IP bindings could be added into the ARP cache manually. While
this method sounds like a perfect solution, one can imagine how complicated
it would be to manage and update these bindings in a dynamic IP world. This
method works for DoS attacks but not for MITM attacks. Some other methods
focus on the ARP spoofing detection. ARPWatch[8] monitors the ARP network
traffic. By recording all the ARP cache updates, it could email the administrator
if certain MAC/IP binding is changed. While ARPWatch notifies some changes
happened in the local ARP cache, it leaves the judgement to the user and the
changes have already happened anyway.

Other solutions use security policies to prevent ARP attacks. ArpON[14]
defines different ARP binding policies for different networks, including static
networks, dynamic networks or hybrid networks. Instead of using centralized
server for management, it requires each host within the network to run the
ArpON daemon and respect the same policies. The cooperative authentication
could then be achieved and prevent ARP attacks. ArpON claims to countermea-
sure the MITM attack. The only problem here is the complexity of defining and
updating the policies for different network environments besides the foreseeable
overhead - the cooperative authentication.

A middleware approach is also proposed to provide both the backward com-
patibility and the flexibility the same time[22]. It does not need the operating
system changes by taking the advantage of Streams paradigms of the Solaris op-
erating system. It is claimed to have both preventions and detections. However,
as no cryptograph is involved, there is no solid ARP message authentication
mechanism except the ARP layer hardening in the Solaris. Moreover, the whole
design is based on the traditional wireline telecom networks - COIPP. The unified
maintainence and alarm interfaces are usually not available in the Internet.

Recent solutions apply Public Key Infrastructure (PKI) to the ARP secu-
rity enhancement. S-ARP[2] uses self-generated public/private key pairs and a
Authoritative Key Distributor (AKD) for the ARP reply authentication. Each
host generates its own key pair and the public key is registered in the AKD.



The AKD then is responsible for creating the MAC/public-key binding in its
internal database and distributing the binding to each S-ARP host within the
network. Upon receiving the ARP reply signed by the remote’s private key, the
host may have to ask the AKD for the public key if it is not cached or the key
is expired. To prevent replay attacks, time synchronization is needed between
the host and the AKD. Besides the complexity of the key management and time
synchronization, S-ARP introduces a big system overhead comparing with the
original ARP implementation[9].

Similar with S-ARP, TARP[9] uses the PKI system but in a different way.
Instead of self-created public/private key pair for each host, only the Local Ticket
Agent (LTA) generates the key pair. The LTA signs the valid MAC/IP binding
using its own private key as a ticket. All the ARP replies have to include tickets
from the LTA for attestation. Upon receiving the reply, the host uses the LTA’s
public key to validate the MAC/IP binding. By transferring the workload from
each host to the LTA, TARP introduces a fairly small system overhead for the
host. The same as S-ARP, TARP also changes/extends the original ARP to
carry the extra information used for authentication. However, the question still
remains - can we trust the remote even if the ticket verification succeeds?

In this paper, we are looking for a possible solution for the ARP security,
which provides a flexible yet reliable security mechanism rather than hard-coded
policies, tackles all the known ARP attacks, mitigate high-level attacks, keeps
backward compatibility and gives a provable trust of the remote by only intro-
ducing 7%− 15.4% system overhead.

9 Conclusion

The ARP is simple but essential to the whole IPv4 network. A lot of efforts have
been done trying to provide the ARP with security features. Recent works take
the advantage of the PKI system to prevent the ARP spoofing and ARP cache
poisoning. But we are still not able to answer the questions, like what if the
private key is broken or how could we know if the remote is trustworthy or not.
Different with all the past methods on the ARP security, arpsec provides a logic
prover to reason about the validness of ARP/RARP replies and uses the TPM
attestation to guarantee the trust of the remote. Comparing with the original
ARP, arpsec introduces only 7%− 15.4% system overhead.

The ARP security will still remain a hot topic in the future research unless
some security mechanism is accepted, adopted by the community and widely
deployed in the wild. arpsec shows a new solution here. Currently, besides the
code optimization, we are looking for places where we could apply the framework
- logic formulation framework plus the TPM attestation, through which we could
achieve a flexible, reliable yet trustworthy security mechanism.
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