
Directed Research Project Report:
Performance Optimizations of the

Tensor Contraction Engine in NWChem

David Ozog Allen Malony
Deptartment of Computer and Information Science

University of Oregon
Eugene, Oregon 97403

Email: {ozog, malony}@uoregon.edu

Jeff R. Hammond Pavan Balaji
Mathematics and Computer Science Division

Argonne National Laboratory
Lemont, Illinois 60439
Email: balaji@anl.gov

Abstract—Two large-scale performance optimizations of the
NWChem computational chemistry framework are described.
The first optimization involves hybrid static/dynamic load bal-
ancing techniques of distributed tensor contraction operations in
the coupled cluster method. Using performance models of the
most expensive computational kernels enables the use of static
partitioning techniques for dividing work across compute cores.
Because fully static partitioning is incapable of dealing with
dynamic variation of task costs, we also consider hybrid schemes
that utilize dynamic scheduling within subgroups. These schemes
are compared to the original centralized dynamic load-balancing
algorithm of NWChem as well as an improved centralized scheme.
We demonstrate that execution time can be reduced by as much
as 50% at scale. The technique is applicable to any scientific
application requiring load balance where performance models or
estimation of kernel execution times are available.

The second optimization involves a new execution model
that automatically supports the overlap of communication and
computation in processing a pool of remote work items (as in
NWChem). Typically, NWChem is executed with a one-process-
per-core mapping in which each process in the system iterates
through a get/compute/put work-processing cycle. We propose
the “WorkQ” execution model, in which some number of on-
node “producer” processes primarily do communication and
the other “consumer” processes do computation, yet processes
can switch roles dynamically for the sake of performance. This
system is facilitated by a highly tunable node-wise FIFO message
queue protocol. Our WorkQ library implementation enables an
MPI+X hybrid programming model where the X is comprised
of SysV message queues and the user’s choice of SysV, POSIX,
and MPI shared memory. We develop a simplified software
mini-application which mimics the performance behavior of
NWChem at arbitrary scale, and show that the WorkQ engine
outperforms the original model by over a factor of 2. We also
show performance improvement in the coupled cluster module of
NWChem across all possible tile sizes.

I. INTRODUCTION

In this paper we consider two important parallel opti-
mizations in the context of the tensor contraction engine in
NWChem for solving coupled cluster systems of equations.
The first optimization involves achieving efficient system load
balance, and the second involves overlapping communication
with computation. While the two optimizations are considered
separately below, we will eventually see that they influence
each other.

A. Load Balance

Load balancing of irregular computations is a serious chal-
lenge for petascale and beyond because the growing number of
processing elements (PEs) – which now exceeds 1 million on
systems such as Blue Gene/Q – makes it increasingly more
difficult to find a work distribution that keeps all the PEs
busy for the same period of time. Additionally, any form of
centralized dynamic load balancing, such as master-worker
or a shared counter (e.g., Global Arrays’ NXTVAL [24]),
becomes a bottleneck. The competition between the need
to extract million-way parallelism from applications and the
need to avoid load-balancing strategies that have components
which scale with the number of PEs motivates us to develop
new methods for scheduling collections of tasks with widely
varying cost; the motivating example in this case is the
NWChem computational chemistry package. One of the major
uses of NWChem is to perform quantum many-body theory
methods such as coupled cluster (CC) to either single and
double (CCSD) or triple (CCSDT) order accuracy. Popular
among chemists are perturbative methods such as CCSD(T)
and CCSDT(Q) because of their high accuracy at relatively
modest computational cost.1 In these methods, (T) and (Q)
refer to perturbative a posteriori corrections to the energy
that are highly scalable (roughly speaking, they resemble
MapReduce), while the iterative CCSD and CCSDT steps
have much more communication and load imbalance. Thus,
this paper focuses on the challenge of load balancing these
iterative procedures. However, the algorithms we describe can
be applied to noniterative procedures as well.

In this paper, we demonstrate that the inspector-executor
model (IE) is effective in reducing load imbalance as well
as eliminating the overhead from the NXTVAL dynamic load
balancer. Additionally, we find that IE algorithms are effective
when used in conjunction with static partitioning, which is
done both with task performance modeling and empirical mea-
surements. We present three different IE load-balancing tech-
niques which each display unique properties when applied to
different chemical problems. By examining symmetric (highly
sparse) versus nonsymmetric (less sparse) molecular systems

1 The absolute cost of these methods is substantial when compared with
density-functional theory (DFT), for example, but this does not discourage
their use when high accuracy is required.

in the context of these three methods, we better understand
how to open doors to new families of highly adaptable load-
balancing algorithms on modern multicore architectures.

B. Overlap of Communication and Computation

In order to most effectively utilize hardware resources
within large-scale parallel applications, processor clock cy-
cles must be fully dedicated towards performing computation
whenever work is readily available. However, we must also
be careful to assure that future work will be available when
finished processing current work-items. An item of work in this
context is comprised of a computational task, such as a matrix
multiplication routine, along with some associated data, such
as two arrays. In many circumstances of parallel processing, a
process which is assigned a work-item must wait for data to
be migrated from the memory space of another process before
computation can take place. Not only does incoming data often
cross the entire memory hierarchy of a compute node, it may
also cross a series of network hops from a remote location. The
variety and non-uniformity of both compute node architectures
and network topologies in modern supercomputers complicates
the wait patterns of processing work items in parallel. This in
turn complicates the development of distributed computational
algorithms which effectively overlap communication and com-
putation while efficiently utilizing system resources.

One long-standing and effective strategy for optimizing
parallel applications is to overlap time spent waiting on
network communication with time spent doing computation
[6], [48]. For example, non-blocking communication routines
enable asynchronous progress to occur within a process or
thread of execution. Care must be taken to minimize overheads
associated with such overlapping, because polling for state
and data migration between process spaces can be expensive.
These concepts are particularly important in a supercomputing
ecosystem in which distributed commodity hardware domi-
nates, and data affinity, global address space programming
models, and non-uniform memory access must play a role in
designing applications in which a high amount of overlap is
achieved. However, overlapping communication and computa-
tion has limited utility because at best, it alone can improve
the performance of a given application only by a factor of
two [46].

The current state of distributed memory parallel comput-
ing involves difficulties associated with the diversification of
architectures and the pervasiveness of heterogeneous systems.
While modern architectures are becoming increasingly het-
erogeneous, most parallel runtime systems are based on the
single-program, multiple data programming schemes which
perform best when hardware is homogeneous. There are many
obstacles to parallelism that are complicated by heterogene-
ity: contention on shared resources, load imbalance, data
management, and miscellaneous sources of overhead. These
diverse complications suggest that autonomous optimization of
parallel applications requires an underlying adaptable runtime
processing engine that is highly configurable and able to
quickly respond to variability in system behavior and changes
in architecture. The results of this paper suggest that when
a runtime accomplishes effective overlap on top of efficient
hardware utilization, speedups can be more than a factor of
two.

In addition to inspector-executor load balancing, this paper
also considers a new execution model, we call WorkQ, that
prioritizes the overlap of communication and computation
while simultaneously providing a set of runtime parameters
for architecture-specific tuning. Using an implementation of
this model, we perform various experiments on a benchmark
that mimics the bottleneck computation within an important
quantum many-body simulation application (NWChem) and
show good performance improvement with our techniques.
Section II provides the necessary background regarding the
PGAS model and the NWChem application. Section III dis-
cusses motivation for the construction of our load balancing
and execution models. Section IV outlines the design and
implementation of the software, Section V describes a set
of experimental evaluations, Section VI discusses related and
future work, and Section VII presents our concluding remarks.

II. BACKGROUND

In this section, we provide the necessary background
information for understanding the context of the Inspector-
Executor and WorkQ models and their applications throughout
the paper. Topics include A) the PGAS paradigm, B) the Global
Arrays programming model, C) NWChem and the coupled
cluster technique, and D) the Tensor Contraction Engine.

A. PGAS

The availability and low cost of commodity hardware
components has shaped the evolution of supercomputer design
towards distributed memory architectures. While distributed
commodity-based systems have been a boon for effectively and
inexpensively scaling computational applications, they have
also made it more difficult for programmers to write efficient
parallel programs. This difficulty takes many forms: diversity
of architectures, managing load balance, writing scalable paral-
lel algorithms, exploiting data locality of reference, and utiliz-
ing asynchronous control to name a few. A popular parallel
programming model which eases the burden on distributed
memory programmers is found in partitioned global address
space (PGAS) languages and interfaces.

In the PGAS paradigm, programs are written SPMD-style
to compute on an abstract global address space. Abstractions
are presented such that global data can be manipulated as
though it were located in shared memory, when in fact
data is logically partitioned across distributed compute nodes
with an arbitrary network topology. This arrangement enables
productive development of distributed memory programs that
are inherently conducive to exploiting data affinity across
threads or processes. Furthermore, when presented with an
API that exposes scalable methods for working with global
address space data, computational scientists are empowered to
program vast cluster resources without having to worry about
optimization, bookkeeping, and portability of relatively simple
distributed operations.

Popular PGAS languages/interfaces include UPC, Tita-
nium, Coarray Fortran, Fortress, X10, Chapel, and Global
Arrays. The implementation in this work was built on top
of Global Arrays/ARMCI, which is the subject of the next
section.

B. Global Arrays

Global Arrays (GA) is a toolkit for doing PGAS computa-
tions in HPC codes using C/C++, Fortran, or Python [37]. It
is built on top of the aggregate remote memory copy interface
(ARMCI), which provides efficient one-sided communication
primitives optimized for most remote direct memory access
(RDMA) hardware [35]. To understand the utility of GA,
consider the transpose operation of a matrix in global memory.
Mathematically, this is a very simple operation, but it can
involve intensive bookkeeping to program a global transpose
in distributed memory. This is a task many computational sci-
entists would rather avoid. GA provides the means for accom-
plishing transposition of a global matrix with one call that is
portable and optimized to efficiently utilize one-sided RDMA
operations with ARMCI. Besides the standard put/get/accu-
mulate functionality common in one-sided communication
libraries, there are a number of other helpful computational
operations provided by the GA API. For example there are
functions for matrix addition/multiplication/diagonalization/in-
version, ghost cell control, strided gets and puts, solving linear
systems of equations, and more.

The canonical dynamic load balancer NXTVAL for Global
Arrays was inherited from TCGMSG [24], a pre-MPI com-
munication library. Initially, the global shared counter was
implemented by a polling process spawned by the last PE, but
now it uses ARMCI remote fetch-and-add, which goes through
the ARMCI communication helper thread [36]. Together, the
communication primitives of GA and NXTVAL can be used
in a template for-loop code that is general and can handle
load imbalance, at least until such operations overwhelm the
computation because of work starvation or communication
bottlenecks that emerge at scale. A simple variant of the
GA “get-compute-update” template is shown in Alg. 1. For
computations that are naturally load balanced, one can use the
GA primitives and skip the calls to NXTVAL, a key feature
when locality optimizations are important, since NXTVAL has
no ability to schedule tasks with affinity to their input or
output data. This is one of the major downsides of many types
of dynamic load-balancing methods—they lack the ability to
exploit locality in the same way that static schemes do.

A common misconception is GA’s relationship with Mes-
sage Passing Interface (MPI). Although a large portion of
GA’s communication is done strictly through ARMCI, GA still
requires linking with a message-passing library. This library
need not be MPI (another alternative is TCGMSG [23]), but
there does need to be a message-passing library underneath
the GA stack that provides SPMD capability, process IDs,
synchronization, broadcast and reduction operations, etc. As of
this writing, MPI is the de facto standard library for satisfying
these requirements. In addition, it is now possible to replace
the entire ARMCI communication layer with equivalent MPI
3.0 RMA routines for doing one-sided communication [15].
This is typically done on newer systems and interconnects to
take advantage of MPI’s portability.

C. NWChem and Coupled Cluster

NWChem [10] is the DOE flagship computational chem-
istry package, which supports most of the widely used meth-
ods across a range of accuracy scales (classical molecular

Algorithm 1 The canonical Global Arrays programming tem-
plate for dynamic load balancing. NXTVAL() assigns each
loop iteration number to a process that acquires the underlying
lock and atomically increments a global counter. This counter
is located in memory on a single node, potentially leading to
considerable network communication. One can easily gener-
alize this template to multidimensional arrays, multiple loops,
and blocks of data, rather than single elements. As long as the
time spent in FOO is greater than that spent in NXTVAL, Get,
and Update, this is a scalable algorithm.

Global Arrays: A, B
Local Buffers: a, b
count = 1
next = NXTVAL()
for i = 1 : N do

if (next == count) then
Get A(i) into a
b = FOO(a)
Update B(i) with b
next = NXTVAL()

end if
count = count + 1

end for

dynamics, ab initio molecular dynamics, molecule density-
functional theory (DFT), perturbation theory, coupled-cluster
theory, etc.) and many of the most popular supercomputing
architectures (InfiniBand clusters, Cray XT and XE, and IBM
Blue Gene). Among the most popular methods in NWChem
are the DFT and CC methods, for which NWChem is one of
the few codes (if not the only code) that support these features
for massively parallel systems. Given the steep computational
cost of CC methods, the scalability of NWChem in this context
is extremely important for real science. Many chemical prob-
lems related to combustion, energy conversion and storage,
catalysis, and molecular spectroscopy are untenable without
CC methods on supercomputers. Even when such applications
are feasible, the time to solution is substantial; and even small
performance improvements have a significant impact when
multiplied across hundreds or thousands of nodes.

The Coupled Cluster (CC) component of NWChem is a
important molecular electronic structure module highly utilized
by the quantum chemistry and physics communities [7]. CC is
a numerical technique for solving the electronic Schrödinger
equation using an exponential ansatz operator sum acting upon
a one-electron reference wave function [29]:

|ΨCC〉 = exp(T)|Ψ0〉,

where |Ψ0〉 is the reference wavefunction (usually a Hartree-
Fock Slater determinant) and exp(T) is the cluster operator
that generates excitations out of the reference. Please see
Refs. [13], [5] for more information.

The sum of operators is truncatable to arbitrary-order
accuracy, analogous to a Taylor series expansion. This leads to
a hierarchy of CC methods that provides increasing accuracy
at increased computational cost [4]:

· · · < CCD < CCSD < CCSD(T) < CCSDT

< CCSDT (Q) < CCSDTQ < · · · .

In CC, each operator is evaluated via a series of tensor
contractions (as described in the next section). When truncating
CC to include only the “doubles-order” term, the method
is referred to as CCD. When including both singles and
doubles, the method is CCSD. With triples and quadruples,
the methods are CCSDT and CCSDTQ, respectively. There
also exist important perturbative methods (such as CCSD(T)
and CCSD(Q)) that can approximate the addition of a higher
order term without requiring the full increase in computational
and memory requirements.

The simplest CC method that is generally useful is
CCSD [45], has a computational cost of O(n6) and storage
cost of O(n4), where n is the sum of occupied and virtual elec-
tron orbitals. The “gold standard” CCSD(T) method [57], [47],
[53] provides much higher accuracy using O(n7) computation
but without requiring (much) additional storage. CCSD(T) is a
very good approximation to the full CCSDT [38], [59] method,
which requires O(n8) computation and O(n6) storage. The
addition of quadruples provides chemical accuracy, albeit at
great computational cost. CCSDTQ [32], [33], [39] requires
O(n10) computation and O(n8) storage, while the perturbative
approximation to quadruples, CCSDT(Q) [31], [34], [9], [27],
reduces the computation to O(n9) and the storage to O(n6).
Such methods have recently been called the “platinum stan-
dard” because of their unique role as a benchmarking method
that is significantly more accurate than CCSD(T) [52].

An essential aspect of an efficient implementation of any
variant of CC is the exploiting of symmetries, which has the
potential to reduce the computational cost and storage required
by orders of magnitude. Two types of symmetry exist in molec-
ular CC: spin symmetry [18] and point-group symmetry [12].
Spin symmetry arises from quantum mechanics. When the spin
state of a molecule is a singlet, some of the amplitudes are
identical; and thus we need store and compute only the unique
set of them. The impact is roughly that n is reduced to n/2
in the cost model, which implies a reduction of one to two
orders of magnitude in CCSD, CCSDT, and CCSDTQ. Point-
group symmetry arise from the spatial orientation of the atoms.
For example, a molecule such as benzene has the symmetry
of a hexagon, which includes multiple reflection and rotation
symmetries. These issues are discussed in detail in Refs. [54],
[19]. The implementation of degenerate group symmetry in CC
is difficult; and NWChem, like most codes, does not support
it. Hence, CC calculations cannot exploit more than the 8-
fold symmetry of the D2h group, but this is still a substantial
reduction in computational cost.

While the exploitation of symmetries can substantially
reduce the computational cost and storage requirements of
CC, these methods also introduce complexity in the imple-
mentation. Instead of performing dense tensor contractions on
rectangular multidimensional arrays, point-group symmetries
lead to block diagonal structure, while spin symmetries lead
to symmetric blocks where only the upper or lower triangle is
unique. This is one reason that one cannot, in general, directly
map CC to dense linear algebra libraries. Instead, block-sparse
tensor contractions are mapped to BLAS at the PE level, lead-
ing to load imbalance and irregular communication between
PEs. Ameliorating the irregularity arising from symmetries in
tensor contractions is one of the major goals of this paper.

Algorithm 2 Pseudocode for the default TCE implementation
of a tensor contraction. For clarity, some aspects of the Alg. 1
DLB template are omitted.

Tiled Global Arrays: X, Y, Z
Local Buffers: x, y, z
for all i, j, k ∈ Otiles do

for all a, b, c ∈ V tiles do
if NXTVAL() == count then

if Symm(i, j, k, a, b, c) == True then
Allocate z for Z(i, j, k, a, b, c) tile
for all d, e ∈ V tiles do

if Symm(i, j, d, e) == True then
if Symm(d, e, k, a, b, c) == True then
Fetch X(i, j, d, e) into x
Fetch Y(d, e, k, a, b, c) into y
Contract z(i, j, k, a, b, c)+=

x(i, j, d, e)*y(d, e, k, a, b, c)
end if

end if
end for
Accumulate z into Z(i, j, k, a, b, c)

end if
end if

end for
end for

D. Tensor Contraction Engine

The Tensor Contraction Engine (TCE) is a domain-specific
language for automatically generating high-performance pro-
grams which compute the working equations of second quan-
tized many-electron theories, such as coupled cluster [25].
The primary motivation for supporting such a tool is that
symbolic manipulation of these equations is an extremely time
consuming and error-prone process when done by hand, but the
TCE facilitates the generation of portable and efficient parallel
code that is verified for correctness. TCE is a core component
of ab initio chemistry capabilities in NWChem, as well as in
UTChem, developed at the University of Tokyo [60].

The TCE generates GA programs written in Fortran that
exploit spin, spatial, and index permutation symmetries among
the working set of equations to reduce the computational and
memory requirements of these methods. Despite these efforts,
the computations of CC methods have polynomial algorithmic
complexity in terms of the number of FLOPS and memory
usage. As mentioned above, CCSD equations have algorithmic
complexity of O(n6) for operations and O(n4) for memory.
The TCE code generator uses a stencil that is a straightforward
generalization of Alg. 2. For a term such as

Z(i, j, k, a, b, c)+ =
∑
d,e

X(i, j, d, e) ∗ Y (d, e, k, a, b, c), (1)

which is a bottleneck in the solution of the CCSDT equations,
the data is tiled over all the dimensions for each array and
distributed across the machine in a one-dimensional global
array. Multidimensional global arrays are not useful here
because they do not support block sparsity or index permu-
tation symmetries. Remote access is implemented by using
a lookup table for each tile and a GA Get operation. The
global data layout is not always appropriate for the local

computation, however; therefore, immediately after the Get
operation completes, the data is rearranged into the appropriate
layout for the computation.

Alg. 2 gives an overview of a distributed tensor contraction
in TCE. For compactness of notation, the Fetch operation
combines the remote Get and local rearrangement. The Symm
function is a condensation of a number of logical tests in the
code that determine whether a particular tile will be nonzero.
These tests consider the indices of the tile and not any indices
within the tile because each tile is grouped such that the sym-
metry properties of all its constitutive elements are identical.
In Alg. 2, the indices given for the local buffer contraction are
the tile indices, but these are merely to provide the ordering
explicitly. Each tile index represents a set of contiguous indices
so the contraction is between multidimensional arrays, not
single elements. However, one can think of the local operation
as the dot product of two tiles (Otile and V tile in Algs. 2, 3,
and 5).

The overall TCE computation consists of several Jacobi
iterations through a directed acyclic graph where each node
refers to a calculation of a tensor contraction intermediate
(corresponding to the truncatable sum of operators described in
the previous section). Before computation begins, the GA data
is arranged into tiles that each contain orbitals with the same
spin and spatial symmetries. The granularity of these tiles is
of crucial significance for performance, as it determines the
number of total work-items. It is important that tile-size be
small enough for there to be more tasks than the number of
processes in the application. At the same time, it is important
for tile-sizes to be sufficiently large because an excessive
number of work-items leads to unnecessary accumulation of
overhead on the dynamic load balancer (see section III).

The TCE reduces the contraction of two high-dimensional
tensors into a summation of the product of several two dimen-
sional arrays. Therefore, the performance of the underlying
BLAS library is quite influential to the overall performance of
TCE. For the purposes of this paper, each tensor contraction
routine can be thought of as a global task pool of tile-level 2-
dimensional DGEMM (double-precision general matrix-matrix
multiplication) operations. As alluded above, this pool of work
items is processed according to the following execution model:

1) A unique work-item ID is dynamically assigned via
an atomic read-modify-write operation to a dynamic
load balancing counter (NXTVAL).

2) The global addresses of two tiles (A and B) in the
global array space is determined (TCE hash lookup).

3) The corresponding data is copied to the local process
space (via one-sided RMA) with GA_Get() calls.

4) A contraction is formed between the local copies of
tiles A and B and stored into C. When necessary,
a permute-DGEMM-permute pattern is performed to
arrange the indices of the tensor tiles to align with
the format of matrix-matrix multiplication.

5) Steps 2, 3, and 4 repeat over the work-item tile
bundle, then C is accumulated (GA_acc() call) into
a separate global array at the appropriate location.

While this particular algorithm is specific to CC, it is important
to note that it falls under a more general get/compute/put
model which is common to many computational applications.

Fig. 1. Flood benchmark showing the execution time per call to NXTVAL for
1 million simultaneous calls. The process hosting the counter is being flooded
with messages, so when the arrival rate exceeds the processing rate, buffer
space runs out and the process hosting the counter must utilize flow control.
The performance gap from 150 to 200 cores is due to this effect occurring at
the process hosting the NXTVAL counter.

For example, the problem of numerically solving PDEs on
domains distributed across memory spaces certainly falls under
this category.

The next section discusses motivation for the development
of an alternative load balancing technique and a new execution
model that are able to perform this same computation in a more
efficient manner.

III. MOTIVATION

In this section we present performance measurements that
support our motivation for developing inspector-executor (IE)
load-balancing algorithms and a new runtime execution model
for processing tasks in applications such as the TCE-CC of
NWChem. For load balance, we consider the proportion of
time spent in NXTVAL for large CC simulations, then show that
NXTVAL scalability suffers in terms of average time per call
when strong scaling a flood micro-benchmark. For overlap of
communication and computation, we consider measurements
from a simple trace of a tensor contraction kernel, then discuss
the implications of a new execution model.

A. Load Balance

When conduction TCE-based CC simulations, the inher-
ently large number of computational tasks (typically hundreds
of thousands) each require a call to NXTVAL for dynamic
load balancing. Very large systems can potentially require
many billions of fine-grained tasks, but the granularity can
be controlled by increasing the tile size. Although NXTVAL
overhead can be limited by increasing the tile size, it is far
more difficult to balance such a coarse-grained task load while
preventing starvation, so typically a large number of small-
sized tasks is desirable. However, the average time per call to
NXTVAL increases with the number of processes (as shown
below), so too many tasks is detrimental for strong scaling.
This is the primary motivation for implementing the IE.

This increase in time per call to NXTVAL is primarily
caused by contention on the memory location of the counter,
which performs atomic read-modify-write (RMW) operations

Fig. 2. Average inclusive-time (in seconds) profile of a 14-water monomer
CCSD simulation with the aug-cc-PVDZ basis for 861 MPI processes across
123 Fusion nodes connected by InfiniBand. The NXTVAL routine consumes
37% of the entire computation. This profile was made using TAU [49]; for
clarity, some subroutines were removed.

(in this case the addition of 1) using a mutex lock. For a given
number of total incrementations (i.e., a given number of tasks),
when more processes do simultaneous RMWs, on average they
must wait longer to access to the mutex. This effect is clearly
displayed in a flood-test microbenchmark (Fig. 1) where a
collection of processes calls NXTVAL several times (without
doing any other computation). In this test, only off-node
processes are allowed to increment the counter (via a call to
ARMCI_Rmw); otherwise, the on-node processes would be able
to exploit the far more efficient shared-memory incrementation,
which occurs on the order of several nanoseconds.The average
execution time per call to NXTVAL always increases as more
processes are added.

The increasing overhead of scaling with NXTVAL is also
directly seen in performance profiles of the tensor contraction
routines in NWChem. For instance, Fig. 2 shows a profile
of the mean inclusive time for the dominant methods in a
CC simulation of a water cluster with 10 molecules. The
time spent within NXTVAL accounts for about 37% of the
entire simulation. We propose an alternate algorithm which
is designed to reduce this overhead by first gathering task
information, then evenly assigning tasks to PEs, and finally
executing the computations.

The average time per call to NXTVAL increases with the
number of participating PEs, but any simple IE algorithm
will improve strong scaling only as much as the proportion
of tasks eliminated by spatial and point-group symmetry
arguments. Dynamic load balancing with NXTVAL for large
non-symmetric molecular systems (biomolecules usually lack
symmetry) will still be plagued by high overhead due to
contention on the global counter despite our simple inspection.
In this section we further develop the IE model with the intent
to eliminate all NXTVAL calls from the entire CC module.

By counting the number of FLOPS for a particular tensor
contraction (Fig. 3), we see that a great deal of load imbalance
is inherent in the overall computation. The centralized dynamic
global counter does an acceptable job of handling this imbal-
ance by atomically providing exclusive task IDs to processes
that request work. To effectively eradicate the centralization,
we first need to estimate the cost of all tasks, then schedule
the tasks so that each processor is equally loaded.

In the tensor contraction routines, parallel tile-level matrix
multiplications and ordering operations execute locally within
the memory space of each processor. The kernels that consume
the most time doing such computations are the DGEMM and
SORT4 subroutines. The key communication routines are
the Global Arrays get (ga_get) and accumulate (ga_acc)
methods, which consume relatively little time for sizeable

Fig. 3. Total MFLOPS for each task in a single CCSD T2 tensor contraction
for a water monomer simulation. This is a good overall indicator of load
imbalance for this particular tensor contraction. Note that each task is
independent of the others in this application.

and accurate simulations of interest. For this reason we use
performance model-based cost estimations for DGEMM and
SORT4 to partition the task load of the first iteration of each
tensor contraction. For each call to DGEMM or SORT4, the
model estimates the time to execute, and accrues it into costw.
Details regarding the specific performance models used is
beyond the scope of this paper, but others have explored the
development of models for such BLAS kernels [43]. During
the first iteration of TCE-CC, we measure the time of each
task’s entire computation (in the executor phase) to capture
the costs of communication along with the computation. This
new measurement serves as the cost which is fed into the static
partitioning phase for subsequent iterations.

B. Communication / Computation Overlap

In order to better understand the performance behavior
of the TCE task execution model described at the end of
section II-D, we develop a mini-application that executes the
same processing engine without the namespace complications
introduced by quantum many-body methods. The details of this
mini-app will be discussed in sections IV-E and V-B1, but here
we present a simple trace of the execution to better motivate
and influence the design of our runtime in Section IV.

The top half of Fig. 4 shows an excerpt of a trace collected
with the TAU parallel performance system [49] for 12 MPI
processes on 1 node within a 16 node application executed
on the ACISS cluster (described in Section V). This trace is
visualized in Jumpshot with time on the horizontal axis, each
row corresponding to an MPI process, and each color to a
particular function call in the application. In particular, the
purple bars correspond to step 1 in the TCE execution model
described in the previous section. The green bars correspond to
the one-sided get operation on the two tiles A and B from step
3 (step 2 is implicit in the mini-app and is thus not contained
in a function). The yellow bars are non-communication work
cycles and the pink bars are DGEMM (these are small due to
the relatively small tile-size in this experiment). Both yellow
and pink together correspond to step 4. Step 5 is not shown
in this timeline, but occurs at a future point at the end of this
task bundle.

Fig. 4. TAU trace of original code compared to WorkQ. Yellow is
computation, purple is ARMCI_Rmw() (corresponding to Nxtval() call),
green is ARMCI_NbGetS() (corresponding to GA_Get() call), and pink is
DGEMM.

The bottom half of Fig. 4 shows the equivalent trace
with our alternative parallel execution model in which 6 MPI
processes dedicate their cycles towards doing more computa-
tion, and the other 6 processes dedicate their cycles towards
communication. We measure a performance improvement in
terms of execution time by a factor of 1.8 in this experiment.
The advantage can be inferred from the trace: in the original
execution, there are moments when hardware resources are
fully saturated with computation (i.e., all rows are yellow
at a particular time) yet other moments where starvation is
occurring (i.e., rows are green at a particular time). Besides
drastically reducing moments of work-starvation, the alterna-
tive model enables tunability: for instance, we can empirically
determine the optimal number of computation versus commu-
nication processes (discussed further in section V-C).

The TCE engine uses blocking GA_get() and
GA_put() calls to gather and place tiles, respectively,
into the global space. It is a reasonable proposition to use the
corresponding non-blocking API for GA (GA_nbget and
GA_nbput) to process tiles with overlap. In particular, the
processing engine can be bootstrapped with two sets of tiles,
such that iteration #1 processes the first set while leaving the
second set for iteration #2 and so on. In this way tasks can be
overlapped inductively by iteration i+ 1 working on data that
was initiated with a non-blocking call in iteration i. However,
we have verified experimentally that the performance benefit
in this system is not as profitable as having a queue of work
items. This is due to the variability of the time to execute
tasks compared to the time to get/put work-items. Variation
in execution time occurs either because of system noise or
simply inherent differences in task sizes. For instance, if it
takes relatively more time to get the data in iteration i than
to compute in iteration i + 1, then unnecessary time is spent
waiting in iteration i + 1. This can be mitigated by keeping
a queue of tasks on the compute node that is populated with
several work-items. The design and implementation of this
queuing system is the subject of the next section.

Algorithm 3 Pseudocode for the inspector used to implement
Eq. 1, simple version.

for all i, j, k ∈ Otiles do
for all a, b, c ∈ V tiles do

if Symm(i, j, k, a, b, c) == True then
Add Task (i, j, k, a, b, c) to TaskList

end if
end for

end for

Algorithm 4 Pseudocode for the executor used to implement
Eq. 1.

for all Task ∈ Tasklist do
Extract (i, j, k, a, b, c) from Task
Allocate local buffer for Z(i, j, k, a, b, c) tile
if Symm(i, j, d, e) == True then

if Symm(d, e, k, a, b, c) == True then
Fetch X(i, j, d, e) tile into local buffer
Fetch Y(d, e, k, a, b, c) tile into local buffer
Z(i, j, k, a, b, c) += X(i, j, d, e)*Y(d, e, k, a, b, c)
Accumulate Z(i, j, k, a, b, c) buffer into global Z

end if
end if

end for

IV. DESIGN AND IMPLEMENTATION

In this section we discuss our design and implementation
of the inspector-executor (IE) algorithm and our new task-
processing system. We begin by describing a simple version of
the IE which eliminates tasks based on spatial/spin symmetry,
then augment this IE model by incorporating performance
models of the dominant computational kernels. The perfor-
mance models provide estimations of task execution time to
be fed into the static partitioner, then to the executor.

The overlap of communication and computation in a dy-
namic and responsive manner is accomplished with a library
for managing compute node task queuing and processing
within SPMD applications. We have implemented this library,
and call it WorkQ. This section presents the software architec-
tural design for WorkQ, describes some implementation details
and possible extensions, then presents a portion of the API
and how it can be deployed for efficient task processing in
distributed memory SPMD programs.

A. Eliminating Tasks by Spatial/Spin Symmetry Arguments

As mentioned in section II-C, the TCE is able to reduce
computational cost and storage requirements by exploiting
spin and point-group symmetries. In essence, when orbitals
are known to have no interactions with each other, then
corresponding blocks of relevant tensors are zero. Therefore,
these block-contractions need not be computed, and the TCE
accordingly skips such tasks. However, during our initial
work in reducing overhead to the NXTVAL counter, it was
discovered that tasks eliminated by symmetry arguments where
still balanced by the central counter. Using a simple inspection
loop, a task list is created that does not include the “null-tasks”
and is then fed into the executor. This simple version of the IE
is shown in Algs. 3 and 4. It is important to note that the null-
tasks can be eliminated by moving the symmetry conditionals

Algorithm 5 Pseudocode for the inspector used to implement
Eq. 1, with cost estimation and static partitioning.

for all i, j, k ∈ Otiles do
for all a, b, c ∈ V tiles do

if Symm(i, j, k, a, b, c) == True then
Add Task (i, j, k, a, b, c, d, e, w) to TaskList
costw = SORT4 performance model estm(sizes)
for all d, e ∈ V tiles do

if Symm(i, j, d, e) == True then
if Symm(d, e, k, a, b, c) == True then

costw = costw + ...
SORT4 performance model estm(sizes)
costw = costw + ...
DGEMM performance model estm(m,n, k)
Compute various SORT4 costs

end if
end if

end for
end if

end for
end for
myTaskList = Static Partition(TaskList)

before the call to NXTVAL, but this simple IE is a stepping
stone towards a more sophisticated algorithm discusses in the
next section which is able to eliminate all calls to NXTVAL.

B. Static Partitioning

In our IE implementation, the inspector applies DGEMM and
SORT4 performance models to each tile encountered, thereby
assigning a cost estimation to each task of the tensor con-
tractions for the first iteration. Costs for subsequent iterations
are based on online measurements of the each task’s entire
execution time, which includes communication. In both cases,
the collection of weighted tasks constitutes a static partitioning
problem which must be solved. The goal is to collect bundles
of tasks (partitions) and assign them to processors in such
a way that computational load imbalance is minimized. In
general, solving this problem optimally is NP-hard [8], so there
is a trade-off between computing an ideal assignment of task
partitions and the overhead required to do so. Therefore, our
design defers such decisions to a partitioning library (in our
case, Zoltan [14]), which gives us the freedom to experiment
with load-balancing parameters (such as the balance tolerance
threshold) and their effects on the performance of the CC
tensor contraction routines.

Currently we employ static block partitioning, which in-
telligently assigns “blocks” (or consecutive lists) of tasks to
processors based on their associated weights (no geometry or
connectivity information is incorporated, as in graph/hyper-
graph partitioning). However, incorporating task connectivity
in terms of data locality has been shown to be a viable
means of minimizing data access costs [30]. Our technique
focuses on accurately balancing the computational costs of
large task groups as opposed to exploiting their connectivity,
which also matters a great deal at scale. Fortunately, our
approach is easily extendible to include such data-locality
optimizations by solving the partition problem in terms of
making ideal cuts in a hypergraph representation of the task-

Fig. 5. Inspector-Executor with Dynamic Buckets.

data system (see Section VI). An application making use of
the IE static partitioning technique may partition tasks based
on any partitioning algorithm.

C. Dynamic Buckets

When conducting static partitioning, variation in task exe-
cution times is undesirable because it leads to load imbalance
and starvation of PEs. This effect is particularly noticeable
when running short tasks where system noise can potentially
counteract execution time estimations and lead to a poor static
partitioning assignment. Furthermore, even when performance
models are acceptably accurate, they generally require deter-
mination of architecture-specific parameters found via off-line
measurement and analysis.

A reasonable remedy to these problems is a scheme we call
dynamic buckets (Fig. 5), where instead of partitioning the task
collection across all PEs, we partition across groups of PEs.
Each group will contain an instance of a dynamic NXTVAL
counter. When groups of PEs execute tasks, the imbalance due
to dynamic variation is amortized since unbiased variation will
lead to significant cancellation. Also, if the groups are chosen
such that each counter is resident on a local compute node
relative to the PE group, then NXTVAL can work within shared
memory, for which performance is considerably better. The
other motivation for choosing the execution group to be the
node is that contention for the NIC and memory bandwidth
in multicore systems is very difficulty to model (i.e. predict)
in a complicated application like NWChem, hence we hope
to observe a reasonable amount of cancellation of this noise
if we group the processes that share the same resources. The
idea is that the node-level resources are mostly fixed and that
noise will average out since the slowdown in one process due
to another’s utilization of the NIC will cancel more than the
noise between processes on different nodes, since there is no
correlation between NIC contention in the latter case. Finally,
with a more coarse granularity of task groups, it is feasible
that load balance would be acceptable even with a round-robin
assignment of tasks to groups (i.e. without performance model
based task estimation) because of the adaptability inherent to
having several dynamic counters.

When using the dynamic buckets approach, tasks are

Fig. 6. A simplified view of state for the WorkQ model at a particular moment
in time on a single compute node. In this case, there are 3 courier processes,
and 4 worker processes. The work queue contains tile metadata from A and
B yet to be processed by the workers. Workers place resultant (green) tiles
into a separate queue for put/accumulate (not shown).

partitioned by applying the Longest Processing Time algo-
rithm [20], which unlike block partitioning, is provably a 4/3
approximation algorithm (meaning it is guaranteed to produce
a solution within ratio 4/3 of a true optimum assignment).
First, tasks are sorted by execution time estimation in de-
scending order using a parallel quicksort. Then, each task
with the longest execution time estimation is assigned to
the least loaded PE until all tasks are assigned. To increase
the efficiency of the assignment step, the task groups are
arranged in a binary minimum heap data structure where nodes
correspond to groups. Tasks can be added to this minimum
heap in O(log n) time (on average) where n is the number of
task groups.

The dynamic buckets design in Fig. 5 also captures ele-
ments of topology awareness, iterative refinement, and work
stealing. The results in Section V are based on an implementa-
tion with node-level topology awareness and a single iteration
of refinement based on empirically measured execution times.
We refer the reader to other works [16], [3] for information
on work stealing implementations.

D. WorkQ Library

As described in section III, there is potential for the TCE-
CC task processing engine to experience unnecessary wait
times and relatively inefficient utilization of local hardware
resources. Here we describe an alternative runtime execution
model with the goals of: 1) processing tasks with less wait
time and core starvation, 2) exposing tunability to better utilize
hardware resources, and 3) responding dynamically to real-
time processing variation across the cluster.

Here we simplify the operations of the TCE described in
section II-D into a pedagogical model that is akin to tiled
matrix multiplication of two arrays, A and B . In this model,
A and B contain GA data which is distributed across a cluster
of compute nodes. The overall goal of the application is to mul-
tiply corresponding tiles of A and B, then to accumulate the
results into the appropriate location of a separate global array,
C. In order to accomplish this within the original execution
engine, individual processes each take on the execution loop
from section II-D: get(A); get(B); compute(A,B);

Fig. 7. Flow diagram for the dynamic producer/consumer version of the
WorkQ execution model. The left green column represents the activities of
courier processes and the right yellow column represents activities of worker
processes. In this system, couriers can temporarily become workers and vice
versa.

put(C). The behavior of a single compute node involved in
this computation is characterized by the trace in the top half
of Fig. 4: at any given moment in time, processes work within
a particular stage of the execution loop.

Fig. 6 shows a graphical representation of the WorkQ
system on a compute node at a particular instant in time. In the
WorkQ runtime, each compute node contains a FIFO message
queue, Q1, in which some number of courier processes are
responsible for placing A and B tile metadata onto Q1, then
storing the incoming tiles into node-local shared memory.
Meanwhile, the remaining worker processes dequeue task
metadata bundles as they become available, then use this
information to follow a pointer to the data in shared memory
and perform the necessary processing. Once a worker process
is finished computing its task result, it places the resultant data
into a separate FIFO message queue, Q2, which contains data
for some courier process to eventually accumulate into C.

We now describe the 4 primary components of the WorkQ
implementation: 1) the dynamic producer/consumer system, 2)
the on-node message queues 3) the on-node shared memory,
and 4) the WorkQ library API.

1) Dynamic Producer/Consumer: This runtime system ex-
hibits a form of the producer/consumer model in which courier
processes are the producers and worker processes are the
consumers. In the model described so far, couriers mostly
perform remote communication, and workers constantly read-
/write data from/to local memory and perform a majority of the
FLOPS in this phase of the application. However, we found via
performance measurements that this system can still struggle
with unacceptable wait times and starvation from the point
of view of the workers. This occurs, for example, when Q1 is
empty due to either relatively long communication latencies or
not enough couriers to keep the workers busy. For this reason,
the WorkQ implementation allows for the dynamic switching
of roles between courier and worker.

Fig. 7 displays how role switching occurs in the WorkQ

runtime. To bootstrap the system, both couriers and workers
perform an initial get() operation. This “initialization” of
Q1 is done to avoid unnecessary work starvation due to an
empty initial queue. We determined this to be very important
for performance, especially when the time to get/enqueue a
task is greater than or equal to the compute time. If this is
the case (and the number of workers approximately equals
the number of couriers), the workers may experience several
rounds of starvation before the couriers can “catch up”.

After the first round (with workers computing on tiles they
themselves collected), workers dequeue subsequent tasks to get
data placed in Q1 by the couriers. If Q1 ever becomes empty
when a worker is ready for a task, the worker will get its own
data and carry on. On the other hand, if a courier finds that
either Q1 is overloaded (as determined by a tunable runtime
threshold parameter described in section V-C) or that Q2 is
empty with no remaining global tasks, then the courier will
become a worker, dequeue a task, and compute the result. In
either case, the process will return to its original role as a
courier until both Q1 and Q2 are empty.

2) Message Queues: The node-wise metadata queues are
implemented using the System V (SysV) UNIX interface
for message queues. This design decision was made because
SysV message queues exhibit the best trade-off between la-
tency/bandwidth measurements and portability compared to
other Linux variants [55]. Besides providing atomic access
to the queue for both readers and writers, SysV queues also
provide priority, so that messages can be directed towards
specific consumer processes. For example, this functionality
is utilized to efficiently end a round of tasks from a pool:
when a courier is aware it has enqueued the final task from
the pool, it then enqueues a collection of finalization messages
with a process-unique mtype value corresponding to the other
on-node process IDs.

3) Library API: The WorkQ API provides a productive and
portable way for an SPMD application to initialize message
queues on each compute node in a distributed-memory system,
populate them with data, and dequeue work-items. Here we list
a typical series of calls to the API (due to space constraints, ar-
guments are not included, but can be found in the source [40]):
• workq_create_queue(): a collective operation

which includes on-node MPI multicasts of queue info.
• workq_alloc_task(): pass task dimensions and

initialize pointer to user-defined metadata structure.
• workq_append_task(): push a microtask’s meta-

data and real-data onto the two serialized bundles.
• workq_enqueue(): place macrotask bundle into

the queue then write real-data into shared memory.

Worker side:
• workq_dequeue(): remove a macrotask bundle

from the queue and read real-data from shared mem-
ory.

• workq_get_next(): pop a microtask’s metadata
and real-data in preparation for computation.

• workq_execute_task(): (optional) a callback
so data can be computed upon with zero copies.

Finalization:
• workq_free_shm(): clean up the shared memory.

• workq_destroy(): clean up the message queues.

WorkQ also includes a wrapper to SysV semaphores, which is
only needed if the explicit synchronization control is needed
(i.e., if certain operations should not occur while workers
are computing). These functions are workq_sem_init(),
sem_post(), sem_release(), sem_getvalue(), and
sem_wait().

4) Shared Memory: The message queues just described
only contain meta-data regarding tasks - the data itself is
stored elsewhere in node-local shared memory. This is done
for three reasons: 1) to reduce the cost of contention on the
queue among other node-resident processes, 2) Linux kernels
typically place more rigid system limits on message sizes
in queues (as seen with ipcs -l on the command line),
and 3) the size and dimension of work-items vary drastically.
The message queue protocol benefits in terms of simplicity
and performance if each queued item has the same size and
structure. Within each enqueued meta-data structure, there are
elements describing the size and location of the corresponding
task data. The WorkQ library allows for either SysV and
POSIX shared memory depending on user preference. There
is also an option to utilize MPI 3 shared-memory windows
(MPI_Win_allocate_shared) within a compute node.
This provides a proof-of-concept for doing MPI+MPI [26]
hybrid programming within the WorkQ model.

E. TCE Mini-App

The performance of the WorkQ runtime system implemen-
tation is evaluated in two ways: directly, with the original
NWChem application applied to relevant TCE-CC ground-
state energy problems, and indirectly, with a simplified mini-
app which captures the overall behavior of the TCE perfor-
mance bottleneck (described in section II-D). The primary
advantage of the mini-app is that it removes the need to filter
through the plethora of auxiliary TCE functionalities, such
as the TCE hash table lookups, or the many other helper
functions within the TCE. Although the mini-app will not
compute any meaningful computational chemistry results, it
captures the performance behavior of the TCE in a way that
is more straight-forward to understand and simpler to tune.
Furthermore, the tuned runtime configuration within the mini-
app environment can be subsequently applied to NWChem on
particular system architectures.

The TCE mini-app implements the pedagogical model
described in section IV-D: corresponding tiles from two global
arrays (A and B) are multiplied via a DGEMM operation and
put back into a third global array C. The mini-app is strictly
a weak scaling application that allows for a configurable local
buffer length allocation on each MPI process. These buffers
are filled with arbitrary data in the creation/initialization of A,
B, and C. As in the TCE, all global arrays are reduced to
their 1-dimensional representations [25]. The heap and stack
sizes fed to the global arrays memory allocator [37] are set
to as large as possible on a given architecture. Two versions
of the code are implemented to calculate the entire pool of
DGEMMs: one with the original get/compute/put model
on every process, and one with the WorkQ model on every
compute node. The resulting calculation is verified in terms of
the final vector norm calculated on C.

Fig. 8. Total percentage of execution time spent in NXTVAL for a 10-H2O
CCSD simulation (15 iterations) with the aug-cc-pVDZ basis running on the
Fusion cluster (without IE). The 14-H2O test will not fit in global memory
on 63 nodes (8 cores per node = 504 cores) or fewer. These data points were
extracted from mean inclusive-time profiles as in Fig. 2.

V. EXPERIMENTAL RESULTS

In this section we present performance experiments and
measurements to show improvement in execution time for
TCE-CC applications in NWChem. Section V-A discusses
performance improvements associated with various forms of
the IE algorithm, and section V-B discusses experiments in
which the WorkQ library is used to overlap communication and
computation in the TCE mini-app and in NWChem. Since the
WorkQ implementation exposes several runtime parameters,
we also briefly discuss machine learning methods of auto-
tuning the configurations.

A. Inspector-Executor Experiments

This section provides experimental performance results
of several experiments on Fusion, an InfiniBand cluster at
Argonne National Laboratory. Each node has 36 GB of RAM
and two quad-core Intel Xeon Nehalem processors running
at 2.53 GHz. Both the processor and network architecture
are appropriate for this study because NWChem performs
very efficiently on multicore x86 processors and InfiniBand
networks. The system is running Linux kernel 2.6.18 (x86 64).
NWChem was compiled with GCC 4.4.6, which was previ-
ously found to be just as fast as Intel 11.1 because of the
heavy reliance on BLAS for floating-point-intensive kernels,
for which we employ GotoBLAS2 1.13. The high-performance
interconnect is InfiniBand QDR with a theoretical throughput
of 4 GB/s per link and 2 µs latency. The communication
libraries used were ARMCI from Global Arrays 5.1, which
is heavily optimized for InfiniBand, and MVAPICH2 1.7
(NWChem uses MPI sparingly in the TCE). Fusion is an
8 core-per-node system, but ARMCI requires a dedicated
core for optimal performance [22]. We therefore launch all
NWChem experiments with 7 MPI processes per node, but
reserve all 8 cores using Fusion’s job scheduler and resource
manager. Because the application is utilizing 8 cores per node,
results are reported in multiples of 8 in Figs. 11, 9, and 10.

Fig. 9. Benzene aug-cc-pVQZ I/E comparison for a CCSD simulation.

Fig. 10. Comparison of I/E Nxtval with I/E Dynamic Buckets for the two
most time consuming tensor contractions during a 10-H2O simulation, t2_7
and t2_7_3. The execution time of the original code is not shown because
it overlaps the performance of I/E Nxtval.

First we present an analysis of the strong scaling effects
of using NXTVAL. Then we describe experiments comparing
the original NWChem code with two versions of inspector-
executor: one, called I/E Nxtval, that merely eliminates the
extraneous calls to NXTVAL, and one that eliminates all calls
to NXTVAL in certain methods by using the performance model
to estimate costs and Zoltan to assign tasks statically. Because
the second technique incorporates both dynamic load balancing
and static partitioning, we call it I/E Hybrid. Finally, we show
the improvement of the I/E Dynamic Buckets approach for a
simulation where I/E Hybrid cannot overcome the effects from
variation in task execution time due to system noise.

1) Scalability of centralized load-balancing: The scalabil-
ity of centralized DLB with NXTVAL in the context of CC
tensor contractions in NWChem was evaluated by measuring
the percentage of time spent incrementing the counter (av-
eraged over all processes) in two water cluster simulations.
The first simulation (blue curve in Fig. 11) is a simulation
of 10-water molecules using the aug-cc-pVDZ basis, and the
second simulation (red curve) is the same but with 14-water

Fig. 11. Total percentage of execution time spent in NXTVAL for a 10-H2O
CCSD simulation (15 iterations) with the aug-cc-pVDZ basis running on the
Fusion cluster (without IE). The 14-H2O test will not fit in global memory
on 63 nodes (8 cores per node = 504 cores) or fewer. These data points were
extracted from mean inclusive-time profiles as in Fig. 2.

TABLE I. SUMMARY OF THE PERFORMANCE EXPERIMENTS

N2 Benzene 10-H2O 14-H2O
Simulation type CCSDT CCSD CCSD CCSD
of tasks* 261,120 14,280 2,100 4,060
Ave. data size** 7,418 94,674 2.2 mil. 2.7 mil.
Scale limit (cores) 200 320 750 1,200

*from the largest tensor contraction
** in terms of DGEMM input, mk + kn

molecules. The percentages are extracted from TAU profiles
of the entire simulation run, with the inclusive time spent in
NXTVAL divided by the inclusive time spent in the application.

Fig. 11 shows that the percentage of time spent in NXTVAL
always increases as more processors are added to the sim-
ulation. This increase is partly because of a decrease in
computation per processor, but also because of contention
for the shared counter, as displayed in Fig. 1. For 10-water
molecules, NXTVAL eventually consumes about 60% of the
overall application time as we approach 1,000 processes. In
the larger 14-water simulation, NXTVAL consumes only about
30% of the time with 1,000 processes, because of the increase
in computation per process relative to the 10-water simulation.
The 14-water simulation failed on 504 cores (as seen in
Fig. 11) because of insufficient global memory.

2) Inspector-Executor DLB: Table I summarizes the
NWChem experiments we performed in terms of their task
load in the largest tensor contraction of the simulation. CC sim-
ulations fall into two broad categories, symmetrically sparse
and dense (i.e., a benzene molecule versus an asymmetric
water cluster). We found that problems falling in the sparse

TABLE II. 300-NODE PERFORMANCE: ORIGINAL CODE FAILS OVER
INFINIBAND DUE TO ARMCI_SEND_DATA_TO_CLIENT() ERROR

Processes 2400
Nodes 300
I/E Nxtval 498.3 s
I/E Hybrid 483.6 s
Original -

Fig. 12. Comparative load balance of a tensor contraction for benzene CCSD
on 210 processes: (a) Original code with total time in NXTVAL overlapped
in yellow (all values are normalized to this maximum execution time). (b)
I/E with superfluous calls to NXTVAL eliminated. (c) First iteration of I/E
with performance modeling and static partitioning (overhead time shown in
red). (d) Subsequent iterations of I/E static (with zero overhead and iterative
refinement). Despite the increase in load variation in (d), the overall time is
reduced by 8% relative to (b).

category are suitable for the I/E Nxtval method because they
have a large number of extraneous tasks to be eliminated.
While the water cluster systems can potentially eliminate a
similar percentage of tasks, their relatively larger average task
size results in DGEMM dominating the computation. The
differences in task loads between these problems necessitate
different I/E methods for optimal performance, as shown below
in Figs. 9 and 10.

Applying the I/E Nxtval model to a benzene monomer
with the aug-cc-pVTZ basis in the CCSD module results
in as much as 33% faster execution of code compared
with the original (Fig. 9). The I/E Nxtval version consis-
tently performs about 25-30% faster for benzene CCSD.
At high numbers of processes, the original code occasion-
ally fails on the Fusion InfiniBand cluster with an error
in armci_send_data_to_client(), whereas the I/E
Nxtval version continues to scale to beyond 400 processes.
This suggests that the error is triggered by an extremely busy
NXTVAL server.

3) Static Partition: The I/E Hybrid version applies com-
plete static partitioning using the performance model cost
estimation technique to long-running tensor contractions which
are experimentally observed to outperform the I/E Nxtval
version. Fig. 9 shows that this method always executes in less
time than both the original code and the simpler I/E Nxtval
version. Though it is not explicitly proven by any of the figures,
this version of the code also appears to be capable of executing
at any number of processes on the Fusion cluster, whereas the
I/E Nxtval and original code eventually trigger the ARMCI
error mentioned in the previous section.

Unfortunately, it is a difficult feat to transform the machine-
generated tensor contraction methods from within the TCE
generator, so we have taken a top-down approach where the
generated source is changed manually. Because there are over

70 individual tensor contraction routines in the CCSDT module
and only 30 in the CCSD module, we currently have I/E Hybrid
code implemented only for CCSD.

4) Dynamic Buckets: I/E Dynamic Buckets (I/E-DB) is
usually the method with the best performance, as seen in
Fig. 10. This plot shows the two most time consuming tensor
contractions in a 10-H2O system. In this problem, I/E Nxtval
performs no better than the original code because of relatively
less sparsity and larger task sizes in the overall computation.
I/E Hybrid (not shown) performs slightly worse than the
original code. As explained in section IV-C, this is due to error
in the task execution time estimations. The I/E-DB technique
shows up to 16% improvement over IE-Nxtval due to better
load balance when dynamic counters manage groups of tasks.

B. WorkQ Experiments

The performance of the WorkQ execution runtime com-
pared to the standard get/compute/put model is evaluated
on two different platforms. The first is the ACISS cluster
located at the University of Oregon. Experiments are run on
the 128 generic compute nodes, each an HP ProLiant SL390
G7 with 12 processor cores per node (2x Intel X5650 2.67
GHz 6-core CPUs) and 72 GB of memory per node. This is a
NUMA architecture with one memory controller per processor.
ACISS employs a 10 gigabit Ethernet interconnect based on a
1-1 non-blocking Voltaire 8500 10 GigE switch that connects
all compute nodes and storage fabric. The operating system is
RedHat Enterprise Linux 6.2 and MPICH 3.1 is used with the
-O3 optimization flag.

The second platform is the Carver IBM iDataPlex system
provided by NERSC. The compute nodes each have 8 cores
(2x Intel Xeon X5550 2.67 GHz quad-core CPUs) and 24GB
of memory per node. All nodes are interconnected by 4X
QDR InfiniBand technology, providing 32 Gb/s of point-to-
point bandwidth. The operating system is Linux running kernel
version 2.6.18 and OpenMPI 1.4.5 is used (as of this writing
Carver’s modules do not include a functioning MVAPICH
installation) with -03 optimizations.

Unless otherwise specified, performance experiments are
executed with 1 MPI process per core, leaving 1 core open on
each compute node for the ARMCI helper thread (for example,
11 processes per node on ACISS and 7 processes per node on
Carver). Previous work has shown this mapping to be optimal
for reducing execution time as suggested by detailed TAU
measurements in NWChem TCE-CC [22].

The systems above provide a juxtaposition of the per-
formance benefits gained with the WorkQ runtime between
two very different network interconnects: Ethernet and Infini-
Band (IB). The GA/ARMCI and MPI layers utilize socket-
based connections on ACISS, meaning that the servicing of
message requests involves an active role of each compute
node’s operating system. Carver on the other hand has full
RDMA support, so data can be transferred between nodes
without involvement of the sender and receiver CPUs. The
following sections compare performance of the TCE mini-app
and NWChem TCE-CCSD over Ethernet and IB.

1) TCE Mini-App: The first experiment considers the weak
scaling performance of the TCE mini-app on ACISS and

Fig. 13. Weak scaling performance of the TCE mini-app with ARMCI over
sockets on ACISS (top) and ARMCI over InfiniBand on Carver (middle) for
different tile-sizes. On ACISS, the WorkQ implementation was run with 6
courier processes and 5 worker processes, and on Carver, with 3 couriers and
4 workers. The bottom plot is a zoomed view of the 500 tile-size execution
on Carver. On both architectures, the WorkQ execution shows better relative
speedup with small tile-sizes, but better absolute performance for relatively
larger tile-sizes.

Carver for two different tile-sizes. The tile-size in the mini-
app corresponds to the common dimension of the blocks of
data collected from the GAs described in section IV-E. In this
experiment, all DGEMM operations are performed on matrices
with square dimensions, N × N , where N is the so-called
tile-size. Fig. 13 considers tile-sizes 50 (2,500 total double
precision floating point elements) and 500 (250,000 elements).
The mini-app is a weak-scaling application in which a constant
amount of memory is allocated to each process/core at any
given scale. That is, if the scale is doubled, then the size
of the overall computation is doubled. GA’s internal memory
allocator is initialized so that the total heap and stack space
per node is about 20 GB.

Fig. 14. Time per CCSD iteration for w3 aug-cc-pVDZ on ACISS versus
tile-size. The top row contains execution measurements on 32 nodes (384 MPI
processes) and the bottom row contains measurements on 16 nodes (192 MPI
processes).

Fig. 13 clearly shows that using the relatively large tile-size
of 500 results in better overall absolute performance for both
the WorkQ execution model and the original execution model.
This phenomenon is well-understood [41] and mainly due to
the overhead associated with data management and dynamic
load balancing when tile-size is relatively small. In general,
larger tile-sizes are desirable so as to minimize this overhead,
but at a certain point large tiles are detrimental to performance
because it leads to work-starvation. For instance, if there are
more processes/cores available to the application than there are
number of tiles, then work-starvation will surely occur.

On the other hand, the best speedups achieved with the
WorkQ model on both systems are seen using the smaller tile-
size of 50, particularly at relatively large scales. Our TAU pro-
files show that at a tile-size of 50, the total time spent in com-
munication calls (ARMCI_NbGetS and ARMCI_NbPutS) is
considerably larger than with a tile-size of 500. This suggests
that at smaller tile-sizes, there is more cumulative overhead
from performing one-sided operations, and therefore more
likelihood that processes will spend time waiting on commu-
nication. This scenario results in more opportunity for overlap,
but worse absolute performance due to the incurred overhead
of dealing with more tasks than necessary.

When tuned appropriately, the WorkQ execution model can
attain a speedup of about 2 from the complete overlap of com-
munication with computation. However, at certain configura-
tions the speedup is greater than 2 (the largest is about 3.5 with
512 MPI processes on Carver). The origin of this performance
benefit can be inferred from traces such as Fig. 4 (more traces
are not included due to space constraints). Occasionally the
average time spent in corresponding communication calls is
longer in the original model than in the WorkQ model. The
original model can fall into lock-step pattern in which all
processes are communicating and computing at the same time,
respectively. This causes system network contention and local
memory contention that is not seen in the WorkQ traces.

2) NWChem: We now analyze the performance of the
WorkQ model applied to the TCE in NWChem by mea-
suring the time of execution to calculate the total energy
of water molecule clusters. These problems are important

due to their prevalence in diverse chemical and biological
environments [2]. We examine the performance of the tensor
contraction which consistently consumes the most execution
time in the TCE CCSD calculation, corresponding to the term:

rp3p4

h1h2
+=

1

2
tp5p6

h1h2
vp3p4
p5p6

(see [25] for details regarding the above notation). In the TCE,
this calculation is encapsulated within routine ccsd_t2_8()
and occurs once per iteration of the Jacobi method.

Fig. 14 shows the minimum measured time spent in an
iteration of ccsd_t2_8() on a 3-water molecule cluster
using the aug-cc-pVDZ basis set across a range of tile-sizes.
These measurements are on the ACISS cluster at two different
scales: 32 compute nodes in the top plot and 16 compute nodes
in the bottom plot with 12 cores per node in each case. Here
we use the minimum measured execution time for a series of
runs because it is more reproducible than the average time [21].
On 16 nodes, we see overall performance improvement with
WorkQ across all measured tile-sizes. As in the TCE mini-app
(Fig. 13), WorkQ shows better performance improvement at
small tile-sizes but best absolute performance with a medium
sized tile. This relatively small input problem does not strong-
scale well to 32 nodes, which is evident by the execution times
and the fact that performance stays constant after a certain
tile-size. The WorkQ system lessens this problem at small tile-
sizes.

The performance of NWChem over IB is quite different
than over Ethernet. The WorkQ system shows reasonable
speedup in the mini-app with intelligent choices in runtime
parameters (discussed in the next section), but relatively poor
performance with other parameter choices. Fig. 15 compares
the communication and computation time distributions of the
mini-app and TCE/CCSD on a 5-water cluster with the aug-cc-
pVDZ basis set. Although the mini-app can be tuned to match
the distribution of task times for the NWChem application (top
row of Fig. 15), this parameter set shows poor speedup with
WorkQ (<2%). The mini-app can achieve over 3x speedup
with larger tiles (bottom row of Fig. 15), but TCE’s node-local
memory requirements scale as (tile-size)4 in CCSD. This leads
to the application running out of memory at these correspond-
ing larger tile-sizes at a 32-node scale. The application will
run successfully at larger scales, but converges towards the
performance of the work-starved scenario of Fig. 14.

C. Mini-App Auto-tuning

In this section our efforts in auto-tuning the WorkQ runtime
using machine learning (ML) algorithms are briefly described.
It is well known that choosing performance-optimal compile-
time and runtime parameters in parallel systems is an in-
herently difficult problem [11]. This is due to the unknown
and potentially complicated relationships between parameters
and the sheer size of the configuration space. For example,
Fig. 16 shows the variation in speedup of the WorkQ TCE
mini-app with respect to a baseline configuration for a small
subset of the total configuration space. The performance of
each set of parameters depends on the memory occupancy,
and the best configuration at high occupancy may be a poor
configuration at low occupancy. ML techniques have been used
to tackle this problem, for instance by optimizing the MPI

Fig. 15. Log-scale histograms of communication time measurements (left
column) and computation time (right column). The top row corresponds to a
parameter set chosen to mimic the task pool in a 5-water cluster in TCE/CCSD
NWChem on a 32-node IB interconnect, but this set shows little performance
improvement in the mini-app. The bottom row shows a different parameter set
which achieves optimal speedup in the mini-app by using the WorkQ model,
but does not match the distribution pattern of the 5-water task pool.

runtime parameters [44]. In these techniques, a set of training
data is collected and measured, and an ML model is created
to predict the performance of unseen instances. The WorkQ
runtime exposes the following parameters that serve as features
for an ML model:

• Number of processes per node
• Number of courier processes per node
• Tile-size
• Min. length of the work queue before a role-switch
• Max. length of the work queue before a role-switch

We use the Scikit-Learn tool [42] to construct a simple
regression-based decision tree model from a set of training
data. In this tree, each node corresponds to a range of one
of the WorkQ parameters above, and each leaf node is the
predicted speedup for a given path. For unknown instances,
we can choose the leaf with the highest speedup and work
back up the tree to select the ideal set of runtime parameters.
Using this approach, we find that a tree with a depth of only 4
results in the lowest root mean squared error for performance
prediction.

VI. RELATED WORK

A. Inspector-Executor Load Balancing

Alexeev and coworkers have applied novel static load
balancing techniques to the fragment molecular orbital (FMO)
method [1]. FMO differs in computational structure from
iterative CC, but the challenge of load balancing is similar,
and their techniques parallel the IE cost estimation model. The
FMO system is first split into fragments that are assigned to
groups of CPU cores. The size of those groups is chosen based
on the solution of an optimization problem, with three major
terms representing time that is linearly scalable, nonlinearly
scalable, and nonparallel.

Fig. 16. Variation in speedup across several sets of runtime configuration
parameters. The two lines compare mini-app executions with different amounts
of Global Array memory per process. Some parameters combinations perform
well in one case, but not the other. In particular, configuration #23 is a good
choice with 250 MB/proc but a relatively poor choice with 1.2 GB/proc.

Hypergraph partitioning was used by Krishnamoorthy and
coworkers to schedule tasks originating from tensor contrac-
tions [30]. Their techniques optimize static partitioning based
on common data elements between tasks. Such relationships
are represented as a hypergraph, where nodes correspond
to tasks, and hyperedges (or sets of nodes) correspond to
common data blocks the tasks share. The goal is to optimize
a partitioning of the graph based on node and edge weights.
Their hypergraph cut optimizes load balance based on data
element size and total number of operations, but such research
lacks a thorough model for representing task weights, which
the IE cost estimation model accomplishes.

The Cyclops Tensor Framework [50], [51] implements
CC using arbitrary-order tensor contractions which are im-
plemented by using a different approach from NWChem.
Tensor contractions are split into redistribution and contraction
phases, where the former permutes the dimensions such that
the latter can be done by using a matrix-matrix multiplication
algorithm such as SUMMA [58]. Because CTF uses a cyclic
data decomposition, load imbalance is eliminated, at least for
dense contractions. Point-group symmetry is not yet imple-
mented in CTF and would create some of the same type of
load imbalance as seen in this paper, albeit at the level of
large distributed contractions rather than tiles. We hypothesize
that static partitioning would be effective at mitigating load-
imbalance in CTF resulting from point-group symmetry.

B. WorkQ

We are unaware of any dynamic producer/consumer (or
publish/subscribe) model in which role switching occurs for
the sake of performance in distributed memory systems. How-
ever, the publish/subscribe model is quite common, and takes
many other dynamic forms [17], [56].

Interesting developments in wait-free and lock-free queu-
ing algorithms with multiple enqueuers and dequeuers could
potentially improve performance of this execution system [28].
SysV and POSIX queues provide atomicity and synchroniza-
tion in a portable manner, but neither are wait-free or lock-free.

The sophistication of the behavior of the WorkQ system
makes it fairly difficult to understand the exact characteristics
of the performance improvement, and why certain config-
urations work better than others. We have begun work in

constructing a discrete event simulation of the system in order
to develop a model to potentially clarify the dynamics, and
to allow for independent tuning of the runtime parameters in
conjunction with performance analysis.

VII. CONCLUSIONS AND FUTURE WORK

In this section we present our conclusions regarding
inspector-executor load balancing (section VII-A) and the new
WorkQ execution model (section VII-B). Finally, section VII-C
describes our future goals to integrate the inspector-executor
paradigm with the WorkQ implementation.

A. Inspector-Executor

We have presented an alternate approach for conducting
load balancing in the NWChem CC code generated by the
TCE. In this application, good load balance was initially
achieved by using a global counter to assign tasks dynamically,
but application profiling reveals that this method has high
overhead which increases as we scale to larger numbers of
processes. Splitting each tensor contraction routine into an
inspector and an executor component allows us to evaluate the
system’s sparsity and gather relevant cost information regard-
ing tasks, which can then be used for static partitioning. We
have shown that the inspector-executor algorithm obviates the
need for a dynamic global counter when applying performance
model prediction, and can improve the performance of the
entire NWChem coupled cluster application. In some cases the
overhead from a global counter is so high that the inspector-
executor algorithm enables the application to scale to a number
of processes that previously was impossible because of the
instability of the NXTVAL server when bombarded with tasks.

The technique of generating performance models for
DGEMM and SORT4 to estimate costs associated with load
balancing is general to all compute-kernels and can be applied
to applications that require large-scale parallel task assignment.
While other noncentralized DLB methods (such as work
stealing and resource sharing) could potentially outperform
such static partitioning, such methods tend to be difficult
to implement and may have centralized components. The
approach of using a performance model and a partitioning
library together to achieve load balance is easily parallelizable
(though in NWChem tensor contractions, we have found a
sequential version to be faster because of the inexpensive
computations in the inspector) and easy to implement and
requires few changes to the original application code.

Because the technique is readily extendible, we plan to
improve our optimizations by adding functionality to the
inspector. For example, we can exploit proven data locality
techniques by representing the relationship of tasks and data
elements with a hypergraph and decomposing the graph into
optimal cuts [30].

B. WorkQ

The get/compute/put model is a common approach
for processing a global pool of tasks, particularly in PGAS
applications. This model suffers from unnecessary wait times
on communication and data migration that could potentially
be overlapped with computation and node-level activities.
The WorkQ model introduces an SPMD-style programming

technique in which node-wise message queues are initialized
on each compute node. A configurable number of courier
processes dedicate their efforts towards communication and
populating the queue with data. The remaining worker pro-
cesses dequeue and compute tasks. We show that a mini-
application which emulates the performance bottleneck of
the TCE achieves performance speedups up to 3.5x with
the WorkQ model. We also show that WorkQ can improve
the performance of NWChem TCE-CCSD across many tile-
sizes on the ACISS cluster. The TCE mini-app is configured
to mimic the tasks of NWChem over InfiniBand and the
distributions of communication and computation times suggest
why performance improvement there is more difficult.

C. Future Work: Inspector-Executor and WorkQ Integration

While this paper has presented the inspector-executor and
WorkQ models somewhat tangentially, they are in-fact quite
compatible with one another. Clearly, the inspector entity
introduces a new layer of functionality and complexity to the
runtime of the TCE in NWChem. However, the executor (as
seen in Alg. 4) is actually quite similar to the original TCE
generated code (Alg. 2) - it only lacks the nested loops over
tiles and the implicit global dynamic load balancing. It is
clear that the WorkQ implementation itself is independent of
the inspector entity. On the other hand, the WorkQ execution
comprises the entire executor entity. In a sense, the WorkQ
model is an improvement on the executor, so it is completely
compatible with the IE model. It should be a fairly straight-
forward matter to combine the two models into a single,
coherent execution engine that simultaneously reduces over-
head from centralized dynamic load balancing and effectively
overlaps communication with computation.

REFERENCES

[1] Yuri Alexeev, Ashutosh Mahajan, Sven Leyffer, Graham Fletcher, and
Dmitri Fedorov. Heuristic static load-balancing algorithm applied to the
fragment molecular orbital method. Supercomputing, 2012.

[2] Edoardo Aprà, Alistair P. Rendell, Robert J. Harrison, Vinod Tipparaju,
Wibe A. deJong, and Sotiris S. Xantheas. Liquid Water: Obtaining the
Right Answer for the Right Reasons. In Proceedings of the Conference
on High Performance Computing Networking, Storage and Analysis,
SC ’09, pages 66:1–66:7, New York, NY, USA, 2009. ACM.

[3] Humayun Arafat, P. Sadayappan, James Dinan, Sriram Krishnamoorthy,
and Theresa L. Windus. Load balancing of dynamical nucleation theory
Monte Carlo simulations through resource sharing barriers. In IPDPS,
pages 285–295, 2012.

[4] Rodney J. Bartlett. Coupled-cluster approach to molecular structure and
spectra: a step toward predictive quantum chemistry. 93(5):1697–1708,
1989.

[5] Rodney J. Bartlett and Monika Musiał. Coupled-cluster theory in
quantum chemistry. 79(1):291–352, 2007.

[6] C. Bell, D. Bonachea, R. Nishtala, and K. Yelick. Optimizing Band-
width Limited Problems Using One-Sided Communication and Overlap.
In Parallel and Distributed Processing Symposium, 2006. IPDPS 2006.
20th International, page 10, April 2006.

[7] R.F. Bishop. An Overview of Coupled Cluster Theory and Its Appli-
cations in Physics. Theoretica chimica acta, 80(2-3):95–148, 1991.

[8] S. H. Bokhari. On the mapping problem. IEEE Trans. Comput.,
30(3):207–214, March 1981.

[9] Yannick J. Bomble, John F. Stanton, Mihály Kállay, and Jürgen Gauss.
Coupled-cluster methods including noniterative corrections for quadru-
ple excitations. 123(5):054101, 2005.

[10] E. J. Bylaska et. al. NWChem, a computational chemistry package for
parallel computers, version 6.1.1, 2012.

[11] J. Cavazos, G. Fursin, F. Agakov, E. Bonilla, M.F.P. O’Boyle, and
O. Temam. Rapidly Selecting Good Compiler Optimizations using
Performance Counters. In Code Generation and Optimization, 2007.
CGO ’07. International Symposium on, pages 185–197, March 2007.

[12] F.A. Cotton. Chemical Applications of Group Theory. John Wiley &
Sons, 2008.

[13] T. Daniel Crawford and Henry F. Schaefer III. An introduction
to coupled cluster theory for computational chemists. volume 14,
chapter 2, pages 33–136. VCH Publishers, New York, 2000.

[14] Karen Devine, Erik Boman, Robert Heaphy, Bruce Hendrickson, and
Courtenay Vaughan. Zoltan data management services for parallel
dynamic applications. Computing in Science and Engineering, 4(2):90–
97, 2002.

[15] J. Dinan, P. Balaji, J.R. Hammond, S. Krishnamoorthy, and V. Tip-
paraju. Supporting the Global Arrays PGAS Model Using MPI One-
Sided Communication. In Parallel Distributed Processing Symposium
(IPDPS), 2012 IEEE 26th International, pages 739–750, May 2012.

[16] James Dinan, D. Brian Larkins, P. Sadayappan, Sriram Krishnamoorthy,
and Jarek Nieplocha. Scalable work stealing. In Proceedings of the
Conference on High Performance Computing Networking, Storage and
Analysis, SC ’09, pages 53:1–53:11, New York, 2009. ACM.

[17] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-
Marie Kermarrec. The Many Faces of Publish/Subscribe. ACM Comput.
Surv., 35(2):114–131, June 2003.

[18] J. Fuchs and C. Schweigert. Symmetries, Lie Algebras and Representa-
tions: A Graduate Course for Physicists. Cambridge University Press,
2003.

[19] Jürgen Gauss, John F. Stanton, and Rodney J. Bartlett. Coupled-cluster
open-shell analytic gradients: Implementation of the direct product
decomposition approach in energy gradient calculations. 95(4):2623–
2638, 1991.

[20] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM
Journal on Applied Mathematics, 17(2):416–429, 1969.

[21] William Gropp and Ewing Lusk. Reproducible Measurements of MPI
Performance Characteristics. In Recent Advances in Parallel Virtual
Machine and Message Passing Interface, volume 1697 of Lecture Notes
in Computer Science, pages 11–18. Springer Berlin Heidelberg, 1999.

[22] Jeff R. Hammond, Sriram Krishnamoorthy, Sameer Shende, Nichols A.
Romero, and Allen D. Malony. Performance Characterization of
Global Address Space Applications: A Case Study with NWChem.
Concurrency and Computation: Practice and Experience, 24(2):135–
154, 2012.

[23] R. J. Harrison. Portable Tools and Applications for Parallel Computers.
International Journal of Quantum Chemistry, 40(6):847–863, 1991.

[24] Robert J. Harrison. Portable tools and applications for parallel comput-
ers. 40(6):847–863, 1991.

[25] So Hirata. Tensor Contraction Engine: Abstraction and Automated
Parallel Implementation of Configuration-Interaction, Coupled-Cluster,
and Many-Body Perturbation Theories. The Journal of Physical
Chemistry A, 107(46):9887–9897, 2003.

[26] Torsten Hoefler, James Dinan, Darius Buntinas, Pavan Balaji, Brian
Barrett, Ron Brightwell, William Gropp, Vivek Kale, and Rajeev
Thakur. MPI + MPI: a new hybrid approach to parallel programming
with MPI plus shared memory. Computing, 95(12):1121–1136, 2013.

[27] Mihály Kállay and Jürgen Gauss. Approximate treatment of higher
excitations in coupled-cluster theory. 123(21):214105, 2005.

[28] Alex Kogan and Erez Petrank. Wait-free Queues with Multiple
Enqueuers and Dequeuers. In Proceedings of the 16th ACM Symposium
on Principles and Practice of Parallel Programming, PPoPP ’11, pages
223–234, New York, NY, USA, 2011. ACM.

[29] Karol Kowalski, Jeff R Hammond, Wibe A de Jong, Peng-Dong
Fan, Marat Valiev, Dunyou Wang, Niranjan Govind, and JR Reimers.
Coupled cluster calculations for large molecular and extended systems.
Wiley Hoboken, NJ, 2011.

[30] Sriram Krishnamoorthy, Ümit V. Çatalyürek Umit Catalyurek, Jarek
Nieplocha, and Atanas Rountev. Hypergraph partitioning for automatic
memory hierarchy management. In Supercomputing (SC06), 2006.

[31] Stanislaw A. Kucharski and Rodney J. Bartlett. Coupled-cluster
methods that include connected quadruple excitations, T4: CCSDTQ-1
and Q(CCSDT). 158(6):550–555, 1989.

[32] Stanislaw A. Kucharski and Rodney J. Bartlett. Recursive interme-
diate factorization and complete computational linearization of the
coupled-cluster single, double, triple, and quadruple excitation equa-
tions. 80:387–405, 1991.

[33] Stanislaw A. Kucharski and Rodney J. Bartlett. The coupled-cluster
single, double, triple, and quadruple excitation method. 97(6):4282–
4288, 1992.

[34] Stanislaw A. Kucharski and Rodney J. Bartlett. An efficient way
to include connected quadruple contributions into the coupled cluster
method. 108(22):9221–9226, 1998.

[35] Jarek Nieplocha and Bryan Carpenter. ARMCI: A Portable Remote
Memory Copy Library for Distributed Array Libraries and Compiler
Run-time Systems. In Parallel and Distributed Processing, volume
1586 of Lecture Notes in Computer Science, pages 533–546. Springer
Berlin Heidelberg, 1999.

[36] Jarek Nieplocha and Bryan Carpenter. ARMCI: A portable remote
memory copy library for distributed array libraries and compiler run-
time systems. In Parallel and Distributed Processing, pages 533–546,
London, UK, 1999. Springer-Verlag.

[37] Jaroslaw Nieplocha, Robert J. Harrison, and Richard J. Littlefield.
Global Arrays: A Nonuniform Memory Access Programming Model
for High-Performance Computers. The Journal of Supercomputing,
10(2):169–189, 1996.

[38] Jozef Noga and Rodney J. Bartlett. The full CCSDT model for
molecular electronic structure. 86(12):7041–7050, 1987.

[39] Nevin Oliphant and Ludwik Adamowicz. Coupled-cluster method
truncated at quadruples. The Journal of Chemical Physics, 95(9):6645–
6651, 1991.

[40] D. Ozog. TCE mini-app source code repository. https://github.com/
davidozog/NWChem-mini-app.

[41] D. Ozog, J.R. Hammond, J. Dinan, P. Balaji, S. Shende, and A. Malony.
Inspector-Executor Load Balancing Algorithms for Block-Sparse Tensor
Contractions. In Parallel Processing (ICPP), 2013 42nd International
Conference on, pages 30–39, Oct 2013.

[42] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine Learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[43] Elmar Peise and Paolo Bientinesi. Performance modeling for dense
linear algebra. In Proceedings of the 3rd International Workshop
on Performance Modeling, Benchmarking and Simulation of High
Performance Computer Systems (PMBS12), November 2012.

[44] S. Pellegrini, R. Prodan, and T. Fahringer. Tuning MPI Runtime
Parameter Setting for High Performance Computing. In Cluster Com-
puting Workshops (CLUSTER WORKSHOPS), 2012 IEEE International
Conference on, pages 213–221, Sept 2012.

[45] George D. Purvis III and Rodney J. Bartlett. A full coupled-cluster
singles and doubles model: the inclusion of disconnected triples.
76(4):1910–1918, 1982.

[46] Michael J. Quinn and Philip J. Hatcher. On the Utility of
Communication-Computation Overlap in Data-Parallel Programs. Jour-
nal of Parallel and Distributed Computing, 33(2):197 – 204, 1996.

[47] Krishnan Raghavachari, Gary W. Trucks, John A. Pople, and Martin
Head-Gordon. A fifth-order perturbation comparison of electron corre-
lation theories. 157:479–483, May 1989.

[48] J.C. Sancho, K.J. Barker, D.K. Kerbyson, and K. Davis. Quantifying
the Potential Benefit of Overlapping Communication and Computation
in Large-Scale Scientific Applications. In SC 2006 Conference, Pro-
ceedings of the ACM/IEEE, pages 17–17, Nov 2006.

[49] Sameer S. Shende and Allen D. Malony. The TAU Parallel Performance
System. Int. J. High Perform. Comput. Appl., 20(2):287–311, May 2006.

[50] Edgar Solomonik. Cyclops Tensor Framework.
http://www.eecs.berkeley.edu/ solomon/cyclopstf/index.html.

[51] Edgar Solomonik, Devin Matthews, Jeff Hammond, and James Dem-
mel. Cyclops Tensor Framework: reducing communication and elimi-
nating load imbalance in massively parallel contractions. may 2013.

[52] John Stanton. This remark is attributed to Devin Matthews.

https://github.com/davidozog/NWChem-mini-app
https://github.com/davidozog/NWChem-mini-app

[53] John F. Stanton. Why CCSD(T) works: a different perspective.
281:130–134, 1997.

[54] John F. Stanton, Jürgen Gauss, John D. Watts, and Rodney J. Bartlett.
A direct product decomposition approach for symmetry exploitation in
many-body methods, I: Energy calculations. 94(6):4334–4345, 1991.

[55] W. Richard Stevens. UNIX Network Programming, Volume 2 (2Nd Ed.):
Interprocess Communications. Prentice Hall PTR, Upper Saddle River,
NJ, USA, 1999.

[56] Muhammad Adnan Tariq, Gerald G. Koch, Boris Koldehofe, Imran
Khan, and Kurt Rothermel. Dynamic Publish/Subscribe to Meet
Subscriber-Defined Delay and Bandwidth Constraints. In Euro-Par
2010 - Parallel Processing, volume 6271 of Lecture Notes in Computer
Science, pages 458–470. Springer Berlin Heidelberg, 2010.

[57] Miroslav Urban, Jozef Noga, Samuel J. Cole, and Rodney J. Bartlett.
Towards a full CCSDT model for electron correlation. 83(8):4041–
4046, 1985.

[58] R. A. Van De Geijn and J. Watts. SUMMA: Scalable universal
matrix multiplication algorithm. Concurrency: Practice and Experience,
9(4):255–274, 1997.

[59] John D. Watts and Rodney J. Bartlett. The coupled-cluster single,
double, and triple excitation model for open-shell single reference
functions. 93(8):6104–6105, 1990.

[60] Takeshi Yanai, Haruyuki Nakano, Takahito Nakajima, Takao Tsuneda,
So Hirata, Yukio Kawashima, Yoshihide Nakao, Muneaki Kamiya,
Hideo Sekino, and Kimihiko Hirao. UTChem A Program for ab
initio Quantum Chemistry. In Peter M.A. Sloot, David Abramson,
Alexander V. Bogdanov, Yuriy E. Gorbachev, Jack J. Dongarra, and
Albert Y. Zomaya, editors, Computational Science ICCS 2003, volume
2660 of Lecture Notes in Computer Science, pages 84–95. Springer
Berlin Heidelberg, 2003.

	Introduction
	Load Balance
	Overlap of Communication and Computation

	Background
	PGAS
	Global Arrays
	NWChem and Coupled Cluster
	Tensor Contraction Engine

	Motivation
	Load Balance
	Communication / Computation Overlap

	Design and Implementation
	Eliminating Tasks by Spatial/Spin Symmetry Arguments
	Static Partitioning
	Dynamic Buckets
	WorkQ Library
	Dynamic Producer/Consumer
	Message Queues
	Library API
	Shared Memory

	TCE Mini-App

	Experimental Results
	Inspector-Executor Experiments
	Scalability of centralized load-balancing
	Inspector-Executor DLB
	Static Partition
	Dynamic Buckets

	WorkQ Experiments
	TCE Mini-App
	NWChem

	Mini-App Auto-tuning

	Related Work
	Inspector-Executor Load Balancing
	WorkQ

	Conclusions and Future Work
	Inspector-Executor
	WorkQ
	Future Work: Inspector-Executor and WorkQ Integration

	References

