
1

BGPInspector: A Real-time Extensible Border
Gateway Protocol Monitoring Framework

Mingwei Zhang
University of Oregon, Eugene, OR, USA

Email: mingwei@cs.uoregon.edu

Abstract—The Internet often experiences disruptions that af-
fect its overall performance. Disruptive events include global-
scale incidents such as large-scale power outages, undersea
cable cuts, or Internet worms. They also include IP-prefix level
anomalies such as prefix hijacking or route leak events. All such
events could cause the Internet to deviate from its normal state
of operation. It is therefore important to monitor and detect the
abnormal events, and do so from both granularities. Current
solutions mostly focus on detecting certain types of events or
anomalies and ignoring the others. There is not yet a generic
framework that can perform different monitoring tasks under
one system. In this report, we present our work on improving
the two monitors, I-seismograph and Buddyguard, and introduce
our new extensible Internet monitoring framework that ties them
together. Each component of the framework works independently,
allowing our system to perform multiple monitoring tasks at the
same time and to integrate new components without disrupting
the currently active ones.

Index Terms—BGP monitoring, system architecture, real-time
system, anomaly detection

I. INTRODUCTION

Routing is the fundamental function of the Internet. To make
routing scalable, the Internet consists of smaller networks
called Autonomous Systems (ASes), each of which has its own
internal routing policies. The ASes are connected to enable
hosts from each AS to reach any other place on the Internet.
Internet routing is the routing decisions and actions among the
ASes.

The Border Gateway Protocol (BGP) [1] is the de-facto
inter-domain routing protocol for the Internet, and is com-
monly used to determine the route for any traffic that will
cross ASes. BGP routers can announce, withdrawal, or change
the AS-level path toward any IP prefix (i.e., a block of IP
addresses). The messages to convey these changes are called
BGP updates.

Due to its dominating role in Internet routing, any disruption
of BGP and BGP routers can cause severe problems across
the whole Internet. Regardless of its importance, BGP was
not designed with security in mind, and it has become the tool
that has been utilized by multiple types of malicious activities.
Assuming every actor is benign, a BGP router by default
will trust all messages (such as prefix path changes) from its
connected peers. This allows prefix-level BGP anomalies to
happen, such as prefix hijackings or route leaks [2]. Security
solutions such as BGPSec [3] have been proven ineffective
until they reach full deployment [4], which will be years away
even if people are willing to push the deployment forward.

Because the anomalies and large-scale events on the Internet
are happening increasingly often, it is crucial to be able
to monitor the Internet routing status timely and accurately.
With the data provided by BGP archiving projects like Route-
Views [5] and RIPE Raw Data [6], people can monitor the
Internet routing by examining the BGP update stream. Projects
like [7], [8], [9], [10], [11], [12], [13], [14] monitor BGP
at the prefix granularity, focusing on detecting anomalies for
individual prefixes. Other types of BGP monitoring projects
like [15], [16] look at the Internet as a single entity and
monitor the dynamics of the BGP updates instead.

Despite many previous projects in this area, gaps still exist
that prevent us from better monitoring, visualizing, and un-
derstanding the anomaly events happening on the Internet. For
example, we cannot determine a prefix hijacking event belongs
to an accidental route leak or indeed an intentional attack. On
the other hand, the projects that monitor BGP dynamics cannot
easily reason about the root-cause behind the unusual changes
or further help resolve large-scale anomalies. Besides, there is
rarely a system the can monitor the Internet from multiple
granularities with extensibility on different further analysis
tasks.

Looking at all these existing BGP monitoring projects,
we believe that a good monitoring system should have the
following features:

1) accuracy – able to detect Internet events with high accu-
racy, low false-positive and false-negative

2) multiple-granularity – able to monitor the Internet from
multiple granularities

3) agility – able to perform fast, ideally real-time, monitor-
ing

4) extensibility – able to incorporate new functionalities
without interfering with existing ones.

In this report, we present a comprehensive framework called
”BGP Inspector”, aimed at providing fast, accurate, extensible,
and multi-granular BGP monitoring. Our contributions can be
summarized as follows:

1) we extensively improved our prefix-level and global-level
monitors, and fit them in the new architecture,

2) we designed a pipe-lining BGP monitoring architecture
that enables close-to-real-time monitoring,

3) we designed a novel plugin-system that supports adding
new monitoring capabilities quickly and independent to
the existing monitors.

The content of this report is organized as following. We will

2

Collector

Preprocessor

Monitor

Presenter

Fig. 1: Components of the framework.

first introduce our new design of the generic BGP monitoring
framework and its architecture and components. Then we will
introduce the current Internet level and prefix level monitoring
mechanisms. After that, we will briefly discuss the related
work and our future plans.

II. GENERIC BGP MONITORING FRAMEWORK

In this section, we will introduce our generic BGP moni-
toring framework. When we design the framework, we follow
the principle of modular, independent, and extensible. Each
component should be independent from the design aspect,
using the unified interface, and being extensible to further
upgrades. As a result, our new framework incorporates the
existing BGP monitoring mechanisms and enables accurate
and agile monitoring of BGP.

A. Framework Components

Following our designing principle, we implemented our
generic framework with four different types of components
that work together to perform agile and accurate BGP mon-
itoring tasks. In order to obtain BGP data, we first need
components to collect data from different data sources. The
obtained data may be stored in various file types, or contains
artifacts such as BGP dumps caused by BGP session results.
Therefore we also need to preprocess the data and produce
a “clean” version of what we need for the monitoring and
presenting tasks. The monitoring components are designed to
be independent to each other, making the framework extensible
for multiple purposes. In our case, we have monitors for both
prefix-level and Internet-level monitoring tasks, running at the
same time. For each monitor, we would also expect different
types of presentation of the results. We designed presenter
components that can meet different presentation requirement
from the monitors. In the following, we will introduce each
component and explain how they work together.

1) Collector:
As the first type of components, the collector is designed

to collect, parse, and store the BGP data from different data
sources. The collector is responsible for providing the parsed
BGP update objects into the data preprocessing and monitoring
components. The main data sources that we are using are
RouteViews [5] and RIPE RIS raw data archive [6]. Both
projects provide archived historical BGP updates data dating
back to early 2000s. Besides historical data, our system can
also incorporate real-time data, such as the XML stream
provided by BPGmon [17]. In the report, we mainly use
historical data to evaluate our system.

The collection process is a two-phase procedure includes
selective downloading and encoded binary file parsing. Collec-
tor will first download the compressed Multi-threaded Routing
Toolkit [18] (MRT), and then parse the MRT binary file into
actual BGP updates. Both RIPE and RouteViews archives
provide web-based file access (through HTTP or FTP), and the
data is organized by fixed-length time slots (every 5 minutes
for RIPE and 25 minutes for RouteViews). Because we are
only interested in certain period of time, the collector will
select only the relevant data archives to download, reducing
the time and storage overhead. The compressed MRT files will
then be stored and organized locally the same way as online
archive.

With the MRT data file stored locally, the collector then
will parse for each data file into BGP update objects in Java.
We implemented the MRT parser based on the new MRT
specification (RFC6396 [18]). For parsing BGP data, we focus
on BGP4MP (the data type for BGPV4) and do not parse
OSPF, TABLE DUMP, ISIS or the types that MRT supports.
Each MRT message contains a header that has the information
about the router (local AS/IP, and its peer AS/IP), followed
by the BGP message. The BGP message in MRT data file
follows RFC4271 [1], the current specification of BGP version
4. We materialize the BGP updates into BGP “Update” objects,
each of which contains the key fields that we care about for
every BGP update message, including ORIGIN, AS PATH,
NEXT HOP, NLRI, WITHDRAWN, etc. and useful function-
alities. The Update objects will then be used as input for the
data preprocessing and monitoring components. Depending on
the parsing speed requirement, users may choose to store the
parsed plain-text data for further usage. However, since the
monitoring tasks usually require multiple weeks’ data, the
storage overhead of uncompressed data is much higher in
this way. During our experiments, the parsing time overhead
for two weeks of data is only around two minutes, while
the storage overhead for plain-text data could be as high as
hundreds of gigabytes.

2) Preprocessor:
As the second type of components, the preprocessor com-

ponents will further clean the data and organize it into the
desired format for the monitoring tasks. Recall that we use
RIPE and RouteViews’ data as our data sources. The collected
data may contain duplicated information such as the duplicate
updates caused by the connection resets between the data
collecting routers. The duplicated information will confuse
monitors and create false positives or negatives. To avoid these

3

cases, we borrowed the algorithm discussed in [19] to remove
the dumplicated BGP updates. The cleaned set of updates is
then considered the true updates.

Besides data cleaning, we also need to organize the data
into a specific format for different types of monitors. For
example, the preprocessor needs to transform the BGP Update
objects into one-minute data bins to be analyzed by the
Internet seismograph monitor III. The modular nature of the
processor’s design enables our system to perform multiple
monitoring tasks with one BGP Update input stream. We will
discuss the workflow in Section II-B.

3) Monitor: Third type of components is the monitor,
which are the key components of our framework. Each monitor
component takes the preprocessed data as input, and performs
the monitoring tasks. With different preprocessing require-
ments, the preprocessors and monitors always come in pairs.
A monitor component contains the main logic of a monitoring
task. In our framework, we have two types of monitors
that monitor on Internet-level running status, and prefix-level
anomalies. The Internet-level monitor is based on our previous
work called ”I-seismograph” [20]. We did multiple upgrades
to the original I-seismograph and made corresponding changes
to plug it into our framework. Similarly, we use the improved
version of Buddyguard [2] as our prefix-level monitor. We will
introduce the details of each monitor and the improvements we
have done in Section III and Section IV. Briefly speaking, the
Internet-level monitoring will look at the BGP dynamics for all
one-minute data bins, and determine an abnormality value for
each minute. The prefix-level monitoring will look at the AS-
PATH toward each individual prefix and detect path anomalies.
Combining the two monitors of different granularities, our
system is able to comprehensively monitor the Internet.

4) Presenter:

Based on the monitor’s results, our system should also
present the results into different formats. The last type of com-
ponents is presenter. We have developed different presenters to
present the monitoring results for different goals. For example,
the prefix-level anomaly detection must quickly determine the
time and the severeness of any anomalies, therefore a time-
series line graph is used to present the results. In order to
understand the propagation of anomalies, we also adopted
the path change animation technique (BGPlayJS) to show the
progress of the propagations of any anomaly. Similarly for
Internet seismograph, we use a time-serious line graph to show
the value curves for all relevant attributes. In order to further
reason about the events, we also developed a geographical
information representation using Google Maps API for all the
Internet events, and the demonstration is online for further
review.

Note that, the presenter is also designed in a modular
way, so that we can “plug-and-play” any kind of presentation
methods, and we can apply multiple presenters on a same
set of data results. The goal here is to give our monitoring
framework the maximum flexibility to extend not only the
monitoring capability, but also the visualization methods.

Preprocessor

Collector

RouteViews
Collector

RIPE
Collector

Databin
generator

Data
cleaner

Monitor

Internet-
seismograph

Presenter

Time-series
graph

Geo-location
graph

Buddyguard

Fig. 2: Work flow of the framework.

B. Work Flow

In this section, we will introduce in detail how our integrated
BGP monitoring system works, and how each components can
be put into a real-time processing pipe-line that enables faster
processing and scalable deployment.

We have introduced the four components, i.e., collector,
preprocessor, monitor, and presenter, and how they work
individually. The next question naturally becomes, how do we
glue these components together into a generic real-time BGP
monitoring framework that can perform different types of BGP
monitoring tasks with high efficiency. Here we designed pipe-
lining mechanism that take BGP updates feeds in sequence
and generate results on the fly. The pipe-line is shown in
Figure. 2, where the collectors will keep fetching the data
into the pipe, after the preprocessing and different monitoring
tasks, the results are eventually presented by the presenter.

At the beginning of the pipeline, the system will fetch
the raw data from the data source. We currently use RIPE
and RouteViews data as our data source. As described in
Section II-A1, the RIPE and RouteViews data is organized
by minutes, and archived in Multi-Threaded Routing Toolkit
(MRT) format. As the system downloading the raw data,
the collector starts parsing the downloaded MRT files, and
translate them into actual BGP updates. In our implementation,
the BGP updates are represented as Update objects, where all
the values of the updates are stored as fields of the objects.
Downloading and parsing in the same time, the collector keeps
producing Update objects, forming a stream for the following
components.

4

With the BGP update stream as input, our system will fur-
ther preprocess the data, i.e., removing the updates generated
from BGP reset sessions (cleaning the data). The data cleaning
procedure will delay the pipeline by 15 minutes in order to find
out the BGP reset sessions. After each 15 minutes, the BGP
updates will be either directly fed into Buddyguard for prefix-
level monitoring, or used to extract data bins and then fed into
I-seismograph for global-scale monitoring. The preprocessing
will change the “real-time” update stream into a “pseudo-real-
time” update stream with 15 minutes delay. However, if we’re
using the real-time data source such as BGPMon, we can then
safely skip the data-cleaning procedure and the update stream
becomes real-time.

The presenter, who takes the results generated by the
monitors, will further process and visualize the monitoring
results, giving users a more direct visual feedback of the
current BGP running status without digging into the text logs.
This portion is important because the users (usually network
operators) are often required to quickly response to the events
happening on the Internet. The capability of understanding the
source of the problem and proposing solutions is critical in this
case. The presenter components of our system can serve this
purpose.

Although the components work together using the pipe-
line stream, they run independently without requiring other
components. In other words, the components for each phase
can be replaced, removed, or extended individually without
affecting the other components. For example, we can add
more monitors of different purposes to the system, while keeps
the original monitors running. We can also add or replace
presenters to extend or upgrade the visualization part of our
system. The “plug-and-play” system design enables us to keep
updating our components and expanding the framework. The
ultimate goal is to build a comprehensive framework that has
multiple monitoring capabilities while still allowing users to
redefine or add new functions to the framework.

III. GLOBAL-LEVEL MONITORING

We will first looking at the BGP monitoring tasks from
global-level granularity. In this section, we will review the
previous Internet monitoring project I-seismograph 1.0, and
then introduce our work on improving the project as I-
seismograph 2.0.

A. Problem Description

The Internet has become a critical infrastructure of our soci-
ety, yet little has been studied on how to monitor the Internet
as a whole and how to quantify the impact that disruptive
events may have on it. However, the large-scale events such
as natural disasters, undersea cable cuts or route leaks will
disrupt the Internet routing infrastructure and slow down the
connections. Although events such as security attacks, large-
scale power outages, hurricanes, undersea cable cuts, and other
kinds of natural disasters may cause observable disturbances to
the normal operation of the Internet, we know little about the
kind of impact each event might cause and how big it might be;

the lack of such knowledge also makes it difficult to conduct
effective network diagnosis, recovery, or other operation tasks.

In the following sub-sections, we first review the idea of
I-seismograph, and then introduce the new functionalities that
we brought to the new version of the I-seismograph, and eval-
uate the performance with demonstration of our visualization
modules. At last, we will discuss how we can fit I-seismograph
into our generic framework.

B. Basic Concepts

In the following, we will introduce the basic concepts and
methodologies that have been used in both I-seismograph 1.0
and 2.0.

1) Definition of Impact:
We define an impact on BGP as any deviation from BGP’s

normal profile. The deviation consists of a magnitude and a
direction. Assume we use a set of n distinct BGP attributes to
inspect BGP (the attibutes we use are listed in Table I), A1,
A2, · · · , An. Also assume we have defined a normal profile of
BGP by identifying the normal values of those attributes. At
any time t, if the values of these attributes of BGP are a1(t),
a2(t), · · · , an(t), and they deviate from the normal profile as
δ1(t), δ2(t), · · · , δn(t), the impact that BGP receives at t is
then a vector as follows: i(t) =< δ1(t), δ2(t), ..., δn(t) >. If
looking at the impact on BGP over a time window, such as
during the period of an event, we can define the impact during

this window, say [t1, t2], as: I(t1, t2) =
∫ t2
t1
i(t)dt or

t2∑
t1

i(t),

depending on whether i(t) is continuous or discrete.
2) Definition of Normality:
I-seismograph’s basic data processing unit is BGP databin,

which is simply a summary of the values of 10 distinct BGP
attributes over a period of one minute (See table I). To measure
the impact during a monitoring period, our basic idea is to
check every databin from that period, and see whether it
is associated with a normal cluster composed of a set of
normal databins, or an abnormal cluster composed of a set
of abnormal databins. At any point there is only one normal
cluster but there can be multiple abnormal clusters. The normal
cluster represents the normalcy of BGP, and the abnormal
clusters represent different types of BGP abnormalities. Once
we know every databin’s associated cluster, we then can
calculate the impact of the databin as well as the impact during
the entire period. Our enhancements does not involve changing
the basic algorithm, the details can be found in [20].

3) Impact Calculation:
Once we have the normal cluster from training period and

the abnormal cluster from monitoring period, we can start
calculate the impact for each databin in monitoring period.
We apply the following concepts to measure the impact of a
databin or the impact during a monitoring period:
• Impact value (of a databin). It measures the distance of
a databin from the normal. We define every databin in the
normal cluster has an impact value 0, and here we focus
on those not in the normal cluster. Denote the databin as
d =< d1, d2, · · · , dn >. We take the following steps: (1)
For every attribute Ai (i = 1, 2, ..., n) of d, we use all the

5

Attribute Description
Announcement # of BGP announcements
Withdrawal # of BGP withdrawals
Update # of BGP updates
WADiff # of new-path announcements after withdrawing

an old path to the same IP prefix
AADiff # of new-path announcements to the same IP prefix

(thus implicit withdrawals)
WWDup # of duplicate withdrawals to the same IP prefix
AADupType1 # of duplicate announcements to the same IP prefix

where all fields of the announcements are unchanged
AADupType2 # of duplicate announcements to the same IP prefix

where only the AS-PATH and NEXT-HOP fields of
the announcements are the same

WADup # of re-announcements after withdrawing the same
path

AW # of withdrawals after announcing the same path

TABLE I: Names and descriptions of selected BGP
attributes.

databins from the normal cluster to determine their mean µi

and standard deviation σi of Ai. (2) We then calculate the
difference between di and (µi±σi), denoted as δi. It is either
di−(µi+σi) if di is greater than (µi+σi), or (µi−σi)−di
if di is smaller than (µi − σi). (3) We normalize δi to be in
the range of [0, 1] by dividing the maximum recorded value
of δi. In the following δi always refers to a normalized value.
(4) Then finally, we use the sum of the differences for all
attributes, i.e.,

∑n
i=1 δi, as the distance of d from the normal.

This distance is also called Manhattan distance. Since our
study currently uses exactly 10 BGP attributes, every impact
value will thus be between 0 and 10.
• Impact curve (of a monitoring period). This is the plot
of the impact values of all the databins from a monitoring
period over time.
• Impact direction (of a databin). It measures the direc-
tion that a databin deviates from the normal. Following
the discussion of impact value above and using the same
notations, we define the impact direction of a databin using
the deviation vector < δ1, δ2, · · · , δn >.
• Dominant and peak impact directions (of a monitoring
period). The abnormal cluster that has more databins from
the monitoring period than any other abnormal clusters is
what we call the dominant abnormal cluster for the period.
We define the impact direction of this cluster’s medoid (i.e.,
its most centrally located databin) as the dominant impact
direction for the monitoring period in question. In addition,
we define the impact directions of those databins from a
monitoring period that have a peak impact value as the peak
impact directions of the period. Note that those databins
may or may not belong to the dominant abnormal cluster.
The dominant direction represents the overall trend during
a monitoring period, and the peak direction indicates the
behavior during the maximum impact.

C. I-seismograph 1.0

In order to measure “Internet earthquakes.”, Jun Li et al.
designed an Internet seismograph, or I-seismograph [20]. Here
we call it I-seismograph 1.0 as comparing to the current
improved 2.0 version. It not only reports the magnitude of

the impact during an event period, i.e., a “Richter scale” of
an Internet earthquake, but also characterizes the nature of
the earthquake. During a period when everything is normal,
I-seismograph will simply report zero or close-to-zero impact;
during a security attack, a natural disaster, or some other large-
scale incident, if the regular operations of the Internet go awry,
it can then indicate how badly the Internet got hit. Not only can
we use I-seismograph to measure the impact over a period in
the past, during which a disruptive event is suspected to have
affected the Internet, but we also can use it to measure an
Internet earthquake in real time.

The main design idea of I-seismograph is hinged upon
discovering the “normal” state of the Internet, and then mon-
itoring a given period to measure how the Internet activity
deviates from it. I-seismograph uses BGP data to discover
the normal and abnormal states. Due to the dynamic nature
of BGP, I-seismograph applies a two-phase clustering method
that can help defines the normal and abnormal states over a
wide time span. I-seismograph will first divide the BGP update
stream into one-minute databins, and use the databins as basic
unit for the training and monitoring. After monitoring each
databin should have a impact value and a impact direction.
We could then plot the values to impact curves and present
the seismograph results.

D. I-seismograph 2.0 - An Overview

The I-seismograph 1.0 gives users an idea of if there is
an event happening on the Internet, and if so, what attribute
deviates the most. We consider the result could be further
enhanced and could convey more information for users to un-
derstand and the event and further mitigate the damage if there
is any. Therefore we developed the multiple improvements for
I-seismograph, added the root-cause analysis capability, and
evaluated on the most recent Internet events.

Based on the I-seismograph’s original design, we further im-
proved the system by adding more in-depth root-cause analysis
and thorough evaluation on most up-to-date Internet disruptive
events. Here we call the improved version “I-seismograph 2.0.”
In this report, we will introduce the enhancement that we have
done to help I-seismograph 2.0 to achieve more functionalities
and being more insightful for the users.

In addition to the plain curve results, we also developed
new types of visualization modules to visualize the Internet
“earthquakes”. The I-seismograph 2.0 with root-cause analysis
and vivid visualization provides the users straightforward
information about the Internet’s routing status for any specific
time period, and gives users further more information to reason
about the potential causes and solutions for different types of
the events.

E. Root Cause Analysis

One important feature that I-seismograph 1.0 missed is the
capability to trace down the root cause of any events. The root
cause of a large-scale disruptive event can be categorized into
the following granularities:

1) the specific overall attributes that deviate from the normal
status the most,

6

2) the autonomous systems that were involved in the unusual
routing changes the most,

3) and the individual prefixes that contribute the most to the
overall deviation of the attributes.

We developed the new components for I-seismograph 2.0 to
conduct the root cause analysis on all three different level of
granularities. In this section, we will present our methodology
of the root cause analysis.

1) Internet-level root-cause analysis: From a coarser gran-
ularity, we can start by looking at the Internet from routing
dynamics. Based on previous studies on BGP instability and
dynamics, including those from [16], [21], we have identified
ten distinct BGP attributes to summarize every minute of BGP
activities (Table I). Among the 10 attributes, we can further
categorize into 3 corresponding types of behaviors:

1) neutral behavior: Announcement, Wtihdrawal, and Up-
date

2) forwarding dynamics: AADiff, WADiff, AADupType2,
WADup, AW

3) pathological behavior: AADupType1, WADup, WWDup
By looking at the result, we can first identify the dominant
impact direction and the peak impact attributes. Depending
on the attributes’ categories, different hypothesises can be
proposed. Then we can go a step deeper to look at the prefix
level data to confirm or deny the hypothesises.

2) Prefix-level root-cause analysis: In a more finer granu-
larity, we would also like to learn that what prefixes contribute
most to the impact. Whenever an update about prefix p causes
attribute a to increase, we say prefix p contribute to a once. By
this definition of prefix contribution, we can learn how much a
prefix contributes to the deviation of certain prefixes. We use
the principle of deviation where the more the contribution of
a prefix p to attribute a deviates from the normal status, the
more it adds to the impact of attribute a.

With the definition of contribution of a prefix to an attribute,
we can then learn the normal states for prefixes and then
later detect the abnormality. In order to learn the normal
contribution of a prefix to an attribute, we main the statistics
count for every hour for every prefix during the training period.
We define the range of 3 standard deviation around the mean
value to be the normal range. As we proceed to monitoring
phase, we will gather the contribution statistics for each prefix
for each hour. The monitoring statistics will be compared to
the normal range, and the deviates outside the normal range
will be used as our metric to measure how much a prefix adds
to the impact. As a result, we will have a sorted list of prefixes
for each hour each attribute with value to be the deviation of
the contribution outside the normal range.

F. Apply I-seismograph 2.0 on Real-World Events

Beyond the cases tested in [20], we further evaluated I-
seismograph in against some more recent events.

In order to evaluate our Internet seismograph, we choose
the events that potentially have large influence on the Internet,
such as route-leaks or large-scale prefix hijackings. In those
cases, the Internet reacts by generating and propagating large

amount of BGP updates to reroute the affected traffic, where
the dynamics of BGP should deviate from the normal status.

In addition to our previous work, we evaluated our system
on more recent events. Table II listed some large events
happened in previous years, and the double line separated
the events evaluated in our previous work and this report.
We categorized the events by their source location and the
known cause, The events could have regional impacts such
as [2005 HurricaneKatrina] and [2012 Canada] where the
events happened in certain regions, or global impacts such
as [2001 CodeRedWorm] and [2014 CISCO512K] where the
events happened across the Internet. We also categorized the
types of the events by the reported root-causes. There are five
types of events, which are:

1) Security attacks: large-scale attacks on the Internet such
as Internet worms.

2) Blackouts: Internet blackouts caused by power outages or
natural disasters.

3) Cable cuts: the undersea fiber cable cut events.
4) Route leaks: large-scale leaks of routing table entries.
5) Router failures: large-scale router failures caused by

firmware bugs or other reasons.
Though the router failure type only has one instance in our
event list, i.e., the [2014 CISCO512K] event, this type could
happen more and more frequently because the average number
of routing entries in BGP routers has grown really close to
some CISCO router’s limit of 512K. Here we will introduce
the most recent events and the detection results.

TABLE II: Events table

Event name Date Location Type
2001 CodeRedWorm 2001-07-21 Global Security attack
2001 NimdaWorm 2001-09-20 Global Security attack
2003 SlammerWorm 2003-01-25 Global Security attack
2003 EastCoastBlackout 2003-08-16 US Blackout
2005 HurricaneKatrina 2005-08-31 US Blackout
2005 LABlackout 2005-09-13 US Blackout
2006 TaiwanCableCut 2006-12-28 Taiwan Cable Cut
2008 Mediterranean 2008-02-01 Mideast Cable cut
2008 Mediterranean2 2008-12-21 Mideast Cable cut
2010 China 2010-04-08 China Route leak
2012 Canada 2012-08-08 Canada Route leak
2014 Indosat 2014-04-02 Indonesia Route leak
2014 Syria 2014-05-19 Syria Blackout
2014 TimeWarner 2014-08-27 US Blackout
2014 CISCO512K 2014-08-11 Global Router failure

1) 2010 China Telecomm Route Leak:
The [2010 China] event happened on April 8, 2010, where

China Telecom (AS 23724) falsely originated about 37,000
prefixes for about 15 minutes [22]. Shown in Figure 3, the
events started at hour 15, where multiple attributes were
deviates from normal state. Note that the high value of WADup
(withdrawal-announce duplicate) attributes at the first 10 hours
of April 8 is potentially correlates to another anomalies that
were not recorded by any press articles. This anomaly most
were contributed by the prefixes from AS36958 (CWSey-
chelles) of Seychelles and AS9534 (Binariang Berhad) of
Malaysia, where none of the prefixes have contributed to
WADup attribute during the training period, and contributes
on average more than 50 WADup per hour. The frequent

7

withdrawal and announce of the same prefixes were clearly
not normal, however since the abnormality were limited within
these two ASes, there was no global impacts reported.

2) 2012 Canada Dery Telecom Route Leak:
The [2012 Canada] event happened on August 8, 2012,

when a Canadian ISP leaked its full routing table to its
provider [23]. Unlike the China Telecom route leak where
China Telecom claimed to be the origin of many of the
affected prefixes, this event was more subtle such that the
leaker simply claimed to be on the path to the affected prefixes.
During the event, the Canadian ISP Dery Telecom Inc (AS
46618) leaked all its routes acquired from one of its provider
(VideoTron, AS 5769) to its another provider (Bell, AS 577).
Bell selected a large portion of these routes as best routes
and then further propagated to its peers. This route leak event
affected 107,409 prefixes from 14,391 different ASes across
the Internet [23]. As we can see in Figure 4, at around hour 17,
the attribute AADupType2, WADiff, WADup have high spikes.
The AADupType2 (announce-announce duplicates with slight
diffferences) attribute confirms the nature of the route leak
events, where the announced prefixes were already in routing
table with the same AS path, only some optional values were
different such as community values. The maximum number of
AADupType2 per minute reaches 57646 during the events, and
277,027 for number of updates. The high values of WADiff
and WADup (withdrawal-announce different and duplicate)
indicate that there were also a lot of the out-of-date updates
during the event where the same prefixes have been withdrawn
before.

3) 2014 Indosat Route Leak (Hijacks):
On 18:26 UTC April 2, 2014, Indosat (AS4761) one of the

largest ISP in Indonesia started to originate 417,038 new pre-
fixes [24], while normally it only originates about 300 prefixes.
Figure 5 show the monitoring results from April 1 to April 2,
where multiple attributes have spikes around hour 42 (18:00
of April 2). Among all the abnormal attributes, the attribute
AADiff (announce-announce different) deviates the most from
the normal range. AADiff represents the underline change of
AS paths of prefixes, where in normal circumstances it shows
the dynamics of the AS path change and should fall in normal
range like it did in the first 40 hours of the monitoring period.
However, under extreme unusual situation like the Indosat
route leak, the value of different announcements surpass the
limits of normal range and then showed up on our results.

4) 2014 Syria Internet Blackouts:
Since early 2014, the Internet connectivity to Syria has been

suffering from instabilities. There were 6 events reported, each
happened on 3/25, 5/19, 5/21, 7/10, 7/12, 7/13 in 2014 [25],
of which the event on 5/19 lasted longest for almost 20
hours. The Figure 6 shows the monitoring results, where
the instability starts from hour 20 (5/19) to almost hour 40
(5/20). During the instability period, the main attributes that
deviated from normal are the number of withdrawals and the
number of WADiff (withdrawal-announce different), indicating
the frequent changes of the AS paths.

5) 2014 CISCO “512K” Router Failures:
The most infamous Internet routing incidence of the year

2014 would be the CISCO “512k” event [26], [27], in which

on August 12, 2014 the global routing table size surpassed
512 thousands, exceeding some CISCO routers capability and
causing large-scale reroutes of the Internet traffic. We started
our monitoring from August 11, to confirm the normal running
states the Internet routing infrastructure. Then at hour 30,
all most all of the 10 attributes deviate from normal range.
Shown as Figure 7, the sudden change sticks out around the
“peaceful” periods before and after the event. Careful readers
may also noticed that comparing to the route leak events
such as [2010-China] or [2012-Canada], the attributes deviate
less in this events, and the Internet seems suffer more. One
reason behind this is that the route-leak events were usually
not widespread because of the filtering mechanisms deployed
on the upstream ASes, however the CISCO event was caused
by router failure and without regional limits, therefore people
would more likely to notice the influence.

6) 2014 Time Warner Internet Blackout:
Time Warner Cable, one of the US’s largest cable and

broadband providers, suffered an nationwide Internet outage
on 8/27/2014. According to [28], the event was caused by ”an
erroneous configuration propagated throughout the backbone.”
Around hour 3 almost attributes again deviates from the
normal value range, shown in Figure 8

IV. PREFIX-LEVEL MONITORING

In this section, we will look at the BGP monitoring from
a more finer granularity, and introduce our prefix-level mon-
itoring solution. Previously, Li et al. developed a prefix-level
anomaly detection system called Buddyguard [2]. Based on
that work, we then substantially improved the Buddyguard on
multiple aspects. In this report, we will mainly focus on the
enhancements we have done.

A. Problem Description

BGP is designed to exchange information on how to reach
any IP prefixes (i.e., blocks of IP addresses), and the correct-
ness of the update information is critical. An IP prefix can
be subject to many types of routing anomalies. A prefix may
suddenly become unreachable, reachable only through a path
with poor routing performance, or it may experience patho-
logical routing dynamics (e.g., oscillation between different
paths). Whether a prefix is used by major online businesses
(such as Google or YouTube) or ordinary end users (e.g., Alice
and Bob), these prefix anomalies can cause loss of revenue,
identity theft, or many other devastating consequences.

One of the most infamous of such anomalies is prefix
hijacking, in which an attacker hijacks traffic meant to reach
the legitimate user of a prefix. Real world cases of prefix
hijacking have occurred repeatedly ([29], [30]), including the
well-known Pakistan Telecom hijack of YouTube in 2008 [31]
and the recent Icelandic ISP hijacking US traffic [32]. Another
common prefix anomaly is route leak, where a misconfigured
ISP advertises illegitimate routes for prefixes. In the past, such
incidents have caused anomalies on a monumental scale [33],
[34]. On April 8, 2010, an AS operated by China Telecom
falsely originated nearly 37,000 prefixes, causing blackouts
for those prefixes for about 15 minutes [22]. More recently in

8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45

Im
p
a
c
t
V

a
lu

e

Time (Hours)

04/08/2010 China Telecomm Route Leak

(a) 2010 China Telecom route leak, overall impact.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40

Im
p
a
c
t
V

a
lu

e

Time (Hours)

04/08/2010 China Telecomm Route Leak

Ann
withdrawals

updates
WADiff

WADup
AADiff

AADup1
AADup2
WWDup

AW

(b) 2010 China Telecom route leak, per-attribute impact.

Fig. 3: I-seismograph monitoring results for 2010 China Telecomm route leak event.

 0

 0.5

 1

 1.5

 2

 0 10 20 30 40

Im
p
a
c
t
V

a
lu

e

Time (Hours)

8/8/2012 Canada Route Leak

(a) 2012 Canada Dery Telecom route leak, overall impact.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40

Im
p
a
c
t
V

a
lu

e

Time (Hours)

8/8/2012 Canada Route Leak

Ann
withdrawals

updates
WADiff

WADup
AADiff

AADup1
AADup2
WWDup

AW

(b) 2012 Canada Dery Telecom route leak, per-attribute
impact.

Fig. 4: I-seismograph monitoring results for 2012 Canada Dery Telecom route leak event.

 0

 0.5

 1

 1.5

 2

 0 10 20 30 40

Im
p
a
c
t
V

a
lu

e

Time (Hours)

2014 04 02 Indosat Route Leak

(a) 2014 Indonesia Indosat route leak, overall impact.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40

Im
p
a
c
t
V

a
lu

e

Time (Hours)

04/02/2014 Indosat Route Leak

Ann
withdrawals

updates
WADiff

WADup
AADiff

AADup1
AADup2
WWDup

AW

(b) 2014 Indonesia Indosat route leak, per-attribute im-
pact.

Fig. 5: I-seismograph monitoring results for three 2014 Indonesia Indosat route leak event.

August 2012, Canadian ISP Dery Telecom Inc. leaked a large
amount of routes that misrouted traffic to 107,409 prefixes in
14,391 ASes [23], or about one third of the entire Internet.

These anomalies threaten every prefix on the Internet,
whether commercial or private. Even more disturbing, users
or operators of a prefix cannot easily detect such incidents.
The legitimate user of a prefix may not expect any traffic at
all while its incoming traffic is being misrouted; or in a more
complex form of IP prefix hijacking called prefix interception,
an attacker not only hijacks traffic, but also forwards that traffic
to the victim. Given that traffic still arrives at victim prefix(es),

this type of attack is more discrete than normal prefix hijacking
or large-scale route leaks, and is becoming more frequent [32].

Unfortunately, it is unlikely that these prefix anomalies will
be resolved in the near future. While there exist proposals such
as BGPSEC [3] to secure the Border Gateway Protocol (BGP),
their high overhead cost has prevented actual deployment. In
fact, even these proposals are deployed, they will still fail in
certain critical circumstances [35], [4]. It is therefore critical
to monitor prefixes and detect prefix anomalies as they occur
within the current BGP environment.

9

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40

Im
p
a
c
t
V

a
lu

e

Time (Hours)

5/19/2014 Syria Blackout

(a) 2014 Syria blackout, overall impact.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40

Im
p
a
c
t
V

a
lu

e

Time (Hours)

5/19/2014 Syria Blackout

Ann
withdrawals

updates
WADiff

WADup
AADiff

AADup1
AADup2
WWDup

AW

(b) 2014 Syria blackout, per-attribute impact.

Fig. 6: I-seismograph monitoring results for 2014 Syria blackout event.

 0

 0.5

 1

 1.5

 2

 0 10 20 30 40

Im
p
a
c
t
V

a
lu

e

Time (Hours)

8/11/2014 CISCO 512K Day

(a) 2014 CISCO ”512K” day large-scale equipment mal-
function, overall impact.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40

Im
p
a
c
t
V

a
lu

e

Time (Hours)

8/11/2014 CISCO 512K Day

Ann
withdrawals

updates
WADiff

WADup
AADiff

AADup1
AADup2
WWDup

AW

(b) 2014 CISCO ”512K” day large-scale equipment mal-
function, per-attribute impact.

Fig. 7: I-seismograph monitoring results for 2014 CISCO ”512” day event.

 0

 0.5

 1

 1.5

 2

 0 10 20 30 40

Im
p
a
c
t
V

a
lu

e

Time (Hours)

8/27/2014 Time Warner Outage

(a) 2014 Time Warner large-scale outage, overall impact.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40

Im
p
a
c
t
V

a
lu

e

Time (Hours)

8/27/2014 Time Warner Outage

Ann
withdrawals

updates
WADiff

WADup
AADiff

AADup1
AADup2
WWDup

AW

(b) 2014 Time Warner large-scale outage, per-attribute
impact.

Fig. 8: I-seismograph monitoring results for 2014 Time Warner outage event.

B. Buddyguard 1.0 - An Early Solution

In order to better conduct the prefix level BGP monitor-
ing, [2] presents the Buddyguard system. The goal of Buddy-
guard is to fast and accurately detect unusual changes of the
BGP paths toward individual prefixes. Dubbed Buddyguard, it
surrounds a prefix with a buddy system composed of buddy
prefixes, or buddies, and monitors the behavior of the prefix
against that of its buddies. Not only does Buddyguard detect
various prefix anomalies including prefix hijacking and route
leaks, but it is also lightweight to deploy and resilient against
circumvention by attackers.

The key to monitoring an IP prefix is to know what is
normal behavior and what is not, and a buddy system makes
this task feasible. When inspecting a prefix in isolation, it is
difficult to know which behaviors are abnormal. For example,
when the path to a prefix from a vantage point suddenly
disappears or changes, it can be either a normal routing
change, or a misconfiguration, or that an attacker has just
misled routers to adopt a new path under the control of the
attacker. In contrast, a buddy system provides a more reliable
basis to determine if anything is abnormal with a prefix. After
ensuring that there are enough buddies for a prefix, we can

10

use these buddies to determine whether or not the prefix is
experiencing anomalies. Under normal conditions a prefix is
similar to most of its buddies (in terms of the behaviors being
monitored) but not so if under abnormal situations.

At its core, the Buddyguard architecture includes the mon-
itored prefix, a set of monitors, and the buddies of every
monitored prefix (Figure 9). The monitored prefix is any
IP prefix whose owner requests the Buddyguard service for
specific types of anomalies affecting that prefix. Buddyguard is
able to monitor multiple prefixes in parallel (as we demonstrate
in our evaluations, up to hundreds or thousands of prefixes
at once). We define the remaining components, monitors and
buddies, as follows.

1) Monitors: A monitor is defined as a networked entity
that can observe a prefix and its buddies in conjunction. Under
normal conditions, the observed behavior of the monitored pre-
fix and its buddies should match. Monitors detect anomalous
conditions when the behavior of a prefix deviates significantly
from that of its buddies. We leave the details of the monitoring
algorithm for a later section.

What behaviors should monitors observe and compare?
Since every prefix anomaly we are concerned with is within
the domain of BGP, such behaviors should be the properties of
any BGP operation related to a monitored prefix. In the case
of prefix hijacking and route leaks, the related BGP operation
is the announcement of a new path to that prefix, and the main
property we inspect is the difference between this new path
and the paths to the prefix’s buddies. Different anomalies will
have different behaviors, and therefore require a different set
of buddies for the monitored prefix.

Since monitors must be able to measure these BGP opera-
tions, monitor placement is critical. Ideally, monitors must be
able to hear conversations between BGP routers as close to
real-time as possible. One solution involves peering monitors
with existing BGP data collection systems such as RouteViews
and RIPE [36] collectors or BGPMon [17], which collect real-
time BGP updates from routers around the globe. This deploy-
ment scheme has the advantage of costing low overhead, as
it does not require continuous data-plane queries like other
solutions. We return to the efficacy of this monitor placement
strategy in our discussion section.

2) Buddies: A buddy can be defined as IP prefix that
behaves similarly to the monitored prefix under normal condi-
tions, and diverges when anomalous conditions occur. Recall
that for prefix hijacking, the behaviors we are concerned with
are path updates associated with the prefix and its buddies.
To detect whether a prefix is hijacked, we compare paths to a
buddy b and a monitored prefix p such that:

(i) Under normal circumstances, the path from a monitor to
b is similar to the path from that monitor to p;

(ii) If a legitimate routing change occurs so that the monitor
has a new path to p, the monitor will also have a similar
new path to b; and

(iii) If p is hijacked, the monitor will switch to a “bad” new
path to p, but will still use the old path to b, causing the
two paths to be dissimilar.

Clearly, if b perfectly meets these standards then p will only
need that single buddy. However, in many situations buddies

can only partially meet the above conditions. Sometimes a
buddy may experience the same anomaly as the monitored
prefix; for example, a hijacker could co-hijack a prefix and its
buddy, leaving the anomaly undetected. Therefore, having one
buddy for a prefix is typically not sufficient.

To solve this, we must obtain many buddies for a monitored
prefix, where enough buddies are similar to the prefix when it
is behaving normally, and at most a small number of buddies
may experience the same anomaly together with the monitored
prefix. Therefore, if a prefix deviates from enough of its
buddies, we can determine that it is behaving abnormally.
When detecting if a prefix is hijacked, for example, we modify
the conditions (i)–(iii) above to:

(i) Each monitor m must have a set Bm = {b} of buddies
such that m will have similar paths to all of them,
including p;

(ii) If a legitimate routing change occurs so that m has a
new path to p, enough of its buddies will also switch to
a similar new path from m; and

(iii) If the p is hijacked, m will switch to a “bad” new path
to the p, but enough of p’s buddies will not switch.

We leave the definition of enough for a later section.
Due to the decentralized nature of BGP, it is likely (but

not necessary) that each monitor will have a distinct set of
buddies for the monitored prefix. The specific location of a
monitor will determine which BGP updates it is able to hear;
indeed, certain updates may never reach a given monitor at all.
The advantage of a per-monitor buddy system over a common
buddy system (where a prefix has the same buddies for all
monitors) is that each monitor need only be concerned with
the BGP updates to which it is privy.

In [2], we demonstrate the efficacy of Buddyguard by testing
our system on well-known prefix hijackings and route leaks.
For these anomalies, the behavior in question is the routing
paths to a given monitored prefix. With monitors being BGP
speakers that peer with RouteViews [5] collectors, we train
Buddyguard by observing routes from these monitors to the
prefix and select buddies that best match these routes. The
evaluations show that monitoring prefixes with these buddies
provides fast, accurate, and reliable detection with low false
negatives and false positives.

C. Buddyguard 2.0 - Overview

Based on the early solution, we seek for further improve-
ment to make Buddyguard even better and more helpful.
In specific, we would like to see our system to have bet-
ter analysis on the detected events, more capabilities, and
more thoroughly evaluated. Accordingly, we made multiple
enhancements that improves the Buddyguard from both archi-
tecture and performance. We hence call it “Buddyguard 2.0”.
The enhancements include:

(i) Better architecture and more capabilities. From the
architecture aspect, we added a central controller that
aggregates and analysis the individual monitor’s results.
In addition to detecting the prefix anomalies, we added
the functionality to trace the likely origin of an anomaly.

11

For each detected event, we also analyze the scope of its
impact.

(ii) An overhauled set of algorithms. We have improved
the algorithms for training and monitoring procedures.
For training phase, we introduced adaptive training and
relative prefixes training, and improved the previous
training algorithm for robustness. For monitoring phase,
we improved the algorithm and significantly improved
the sensitivity toward prefix anomalies without increas-
ing the false positive rate.

(iii) Thorough evaluation against most recent events. We had
also conducted a significantly more thorough evaluation
of Buddyguard, including performance, overhead, and
new results in tracing the anomaly origins and scope of
the event’s impact.

(iv) Low overhead. We also showed that Buddyguard has low
overhead and can scale to monitor all prefixes on the
Internet with relatively low overhead.

Based on our previous work on Buddyguard 1.0 [2], we
have made multiple enhancements on its architecture, func-
tionalities, core algorithms, and evaluations. Together with
all the enhancements, the Buddyguard system can accurately
detect prefix-level routing anomalies with root-cause analysis
for each incidence.

D. Smart Controller and New Capabilities

At its core, the Buddyguard 2.0 architecture includes mon-
itored prefixes, buddies of every monitored prefix, a set of
monitors, and a dedicated controller. For every monitored
prefix, a Buddyguard monitor first runs a training process and
then applies the training result to the monitoring phase. During
training, it employs a set of training algorithms to discover and
select best-matching buddies for the prefix. During monitor-
ing, it runs the monitoring algorithm to detect if the prefix
experiences anomalies using its buddies. Beyond conducting
monitoring tasks by individual monitors, we introduced the
controller component. The monitor will periodically update
information to the controller. The updates convey monitoring
results and suspicious activities. If an anomaly occurs, Buddy-
guard controller can then gather information from all monitors,
and analyze the event for more information, including the
event’s scope of impact and possible origins of the anomaly.

1) A Smart Controller:
Whereas each monitor can detect anomalous situations from

its vantage point on its own, Buddyguard achieves better
detection accuracy by further aggregating the detection results
from all monitors. It does so by asking every monitor to
feed the controller a warning signal if the monitor detects
that a monitored prefix is experiencing an anomaly type that
the customer is interested in, and then counting how many
monitors issued a warning to determine whether or not to
issue a system-wide alert that the prefix is indeed experiencing
an anomaly. With further details provided from monitors, the
controller can further assess the scope of an anomaly and even
trace the origin of the anomaly.

A concern may raise that the controller may become a
performance bottleneck or a single point of security failure.

p

monitors:

m

m

m

m

m

m
m

controller:

prefix (p) &

its buddies:

Fig. 9: Buddyguard architecture.

However, the controller will mostly be idle unless it begins
to hear warning messages from monitors. Even then, the con-
troller will only incur a light overhead of messages between
itself and all monitors, and light storage and computational
overhead when processing the messages. It is true that the
controller may become a single point of failure, but the
controller can be well-protected and can also have one or
multiple back-up controllers. Note even without a controller,
every monitor can still independently operate.

2) Prefix Anomaly Analysis at the Controller:
Based on our new architecture, we can then add new

functionalities to Buddyguard to further help users for decision
making and root cause analysis. Besides the detection results
for the prefixes of interests, understanding the cause of the
event and the propagation of the anomalies could largely help
a user of Buddyguard to decide the actions to react upon
the anomalies. Therefore, we brought new functionalities to
Buddyguard and enhance its usabilities, including (1) global
impact scope estimating, and (2) root-cause tracing capability.

While every monitor can independently check whether an
update toward a monitored prefix is anomalous, Buddyguard
relies on its controller to aggregate the information from
monitors to determine whether or not an anomaly is occurring.
In monitoring prefix hijacking and route leaks, once a monitor
detects an update is likely a hijacking or route leak, it sends
a warning to the controller. The controller can then count
how many warnings it hears regarding a monitored prefix,
denoted as Nwarning. To decide whether an anomaly is
indeed happening, the controller further checks how many
monitors have heard an update about the monitored prefix
at approximately the same time, denoted as Nheard, and see
what fraction of these monitors issue warnings. If Nwarning

Nheard

is more than the alert threshold ρ, the controller will regard
the monitored prefix is experiencing an anomaly, and issue an
alert. Note while the controller may hear a warning from a
monitor about a prefix, later the same monitor may report to
the controller that the prefix is back to normal, allowing the
controller to discount the warning from this monitor.

The controller obtains the value of Nheard by communicat-
ing with every monitor using the query and report messages
over an encrypted channel that is protected with a preset

12

secret key. The query message (prefix=p, timestamp=t, offset=∆)
allows the controller to ask every monitor whether it has
heard a new path to prefix p in the time window [t ± ∆].
The report message (monitor id=m, prefix=p, AS path=AP, times-
tamp=t, suspicious=yes/no) allows monitor m to report to the
controller that at time t it heard a new AS path AP to
prefix p, and whether or not the monitor views the path as
suspicious. Clearly, a monitor can also use the report message
to send a warning to the controller where the suspicious
field is yes, or to notify the controller that it no longer
treats a prefix in the “warning” state where the suspicious
field is no. Now, to obtain the value of Nheard, as soon
as the controller receives the first warning from a monitor
regarding a monitored prefix, say (monitor id=mx, prefix=px,
AS path=APx, timestamp=tx, suspicious=yes), it sends a query
message (prefix=px, timestamp=tx, offset=∆) to every other mon-
itor. If a monitor does not hear a new path to prefix px in
[tx ± ∆], it does nothing. Otherwise, the monitor checks if
the new path is suspicious, and sends back a report message
to the controller accordingly. (If prior to receiving the query
message a monitor has already sent a warning to the controller,
it does not have to resend the warning.) With all the report
messages it receives, the controller can then calculate the value
of Nheard.

Once the controller determines an anomaly is occurring, in
addition to issuing an alert about the anomaly, the controller
can further trace the origin of the anomaly and analyze the
scope of its impact. We now look at how the controller can
trace the origin of a prefix hijacking or route leak event and
calculate the scope of impact from the event. While Nwarning

monitors heard an anomalous path and raised a warning, the
router that initiates the illegitimate routing update—either a
hijacking update or an update that leaks the path to a prefix—
is located at a specific AS, i.e., the origin AS of the anomaly.
The illegitimate update then gets propagated throughout ASes
on the Internet, including reaching the Nwarning monitors
that raised warnings. The controller can then aggregate the
warnings and deduce the origin AS of the anomaly. Recall
every warning message from a monitor also includes an AS
path from the monitor to the prefix that the monitor regards as
illegitimate. The key point is that the origin AS of the anomaly
must be on every illegitimate path. The controller thus can find
out the intersection of all the AS paths reported in warning
messages, i.e., ASes that exist on all these paths, and the origin
AS of the anomaly must be one of them. Fig. 10 shows an ex-
ample: Based on the monitors reporting warnings (not showing
all monitors), the controller can determine that the illegitimate
updates originated from either AS 3491 (PCCW [37]) or AS
17557 (Pakistan Telecom [38]). The customer (such as the
owner of the victim prefix) can then contact out-of-band each
AS in the set for further investigation.

Among all “quiet” monitors who heard an AS path to the
monitored prefix but did not report a warning (totally Nheard -
Nwarning of them), the tracing procedure above can also help
identify which monitors actually also received an illegitimate
path (false negative) and which did not (true negative). Let
NF− denote the number of the former, and NT− the number
of the latter, where Nheard = Nwarning + NF− + NT−. The

17557

3491

4513

701

3277

32675056

3292

12682

3213

11686

1116425462

AS of a monitor that

issued a warning

AS of a "quiet" monitor

AS that is on every

illegitimate AS path

reported by a monitor

Intermediary AS on

an AS path

Fig. 10: Tracing the origin AS of YouTube prefix
hijacking using the AS paths reported in warnings from

monitors (not all monitors are shown).

procedure is simple: if the intersection above also appears in
a monitor’s AS path, the path is then illegitimate, and the
monitor had a false negative. For example, in Fig. 10, all quiet
monitors located in grey ASes also heard a hijacking update
since they all came from the ASes in the intersection.

The controller can then calculate the scope of impact from a
prefix hijacking or route leak event. Among all the monitors,
it can easily calculate the percentage of monitors who have
heard an illegitimate update, which is the sum of Nwarning and
NF−. Because Buddyguard monitors are distributed among
a diverse set of ASes on the Internet, the percentage value
provides a good-faith estimation of what portion of the Internet
suffered from the event.

E. Training and Monitoring Algorithms

The success of Buddyguard lies in having the best possible
set of buddies for every monitored prefix. We meet this
objective through the training process, in which we define
algorithms for (1) collecting buddy candidates that potentially
match the behavior of the monitored prefix , (2) selecting the
best matching candidates to be actual buddies. We then use
the best selection of the buddies to detect the anomalies during
monitoring phase.

We have improved the existing algorithms for both training
and monitoring algorithms. In specific, we introduced

1) an adaptive buddy candidate search algorithm to help
obtaining potential buddies in various situations,

2) a better buddy selection algorithm with formally defined
parameters,

3) a relative prefix training algorithm to obtain buddies even
when there were only updates for super and sub-prefixes
of the monitored prefix.

4) an improved monitoring algorithm with significantly
more sensitivity to anomalies without increasing the false
positive rate.

In this section, we will introduce these enhanced algorithms.
1) Adaptive Candidate Searching:
In Buddyguard 1.0, we only search for the potential buddies

in a fixed-size buddy candidate zone (the definition will

13

be introduced in the following section) and a fixed-size time
period. Now with the consideration of more generic cases,
where the size of each buddy candidate zone various in terms
of the number of prefixes it contains, and the frequency of the
updates for each prefix various, the Buddyguard 2.0 introduced
the adaptive candidate searching algorithm.

• From the space dimension, it automatically selects the best
fit buddy candidate zone for selecting potential buddies.
• From the time dimension, it automatically expands its
training time period depending on the needs.

We will introduce the details in the following content.
A monitor obtains buddy candidates for a monitored prefix

by applying a “fate-sharing” principle. Whenever the monitor
hears a new path toward the monitored prefix, it finds prefixes
toward which the monitor has also heard a similar path at
roughly the same time, and adds these prefixes as buddy
candidates for the monitored prefix. Consider the AS path up
from a monitor to a prefix p, which consists of an ordered list
of |up| ASes from the monitor to p. (We designate |x| as the
length or size of x both here and in the remainder of this work.)
We can define another AS path uc from the monitor to a prefix
c as similar to up—which we denote uc ∼ up—if two paths
share the first |up| − n AS hops (starting from the monitor’s
AS) where n is an integer indicating that the last n hops of up
are ignored for similarity comparison. Furthermore, if uc ∼ up
and the monitor heard uc and up almost simultaneously, say
within time ∆ from each other, the monitor can then use prefix
c as a buddy candidate of prefix p.

The value of n directly affects the distribution of buddy
candidates, or which ASes may be eligible to offer buddies.
We define the set of all the ASes from which a monitor can
choose buddy candidates for prefix p as p’s buddy candidate
zone, denoted by Zp(n). Fig. 11 shows three examples with
n being 0, 1, or 2, respectively. When n is 0, buddies can
only be from the same AS as the monitored prefix, i.e., the
origin AS (Fig. 11(a)), or its descendent ASes (not shown); in
other words, when n is 0, Zp(n)includes only the origin AS
and its descendent ASes. When n is 1, buddies can also be
from—i.e., the zone can also include—the so-called parent
AS and sibling ASes (Fig. 11(b)), or their descendant ASes
(not shown). Clearly, n=2 will further expand Zp(n).

Fig. 11: Finding buddies using path similarity principle.
Last n hops on the AS path from m to p are ignored for

path similarity comparison.

Algorithm IV.1: CANDIDATESEARCH(up, tup
)

output (Cup
: set of buddy candidates)

local n; fromASes: ASes of buddy candidates
Zp(n): p’s buddy candidate zone

Cup
= φ; fromASes = φ; Zp(−1) = φ; n = 0;

while |Cup
| ≤ α or |fromASes| ≤ β

do

for each AS x in Zp(n)-Zp(n-1)

do

for each prefix c in AS x

do

if uc ∼ up and tuc
∼ tup

then
{

add c to Cup
;

add x to fromASes;
if |up| − n ≤ λ or Zp(n) includes any tier 1 ASes

then return (Cup
);

++n;
return (Cup);

Fig. 12: Buddy candidate searching algorithm. up is the
update of prefix p, and tup

is the time stamp of up.
Thresholds α, β, λ are the minimum number of buddy

candidates, the minimum number of ASes of buddy
candidates, and the minimum number of shared hops in path

comparison.

The monitor aims to find enough buddy candidates from
many different ASes for any IP prefix on the Internet, but
some prefixes may be surrounded by many ASes and thus
many buddy candidates in its close neighborhood (e.g., a
prefix from a tier-1 or tier-2 ISP usually has many sibling
ASes), and some may be in a sparse area (e.g., a prefix whose
ancestor AS in the recent several generations only has very
few descendant ASes). The monitor thus adopts an adaptive
buddy candidate search strategy with a varying value of n,
instead of a fixed value. The strategy works as follows, as
depicted in Fig. 12. During the training period, every monitor
listens to new path announcements for the monitored prefix
p. Whenever a monitor hears a new AS path to prefix p, say
up at time tup , it does the following. First, the monitor sets n
to be 0, and follows the fate-sharing principle above to search
all eligible buddy candidates from the current buddy candidate
zone (the origin AS and its descendant ASes). If the monitor
finds many buddy candidates and these candidates are from
many different ASes, it is done obtaining buddy candidates.
Otherwise, the monitor increases n by 1, thus increasing the
size of p’s buddy candidate zone, and searches from the newly
added ASes to add all the new eligible buddy candidates. If the
monitor still does not obtain enough buddy candidates from a
diverse set of ASes, it will increase n by 1 and repeats this
process again until it does. Note that a larger buddy candidate
zone may imply a higher false negative; if a hijacker in the
zone announces a fake path to a monitored prefix to hijack it,
the monitor will not detect the hijacking.

Every monitor ensures it has enough skewers to compare the

14

frequency of buddy candidates in matching a monitored prefix
and every relative prefix. It begins with a one-week window,
but if it does not have at least ξ BGP updates of the monitored
prefix, it then expands the training period to search for more
updates regarding the prefix. If by expanding its training period
to more than four weeks the monitor still cannot obtain enough
updates, it will simply give up and stop being a monitor for the
prefix in question. Because Buddyguard relies on the collective
efforts of its monitors, whereas every monitor does its best
effort, it does not require every monitor to be able to monitor
a given prefix.

2) Buddy Selection Algorithm:
Once a monitor has obtained the buddy candidates for a

monitored prefix during the training period, it needs to decide
which candidates to select to be the buddies for the prefix.
The most frequently matching candidates found during this
training period are clearly the best-matching, but in selecting
buddies, the monitor further needs to consider the criteria that
require (1) there are always enough buddies matching the
monitored prefix, and (2) the buddies are distributed across
multiple ASes (thus resilient to co-hijacking). Comparing to
1.0 version, Buddyguard 2.0 version introduced a more formal
algorithm with all parameters clearly defined. The details of
the algorithm is described as follows.

We employ a skewering algorithm, with its pseudo code in
Fig. 13. During the training period, whenever monitor m hears
a path update up at time ti, it creates a skewer data structure
for time ti. By the end of training, the monitor will have a
set of skewers S = {sti}, each skewer corresponding to an
update up(ti) that m witnessed (Fig. 14). We then “skewer”
candidates by sorting them based on frequency of matching
(best to worst), and place the best-matching candidate c on
each skewer sti where uc(ti ±∆) ∼ up(ti).

The skewering algorithm enables Buddyguard to select
buddies meeting the above criteria. We continue to skewer
candidates until all of the skewers are full, or more formally:

∀sti ∈ S, |sti | ≥ ω

for some lower bound capacity ω. This ensures that buddies
can account for the full range of normal behavior for the
monitored prefix; in other words, every time the monitor hears
a new path to a prefix, there are at least ω buddies of the
prefix all of which will also have a new, similar path. We can
also ensure that buddies are widely distributed by skewering
candidates until they cover at least ψ ASes (we use ψ=10 in
our current configuration). Through experiments we find that
more than 70% of the monitors would have buddies cover at
least 10 ASes, and more than half of them will cover at least
100 ASes. Once these conditions are met, Buddyguard selects
all skewered candidates as buddies.

3) Relative Prefixes Training: In Buddyguard 1.0, we only
takes the monitored prefixes into consideration when training,
where in some cases the prefixes may be aggregated or only
the sub-prefixes were announced during the training period,
and therefore Buddyguard cannot hear any updates to the
monitored prefixes. In order to cover the situations like this,
we introduced the relative prefixes training algorithm, where

Algorithm IV.2: SKEWERINGALGORITHM(p)

output (Bp: buddies of prefix p)
local C: candidates; S: skewers; A: ASes seen already
C = φ; S = φ; A = φ; Bp = φ;
for each update up(ti) seen at time ti

do

C = C ∪ {CANDIDATESEARCH(up(ti), ti)};
create skewer sti for up(ti) : sti = φ;
S = S ∪ {sti};

while ∃sti ∈ S s.t. |sti | < ω

do

choose the most frequent c in C where
uc(ti ±∆) ∼ up(ti) :

sti = sti ∪ {c};
∀ skewer stj(j 6=i) where uc(tj ±∆) ∼ up(tj) :

stj = stj ∪ {c};
Bp = Bp ∪ {c};
A = A ∪ {AS(c)}; (AS(c) is the AS of c.)

while |A| < ψ (i.e., Bp is not diverse)

do

find the most frequent cnew ∈ C

where AS(cnew) /∈ A;
Bp = Bp ∪ {cnew};
A = A ∪ {AS(cnew)};

return (Bp);

Fig. 13: The skewering algorithm at monitor m, where p
is a monitored prefix. Thresholds: ω is the minimum

number of buddies per skewer; ψ is the minimum number of
ASes of the finally selected buddies.

Fig. 14: Skewers in the training process. A skewer
represents a path change for a monitored prefix at time ti.

Each circle represents a buddy cj .

we take the “relative prefixes” of the monitored prefix also into
consideration when training. The detail is derived as follows.

During our study, we note that when training a prefix, a
monitor not only needs to train the prefix itself, but also
its relative prefixes, and learn the buddies of every relative
prefix using the same procedure described above. The relative
prefixes of a monitored prefix p includes (i) all sub-prefixes
of p that are heard by the monitor during the training period
where every sub-prefix is a subset of p, and (ii) the longest
super-prefix of p, which is a superset of p, that the monitor

15

Algorithm IV.3: RELATIVEPREFIXTRAINING(p)

local R: relative prefixes of p; Bx: buddies of prefix x;
output (BR: all relative prefixes of p and their buddies)
R = φ; BR = φ;
for each update ux(t) seen at time t for prefix x

do

if x ⊂ p and x /∈ R (x is a sub-prefix of p)
then R = R ∪ {x};

if x ⊇ p and x /∈ R (x is a super-prefix of p)

then

if @ y ∈ R s.t. y ⊇ p

then R = R ∪ {x};
else if ∃ y ∈ R s.t. y ⊃ x
then replace y with x in R;

for each prefix x in R

do
{
Bx =SKEWERINGALGORITHM(x);
BR = BR ∪ {〈x,Bx〉};

return (BR);

Fig. 15: Algorithm for collecting and training the relative
prefixes of a monitored prefix p.

hears if the monitor does not hear p itself during training.
For example, 208.65.153.128/25 and 208.65.153.0/25 are two
sub-prefixes of 208.65.153.0/24 (each /25 prefix is a subset
of the /24 prefix) and 208.65.152.0/22 is a super-prefix of
208.65.153.0/24 (the /22 prefix is a superset of IP addresses of
the /24 prefix). Recall every monitor is also a BGP router and
follows the longest prefix matching principle. Once a monitor
has trained a prefix x, i.e., the monitor has processed every
AS path it has toward x and obtained buddies for x, it can
use the buddies of x to monitor not only x, but also any sub-
prefix s of x if the monitor has not heard anything about
another prefix y such that i.e., s⊆y⊂x. If the monitor has
heard about y, because y is more specific than x—note y could
also be exactly s—it then uses the buddies of y to monitor s.
Therefore, if the monitor has not heard anything about the
monitored prefix p itself, it will train the longest super-prefix
of p that the monitor has heard. Furthermore, the monitor will
train all sub-prefixes of p—if any— that the monitor has heard
during training. Doing so, the monitor can monitor p using the
buddies of p or the buddies of the super-prefix (if it has not
heard p), and it can also monitor any sub-prefix s of p whether
it has heard s or not during training (by using the buddies of
the longest super-prefix of s). Fig. 15 describes how a monitor
runs training for all its relative prefixes.

4) Monitoring Algorithm:
While in Buddyguard 1.0 the monitoring tasks are con-

ducted by only the monitors, the monitoring process of Bud-
dyguard 2.0 happens at two levels instead: the monitor level
and the controller level. At the monitor level, every monitor
independently processes BGP updates toward every monitored
prefix and their buddies to determine whether or not the
prefix is experiencing an anomaly, and if so, sends a warning
signal to the controller. At the controller level, the controller

aggregates warning signals from all monitors to determine
whether an anomaly occurs and if so issue an alert about
the anomaly. The controller can further analyze an anomaly’s
scope of impact and possible origin. Like what we did with the
training process description, to better illustrate how monitoring
works, below we assume the monitored prefix anomalies are
prefix hijacking and route leaks.

For every monitored prefix, after a monitor has identified
buddies of the prefix through the training process, during
the monitoring process it uses these buddies to detect if an
anomaly occurs to the prefix. Assume we are monitoring prefix
hijacking and route leaks. Whenever a monitor hears a new
path to a prefix p, say at time t, it will check whether this
is one of the “good paths” that it has already seen during the
training phase. If not, the monitor will wait for a short period
of ∆ time, and then check if more than ϕ buddies of p also
switch to a similar new path within the time period t ± ∆.
If not, the monitor sends a warning report to the controller,
indicating that the prefix may be hijacked. The monitor will
also switch from “normal” state to “warning” state in terms
of this prefix.

Defining the warning threshold ϕ would seem to be a
difficult task. How can a monitor know how many buddies
will typically match a monitored prefix? The answer lies
in using data from training, and here again the skewering
mechanism becomes exceedingly useful. Consider a set of
skewers S from training, which correspond to legitimate paths
from monitor m to p, and look at the number of buddies on
each skewer as a random variable. This random variable shows
every time when p had a legitimate path change, how many
buddies also switched to a new similar path. (We would expect
many buddies would also switch since that is why they are
considered buddies.) If the number of buddies on each skewer
follows the normal distribution, then we can define ϕ = µ−3σ
where µ and σ are the mean and standard deviation of buddies
per skewer, respectively, and the probability of only having ϕ
or less buddies matching p is almost zero (roughly 0.0026).
If the monitor hears a new path to a prefix but no more than
ϕ of its buddies switching to a similar new path, the monitor
can then treat the new path as very likely illegitimate.

If the monitor did not hear the prefix during the training,
the monitor will use the buddies of its super-prefix, a relative
prefix the monitor learned during training, to decide whether
a newly heard path to the prefix (or the super-prefix) is
illegitimate. Furthermore, if the monitor hears a new path to a
sub-prefix of the monitored prefix, it will find the most specific
relative prefix that includes the sub-prefix, and use the buddies
of this relative prefix to verify the new path.

A monitor may switch from the “warning” state back to
the “normal” state. After it sends a warning to the controller
that it heard an illegitimate path to a prefix, after some
time it may hear a new routing update about the prefix. The
monitor will verify this update, using the same aforementioned
procedure. If it does not find the route advertised in this update
illegitimate, it will switch back to the “normal” state, and send
a report to the controller that this prefix is normal now.

16

F. Apply Buddyguard 2.0 on Real-World Events

To evaluate Buddyguard 2.0 on today’s Internet, we used
273 BGP speakers that peer with RouteViews collectors [5] as
BGP monitors. To run the training and monitoring process, we
used the BGP updates from these BGP speakers for 490,000
prefixes of interest during various time periods (totaling 125
days) from 2005 to 2013.

For evaluating Buddyguard’s accuracy in detecting prefix
hijackings, we first run the training process for every prefix
that was later hijacked, and then run the monitoring process
to see if Buddyguard can detect the hijacking. For accuracy in
detecting route leaks, if hundreds or even thousands of prefixes
may be affected, we select prefixes randomly from diverse
locations, including tier 1, tier 2, and tier 3+ ASes.

We evaluated Buddyguard’s ability to detect prefix hijacking
by testing it on a wide manner of hijackings. For brevity, we
show the results for four well-known hijacking events:
• [05-Cogent-Google] Cogent’s hijack of one of Google’s

prefixes [30].
• [06-ConEd-MStewart] Con Edison’s hijack of 30+ pre-

fixes, including some belonging to their customers [29].
• [08-Pakistan-YouTube] Pakistan Telecom’s hijack of a

sub-prefix of YouTube’s prefix [31].
• [13-Valitor-CenturyTel] A prefix interception event, Ice-

landic ISP Valitor hf intercepted traffic to a CenturyLink
prefix [32], [39].

Our results from these hijacking events (Fig. 16) show that
Buddyguard is well-suited to detecting prefix hijackings. For
these events we found it sufficient to only use buddies from
origin, parent, and sibling ASes, which we also call origin,
parent, and sibling buddies, respectively. We show the results
with origin, parent, and sibling buddies separately. For all
hijacking events, to detect them it suffices to use ρ = 25% as
the threshold of the minimum percentage of monitors raising
warnings.

We also evaluated Buddyguard’s accuracy in detecting route
leaks (shown in Fig. 17). We picked three recent and well-
known route leaks:
• [10-China-Routeleak] China Telecom route leak [22];
• [12-Canada-Routeleak] Canada Dery Telecom route
leak [23]; and
• [12-Indonesia-Routeleak] Indonesia Moratel route
leak [40].
Based on the details reported from each monitor, we can

further trace the origin of a hijacking or route leak event and
investigate its scope of impact. For every event we studied
in this section, Table III shows which ASes are likely the
origin of a hijacking or leaking event (we choose multiple
victim prefixes in a route leak event). These ASes are on the
intersection of all illegitimate AS paths from monitors to a
victim prefix. For a route leak event, we can further narrow
down the possible origin ASes of the leak to be the intersection
of every victim prefix’s possible origin ASes. In 12-Canada-
Routeleak, for example, this would be 577→ 46618→ 5769.

Calculating the scope of the impact is straightforward.
Given a total of 273 monitors, Table III further shows the
percentage of monitors that heard the hijacking or route leak

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80

Time (hours)

Origin Buddies
Parent Buddies
Sibling Buddies

(a) Cogent hijacked a Google prefix
(64.233.161.0/24). Time 0 is 5/6/05
at 09:00:00 UTC. The hijack began
5/7/05 at 14:37:56 UTC [30].

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80

Time (hours)

Parent Buddies
Sibling Buddies

(b) Con Edison hijacked Martha
Stewart Living (12.173.227.0/24).
Time 0 is 1/21/06 at 09:00:00
UTC. The hijack began 1/22/06 at
05:05:33 UTC [29].

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8

Time (hours)

Origin Buddies
Parent Buddies
Sibling Buddies

(c) Pakistan Telecom hijacked
YouTube (208.65.152.0/22). Time
0 is 2/24/08 at 16:00:00 UTC. The
hijack began at 18:47:57 UTC [31].

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2

Time (hours)

Origin Buddies
Parent Buddies
Sibling Buddies

(d) Valitor hf hijacked a CenturyTel
prefix (206.51.64.0/20). Time 0 is
8/19/2013 at 14:00:00 UTC. The
hijack began at 14:19:40 UTC [32].

Fig. 16: Detection results of prefix hijacking events.

(the sum of Nwarning and NF− divided by 273), i.e., the
scope of the impact from an event. Clearly, some events have
a larger impact than others (e.g., 08-Pakistan-YouTube), and
some only propagate to a small region of the Internet (e.g.,
12-Indonesia-Routeleak).

G. Overhead Estimation

Given that Buddyguard aims to be an Internet-scale moni-
toring system, in this section we demonstrate that Buddyguard
scales with the number of monitored prefixes in terms of the
memory, storage, and network overhead.

1) Affordable Memory and Disk Storage Overhead:
We now analyze the memory and disk storage overhead at

every monitor. (We skip the analysis for the controller due to
the very low overhead at the controller.) We show Buddyguard
incurs a reasonable overhead during both the training phase
and the monitoring phase.

During the training process, a monitor can adopt a sliding
time window mechanism to run Algorithm IV.1 (Fig. 12)
in order to discover the buddy candidates. Assume we are
monitoring all the IP prefixes on the Internet. As a monitor
sequentially processes BGP updates during the training period,
every time a monitor hears a BGP update to a monitored prefix,
say at time t, it only needs to use updates from a time window
of [t−∆, t+∆]. The primary memory cost for Algorithm IV.1
is thus to store these updates, particularly the AS path and the
prefix of each update. The total is thus

∑
i (1 + |ui| ∗ 4 + 4)

bytes, where every update ui has |ui| AS hops and we use
1 byte to record AS hop count, every hop is a 4-byte AS

17

TABLE III: Tracing and scope of the impact of prefix hijacking and route leaks events.

Events Victim prefix Nheard Nwarning NF− NT− Scope of impact (%) Possible origin ASes of the event
05-Cogent-Google 64.233.161.0/24 45 32 4 9 13.2 174
06-ConEd-MStewart 12.173.227.0/24 35 24 0 11 8.8 27507
08-Pakistan-YouTube 208.65.152.0/22 120 115 0 5 42.1 3491 → 17557
13-Valitor-CenturyTel 206.51.64.0/20 2 2 0 0 0.7 6677 → 47828

10-China-Routeleak 175.111.114.0/23 27 27 0 0 9.9 4134 → 23724
83.139.14.0/24 19 19 0 0 7.0 4134 → 23724

12-Canada-Routeleak
197.159.80.0/20 30 30 0 0 11.0 577 → 46618 → 5769 → 8657
186.2447.192.0/19 30 26 0 4 9.5 577 → 46618 → 5769 → 2119
8.8.8.0/24 2 2 0 0 0.7 577 → 46618 → 5769 → 15169

12-Indonesia-Routeleak 8.8.8.0/24 2 2 0 0 0.7 3491 → 23947

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2

Time (hours)

Origin Buddies
Sibling Buddies
Parent Buddies

(a) Aggregated detection result of
China Telecom route leak (100 ran-
domly selected affected prefixes).

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7

Time (hours)

Origin Buddies
Parent Buddies
Sibling Buddies

(b) Aggregated detection result of
Canada Dery Telecom route leak
(30 randomly selected affected pre-
fixes).

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5

Time (hours)

Origin Buddies
Parent Buddies
Sibling Buddies

(c) Detection result of Indonesia
Moratel route leak (with 8.8.8.0/24
as the affected prefix).

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7

Time (hours)

Origin Buddies
Parent Buddies
Sibling Buddies

(d) Detection result of Canada Dery
Telecom leaking route of prefix
8.8.8.0/24.

Fig. 17: Detection results of route leak events.

number, plus the prefix of the update is 4 bytes. Assuming |ui|
is 4.3 according to RIPE [41], and using the maximum number
of updates that a monitor receives in ∆ (40) seconds, i.e.,
182,440 updates in 2012 from our measurement, the memory
requirement will be only 4.05 MB.

Once a monitor discovers the set of buddy candidates cor-
responding to an update, it stores the set to its hard disk. With
|Cup
| buddy candidates per update (Algorithm IV.1), where

each candidate a 4-byte prefix, and |S| updates during training
for every monitored prefix (Algorithm IV.2), the total storage
cost per prefix is thus 4∗|Cup |∗ |S| bytes. In fact, the monitor
can store all buddy candidates related to a given monitored
prefix in the same file, with each file of 4 ∗ |Cup

| ∗ |S| bytes.
Suppose we are monitoring all N prefixes on the Internet, the
total hard disk storage would then be 4∗ |Cup

| ∗ |S| ∗N bytes.
Fig. 18 shows the CDF of |Cup |, with its maximal value at
4619. As we limit |S| to be no more than 100 and we know
N is 490,000 according to [42], the worst case of the total
storage cost will be 4*4619*100*490,000=905.3 GB.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000 100000

C
D

F

Mean buddies per monitor

Fig. 18: CDF of mean number of buddies per monitor

TABLE IV: Threshold parameters used in training.

Definition Section Value
∆ maximum interval of “simultaneous” updates IV-E1 40s
α minimum # of buddy candidates per skewer IV-E1 50
β minimum # of ASes of buddy candidates IV-E1 30

per skewer
λ minimum # of shared hops in path comparison IV-E1 3
ω minimum # of buddies per skewer IV-E2 30
ψ minimum # of ASes of a prefix’s buddies IV-E2 10
ξ minimum # of skewers in training IV-E2 10

When the monitor needs to run the skewering algorithm
for a prefix (Algorithm IV.3), it needs to read the candidate
file for the prefix into memory. In addition, it needs memory
space for ω buddies per skewer, as well as ψ 4-byte AS
numbers, leading to a total of 4|Cup

|*|S|+4ω*|S|+4ψ bytes.
With ω=30 and ψ=10 (Table IV), this would then be only
4*4619*100+4*30*100+4*10=1,859,640 bytes. Even with all
N prefix on the Internet to handle, Buddyguard can sequen-
tially handle them, keeping memory cost always low.

The memory cost during the monitoring process is also low.
For every monitored prefix, when hearing an update about it,
the monitor will need to check its buddies’ updates. Assume
it has |Bp| buddies and the AS path from each update ub
is 4 ∗ |ub| bytes. The memory cost per monitored prefix is
then 1 byte for tracking the state of the prefix (“warning” or
“normal”), 4 ∗ |Bp| bytes for tracking buddies, plus (|ub| ∗
4 + 1)*|Bp| bytes for recording AS paths of buddies (1 byte
for AS hop count), with a total of |Bp| ∗ (4 ∗ |ub| + 5) + 1
bytes. If |Bp| is 200, |ub| is 4.3, this would be only 4,441
bytes per prefix, and 4,441*490,000=2.176 GB for all 490,000
monitored prefixes.

2) Low network overhead:

18

The network overhead in Buddyguard happens between
every monitor and the controller. Recall every monitor may
send a report message regarding a monitored prefix to the
controller, and the controller may query all monitors to learn
whether or not they have heard a new path to a prefix
(Section IV-D2). Based on the format of these two types of
messages, we calculate that a query message has a payload of
10 bytes and a report has a payload of 32 bytes. Assuming all
messages are carried using TCP with a TCP/IP header of 40
bytes, the length of an entire query message is then 50 bytes
and the length of an entire report message is 72 bytes. Now,
for one suspicious update, assume the controller queries all m
monitors and every monitor reports to the controller, the total
networking overhead will be then 50 ∗m + 72 ∗m = 122m.
At the controller, it will then incur 50m bytes outbound traffic
(query) and 72m bytes inbound traffic (report). If every second
there are κ suspicious updates, it will then be 50mκ bytes of
query traffic and 72mκ bytes of report traffic. In our current
Buddyguard architecture, m=273. Even in an extreme case
where κ is 100, the bandwidth cost will be only 1.365 MB/s
for query traffic and 1.966 MB/s for report traffic.

V. SYSTEM IMPLEMENTATION AND DEMONSTRATION

In order to achieve a near real-time process speed, we
upgraded our architecture and enables multi-thread processing
for each monitor component. In real development schema,
each monitor component of I-seismograph should run on
separate machines independently, with results sent to a central
result collector. In our simulated environment, we use data
collectors like RouteViews and RIPE RIS as our data source,
where the BGP updates from all peers were mixed by the
collector. In this case, we first group the updates by the original
receiving peers. We then create a monitor instance for each
peer, and dispatch the corresponding updates to this monitor
instance for processing. When running I-seismograph on the
test cases, we usually will have a data source with 20 to 25
peers. We start a new thread for each monitor instance, and
manged to finish processing the total BGP updates 6 to 7 times
faster than before. After all the monitor instance threads finish,
we then aggregate the results for the presenters and statistical
analysis. Figure. 19 shows the work flow of the parallel stream
line processing, and Figure 20 shows the demonstration of
current deployed I-seismograph monitoring instance on the
web.

During our development, we targeted to create high-
quality deployable code for real deployment. Our system I-
seismograph 2.0 and Buddyguard 2.0 both have a working
version within our generic framework ready for deployment.

VI. RELATED WORK

A. Global-level Monitoring

Monitoring the routing infrastructure, especially BGP, has
largely focused on its dynamics such as instability or patho-
logical behavior. Researchers have not only measured BGP
dynamics (e.g., [15], [16]), but have also attempted to in-
vestigate their origin (e.g., [43], [44]). There are also tools
such as BGPlay [45], iBGPlay [46], and LinkRank [47] to

Pre-processor

Collector

Presenter

Monitor Monitor Monitor……

Dispatch

Aggregate

Fig. 19: Parrallel stream line work flow.

visualize BGP dynamics. However, none of these studies or
tools can help quantify how much the routing infrastructure,
or BGP in particular, deviates from its normal state when
certain dynamics happen. In fact, because most previous BGP
measurement work focuses on a specific period, they do not
even offer what normal might be in a long-term sense.

Many works (e.g., [48], [49], [50]) also investigated the ef-
fects of certain Internet worms, electricity outage, or undersea
cable cut and other events on BGP. These works discovered
that the Internet could experience a much higher level of
dynamics under severe conditions. As every investigation is
specific to a specific event, these studies cannot be unified to
provide a uniform approach to measuring the impact on BGP.

B. Prefix-level Monitoring

Early solutions monitored prefix origin changes to detect
prefix hijacking [7], [8], assuming that an attacker must claim
itself as the new origin of a victim prefix in order to hijack
it. But an attacker can hijack a prefix by merely stating it
is close to the real origin of the victim prefix, invalidating
this assumption. Later solutions recognized this fact, but they
required the owner of a prefix to verify the paths to its prefix,
putting a heavy burden on human administrators [9], [10].
Recent solutions set up monitors, probe them from a monitored
prefix, and watch and analyze responses to determine if
the prefix is hijacked [11]. However, in the case of prefix
interception, the prefix will simply receive responses as usual.

An alternative monitoring solution, reference point compar-
ison, addresses several of these deficiencies. This approach is
used in [12] and [13], as well as the current leading approach
described in [14]. To detect whether a prefix is hijacked, it uses
monitors distributed throughout the Internet to check whether
each monitor’s route to the prefix deviates significantly from
its route to a topologically nearby reference point. This system
has many advantages; it is both lightweight and capable
of detecting prefix interception, since the prefix’s route will
still deviate from the reference point’s route. However, even
these solutions fail to address a fundamental issue: the ability
of prefix hijackers to circumvent defenses. An attacker can
discover which IP prefix(es) likely contain the IP address of

19

(a) An map visualization for Indosat 2014 event. The event started at 4/2/2014 18:26 UTC.

(b) I-seismograph events impact results, organized by dates of individual events.

Fig. 20: Running system demonstration of I-seismograph.

the reference point, and hijack these prefixes and the monitored
prefix simultaneously, causing the hijack to go undetected. In
particular, if the reference point shares the same origin AS
as the monitored prefix, hijacking both in one fell swoop is
trivial.

Lastly, while many types of prefix anomalies could happen
to an IP prefix, these hijack detection approaches cannot easily
translate to monitoring other prefix routing anomalies. Due
to the scale and complexity of Internet routing, the cause
of various routing anomalies is often complicated and their
symptoms are rarely predictable. Most of the time, network
administrators have to handle them on an ad hoc, case by case
basis—if an anomaly is even noticed or reported. Rather than
focusing on specific cases of routing anomalies such as prefix

hijacking, a prefix monitoring system should be extensible
enough to cover various known or unknown prefix anomalies.

VII. CONCLUSION

In this report, we introduced a generic BGP monitoring
framework that can incorporate both monitoring systems and
provide extensibility for any types of BGP monitoring tasks.
We design and implemented the components of the framework
and created a generic workflow for BGP monitoring. Our
framework aims to provide a general framework that users
can design and implement new components independently,
and be able to “plug-and-play” the components to perform
any monitoring tasks. Comparing to the existing projects like

20

BGPMon [51] or Cyclops [52], our system provides monitor-
ing functionalities from different granularities, also provides
more types of visualization techniques. Based on that, we
introduced our work on the improvements for the Internet-level
monitoring system “I-seismograph”, and prefix-level monitor-
ing system “Buddyguard”. For I-seismograph, we designed
and implemented new root-cause analysis functions and new
approaches for result visualization. We also implemented I-
seismograph as one monitor component of the framework. For
Buddyguard, we introduced our newly designed algorithms for
training and monitoring, new architecture, new functionalities.
For both projects, we showed the evaluation results for the
most recent real-world anomalous events.

In the future, we plan to push our system to industrial
deployment, and provide help to the community. Users of our
system look at the Internet with low overhead and requirement,
and get a better understanding of the Internet routing’s running
status. More advanced users such as network operators can
also use our system as an approach to conduct root-cause
analysis on any disruptive events on the Internet.

REFERENCES

[1] Y. Rekhter and T. Li, “A border gateway protocol 4 (BGP-4),” 1995.
[2] J. Li, T. Ehrenkranz, and P. Elliott, “Buddyguard: A buddy system for

fast and reliable detection of ip prefix anomalies,” in Network Protocols
(ICNP), 2012 20th IEEE International Conference on. IEEE, 2012, pp.
1–10.

[3] N. W. Group et al., “BGPSEC protocol specification,” 2011.
[4] R. Lychev, S. Goldberg, and M. Schapira, “BGP security in partial

deployment: is the juice worth the squeeze?” in ACM SIGCOMM, 2013,
pp. 171–182.

[5] Univ. of Oregon, “Route Views project,” http://www.routeviews.org/.
[6] RIPE NCC, “RIPE routing information service raw data,” http://data.ris.

ripe.net/.
[7] S. Teoh, K. Ma, S. Wu, D. Massey, X. Zhao, D. Pei, L. Wang, L. Zhang,

and R. Bush, “Visual-based anomaly detection for BGP origin AS
change (OASC) events,” 2003.

[8] C. Krügel, D. Mutz, W. K. Robertson, and F. Valeur, “Topology-based
detection of anomalous BGP messages,” pp. 17–35, 2003.

[9] RIPE NCC, “RIPE MyASN service,” http://ris.ripe.net/myasn.html.
[10] M. Lad, D. Massey, D. Pei, Y. Wu, B. Zhang, and L. Zhang, “PHAS: A

prefix hijack alert system,” in Proc. of the USENIX Security Symposium,
2006.

[11] Z. Zhang, Y. Zhang, Y. C. Hu, Z. M. Mao, and R. Bush, “iSPY:
Detecting IP prefix hijacking on my own,” in ACM SIGCOMM, 2008,
pp. 327–338.

[12] H. Ballani, P. Francis, and X. Zhang, “A study of prefix hijacking and
interception in the Internet,” in ACM SIGCOMM, 2007, pp. 265–276.

[13] X. Hu and Z. M. Mao, “Accurate real-time identification of IP prefix
hijacking,” in Proc. of the IEEE Symposium on Security and Privacy,
2007, pp. 3–17.

[14] C. Zheng, L. Ji, D. Pei, J. Wang, and P. Francis, “A light-weight
distributed scheme for detecting IP prefix hijacks in real-time,” in ACM
SIGCOMM, 2007, pp. 277–288.

[15] C. Labovitz, G. R. Malan, and F. Jahanian, “Internet routing instability,”
in ACM SIGCOMM, 1997, pp. 115–126.

[16] J. Li, M. Guidero, Z. Wu, E. Purpus, and T. Ehrenkranz, “BGP routing
dynamics revisited,” ACM SIGCOMM Computer Communication Re-
view, vol. 37, no. 2, pp. 7–16, April 2007.

[17] H. Yan, R. Oliveira, K. Burnett, D. Matthews, L. Zhang, and D. Massey,
“BGPmon: A real-time, scalable, extensible monitoring system,” in
Proc. of Cybersecurity Applications and Technologies Conference for
Homeland Security, 2009.

[18] C. Labovitz, “Multithreaded routing toolkit,” Merit Technical Report to
the National Science Foundation, Tech. Rep., 1996.

[19] L. Wang, X. Zhao, D. Pei, R. Bush, D. Massey, A. Mankin, S. Wu, and
L. Zhang, “Observation and analysis of BGP behavior under stress,”
November 2002.

[20] J. Li and S. Brooks, “I-seismograph: Observing and measuring internet
earthquakes,” in INFOCOM, 2011 Proceedings IEEE. IEEE, 2011, pp.
2624–2632.

[21] C. Labovitz, G. R. Malan, and F. Jahanian, “Internet routing instability,”
vol. 6, no. 5, pp. 515–528, 1998.

[22] A. Toonk, “Chinese ISP hijacks the internet,” http://bgpmon.net
/blog/?p=282, April 2010.

[23] ——, “A BGP leak made in Canada,” http://www.bgpmon.net/a-bgp-
leak-made-in-canada/, 2012.

[24] E. Zmijewski, “Indonesia Hijacks the World,”
http://research.dyn.com/2014/04/indonesia-hijacks-world/, 2014.

[25] L. Franceschi-Bicchierai, “Internet blackout sweeps syria, again,”
http://mashable.com/2014/03/20/syria-goes-almost-completely-offline-
again/, 2014.

[26] A. Toonk, “What caused today’s Internet hiccup,”
http://www.bgpmon.net/what-caused-todays-internet-hiccup/, 2014.

[27] Y. Shen, “Global Internet routing table reaches 512k milestone,”
http://blogs.cisco.com/sp/global-internet-routing-table-reaches-512k-
milestone/, 2014.

[28] D. Reisinger, “Time Warner Cable suffers massive outage nationwide,”
http://www.cnet.com/news/time-warner-cable-suffers-massive-outage-
nationwide/, 2014.

[29] T. Underwood, “Con-Ed steals the ’Net,” http://renesys.com/blog
/2006/01/coned-steals-the-net.shtml, 2006.

[30] T. Wan and P. C. van Oorschot, “Analysis of BGP prefix origins during
Google’s May 2005 outage,” in Proc. of IPDPS, 2006.

[31] RIPE NCC, “YouTube hijacking: A RIPE NCC RIS case study,”
http://www.ripe.net/news/study-youtube-hijacking.html.

[32] J. Cowie, “The new threat: Targeted Internet traffic misdirection,”
http://www.renesys.com/2013/11/mitm-internet-hijacking/, 2013.

[33] A. Toonk, “BGP prefix hijack by AS16735,” http://bgpmon.net/
blog/?p=80?, November 2008.

[34] T. Underwood, “Internet-wide catastrophe—last year,” http:
//www.renesys.com/blog/2005/12/internetwide nearcatastrophela.shtml,
December 2005.

[35] S. Goldberg, M. Schapira, P. Hummon, and J. Rexford, “How secure
are secure interdomain routing protocols?” in ACM SIGCOM, 2010.

[36] RIPE NCC, “RIPE routing information service,” http://www.ris.ripe.net/.
[37] “PCCW Limited,” http://www.pccw.com.
[38] “Pakistan Telecom,” http://www.ptcl.com.pk.
[39] K. Zetter, “Someone’s been siphoning data through a huge security

hole in the Internet,” http://www.wired.com/threatlevel/2013/12/bgp-
hijacking-belarus-iceland/, 2013.

[40] T. Paseka, “Why Google went offline today and a bit about how
the Internet works,” http://blog.cloudflare.com/why-google-went-offline-
today-and-a-bit-about, 2012.

[41] M. Kühne, “Update on AS path lengths over time,”
https://labs.ripe.net/Members/mirjam/update-on-as-path-lengths-over-
time, 2012.

[42] T. Bates, P. Smith, and G. Huston, “CIDR report,” http://www.cidr-
report.org/as2.0/, 2014.

[43] D. Chang, R. Govindan, and J. Heidemann, “The temporal and topo-
logical characteristics of BGP path changes,” in Proceedings of the
International Conference on Network Protocols, November 2003, pp.
190–199.

[44] A. Feldmann, O. Maennel, Z. Mao, A. Berger, and B. Maggs, “Locating
Internet routing instabilities,” in ACM SIGCOMM, August 2004.

[45] L. Colitti, G. Battista, I. Marinis, F. Mariani, M. Pizzonia, and M. Pa-
trignani, “BGPlay,” http://www.ris.ripe.net/bgplay.

[46] “iBGPlay,” http://www.ibgplay.org.
[47] M. Lad, L. Zhang, and D. Massey, “Link-rank: A graphical tool for

capturing bgp routing dynamics,” in IEEE/IFIP NOMS, 2004.
[48] J. Cowie, A. Ogielski, B. Premore, and Y. Yuan, “Internet worms and

global routing instabilities,” in Proc. of SPIE International symposium
on Convergence of IT and Communication, July 2002.

[49] J. Cowie, A. Ogielski, B. Premore, E. Smith, and T. Underwood, “Impact
of the 2003 blackouts on Internet communications,” http://www.renesys.
com/news/2003-11-21/Renesys BlackoutReport.pdf, November 2003.

[50] S. LaPerrire, “Taiwan earthquake fiber cuts: a service provider view,” in
NANOG 39, February 2007.

[51] ”BGPMon”, “BGPMon,” http://bgpmon.net, 2012.
[52] UCLA, “Cyclops,” http://cyclops.cs.ucla.edu.

