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Abstract

Deep Learning is a new area of Machine Learning research, which mainly ad-
dresses the problem of time consuming, often incomplete feature engineering
in machine learning. Recursive Neural Network (RNN) is a new deep learn-
ing architecture that has been highly successful in several Natural Language
Processing tasks.

We propose a new approach for relation classification, using an RNN,
based on the shortest path between two entities in the dependency graph.
Most previous works on RNN are based on constituency-based parsing be-
cause phrasal nodes in a parse tree can capture compositionality in a sen-
tence. Compared with constituency-based parse trees, dependency graphs
can represent the relation more compactly. This is particularly important in
sentences with distant entities, where the parse tree spans words that are not
relevant to the relation. In such cases RNN cannot be trained effectively in
a timely manner. On the other hand, dependency graphs lack phrasal nodes
that complicates the application of RNN. In order to tackle this problem, we
employ dependency constituent units called chains. Further, we devise two
methods to incorporate chains into an RNN. The first model uses a fixed tree
structure based on a heuristic, while the second one predicts the structure
by means of a recursive autoencoder.

Chain based RNN provides a smaller network which performs consider-
ably faster, and achieves better classification results. Experiments on Se-
mEval 2010 relation classification task and SemEval 2013 drug drug interac-
tion task demonstrate the effectiveness of our approach compared with the
state-of-the-art models.



Introduction

Relation extraction is the task of finding relations between entities in text,
which is useful for several tasks such as information extraction, summariza-
tion and question answering [31]. For instance, in the sentence: those “can-
cers” were caused by radiation “exposures”, the two entities have cause-effect
relation. As reported in detail in [21], the early approaches to the problem
involve supervised methods where the models rely on lexical, syntactic and
semantic features to classify relations between pairs of entities. While this
approach provides good precision and recall, one has to re-train the model
for other domains with different target relations and thus it is not scalable
to web, where thousands of (previously-unseen) relations exist [1]. To ad-
dress this problem, Open Information Extraction has been proposed which
does not require supervision. In these systems [1, 17, 9], templates based on
lexical, syntactic, POS and dependency features are extracted. While these
patterns give good precision, they suffer from low recall [2]. This is because
they fail to extract patterns which have not been pre-specified, and thereby
are unable to generalize. Another difference between supervised and unsuper-
vised methods is that the latter cannot detect semantic relations, in which
the relation is stated somewhere in the text not necessarily where entities
are mentioned. Self supervision is another approach to relation extraction.
Here, the goal is to create a data set without manual labeling [32, 30, 31].
An example of this approach is Kylin [30] which aims to generate new and
complete existing Wikipedia infoboxes. The relations are between attributes
of the infobox and their corresponding values. For instance: (BornIn, Nel-
son Mandela, South Afriaca) is a relation tuple from the infobox of Mandela
Wikipedia page. The assumptions is that any sentence that mentions both
Nelson Mandela and South Africa in the article, is an instance of BornIn
relation and can be used as a positive training example.

Deep Learning [14] is a new area of Machine Learning research which
mainly addresses the problem of time consuming, often incomplete feature
engineering in machine learning. Moving away from one-hot and distribu-
tional representation of text and introducing vector based representation of
words, was the key element in success of deep learning [29]. Some deep learn-
ing applications in Human Language Technologies include [6] where convo-
lutional neural network is used for sequence labeling tasks and [18] where
recurrent neural network is used for speech recognition. Recursive Neural
Network (RNN) has proven to be highly successful in capturing semantic
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compositionality in text and has improved the results of several Natural Lan-
guage Processing tasks. It has been used to predict parse trees [25], classify
relations [23, 12, 16] and analyze sentiments in text [27, 8].

All previous applications of RNN to relation extraction are based on
constituency-based parsers. These RNNs may span words that do not con-
tribute to the relation. We investigate the incorporation of RNN with depen-
dency parsing that can give a more compact representation of the relation.
We do this by using the shortest path between two entities.

Our first contribution is to introduce a compositional account of depen-
dency graphs that can match RNN’s recursive nature, and can be applied
to relation classification. Our second contribution is to improve the-state-
of-the-art RNN results in terms of performance and efficiency. We propose
two models: the first model uses a fixed structure in which we build a tree
representation of the path with a heuristic. The idea is to start from enti-
ties and to recursively combine dependent-head pairs along the shortest path
between them. The other model predicts the tree structure by a recursive
autoencoder in pre-training, during which we minimize the reconstruction
error of the predicted tree. Both of these approaches output a full binary
tree that can later be used for the RNN training. Our heuristic based model
outperforms the-state-of-the-art methods in classifying relations. Moreover,
compared with the constituency-based RNN, our approach is much more
efficient by saving up to 70% in running time.

In the next section, we cover the related works on RNN and relation ex-
traction. Later, we will elaborate on our chain based RNN and how proposed
models extract features from the chain. Next, we will discuss the details of
the learning procedure and finally we will demonstrate our results and con-
clude the report.

Background and Related Work

At the core of deep learning techniques for NLP lies the vector based word
representation, which maps words to an n-dimensional space. This approach
enables us to have multiple dimensions of similarity and encode the syntac-
tic and semantic features of the words in a compressed numerical format.
Having word vectors as parameters, rather than fixed input, makes neural
models flexible in finding different word embeddings for separate tasks [6].
Furthermore, through a composition model, one can map phrases and sen-
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tences to the same n-dimensional space. These word vectors are stacked into
a word embedding matrix L ∈ Rn×|V | where |V | is the size of the vocabu-
lary. Each word is associated with a vocabulary index k into the embedding
matrix which we retrieve the word’s vector from.

Numerical operations on these vectors are based on Artificial Neural Net-
works (ANN). Inspired by the brain, ANNs have a neuron-like behavior as
their primary computational unit. The behavior of a neuron is controlled by
its input weights θ. Hence, the weights are where the information learned
by the neuron is stored. More precisely a neuron uses the weighted sum of
its inputs, and squeezes them into the interval [0, 1] using a nonlinearity
function like sigmoid:

hθ(x) =
1

1 + e−θT x
(1)

Feed Forward Neural Network

A feed forward neural network (FFNN) is a type of ANN where the neurons
are structured in layers, and only connections to subsequent layers are al-
lowed. Training is achieved by minimizing the network error (E). In order to
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Figure 2: FFNN with four input neurons, one hid-
den layer, and 1 output neuron. This type of ar-
chitecture is appropriate for binary classification
of some data x ∈ R4, however depending on the
complexity of the input, the number and size of the
hidden layers should be scaled accordingly.

where θi are the weights associated with neuron i
and x is the input. Here the sigmoid function (g) is
chosen to be the logistic function, but it may also
be modeled using other sigmoid shaped functions,
e.g. the hyperbolic tangent function.

The neurons can be organized in many differ-
ent ways. In some architectures, loops are permit-
ted. These are referred to as recurrent neural net-
works. However, all networks considered here are
non-cyclic topologies. In the rest of this section
we discuss a few general architectures in more de-
tail, which will later be employed in the evaluated
models.

3.1 Feed Forward Neural Network
A feed forward neural network (FFNN) (Haykin,
2009) is a type of ANN where the neurons are
structured in layers, and only connections to sub-
sequent layers are allowed, see Fig 2. The algo-
rithm is similar to logistic regression using non-
linear terms. However, it does not rely on the
user to choose the non-linear terms needed to fit
the data, making it more adaptable to changing
datasets. The first layer in a FFNN is called the
input layer, the last layer is called the output layer,
and the interim layers are called hidden layers.
The hidden layers are optional but necessary to fit
complex patterns.

Training is achieved by minimizing the network
error (E). How E is defined differs between dif-
ferent network architectures, but is in general a
differentiable function of the produced output and
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Figure 3: The figure shows an auto-encoder that
compresses four dimensional data into a two di-
mensional code. This is achieved by using a bot-
tleneck layer, referred to as a coding layer.

the expected output. In order to minimize this
function the gradient ∂E

∂Θ first needs to be calcu-
lated, where Θ is a matrix of all parameters, or
weights, in the network. This is achieved using
backpropagation (Rumelhart et al., 1986). Sec-
ondly, these gradients are used to minimize E us-
ing e.g. gradient descent. The result of this pro-
cesses is a set of weights that enables the network
to do the desired input-output mapping, as defined
by the training data.

3.2 Auto-Encoder

An auto-encoder (AE) (Hinton and Salakhutdinov,
2006), see Fig. 3, is a type of FFNN with a topol-
ogy designed for dimensionality reduction. The
input and the output layers in an AE are identical,
and there is at least one hidden bottleneck layer
that is referred to as the coding layer. The net-
work is trained to reconstruct the input data, and
if it succeeds this implies that all information in
the data is necessarily contained in the compressed
representation of the coding layer.

A shallow AE, i.e. an AE with no extra hid-
den layers, will produce a similar code as princi-
pal component analysis. However, if more layers
are added, before and after the coding layer, non-
linear manifolds can be found. This enables the
network to compress complex data, with minimal
loss of information.

3.3 Recursive Neural Network

A recursive neural network (RvNN), see Fig. 4,
first presented by Socher et al. (2010), is a type of
feed forward neural network that can process data
through an arbitrary binary tree structure, e.g. a
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Figure 1: FFNN with four input neurons, one hidden layer, and 1 output neuron. This type of architecture
is appropriate for binary classification of some data x ∈ R4

minimize this function, the gradient ∂E
∂θ

needs to be calculated, which can be
done using backpropagation. The result of this processes is a set of weights
that enables the network to do the desired input-output mapping, as defined
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by the training data. An example of FFNN with four input neurons, one
hidden layer, and 1 output neuron is shown in Figure 1.

RNN for Relation Classification

A Recursive Neural Network (RNN) is a type of FFNN that can process data
through an arbitrary binary tree structure. This is achieved by tying weight
across all nodes and restricting the output of each node to have the same
dimensionality as its children. The input data is placed in the leaf nodes of
the tree, and the structure of this tree is used recursively combine the sibling
nodes to the root node. Figure 2 displays an RNN example where each node
contains four neurons.

x5 = f(x1, x4)

x4 = f(x2, x3)

x1 x2 x3

Figure 2: RNN example. Each node has a vector of 4 neurons. At each internal node,
a nonlinearity function (tanh or sigmoid) is applied and a parent node in the same 4-
dimensional space is created.

The central idea in using RNN for NLP tasks is the Principle of Compo-
sitionality which states that:

the meaning of a complex expression is determined by the mean-
ings of its constituent expressions and the rules used to combine
them.

While the initial composition models focused on linear combination of con-
stituents, RNNs provide a new setting to use nonlinear combination of con-
stituents. Binarized parse tree is an elegant recursive structure that matches
RNN and can contain nonlinear combination of nodes in its internal nodes.

As an example, in [25], each node in the parse tree is associated with a
vector and at each internal node p, there exists a composition function that
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takes its input from its children c1 ∈ Rn and c2 ∈ Rn.

p = f(c1, c2) = tanh(W

[
c1

c2

]
+ b) (2)

The matrixW ∈ Rn×2n is the global composition parameter, b is the bias term
and the output of the function p ∈ Rn is another vector in the same space of
the inputs. Finally, the final vector at the root of the parse tree, computed
recursively in a bottom up fashion, represents the distributed representation
of the sentence.

In [23], Matrix-Vector Recursive Neural Network (MV-RNN) is proposed
where instead of using only vectors for words, an additional matrix for each
word is used to capture operator semantics in language. This model is tested
on SemEval 2010 relation classification task with impressive results. They
first find the path in the parse tree between the two entities and apply com-
positions bottom up. Then, they select the highest node of the path and
classify the relationship based on that node’s vector as features. Hashimoto
et al. [12] follow the same design but introduce a different composition func-
tion. They make use of word-POS pairs and include weight matrices based
on the phrase categories of the pair.

Socher et al. in [24] independently proposed a dependency based RNN
that extracts features from a dependency graph which has major differences
from our model.

Dependency Parsing for Information Extraction

Dependency parsing has been used in both supervised and unsupervised re-
lation extraction. Of the former, kernels over dependency graphs are the
most popular methods [7, 3]. For example in [3] the kernel function is based
on the similarity of the nodes on the shortest path, between two entities in
a dependency graph. They discuss intuitions on why using the shortest de-
pendency path for relation extraction makes sense. For example, if entities
are the arguments of the same predicate, then the shortest path will pass
through the predicate. While the use of dependency parsing has been de-
bated among researchers [1, 15] - especially among OpenIE community due
to performance issues - there has been growing interest in using dependency
parsing [31, 17, 9]. For instance, WOE [31] and OLLIE [17] both extract
patterns of dependency path between candidate entities and use augmenta-
tion mechanisms to extract more coherent relations. This rising interest in
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dependency parsing over constituency based parsing, is due to advances in
dependency parsing [19, 10] with high speed and state-of-the-art accuracy.

Chain based RNN

The constituency-based parse trees distinguish between terminal and non-
terminal nodes. The interior or phrasal nodes are labeled by non-terminal
categories of the grammar, while the leaf nodes are labeled by terminal cate-
gories i.e. words. Figure 3 displays the constituency parse tree of a sentence.
This structure matches RNN and can contain nonlinear combination of nodes
in its phrasal nodes. While constituency-based parsing seems to be a rea-
sonable choice for compositionality in general and specifically for sentiment
analysis, it may not be the best choice for all NLP tasks. In particular,
for relation classification, one may prefer to use a structure that encodes
more information about the relations between the words in a sentence. To
this end, we use dependency-based parsing that provide a one-to-one corre-
spondence between nodes in a dependency graph (DG). In dependency-based
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Figure 3: Phrase constituents of: the child was carefully wrapped into the cradle.

parsing, the syntactic head of each word in the sentence is found. This creates
a DG where the nodes are words and edges are the binary relation between
head and dependent. Dependency graphs are significantly different from con-
stituency parse trees since they lack phrasal nodes. More precisely, the inter-
nal nodes where the nonlinear combinations take place, do not exist in DGs.
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Thus we must modify the original RNN and present a dependency-based
RNN for relation classification. In our experiments, we restrict ourselves to
dependency trees where each dependent has only one head. We also use the
example in Figure 4 for better illustration; in this example the arguments of
the relation are child and cradle. It is evident that applying compositions

wrapped

child[arg1]

the

was carefully into

cradle [arg2]

the

Figure 4: DG of : the child was carefully wrapped into the cradle.

on the complete DG is a formidable task and thus we apply compositions on
the words on only the shortest path between entities (shown by thick lines).
From a linguistics point of view, this type of composition is related to the
concept of chain or dependency constituent unit in DGs [28].

Chain: The words A ... B ... C ... (order irrelevant) form a
chain iff A immediately dominates (is the parent of) B and C, or
if A immediately dominates B and B immediately dominates C.

Based on this definition, child wrapped, into cradle, wrapped into cradle, child
wrapped into cradle all qualify as chain while child was does not. With all
words represented as vectors, we need to find a reduced dimensional repre-
sentation of the chain in a fixed size. To this end, we transform this chain
to a full binary tree in which the root of the tree represents the extracted
features.

Fixed Tree Structure

We cannot use an off-the-shelf syntax parser to create a tree for the chain,
because the chain may not necessarily be a coherent English statement, and
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thus parsers fail. We build the tree deterministically using a heuristic. The
idea is to start from argument(s) and recursively combine dependent-head
pairs to the (common) ancestor i.e., each head is combined with the subtree
below itself. In the simplest case: a→ b results in p = f(a, b). The subtlety
of this approach lies in the treatment of words with two dependents. The
reason is that the composition matrix depends on the arity and the shape of
the tree.

If one of the arguments is an ancestor of the other argument, then every
head on the chain has exactly one dependent. If the arguments have a com-
mon ancestor, then that particular node has two dependents. The common
ancestor only takes part in one composition and the result will be combined
with the other subtree’s output vector. The order by which we select the
dependents to be merged with the parent is based on the position of the
dependent relative to the parent in the sentence. The words occurring be-
fore the parent precede the ones occurring after the word. Furthermore, the
preceding words are prioritized based on their distance from the parent. For
our example, wrapped is combined with child and not into. The final tree is
depicted in Figure 5. One observation is that discarding the words that are
not on the chain e.g., carefully, was, results in a more compact representa-
tion compared with constituency-based parsing which includes all the words
between entities. We now prove that a tree built by this algorithm is a full
binary tree.

x7 = f(x5, x6)

x5 = f(x1, x2) x6 = f(x3, x4)

x1 = child x2 = wrapped x3 = into x4 = cradle

Figure 5: fixed tree example

Lemma: There is at most one node with exactly two none leaf children in
the tree.
Proof. If one of the arguments is an ancestor of the other argument e.g.,
arg1 → ... → arg2, then obviously every head on the chain has exactly one
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dependent. Combination of each head and its subtree’s output vector results
in a full binary node in the tree. If the arguments have a common ancestor p
e.g., arg1 → ... p ... ← arg2, then that particular node has two dependents.
In this case, the parent is combined with either its left or right subtrees, and
its result is combined with the output of the other child. No other head has
this property otherwise p is not the common ancestor.
Theorem: The algorithm produces a full binary tree.
Proof. It is obvious that the leaves of the tree are the words of the chain.
Based on the lemma, there exists one root and all the other internal nodes
have exactly two children.

Predicted Tree Structure

Instead of using a deterministic approach to create the tree, we use Recursive
Autoencoders (RAE) to find the best representation of the chain. We saw
that each parent is the result of applying the composition function on its chil-
dren as in Eq. 1. Based on this approach children can also be reconstructed
from the parent similarly.[

c
′
1

c
′
2

]
= tanh(W

′
[
p
p

]
+ b

′
) (3)

where W
′ ∈ R2n×2n and b

′ ∈ R2n. Figure 6 depicts an example of an RAE
where at each node the inputs are reconstructed. For each pair, we compute
the Euclidean distance between the original input and its reconstruction.
The aim is to minimize the reconstruction error of all vector pairs of nodes
in a tree.

Erec(

[
c1

c2

]
) =

1

2

∣∣∣∣[ c1

c2

]
−
[
c
′
1

c
′
2

]∣∣∣∣2 (4)

We define A(x) as the set of all possible trees that can be built from a chain.
Further, T (y) returns the set of all non-terminal nodes in a tree. Using the
reconstruction error of Eq. 3, we can compute the reconstruction error of
input x by Eq. 4.

E(x) = arg min
y∈A(x)

∑
s∈T (y)

Erec(

[
c1

c2

]
s

) (5)

This model is similar to [26] with some modifications in implementation.
They use a semi supervised method where the objective function is a weighted
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p = f(x2, x3)

x
′
2 x

′
3

x2 x3

Figure 6: autoencoder example

sum of the supervised and unsupervised error. Our model is a pipeline where
first, during pre-training, the unsupervised autoencoder predicts the struc-
ture of RNN by minimizing E(x) and then during training the supervised
objective function, cross entropy error, is minimized. We also found out that
keeping word vectors fixed during backpropagation, results in better accuracy
during training.

To predict the structure of the tree, we use a greedy algorithm [26]. It
takes pairs of neighboring vectors, sets them as potential children of a chain
and gives them as input to the autoencoder. For each word pair, the potential
parent node and the resulting reconstruction error are saved. The pair with
the lowest reconstruction error is chosen and then those words are replaced
with the computed representation. We repeat the process until we have
one representation on top of the tree. The predicted tree is then used for
the supervised training. To optimize E(x), L-BFGS is used and derivatives
are computed by backpropagation through structure, the details of which is
described in the next section.

Learning

The vector on top of the tree represents the distributed representation of the
chain. This vector encodes features representing the relation between two
arguments. To predict the label of the relation, a softmax classifier is added
on top of the tree i.e., yi = softmax(P T

nW
lable) where L ∈ Rk, k is the

number of classes, and Pn is the final vector on top of the tree for sentence
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n. The objective function is the sum of cross entropy error at all the nodes,
for all the sentences in the training set.

E(θ) = −
∑
n

∑
k

tkn log ykn +
λ

2
‖ θ ‖2 (6)

The vectors for target, predicted labels, and regularization parameters are
denoted by tn, yn and λ respectively. Model parameters θ include: W , W label

and WO which denote the composition matrix, the softmax layer weights, and
the word vectors respectively. We initialize the word vectors WO ∈ Rn with
pre-trained 50-dimensional words from [6] and initialize other parameters by
a normal distribution with mean of 0 and standard deviation of 0.01.

Backpropagation through Structure

Derivatives are computed by backpropagation through structure [11] and
L-BFGS [4] is used for optimization. The error term associated with each
softmax unit can be computed by:

δk = yk − tk (7)

At each node, there is an error term associated with the softmax units as:

δi =
∑
k

δkW label
ik ⊗ f ′(xi) (8)

where f ′(xi) = (1 − x2
i ) and ⊗ is the Hadamard product between the two

vectors.
In an RNN, children ci, receive error terms from parent i:

δci←i = δiWi ⊗ f ′(xi) (9)

where Wi is the ith n× n block of the matrix W . In the case of leaves,
f ′(xi) = 1. Finally, the total derivative for W is the sum of all derivatives at
each node t in the tree.

∂E

∂W
=
∑
t

δt
[
x1
t

x2
t

]
(10)

where xit represents the ith child.
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For the case of autoencoder, delta at each node is the sum of error term
from the parent δi and from the immediate reconstruction layer δiRAE. The
total delta at each node can be computed by:

δci = (δiWi + δiRAE)⊗ f ′(xi) (11)

Since we need to compute the derivatives based on both c and c
′
, we have

δiRAE as: [c− c′ +W
′
i (c

′ − c)⊗ f ′(c′)].

Experiments

In this section we discuss our results on two well used data sets for relation
classification. To derive the dependency tree for each sentence, we use arc-
eager Malt parser [10]. We set the hyper parameters through a validation set
for the first data set and use them for the second data set too. Similar to the
previous works, few other features are also included. These features comprise
the depth of the tree, distance between entities, three context words, and the
type of dependencies in our model. We found that using dependency types
inside the composition function as in typed functions worsens the results.
Furthermore, while collapsed dependency trees [5] have been preferred for
relation extraction in general, our results with general dependencies were
better. We also tested two layer RNNs with a hidden layer, but the results
of the single layer neurons were not improved.

SemEval-2010 Task 8

This data set consists of 10017 sentences and nine types of relation between
nominals [13]. To encourage generalization on noisier data sets in real-world
applications, a tenth class “other” is also added to this set. In addition,
taking the order of entities into account, the problem will become a 19-
class classification. For example: The burst[e1] has been caused by water
hammer pressure[e2], denotes a Cause-Effect(e2,e1) relation, while: Fi-
nancial stress[e1] is one of the main causes of divorce[e2], denotes a Cause-
Effect(e1,e2) relation. Table 1 compares the results of our heuristic based
chain RNN (C-RNN) and the autoencoder based one (C-RNN-RAE) with
other RNN models and the best system participating [20]. Evaluation of the
systems was done by comparing the F-measure of their best runs.
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As it can bee seen in Table 1, C-RNN achieves the best results. The
baseline RNN, uses a global composition function and R50 vectors for each
word. We also use the same number of model parameters. The advantage of
our approach is that our models are computationally less expensive compared
with other RNN models. MV-RNN uses an additional matrix R50×50 for each
word, resulting in 50 fold increase in the number of model parameters. POS-
RNN uses POS word pairs e.g., cause-NN and cause-VB both represent cause
with different POS tags. In addition, they use 13 phrase categories whose
combinations adds 169 more weight matrices. This results in around 100%
increase in model parameters compared to C-RNN.

The best system [20] used SVM with many sets of features. Adding
POS tags, WordNet hypernyms and named entity tags (NER) of the two
words, helps C-RNN improve their results. We also implemented SDT-RNN
[24] which has similar complexity as our model but has significantly lower
F-measure.

Method Fmeasure Feature sets
RNN 74.8 -
SDT-RNN 75.12 -
MV-RNN 79.1 -
POS-RNN 79.4 -
C-RNN-RAE 78.78 -
C-RNN 79.68 -

SVM 82.2 POS, WordNet, Levine classes, Prop-
Bank, FrameNet, TextRunner, para-
phrases, Google n-grams, NormLex-
Plus, morphological features, depen-
dency parse features

RNN 77.6 POS, NER, WordNet
MV-RNN 82.4 POS, NER, WordNet
C-RNN 82.66 POS, NER, WordNet

Table 1: Results on SemEval 2010 relation classification task with the feature sets used.
C-RNN outperforms all RNN based models. By including three extra features, it achieves
the state-of-the-art performance.

SemEval-2013 Task 9.b

In this task, the aim is to extract interactions between drug mentions in text.
DDI corpus [22] is a semantically annotated corpus of documents describing
drug-drug interactions from the DrugBank database and MedLine abstracts
on the subject of drug-drug interactions. The corpus consists of 1,017 texts
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(784 DrugBank texts and 233 MedLine abstracts) that was manually anno-
tated with a total of 5021 drug-drug interactions. These interactions include
mechanism, effect, advise and int. This data set contains many long sen-
tences with long distances between the entities. It makes the comparison
between MV-RNN and C-RNN more interesting.

We used the MV-RNN code, publicly available, to compare with C-RNN
on this data set. Since we lack pre-trained vector representation of 2861
terms in this dataset: mostly pharmacological e.g., Cholestyramine, Meto-
clopramide, we cannot effectively use C-RNN-RAE.

Relations with long distances between entities are harder to classify. This
is illustrated in Figure 7 where MV-RNN and C-RNN are compared. Con-
sidering three bins for the distance between two entities, the figure shows
what fraction of test instances are misclassified in each bin. Both classifiers
make more errors when the distance between entities is longer than 10. The
performance of the two classifiers for distances less than 5 is quite similar
while C-RNN has the advantage in classifying more relations correctly when
the distance increases.

Method Precision Recall Fmeasure
MV-RNN 74.07 65.53 67.84
C-RNN 75.31 66.19 68.64

Table 2: Results on SemEval 2013 Drug Drug Interaction task

Table 2 shows that C-RNN performs better than MV-RNN in classifying
relations. Interestingly, chain RNN results in 83% decrease in the number of
neurons in average.

Running Time

Dependency graphs can represent the relation more compactly by utilizing
only the words on the shortest path between entities. C-RNN uses a sixth of
neural computations of MV-RNN. More precisely, there is an 83% decrease in
the number of tanh evaluations. Consequently, as in Figure 8, C-RNN runs
3.21 and 1.95 times faster for SemEval 2010 and SemEval 2013 respectively.
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Figure 7: Misclassification based on entities distance in three bins. More erros occur when
entities are separated by more than ten words. C-RNN performs better in long distances.
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Figure 8: Running time measured by seconds. Experiments were run on a cluster node
with 6 core 2.66GHz cpu.

Conclusion and Future Work

Recently, Recursive Neural Network (RNN) has found a wide appeal in Ma-
chine Learning community. This deep architecture has been applied in several
NLP tasks including relation classification. Most previous works are limited
to constituency-based parsing due to compositionality. We devise an RNN
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architecture based on a compositional account of dependency graphs. To
represent the relation more compactly, the proposed RNN model is based
on the shortest path between entities in a dependency graph. The resulting
shallow network is superior for supervised learning in terms of speed and
accuracy. We improve the classification results of the competing approaches
with up to 70% saving in running time.

The current method assumes the named entities to be known in advance.
An extension to this work is to jointly extract entities and relations. Further,
application of deep learning to self-supervised relation extraction is another
direction that we will focus in the future.
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