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Abstract—A rich and very dynamic Content distribution
ecosystem enables today’s Internet users to access content as-
sociated with major providers from a close-by front-end server.
While the advantages of the resulting locality of traffic for users
(i.e. better performance) and providers (i.e. lower cost) are well
understood, two basic questions about the content distribution
ecosystem remained unanswered (i) What is the typical level of
traffic locality for users at the edge of the network? and (ii)
Whether the traffic locality affects the observed bandwidth by
these users?

This paper presents an empirical assessment of traffic locality
for a stub-AS to answer these questions. We employ unsampled
Netflow data from University of Oregon’s (UONet) border gate-
ways to assess the level of locality for top content providers of
this network using four metrics of distance, namely geographic
distance, router hop, AS hop and round-trip time (RTT). We also
present a method to identify front-end servers of a major content
provider, namely Akamai, that are placed within other ASes with
the intention to increase their traffic locality (called guest servers).
Using this method, we identify Akamais guest servers that serve
UONet. Finally, we examine the effect of traffic locality on the
observed performance (i.e. download bandwidth) by UOnet users
and show that traffic locality does not have a strong correlation
with the download bandwidth of UOnet users.

I. INTRODUCTION

Over the past years, the Internet has seen a great increase in
the number of its users and has been employed as a medium
for delivering various types of content ranging from small
sized objects such as a text document for a news headline
to large files such as operating system updates and content
with more constraints such as video streams for covering
live events which demand a greater network performance for
their fluid functionality. The ecosystem containing content
providers (CP’s) and consumers includes other players such
as Content Distribution Networks (CDN’s), stub-ASes and
upstream providers. The Internet has recently observed a topol-
ogy change which has been referred to as the flattening of the
Internet by scholars [1], [2]. In this paradigm content providers
will move their front end servers closer to the consumer or
the edge of network for two reasons. First, to reduce their
costs for paying upstream providers for carrying their traffic.
Second, by decreasing their distance to the customer they
could decrease their delay and packet loss which would result
in higher performance for the customer, this in turn would
result in a better user experience which has been linked to
more revenue [3].

To distribute their content, CP’s have employed various
tactics to deliver their content from servers which are more
local to the client. Google has expanded its presence by

placing cache servers in other ASes and would redirect users
to these caches using EDNS capabilities [4]. Akamai has
placed many thousands of servers across the globe to form its
CDN network, Akamai employs it’s own algorithms to cache
content based on their popularity on its most local servers [5].
Other CP’s have relied on the infrastructure that is available
through cloud service providers and would often rely on the
cloud providers load balancing services to offload their traffic
through various datacenter locations [6].

While the benefits of traffic locality for the different con-
stituents of the content distribution ecosystem are well under-
stood and various approaches have been employed to achieve
it in today’s Internet two questions remain unanswered: (i)
For a typical stub-AS to what degree do we observe traffic
locality for its clients. (ii) How much does this amount of
traffic locality affect the clients performance. To answer these
two questions we rely on the unsampled Netflow dataset for
the campus network of University of Oregon called UONet.
For our study we focus on incoming flows and map the source
IP address to their corresponding AS. We identify major CP’s
that deliver the bulk of traffic to UONet regarding bytes and
number flows this leads to a list of 12 target ASes. In Section
VI, to asses traffic locality we introduce four distance measures
namely GEO, router hop, AS hop and RTT we study traffic
locality at an AS and prefix granularity and conduct a set of
live experiments to give insight into the most active prefixes
purpose. For example, we observe that about 50% of UONet’s
traffic is delivered from a 30ms radius. In Section VIII, we
introduce a technique to identify servers that are residing
in other ASes and refer to them as guest-servers, we apply
this technique to Akamai as a case study and compare the
effect of these servers on Akamai’s locality. We study the
implications of locality on user perceived performance with
respect to bandwidth and state that we cannot observe a strong
correlation between our distance metrics and bandwidth in
Section IX.

The remainder of this paper is organized as follows: we
present the structure of UONet and outline why it could
be considered as a representative for other stub-ASes in
Section II. In Section III, we outline our vantage points
for data collection in UONet and present some basic meta
stats for our collected data. In Section IV, we present our
algorithm for defragmenting flows that have been captured
by UONet’s gateways. The list of snapshots along with the
temporal trend that we have observed over the timespan of
2 years is presented in Section V. Section VI outlines our
methodology for assessing traffic locality and identifying the
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major CP’s for UONet. Section VIII explains our methodology
for identifying guest servers and presents the results for our
case study (Akamai). The implications of traffic locality on
UONet clients bandwidth is presented in Section IX. Section
X gives an overview of related works and Finally in Section
XI we conclude the paper.

II. UONET: AN OVERVIEW

University of Oregons network (called UONet) provides
Internet connectivity to the campus and off campus residential
units. A summary of the population stats for University of
Oregon and their breakdown along the different sections of
the network is presented in Table I. As we can see UONet is
serving a large population with a wide demography thereby it
could be a good representative of any stub-AS.

Student Population Staff Population
24,548 4500

TABLE I
GENERAL STATISTICS REGARDING THE POPULATION OF STUDENTS IN

UNIVERSITY OF OREGON

The topology of UONet among the upstream providers
is given in Figure 1. UONet has three upstream Internet
providers, namely Nero networks, Oregon exchange(OIX) and
Oregon gigapop(OGIG). The access to these providers is
provided through two border gateways namely UONet9 and
UONet10.

Fig. 1. topology of University of Oregon network, along with the
border gateways and the upstream Internet providers.

UONet’s traffic is composed of three different sections
based on the end point at UONet, namely Wireless, Residential
halls(Resnet) and Wired. Wired is associated with users that
are connected to UONet through wired caballing and mainly
consists of UONet’s infrastructure such as web servers, mail
servers, etc. Our wireless and residential networks currently
only supports IPv4 addresses, while the remainder of traffic
that consists of the traffic associated with servers and users
that are connected through Ethernet cables supports both IPv4
and IPv6. For a given snapshot the breakdown of UONet’s
traffic among these three categories is given in Table II.

Section Bytes % Flows %
Wireless 58.18 22.89

Residential 16.20 7.75
Wired 25.62 69.36

TABLE II
BREAKDOWN OF TRAFFIC AMONG DIFFERENT SECTIONS OF THE

NETWORK FOR A DAILY SNAPSHOT CORRESPONDING TO 2015-02-04.

III. DATA COLLECTION

The Information Services of University of Oregon has been
recording the netflow data at the two border gateways for
about two years up to this date. The Netflow data that is being
captured at UONet9 is unsampled while UOnet10 is logging
data with a sample rate of 1/100. Daily statistics for captured
Netflow data at these two border gateways is provided in Table
III.

Gateway Sample Rate Volume of Traffic Number of Flows
UONet9 1/1 20.8TB 637M

UONet10 1/100 533GB 17M
TABLE III

SUMMARY OF BORDER GATEWAY STATS, UONET10 VALUES ARE
PROJECTED VALUES BASED ON THE REPORTED SAMPLE RATE. THE

TRAFFIC STATS CORRESPOND TO THE 2015-02-04 DAILY SNAPSHOT.

The IP addresses of UONet nodes in captured Netflow
data is anonymized by the Information Services in a prefix
preserving manner to ensure the privacy of UONet users.
The Netflow collector of Information Services stores the files
in 5 minute snapshots. On average each 5 minute file is
about 50MB and the storage requirement for 1 day is around
14GB. The Information Services employs the nfcapd capture
daemon as their collector and thereby the files are stored in the
nfdump file format. The nfcapd daemon uses fast LZO1X-1
compression on it’s output files in order to decrease the storage
requirements for the Netflow data [7].

Our data contains the continuous Netflow data of the
boarder gateways starting from the beginning of June 2013.
We also have the data associated with a subset of the days of
February, March, April and May of 2013.

The Netflow data that is being captured at the boarder
gateways complies with Netflow v5 and thereby contains the
following attributes for each record:

• start, end timestamps
• source, destination IP addresses
• source, destination port numbers
• IP header protocol number
• TOS field of IP header
• TCP flags set during the duration of a flow
• number of packets
• number of bytes
• input, output router port numbers
• source, destination AS numbers
Each bidirectional connection is presented as two separate

flows in our records, one corresponding to the outbound
packets and another for the incoming packets. One should note
that since we have two border gateways, there is a possibility
that two sides of a connection would be logged on two
different border gateways. Since UONet10 is sampled, we will
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not be able to capture all of the traffic that is traversing through
that gateway. However, we observe around 16TB & 600GB of
exchanged traffic over UONet9 and UONet10 respectively. In
short, more than 97% of external UONet traffic goes through
the UONet9 gateway. We also examined all the ASes whose
corresponding flow are delivered through UONet9 and 10. We
noticed that except for one AS the external ASes are mutually
exclusive. We believe that captured Netflow traffic at UONet9
provides a representative view of UONet’s traffic. The list of
top ASes we observed over the UONet10 gateway is given
in Table IV, in the remainder of sections the reader would
observe that aside for one AS (Level3) the remainder of our
target ASes display a symmetric behavior for their point of
ingress and egress to UONet. For the analysis in this paper
we only use Netflow data from UONet9.

AS# AS Name
13825 TROYCABLE-NET - Troy Cablevision Inc.
20738 AS20738 Webfusion Internet Solutions
2140 ISSC-AS - IBM Corporation
786 JANET JISC Collections And Janet Limited

3356 LEVEL3 - Level 3 Communications Inc.
28573 NET Servios de Comunicao S.A.

159 OSUNET-AS - The Ohio State University
5408 GR-NET Greek Research and Technology Network S.A
4385 RIT-ASN - Rochester Institute of Technology

23456 23456
4134 CHINANET-BACKBONE No.31Jin-rong Street
680 DFN Verein zur Foerderung eines Deutschen Forschungsnetzes e.V.

15964 CAMNET-AS
557 UMAINE-SYS-AS - University of Maine System

2607 SANET Slovak Academic Network
28260 Altarede de Teresopolis Provedor de Internet Ltda

55 UPENN - University of Pennsylvania
59 WISC-MADISON-AS - University of Wisconsin Madison

1213 HEANET HEAnet Limited
58302 SAMFUNDET-AS Studentersamfundet i Trondhjem
3701 NERONET - Network for Education and Research in Oregon (NERO)

50113 SUPERSERVERSDATACENTER MediaServicePlus Ltd.
24389 GRAMEENPHONE-AS-AP GrameenPhone Ltd.
9121 TTNET Turk Telekomunikasyon Anonim Sirketi

23752 NPTELECOM-NP-AS Nepal Telecommunications Corporation Internet Services
4812 CHINANET-SH-AP China Telecom (Group)

12876 AS12876 ONLINE S.A.S.
1103 SURFNET-NL SURFnet The Netherlands

27768 CO.PA.CO.
210 WEST-NET-WEST - Utah Education Network

6360 UNIVHAWAII - University of Hawaii
11492 CABLEONE - CABLE ONE INC.
35804 ALNET-AS PP SKS-Lugan
9829 BSNL-NIB National Internet Backbone

14048 MEMPHIS-EDU - The University of Memphis
60897 ASIDEAL IDEAL HOSTING SUNUCU INTERNET HIZM. TIC. LTD. STI
23650 CHINANET-JS-AS-AP AS Number for CHINANET jiangsu province backbone
18403 FPT-AS-AP The Corporation for Financing & Promoting Technology
41572 HAFSLUND Kvantel AS
4837 CHINA169-BACKBONE CNCGROUP China169 Backbone

54888 TWITTER-NETWORK - Twitter Inc.
6377 4JNET - Eugene School District 4J

54994 WANGSU-US - MILEWEB INC.
58085 TCE-ASN Esfahan Telecommunication Company (P.J.S.)
3582 UONET - University of Oregon

37110 moztel-as
4600 UO-TRANSIT - Oregon GigaPOP

10876 MAOZ-ASN - MAOZ.COM
766 REDIRIS Entidad Publica Empresarial Red.es

TABLE IV
TOP ASES OBSERVED OVER UONET10 FOR DAILY SNAPSHOT

2015-02-04.

Data Annonymization: To maintain the privacy of UONet
users, the Information Services of University of Oregon
anonymizes the internal IP addresses of each Netflow record
that is associated with University of Oregon clients. The
anonymization process is done in a prefix preserving fashion
and thereby each UO IP will get mapped to the same IP
address therefor we are able to distinguish the flows associated
with a single client or computer, as long as the client doesn’t

get a new IP address from the DHCP server.
To indicate whether the source or destination IP address of

a Netflow record is anonymized, the Information Services uses
the first two bits of the TOS field. Bit 0 is marked when the
destination IP address is anonymized and bit 1 is marked for
the source address.
We also performed some validation on the direction of flows
based on the router port numbers. We asserted that flows iden-
tified as incoming should enter through one of the outbound
interfaces and exit through one of the inbound interfaces. A
small portion of the flows violated this assertion after taking
further look we realized that these flows where spoofed packets
with an IP address that matched the anonymization prefixes
employed by the Information Services anonymization program
and were falsely marked as anonymized. Since the overhead
of checking this assertion was high and the fragment of flows
that met this condition were negligible (less than a percent),
we skipped this step for the remainder of our methodology.

IV. DATA CLEANING & VALIADTION

The algorithm outlined in this section is applied to the flows
that have been observed on UONet9 and cannot be applied to
UONet10 since the flows captured on this gateway are sam-
pled. For reasons specified in Section III our defragmentation
algorithm might present meta flow stats that are less than
the real values of the connections they represent. That is if
a portion of a flow is handled by UONet10 we will not count
the meta statistics such as number of bytes and packets in our
final results.
Flow Defragmentation: Once a router observes a new flow
over one of its interfaces, it creates a Netflow record for that
connection inside its internal cache. Once the connection is
terminated, the record is dumped to a Netflow collector which
in turn would store the entry to a permanent storage. Since the
amount of cache that is available on a router is limited, once
the cache is full, the router flushes its cache to free up space
for new entries. This would cause a single connection to be
split up into multiple Netflow records on the collectors side.
In order to perform correct flow level analysis over our data,
we need to defragment the Netflow entries that belonged to a
single connection.

In order to read Netflow records, one option is to take
advantage of the nfdump program that extracts flow attributes
and also has the capability to report aggregate statistics on
the specified files. One shortcoming of the nfdump program
is its inability to defragment flows that were fragmented by
the router. For this reason, we needed to develop a code
that would read the records and would stitch records of the
fragmented flows back into a single record. We could have
used the nfdump program to capture the flow attributes and
later on use those values to defragment the flows. However,
this approach would require two passes for data processing
over our files which induces additional processing time and
requires additional storage. Thereby, we developed our op-
timized processing code that employs the nfread library [8]
to read the netflow records from the raw files. The nfread
library takes advantage of the source codes of the nfdump
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software package and enables C or C++ applications to read
the captured records.

Note that we only perform the defragmentation algorithm
for TCP flows since the notion of connection for other types of
flows is either irrelevant or not clearly defined. The algorithm
for identifying and defragmenting flows into a single record
is as follows: The program will start to read records from the
file one by one and will store these flows inside a map data
structure that will sort the flows based on the signature of a
flow which consists of:

• source & destination IP addresses
• protocol number of IP header
• source & destination port numbers

Each flow with a similar signature would be stored in a
multiset data structure which sorts its entries based on the start
time-stamp of each flow. By employing this data structure we
bundle flows with a similar signature with each other and sort
these flows by their start time-stamp.

After examining our dataset, we realized that flows could
have a start time-stamp that doesn’t belong to their associated
Netflow file but the end time-stamp always falls within each
files time-frame. Although the number of flows with this
characteristic is minuscule, it could affect the validity of our
defragmentation algorithm. We calculated the time difference
between the start of each flow and the start of the correspond-
ing window over a 24 hour worth of data. The distribution of
this time difference is shown in Figure 3. As it is evident from
the distribution, once we finish processing round N, we could
be certain that we have observed all of the flows that have a
start time-stamp within the time-frame of round N-2, since the
timespan of the flows of each file corresponds to a time-frame
belonging to 2 prior files. Figure 2 shows the misalignment
between the time-stamp of a flow and the time that we observe
it while we are iterating over the Netflow files.

IF ( r e c o r d . p r o t o c o l == TCP) {
i n s e r t r e c o r d s s i g n a t u r e i n t o s i g n a t u r e map
i n s e r t r e c o r d i n t o s e t o f r e c o r d s wi th a s i m i l a r

s i g n a t u r e
}

\\ a t t h e end of f i l e N
FOR e v e r y s i g n a t u r e i n s i g n a t u r e map {

IF ( n o t u p d a t e d s i n c e f i l e N−2) {
tmpRecord = f i r s t r e c o r d o f t h i s s i g n a t u r e s e t

FOR e v e r y r e c o r d wi th s i m i l a r s i g n a t u r e {
tmpRecord . endTimestamp = max ( tmpRecord .

endTimestamp , r e c o r d . endTimestamp ) ;
tmpRecord . by t eCoun t += r e c o r d . by t eCoun t ;
tmpRecord . p a c k e t C o u n t += r e c o r d . p a c k e t C o u n t ;
tmpRecord . s t i t c h C o u n t ++;

}
}

}

Listing 1. flow defragmentation algorithm

The pseudo code of the defragmentation algorithm is given
in Listing 1. The semantics of our defragmentation algorithm
are quite simple, we parse individual Netflow files based on
their timestamp and map their flows on a common timeline
as shown in Figure 2. After reading the flows associated with
file N+2 we would start looking at the flows that belong to

Fig. 2. Misalignment between the time-stamp of the flow and the time-stamp
of the file that it has been dumped into. The gray flow shows the window
in which we observe the flow while the corresponding black flow shows the
time-stamp that the flow has. The red flow indicates the flow after being
defragmented.

file N and update the following values for flows that have a
similar signature:

• end time-stamp
• byte count
• packet count
• stitch count
The distribution of the length of the flows before and after

running the defragmentation algorithm are shown in Figure
4. As it is evident from the distribution, defragmented flows
have a longer duration and the percentage of long lived flows
has increased after running the defragmentation algorithm. On
average 25% of the flows are defragmented by our algorithm
which is close to findings of [9]. For the 2015-02-04 snapshot,
we have 637 and 530 million flows before and after running
our defragmentation algorithm, respectively. The distribution
for the number of times a flow has been stitched is shown
in Figure 5, we observe that among the flows that have been
defragmented the majority of them get stitched less than 10
times.

V. DATASETS

Due to the large size of our dataset and the huge overhead of
processing all of the data, we select the first Wednesday from
each month in our dataset for our basic analysis. In addition
to these daily snapshots, we use 7 consecutive days to conduct
our temporal analysis (i.e.weekly snapshot).

Figure 6 lists the selected daily snapshots along with the
amount of bytes and flows we observe in each snapshot. The
breakdown of traffic along different sections of the network
is depicted using different colors. For each snapshot we have
two bars one representing the amount of Bytes and the other
bar which is shaded presents the number of flows that were
delivered to UONet during that snapshot.

As we can see from Figure 6, the volume of traffic for
months of July, August and September decreases since most
of the students leave campus for the summer break. We can
observe that from February of 2014 to 2015 we see about 14%
increase in the volume of traffic and about 10% increase in
the number of flows. The breakdown of traffic among different
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Fig. 3. Distribution of time difference between the
start of a flow and the start of its corresponding
window over flows of 2015-02-04.

Fig. 4. Distribution of flows length before and after
running the defragmentation algorithm.

Fig. 5. Distribution of the number of times a flow
has been stitched.
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Fig. 6. List of daily snapshots along with the breakdown of traffic stats among
different sections of the network.

sections of the network for our weekly snapshot could be
viewed in Figure 7.

We observe that the peek of residential and wireless traffic
occur at different times of the day, residential traffic increases
at night time when students return to their dorms or houses
while wireless traffic observes its peek in the midst of the day.
We should note that the missing data for Feb 2nd and 3rd is
caused by the unavailability of Netflow data during these days.

VI. TOP CONTENT PROVIDERS

In order to study the delivery mechanism of content
providers(CP) to UONet, we focus on all of the incoming
flows and group them based on their source AS in each daily
Netflow snapshot. To identify the source AS of each flow,
we use the Cymru [10] service to map its source IP address
to its corresponding AS. The contribution of each AS in the
incoming traffic to UONet in each snapshot is measured based
on the number of flows and their corresponding bytes. We
identified the top 50 ASes with the largest contribution in
incoming traffic in each daily snapshot. Table XIII presents
this list for the 2015-02-04 snapshot.

Based on the popularity of each AS and users demand the
list of top ASes could change from one snapshot to another.

Fig. 7. Breakdown of traffic among different sections of the network for the
weekly snapshot.

The evolution of the top 50 ASes and their prevalence could
be viewed as a heatmap in Figure 8. The X axis shows the
union of all top ASes we observed over our snapshots while
the Y axis shows the rank of the AS within the top 50 list. The
color of the cells indicate how many times a specific AS has
been observed in that rank. From Figure 8, we can observe that
a handful of ASes (the bright blocks) are shown persistently
among the top ASes while the remainder of ASes only show
up in one snapshot.

Based on the intuition gained from Figure 8 and to limit
the scope of our analysis we hand picked 12 ASes for the
remainder of our analysis the list of these ASes is presented in
Table V. These ASes have a big contribution towards UONet’s
traffic and are among the well known players in the Internet
that either directly or indirectly deliver content for the Alexa
[11] top websites. The contribution of these providers towards
the traffic of UONet in terms of incoming Bytes and Flows
are presented in Figure 9. As we can observe from this figure,
these 12 ASes are responsible for 74% of total Bytes and 23%
of total flows that were delivered to UONet.

VII. UONET FOOTPRINT

The goal of this paper is to study UONet’s network footprint
on the Internet as a sample Eyeball AS. By footprint we are
referring to the GEO and network distance of the content that
is being pulled by the users of UONet.
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Fig. 8. Prevalence of top ASes among all of the daily snapshots. The Y axis
the rank position of the AS.

AS Number AS Name
2906 Netflix
15169 Google
20940 Akamai
15133 Edgecast
16509 Amazon
7922 Comcast
3356 Level3
6185 Apple
32934 Facebook
22822 Limelight

209 Centurylink
46489 JustinTV

TABLE V
SELECTED ASES FROM TOP ASES LIST REGARDING BOTH CRITERIA FOR

THE REMAINDER OF OUR ANALYSIS.

A. Methodology

For each snapshot we extract all of the unique external
IP addresses for incoming flows and map them to their
corresponding AS number using the Cymru service [10]. By
doing so we are able to calculate the top ASes that have the
biggest contribution regarding the number of incoming bytes
and flows towards UOnet. The combined list of the top 50
ASes regarding the number of incoming bytes and flows is
given in Table XIII. For every given snapshot we choose
a couple of well known ASes such as Google, Facebook,
Akamai and Netflix which have a significant contribution in
the incoming traffic of UONet and extract all of their incoming
flows in order to study their content delivery mechanism. After
extracting all of the incoming flows of an AS to decrease
the processing overload of our measurements, we limit the
granularity of our analysis to /24 prefixes. The rationale behind
this decision is that /24 prefixes are most likely collocated
and thereby should exhibit very similar performance metrics.
For each AS, we extract all of the /24 prefixes and measure
the total number of bytes and flows that were delivered from
these prefixes. We choose a random valid IP address within
each of these prefixes and run two sets of traceroutes towards
it, one using an UDP probe and another using a TCP probe.
Some ASes filter specific types of traceroutes or incoming

Fig. 9. Distribution of delivered Bytes and Flows towards UONet by the top
12 ASes.

connections and thereby we use two types of traceroutes to
have a higher rate of reaching the destination server. We
use the traceroute that was able to reach the destination IP
address. If the traceroute was unsuccessful we choose the
traceroute that was able to go further through the target ASes
network. If none of the previous attempts are true for the
traceroutes, we choose one of them randomly. We also map the
selected IP addresses to their GEO location using Akamai’s
EdgeScape service. To ensure that the GEO information given
using this service is accurate we compare the RTT values from
our traceroutes and based on the speed of light if the GEO
distance is not reachable in the given time we query the GEO
information from the IP2Geo Lite database if the given value
conforms to the speed of light restrictions we use this value
as the GEO location for the IP address.

In summary regarding traffic locality we have the following
four metrics:

1) GEO distance
2) Network Hop Distance
3) AS Distance
4) RTT

We should note that the traceroutes and IP to AS mappings
are performed a week after our target daily snapshot. This
would minimize any possible error caused by changing in IP
to AS mappings.
Live Experiments: We also run some live experiments to-
wards the selected ASes and pull some content from them in
order to have a better understanding of the content delivery
mechanisms of each AS and to extract information that might
not be available from the Netflow data. Our test environment
for live experiments is a Linux virtual machine. We use the
Chrome browser with no extensions installed, we believe that
the majority of users do not install extensions that alter the
requested content from a website such as Adblock. While
pulling content from each AS we collect the pcap dump of the
traffic using Wireshark, we also collect the browser interaction
with the website using Chrome’s developer menu. The reason
that we rely on both HAR files and pcap dumps is that if we
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interact with a website that is delivering its content using the
HTTPS protocol we will not be able to infer the content of
the connection from the pcap dumps, while portions of the
traffic such as content pulled from flash files are hidden from
the HAR logs. The combination of these two logs allows us
to have a complete picture of the interactions that the browser
has conducted with our target website.

An aggregate view regarding the traffic locality of the
top ASes that UONet contacts are presented in Figure 10.
The radar plots presented in this Figure show the amount of
locality that we observe for the selected 12 ASes according
to different distance metrics which we have proposed. The
ASes are sorted based on their contribution regarding the
amount of Bytes towards UONet’s traffic and are ordered in
a clockwise manner. The 50, 75 and 90 percent values for
the Bytes and Flows that have been delivered to UONet is
depicted using different colors. As an example we observe that
about 75% of Google’s traffic is being delivered from less than
1000 Km away from UONet while to obtain the remaining
15% of traffic to reach the 90% value we have to go to a
3000 Km distance. We should also note that the distribution
regarding Bytes and Flows is different since each flow does
not carry the same amount of Bytes and thereby for ASes that
deliver mouse flows, we can see that the 90% value is being
delivered from further distances. Overall we observe a level of
conformity between the GEO and RTT plots since there is a
natural relationship between distance and delay this could be
related to the fact that we have also checked this conformity
while we were GEO locating the IP addresses. By looking at
the AS hop distance plots we observe a uniform and simple
story and see that the majority of UONet’s traffic is being
delivered from 3 AS hops away while this picture becomes
more complex for the other distance metrics. This complexity
is understandable given the level of granularity that each one
of these distance metrics exposes. On average we observe that
about 50% of traffic is being delivered from less than 1000 and
2000 Km away with respect to Bytes and Flows accordingly
while except for a few cases the majority of traffic (90%) is
being delivered from 10 router hops from UONet. This level of
locality could somehow be explained by the GEO location of
UONet with respect to the infrastructure and datacenters of the
majority of content providers over today’s Internet. Within the
west coast these companies usually deploy their infrastructure
either in Seattle, WA or Los Angeles, CA since these are close
to the most populated cities of the west coast. We should note
that from our test computer to UONet’s border, within our
traceroutes we observed an average delay of 1 ms and we
have 2 router hops in between our computer and UONet’s
upstream providers.

B. Per AS Analysis
In this section we take a closer look at the traffic locality of

each of our target ASes and present a prefix level of granularity
with respect to locality, we try to see if our passive data from
our Netflow dataset are in line with the live experiments that
we conduct in addition to any information we could find online
regarding the deployment and location of the infrastructure for
each of these ASes.

After looking at the contribution of each prefix of an AS
both regarding the number of bytes and flows we realized that
usually only a small fraction of the prefixes are responsible
for the majority of the traffic. To limit our focus towards these
prefixes we only selected the outlier prefixes with respect to
Bytes and Flows and also a subset of random prefixes which
amounted to a minimum of 2 or 1/10 the amount of outlier
prefixes as a baseline for comparison with the outlier prefixes.
A prefix would be considered an outlier if its value is more
than three standard deviations away from the mean value for
all prefixes. After selecting the prefixes we produced a set
of stacked plots which present the amount of locality we
observe with respect to our distance metrics at a per prefix
granularity. From top to bottom the plots present the following
information:

1) Total amount of Bytes delivered from this prefix.
2) Total amount of Flows delivered from this prefix.
3) The number of IP addresses we observed within this

prefix.
4) AS distance for this prefix.
5) Hop distance for this prefix.
6) GEO distance of this prefix.
7) RTT time for this prefix.

The reader should also note that since it is possible for
a traceroute to fail to reach it’s destination in some stack
plots we could observe missing points for these prefixes. If
a traceroute is able to reach a node that is residing in the
destination AS we would still calculate the AS distance for
that prefix.
Netflix: The general statistics regarding Netflix’s incoming
flows are given in Table VI.

Bytes - % of total Flows - % of total Prefix Count
3.8 TB - 24.84% 221.95 K - 0.08% 68

TABLE VI
GENERAL STATISTICS FOR ALL OF THE INCOMING FLOWS OF NETFLIX’S

AS ON THE 2015-02-04 SNAPSHOT.

From Table XIII Netflix is the top contributor towards the
total incoming bytes although it is delivering this traffic over
a small number of flows. This is a key characteristic of large
data flows which in Netflix’s case is video content. The stacked
plot for the selected prefixes of Netflix is shown in Figure 11.

By looking at the stacked plots we observe that the majority
of Netflix’s traffic is being delivered by prefixes number 1 and
2. These two prefixes are responsible for 94%(90%) of the
traffic with respect to bytes(flows). These prefixes are located
in Seattle, WA and conform to the information provided by
Netflix’s Open Connect database [12]. These two prefixes
exhibit the lowest values regarding all of our distance metrics
and thereby we could conclude that Netflix is utilizing its
infrastructure to deliver content from its most local servers
to UONet.
Google: The general statistics regarding Google’s incoming
flows are given in Table VII.

As it is evident from Table XIII Google is the top AS
regarding the number of incoming flows to UONet and second
regarding the number of bytes.
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Fig. 10. Locality of traffic for top ASes, the distance that the associated fraction of traffic is delivered to UONet. From left to right representing GEO, hop
count, AS hop count and RTT distance metrics accordingly.

Fig. 11. stacked plot for selected prefixes of Netflix.

Bytes - % of total Flows - % of total Prefix Count
2.63 TB - 17.19% 17 M - 6.14% 1207

TABLE VII
GENERAL STATISTICS FOR ALL OF THE INCOMING FLOWS OF GOOGLE’S

AS ON THE 2015-02-04 SNAPSHOT.

The stacked plot for the selected prefixes of Google is shown
in Figure 12.

As it is evident from the stacked plots the majority of
Google’s traffic is being delivered from four prefixes (4, 8, 10
and 17) which are close to our network regarding all of our
distance metrics. This finding is inline with Google’s Global
Cache deployment across the globe. These four prefixes are
responsible for 86.12% of the incoming traffic volume from
Google. In our earlier snapshots we observed that Google
was delivering Youtube videos over unencrypted channels
but in our latest snapshot we saw that Google has started
delivering Youtube videos over encrypted channels. While
running live experiments to generate traffic from Youtube we
observed that the video content and the advertisements in
between videos were delivered through prefixes 8 and 10.

Fig. 12. stacked plot for selected prefixes of Google.

Prefix 17 was responsible for delivering files through the
Google Drive service and was observed as the dominant prefix
while interacting with the GMail service. Based on the stacked
plots and the live experiments we could state that Google is
delivering their content through local servers and their delivery
mechanisms are distance aware. Although the delivery of this
traffic is happening through their own AS and not through
cache servers residing in other ASes. All prefixes are mapped
to Mountain View, CA. Furthermore, these prefixes are located
within 10-12 hops and 50ms RTT of UONet. The significant
level of traffic locality for delivered content from Google is
primarily due to the deployment of many Google caches across
the Internet during the past few years that enables each client
to receive common services and content from a close-by cache
server [4]. It is worth noting that Google owns a datacenter
in The Dalles, OR [13] that is at a closer GEO distance to
UONet. However, we have not observed any flow from this
datacenter in our NetFlow data possibly due to the services
offered in that facility.
Facebook: The general statistics regarding Facebook’s incom-
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ing flows are given in Table VIII.

Bytes - % of total Flows - % of total Prefix Count
0.33 TB - 2.16% 3.82 M - 1.37% 116

TABLE VIII
GENERAL STATISTICS FOR ALL OF THE INCOMING FLOWS OF FACEBOOK’S

AS ON THE 2015-02-04 SNAPSHOT.

As it is evident from Table XIII Facebook is ranked as the
9th and 11th top AS regarding the number of bytes and flows
respectively.

The stacked plot for the selected prefixes of Facebook is
shown in Figure 13.

Fig. 13. stacked plot for selected prefixes of Facebook.

From the stacked plots we observe that the majority of Face-
book’s traffic is being delivered through one prefix, namely
prefix 2. This prefix is located in Seattle WA. In our earlier
snapshots we observed that Facebook was delivering most of
its traffic through a prefix residing in Ireland. It seems that
Facebook has improved the locality of their content delivery
mechanisms. While running live experiments we observed that
Facebook is delivering its video content through its own CDN
while it’s relying on a mixture of its own CDN and Akamai for
the delivery of images that have been uploaded to Facebook.
We also observed that Facebook is using Akamai’s CDN to
host static page elements such as Javascript files. The logic
for balancing Facebook’s content through their own CDN and
Akamai is unknown to us and might be of interest for future
research.
Akamai: The general statistics regarding Akamai’s incoming
flows are given in Table IX.

Bytes - % of total Flows - % of total Prefix Count
1.64 TB - 10.75% 10.45 M - 3.77% 7825

TABLE IX
GENERAL STATISTICS FOR ALL OF THE INCOMING FLOWS OF AKAMAI’S

AS ON THE 2015-02-04 SNAPSHOT.

From Table XIII Akamai is ranked in 3rd and 5th place
regarding the number of incoming bytes and flows to UOnet
respectively.

The stacked plot for the selected prefixes of Akamai is
shown in Figure 14.

Fig. 14. stacked plot for selected prefixes of Akamai.

To pull content from Akamai’s servers we selected a couple
of their listed customers [14] and visited their websites to
download some content from their network. From the list
of customers listed on their website we selected CNN, BBC
and MTV and browsed their websites and watched a couple
of videos from their website to generate some traffic that
is most likely delivered through Akamai’s CDN. From the
stacked plots we see that the majority of Akamai’s traffic
is being delivered through three prefixes (13, 14 and 24).
These prefixes are responsible for 67% of the total volume
of Akamai’s traffic. While browsing CNN’s website we saw
that static web page elements such as images and javascript
files were delivered through prefix 13 while the video content
was delivered through prefix 24. For BBC we observed that
static web page elements such as pictures and flash files
were delivered through prefix 13, while the video content
was delivered through another AS namely Centurylink. Later
on in section VIII we explain how we uncover that the
specified server actually belongs to Akamai while it resides in
Centurylink’s AS. For MTV we observed a similar scenario
to BBC small page elements were delivered through prefix
13, while the video was delivered through Level3’s AS. We
can see that Akamai is employing a dual strategy to deliver
content to UONet, at times it is employing the servers that are
residing in it’s own AS while it is also benefiting from servers
that is has placed in other ASes.
Edgecast: The general statistics regarding Edgecast’s incom-
ing flows are given in Table X.

Bytes - % of total Flows - % of total Prefix Count
0.54 TB - 3.85% 1.90 M - 0.69% 144

TABLE X
GENERAL STATISTICS FOR ALL OF THE INCOMING FLOWS OF EDGECAST’S

AS ON THE 2015-02-04 SNAPSHOT.

From Table XIII Edgecast is ranked in 4th and 20th place
regarding the number of incoming bytes and flows to UOnet
respectively.

The stacked plot for the selected prefixes of Edgecast is
shown in Figure 15.
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Fig. 15. stacked plot for selected prefixes of Edgecast.

From the stacked plots we observe that prefixes number
2, 3 and 4 are responsible for the majority of traffic, these
three prefixes are responsible for 90% of the traffic associated
to Edgecast. The GEO location for prefixes 2 and 3 is San
Jose, CA which is in accordance to the information that are
given on Edgecast’s website [15]. For prefix number 4 we
observe that it is located at a GEO location which is twice
as far as the two other major prefixes while its other distance
metrics are very similar to prefixes 2 and 3. This prefix is GEO
located to Dallas, TX while the RTT value obtained through
traceroutes defies the possibility for this prefix to reside within
that location. Although we have taken measures to avoid GEO
mapping errors there always is a possibility for these errors to
happen. Based on the other distance metrics we can assume
that prefix number 4 is located in the same location as the other
two prefixes and based on location of Edgecast’s infrastructure
[15] we can conclude that Edgecast is delivering it’s content
from the most local facilities with respect to UONet. For
our live experiments we visited LiveLeak and browsed some
videos from this website we observed that the video files
along with small objects such as Javascript files were delivered
through prefix 4. Through our live experiments we were not
able to pull any content from the other prefixes.
Limelight: The general statistics regarding Limelight’s incom-
ing flows are given in Table XI.

Bytes - % of total Flows - % of total Prefix Count
0.20 TB - 1.47% 0.41 M - 0.15% 209

TABLE XI
GENERAL STATISTICS FOR ALL OF THE INCOMING FLOWS OF

LIMELIGHT’S AS ON THE 2015-02-04 SNAPSHOT.

From Table XIII Limelight is ranked in 11th and 84th place
regarding the number of incoming bytes and flows to UOnet
respectively.

The stacked plot for the selected prefixes of Limelight is
shown in Figure 16.

We can observe from the stacked plots that prefixes 2,3 and
4 are the major prefixes responsible for the delivery of Lime-
lights traffic towards UONet. These prefixes are responsible for

Fig. 16. stacked plot for selected prefixes of Limelight.

77%(60%) bytes(flows) of Limelights traffic. Unfortunately we
weren’t able to pull that much content from Limelight’s CDN
network by visiting the websites of a couple of their customers
we observed that most of them are relying on Akamai’s CDN
network. This could be a result of nonalignment between
the snapshot date and the time that we were running live
experiments. Among the customers that were still relying on
Limelight’s network all of their content regardless of its type
was delivered through prefix number 2 and we did not observe
any traffic from the other major prefixes. Prefix number 2
is GEO located to Seattle, WA which is inline with the
information that is provided by Limelight [16]. Given the CDN
locations and the distance metrics we observe from the stacked
plots we can conclude that Limelight is delivering its traffic
from the most local facilities.

For the purpose of brevity and since some of the top ASes
are transit networks and pulling traffic from them is not as
trivial as the other ASes we didn’t present the remainder of
the stacked plots for our target ASes. All of the stacked plots
could be observed from [17].

VIII. GUEST SERVERS

In order to have a global reach and to increase the user
perceived performance, websites and content providers either
rely on CDN networks or deploy their own content delivery
network on a scale that is economical for them and has
the best reach towards its demography. The content delivery
strategy could vary widely and could be as simple as hosting
bulk of the traffic through a third parties CDN servers or
could be as complex as managing multiple data centers on
a global scale in case of Google. Netflix has recently closed
all of its datacenters and is relying on an overlay network
which is a mix of a central C&C center which is managed
through Amazon’s cloud network and delivers it’s content
through various cache servers that have either private peering
or have been connected to other ASes at IXP’s throughout
the US [18]. Since it isn’t possible for each CP to have a
datacenter at locations which are near its customers, CP’s
place cache servers within various ASes to have a better reach
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Fig. 17. Locality of traffic for Akamai’s guest servers residing within the top 40 ASes in snapshot 2015-02-04.

and wider presence while avoiding the cost of maintaining big
datacenters. We refer to these servers as guest servers and the
AS which they reside in as the host AS. Using the Cymru
service these guest servers would be mapped to their hosting
AS. In this section we outline a technique which we have
employed to identify the guest servers that belong to Akamai’s
network.

A. Methodology

Our approach for identifying Akamai servers could be
broken down into two major steps:

1) Identifying Akamai Served Objects: For this step we
visit some of Akamai’s customers websites and identify
objects within the website that are hosted by Akamai
servers. We select small objects that would be accessed
more frequently such as Javascript and CSS files so with
a higher likelihood they would be cached through the
Akamai’s network.

2) Probing IP’s: Through this step we would probe the IP
addresses of the ASes that belong to the union of top 20
ASes regarding Bytes and Flows, and would see if the
given IP address would serve our test objects. A positive
response is an indicator that the given IP address is an
Akamai server.

For the first step of the methodology we selected two
Javascript files one from apple.com and another from cen-
sus.gov. Since an Akamai server is responsible for hosting
content for various websites it server should have a way
to differentiate requests from multiple websites from each
other. This task is achieved through the HOST field of the
HTTP header. For the second step of our methodology while
requesting the objects from IP addresses, we construct the
HTTP request as if it was generated by a client that is visiting
the host website. If a server responds with a HTTP OK/200
code we consider this IP address as an Akamai server if the
request fails or timeouts we repeat the process using the other
object we have selected through step 1. Through our initial
tests we realized that some servers would respond with a
HTTP 200 code regardless of the request that they receive.

To eliminate these servers from our final results we modified
our methodology and would also ask for the first 100 bytes of
the object and would only consider the server as an Akamai
server if the returned content matches the first 100 bytes of
the original object.

To evaluate the correctness of our technique we consider all
of the 22.2K servers that were mapped to Akamai by Cymru
and ran our methodology over these servers. We observed that
90% of these servers were identified using our methodology.
We ran a port scanner against the remainder 10% of the servers
and found that only 643 (3%) of these servers had an open
port to serve HTTP content and the remainder of IP addresses
had different purposes. Thereby the overall accuracy of our
methodology is about 97% for the test case.

Using the given methodology we probed 1.4M IP addresses
which belonged to 31 ASes and were able to uncover an
additional 14,121 Akamai servers that were residing in 17
different ASes that collectively delivered 552 GB through
3.23 M flows. Since Akamai’s own servers were responsible
for 1.5 TB of traffic the delivered content through Akamai
guest servers attributes to about 25% of Akamai’s traffic.
Among the 17 hosting ASes 99% of the traffic of Akamai
guest servers is delivered from 4 ASes namely: NTT(37.5%),
Comcast(27.5%), Tinet(19.2%) and Centurylink (15%).

B. Guest Server Locality

To study the traffic locality of Akamai guest servers we
produced a set of radar plots similar to the ones we presented
in Section VII. As a point of reference and in order to see
whether employing guest servers has increased the amount of
traffic locality from UONet’s standpoint of view we included
a beam in these plots which corresponds to traffic locality for
Akamai’s own servers. Figure 17 depicts the radar plots for
Akamai own and guest servers with respect to our distance
metrics. Interestingly enough we observe that with respect
to all of our distance metrics Akamai’s own servers have a
greater performance. We should note that these servers aren’t
necessarily employed for the purpose of traffic locality towards
UONet and could be responsible for delivering content to other
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stub-ASes. As we have stated, Akamai guest servers were
responsible for about 25% of Akamai’s total traffic which
could be an indicator that we only observe traffic from these
guest servers for load balancing purposes or cache misses on
own servers.

IX. PERFORMANCE IMPLICATIONS OF LOCALITY

One of the main goals of content providers for deploying a
widespread infrastructure is to improve the users performance
with respect to delay and bandwidth. Towards this end we
study the effect of traffic locality for our target ASes. To do
so we select two prefixes from each AS that have the largest
contribution towards traffic with respect to bytes. Since we
are relying on Netflow data for our bandwidth measurements
we could not observe variations of bandwidth during the life
of a flow and we can only calculate the mean value for
bandwidth. Since bandwidth could also be limited by TCP
congestion control algorithms specially for short lived flows
we only consider flows which have more than 50 packets and
have an average packet size larger than 1200 bytes. Figure 18
depicts the summary distribution for the bandwidth of the top 2
prefixes of our target ASes. The ASes are ordered according to
their rank with respect to delivered bytes. We observe that on
average the median value of bandwidth is relatively consistent
among all of our target ASes. Interestingly Netflix which is a
know provider of fat flows for video content has a lower value
with respect to other ASes that deliver content of various type
and sizes. One should note that the 90 percentile of bandwidth
presents an upper bound for the delivery capabilities of that
specific AS. As we can see there is a huge gap between the
median and 90 percentile values which suggests that most of
the flows did not utilize the maximum amount of bandwidth
that was available at hand. This could be a side effect of many
factors such as congested transit links, the type of connection
on the client side or merely an indicator that the median value
of bandwidth is sufficient for average requirements of a user.
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Fig. 18. summary distribution of BW for top 2 prefixes of our target ASes
ordered according to AS rank regarding Bytes.

To study the effect of user connection type, we measured
the summary distribution of bandwidth for the flows with

RTT GEO HOP AS-HOP

50% BW -0.25 (0.27) 0.2 (0.37) 0.55 (0.01) -0.44 (0.04)
90% BW -0.11 (0.62) -0.11 (0.64) 0.18 (0.43) -0.12 (0.60)

TABLE XII
ρ (P-VALUE) FOR SPEARMAN CORRELATIONS BETWEEN 50 & 90

PERCENTILE OF FLOW BANDWIDTH FROM MAJOR PROVIDERS AND
DIFFERENT MEASURES OF DISTANCE.

more than 50 packets and average packets size larger than
1200 bytes for all of our target ASes and grouped them
based on the clients connection type. Figure 19 depicts these
distributions and as we can observe the median value is still
consistent across different sections of the network while the
90 percentiles suggest that users which are connected through
Ethernet cables were able to reach a bandwidth about twice
as more than residential and wireless users. Figure 19 suggest
a similar finding to Sundaresan et al. [19] that wireless links
could be a bottle neck in fully utilizing the available capacity
of the link.
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Fig. 19. summary distribution of BW for fat flows of target ASes across
different sections of the network.

To study the effect of locality (GEO, hop count and RTT)
on bandwidth we calculated the Spearman rank correlation
between the 50 and 90 percentile values of bandwidth for
the top prefixes of all of our target ASes with respect to
their distance values. Table XII lists the ρ and P-values,
based on these values we can conclude that there is no
correlation between any of our distance metrics and the end
users bandwidth. The only weak correlation is the one between
the median bandwidth and hop count distance. This correlation
is counter intuitive since an increase in the number of hops
usually translates to higher delay values which in effect results
in lower bandwidth values.

X. RELATED WORKS

Many recent studies used NetFlow data to characterize
traffic originated from campus networks for network planning,
performance monitoring, and troubleshooting [9], [20]–[22].
To our knowledge, none of these studies have utilized NetFlow
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data to identify the top providers, their contributions into
delivered traffic and their traffic footprint. Our work is also
closely related to the studies that aim at characterizing the
impact of geographical and network distance on the bandwidth
of individual connections (e.g. [23], [24]). These studies focus
on the performance of connections related to a single provider
to infer the underlying limiting factors often using active
measurement [25] or a lot more detailed information than just
NetFlow data. However, our goal is to assess the impact of
distance on bandwidth across flows from all providers using
passive measurement. Calder et al. [4] mapped the expansion
of one content provider namely Google throughout the globe
and depicted their strategy to redirect users by relying on
EDNS capabilities, our work does not focus on a single
provider and also studies the affects of locality on bandwidth.

In a similar study [6] He et al. studied the popularity of
two major cloud service providers namely Amazon EC2 and
Microsoft Azure among Alexa top websites. For traffic locality
the authors examined whether content providers were utilizing
multiple data centers and load balancing features from cloud
service providers. In our work we examine locality from a
stub-AS stand point of view and look at multiple CP’s.

Zink et al. [26] [27] studied the content delivery strategy
of Youtube and offered suggestions for improving the perfor-
mance of their infrastructure through P2P or Proxy caching.
Through their work they only focus on Youtube’s delivery
mechanism and rely on packet headers for their analysis.

Xun et al. [22] study the dynamics of users interactions
with front end servers of Google and Akamai from various
vantage points by employing Planet Lab nodes and Open
Resolvers. They study the latency of users to these servers and
the change of mappings that happen through DNS redirections.
Their work does not study the affect of users being mapped
to different front end servers and their bandwidth.

Similar to our approach Sundaresan et al. [19] take a look at
clients performance from the edge of the network by deploying
custom monitoring software on the routers of 66 homes. Their
research is mainly focused on limiting factors on the client side
to fully utilize the available link capacity namely the wireless
channel of the home access point. In contrast to our study
they rely on packet traces instead of Netflow data. Their study
does not compare and contrast the locality of traffic from the
vantage point of these clients.

A recent study by Triukose et al. [25] examined whether
a user is redirected to the closest Akamai servers and how
the performance of various Akamai servers are different from
the edge of the network using active measurement. Such an
investigation clearly offers valuable insight about the strategy
and performance of a single provider. Their analysis has a
limited scope (i.e.only a single provider). More importantly,
it does not incorporate the dynamics of realistic user requests
from top providers and its likely interaction with the employed
load balancing and cache management mechanisms by major
providers. In summary, to our knowledge, this paper presents
the first characterization of traffic footprint for a stub-AS and
its performance implications.

XI. CONCLUSION

In this paper we characterized and assessed the amount of
traffic locality that we would observe from a stub-AS using
unsampled Netflow data from a UONet’s border gateways. We
presented our algorithm for defragmenting Netflow data and
showed the temporal traffic trends that we have observed over
the span of two years. We identified the top content providers
for UONet and measured the amount of traffic locality that we
observe for these major content providers. We presented traffic
locality at a per AS and prefix granularity. We observed that
aside for a few cases these providers exhibit a high level of
locality. We presented a method for identifying guest-servers
and using this method identified and characterized Akamai’s
servers residing in other ASes. Our findings indicate that
Akamai’s own servers offer a higher level of locality from
UONet’s stand point of view. At the end we assessed the affect
of locality on UONet clients bandwidth and measured the
bandwidth of users for the fat flows of top content providers,
we did not observe any strong correlation between our distance
metrics and users bandwidth for the major providers. This
indicates that a combination of other subtle factors have an
effect on users bandwidth.

In the future we would like to explore the following tasks:
We would like to further investigate the limiting causes of
users bandwidth, namely we would like to study the effect of
Internet routes by studying users bandwidth over the span of
time and periodically conduct traceroutes towards our target
ASes. We would also like to explore strategies to associate
Akamai flows to Akamai’s customer using temporal patterns
between UONet users and CP servers.
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ASN AS Name Byte Rank Flow Rank Bytes Flows
2906 NETFLIX 1 157 3.46 TB 220.95 K

15169 GOOGLE 2 1 2.39 TB 16.94 M
20940 AKAMAI-ASN1 3 5 1.50 TB 10.45 M
15133 EDGECAST 4 20 548.15 GB 1.90 M
16509 AMAZON-02 5 4 485.25 GB 11.29 M
7922 COMCAST-7922 6 2 442.66 GB 14.74 M
3356 LEVEL3 7 22 378.44 GB 1.66 M
6185 APPLE-AUSTIN 8 276 337.35 GB 112.33 K

32934 FACEBOOK 9 11 308.43 GB 3.82 M
2914 NTT-COMMUNICATIONS-2914 10 24 262.64 GB 1.51 M

22822 LLNW 11 84 209.12 GB 413.54 K
209 CENTURYLINK-US-LEGACY-QWEST 12 13 160.44 GB 3.10 M

46489 JUSTINTV 13 557 146.62 GB 46.22 K
20446 HIGHWINDS3 14 83 145.24 GB 422.81 K

25 UCB 15 366 123.19 GB 78.48 K
14618 AMAZON-AES 16 7 117.75 GB 7.32 M
3257 TINET-BACKBONE 17 44 114.33 GB 832.64 K

10343 NASA-AERONET-AS 18 20677 112.10 GB 46.00
40428 PANDORA-EQX-SJL 19 54 108.77 GB 693.76 K
1273 CW 20 65 102.70 GB 606.20 K
4436 AS-GTT-4436 21 34 98.01 GB 1.08 M

54888 TWITTER-NETWORK 22 46 90.46 GB 796.99 K
54113 FASTLY 23 35 86.16 GB 1.08 M

160 U-CHICAGO-AS 24 360 63.50 GB 79.69 K
12989 HWNG 25 207 61.99 GB 161.70 K
8075 MICROSOFT-CORP-MSN-AS-BLOCK 26 8 56.48 GB 6.28 M

32590 VALVE-CORPORATION 27 90 56.40 GB 387.09 K
2902 WN-WY-AS 28 2601 54.85 GB 4.41 K

13335 CLOUDFLARENET 29 30 49.47 GB 1.24 M
26769 BANDCON 30 118 47.98 GB 284.97 K
54994 WANGSU-US 31 317 47.25 GB 96.33 K
4134 CHINANET-BACKBONE 32 3 46.62 GB 13.98 M
6453 AS6453 33 120 44.38 GB 279.29 K
4837 CHINA169-BACKBONE 34 10 44.02 GB 4.58 M

36408 CDNETWORKSUS-02 35 59 42.94 GB 668.08 K
11537 ABILENE 36 563 41.58 GB 45.54 K
2828 XO-AS15 37 82 39.47 GB 423.06 K

36351 SOFTLAYER 38 16 33.20 GB 2.17 M
714 APPLE-ENGINEERING 39 6 32.55 GB 8.74 M

31976 REDHAT-0 40 2025 30.49 GB 6.72 K
5511 OPENTRANSIT 41 199 29.99 GB 168.48 K
6461 ABOVENET 42 42 29.59 GB 864.95 K

21859 C3 43 479 28.17 GB 55.99 K
6762 SEABONE-NET 44 191 27.54 GB 178.50 K
3701 NERONET 45 161 24.77 GB 216.14 K
174 COGENT-174 46 55 22.68 GB 693.74 K

3491 BTN-ASN 47 248 21.30 GB 129.74 K
7843 TWCABLE-BACKBONE 48 185 21.16 GB 183.31 K

23456 failed AS res 49 14 20.95 GB 2.58 M
20001 ROADRUNNER-WEST 50 98 19.83 GB 353.18 K
23650 CHINANET-JS-AS-AP 107 9 6.19 GB 5.29 M
21342 AKAMAI-ASN2 464 12 444.38 MB 3.47 M
6939 HURRICANE 54 15 18.11 GB 2.45 M

0 failed AS res 605 17 273.17 MB 2.09 M
33517 DYNDNS 499 18 394.02 MB 2.03 M

701 UUNET 68 19 11.35 GB 1.91 M
7029 WINDSTREAM 211 21 1.65 GB 1.66 M

20115 CHARTER-NET-HKY-NC 55 23 17.84 GB 1.52 M
7018 ATT-INTERNET4 70 25 11.13 GB 1.49 M
3462 HINET 94 26 7.38 GB 1.38 M
4808 CHINA169-BJ 136 27 3.52 GB 1.34 M

23724 CHINANET-IDC-BJ-AP 116 28 4.59 GB 1.30 M
10439 CARINET 867 29 138.60 MB 1.26 M
12876 AS12876 110 31 5.44 GB 1.22 M
8560 ONEANDONE-AS 191 32 2.00 GB 1.18 M

36647 YAHOO-GQ1 59 33 14.89 GB 1.16 M
8151 Uninet 327 36 801.24 MB 1.06 M

12182 INTERNAP-2BLK 105 37 6.20 GB 997.91 K
22561 CENTURYLINK-LEGACY-LIGHTCORE 485 38 411.18 MB 967.92 K
16276 OVH 57 39 16.85 GB 914.84 K
6423 EASYSTREET-ONLINE 643 40 241.74 MB 887.39 K

29990 ASN-APPNEXUS 142 41 3.32 GB 866.87 K
36089 OPENX-AS1 215 43 1.60 GB 846.98 K
8972 PLUSSERVER-AS 231 45 1.40 GB 815.46 K

13414 TWITTER 67 47 11.51 GB 793.01 K
27281 QUANTCAST 397 48 583.94 MB 788.66 K
19679 DROPBOX 85 49 8.39 GB 762.96 K
6327 SHAW 98 50 6.55 GB 741.68 K

TABLE XIII
TOP ASES WITH THEIR CORRESPONDING STATISTICS FOR THE 2015-02-04 SNAPSHOT
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