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Abstract

Many complex problems rely on scientific and engineering computing for solutions.
High-performance computing depends heavily on linear algebra for large scale data
analysis, modeling and simulation, and other applied problems. Linear algebra provides
the building blocks for a wide variety of scientific and engineering simulation codes.
Sparse linear system solution often dominates the execution time of such applications,
prompting the ongoing development of highly optimized iterative algorithms and high-
performance parallel implementations. We are particularly interested in a scientific
toolkit called Parallel Extensible Toolkit for Scientific Computation (PETSc) because
of its efficiency, unique features and widespread popularity. In this report we present
the algorithm classification results for the preconditioned iterative solvers in PETSc.
In addition, we have created a comprehensive machine-learning-based workflow for the
automated classification of iterative solvers, which can be generalized to other types of
rapidly evolving numerical methods.

1 Introduction

Large sparse systems of linear equations are widely used in many high-performance comput-
ing applications. The size and complexity of the new generation of linear systems arising
in typical applications are growing; hence, solving large sparse linear systems is a funda-
mental problem in high-performance scientific and engineering computing. Fundamentally,
there are two main types of solution algorithms: direct and iterative. With direct methods,
the average number of operations to solve a system of linear equations for these methods
is nearly n3 where n is the order of a square matrix. Considering the size of these systems
and the computational complexity of exact solutions (O(n3)), for very large problems, ap-
proximate solutions are computed using iterative methods (with typical convergence in O(n)
iterations).

Mathematicians and computer scientists have created a number of comprehensive numer-
ical software packages that can solve such linear systems. But because of the overwhelming
number of reasonable choices to consider, finding the most suitable solution to a particular
problem is a non-trivial task, even for experts in numerical methods. Application developers
who deal with complex or huge problems cannot rely on simple implementations because
they might not be able to offer enough memory or might be too slow for such problems.
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Therefore they must use high-performance computing (HPC) libraries developed by oth-
ers. The current high-performance implementations of numerical linear algebra software are
based on decades of applied mathematics and computer science research. Therefore, select-
ing a suitable library and using it effectively to solve a given problem can require significant
background in numerical analysis, HPC, software engineering, and the researcher’s domain
science. This makes the application developers face the challenge of predicting which method
will converge fastest, or converge at all, for a given linear system. Indeed, discovering the
best approach to solving a linear algebra problem typically involves reading documentation
(when available) or researching publications outside of the developer’s area of expertise as
well as experimenting, across software options. While continuous advances in numerical
analysis and HPC libraries allow scientists and engineers to solve larger and more complex
problems than ever before, the likelihood that a user will identify the most relevant and
well-performing solution method is steadily decreasing. We apply several machine-learning
techniques to help make this decision based on relatively few, easily computable properties
of the input linear system.

This work can provide support for identifying good solution methods for sparse linear
systems to existing taxonomies that aid developers in translating linear algebra algorithms
to numerical software, which do not have such support for sparse matrices at present. One
such taxonomy is Lighthouse [3], which is an open-source Web application that currently
serves as a guide to the dense linear system solver methods.We plan to work on expanding
the Lighthouse framework for the production of matrix algebra software by adding support
for sparse matrix algebra computations. The approach we follow for solver selection is to use
machine-learning algorithms to generate functions to map linear systems to suitable solvers.
This contains two parts, feature extraction and classification. The feature extractor computes
numerical quantities, called features or properties, such as structural and spectral estimates
of the given linear system. The set of features is designed to represent the characteristics of
the system that are predictive of the performance of solvers. The classifier maps the given
feature values to a choice of solver. The task of the learning algorithm is to choose a subset
of the features, hereby referred to as feature selection, and associate the values of the selected
features to the choice of the solver.

The contributions in this report can be summarized as follows.

• A generalizable machine learning-based workflow for classifying arbitrary sparse linear
systems using different-sized feature sets.

• Comparison of several machine-learning algorithms’ performance for classifying the
Portable, Extensible Toolkit for Scientific Computation (PETSc) [2] solvers.

• Suggestions for good solver-preconditioner configurations for a given linear system.

• A set of solver-preconditioner configurations that are most likely to perform well.

2 Motivation

Several attempts have been made in the past to support automation of solver selection and
configuration, but none of them are general enough or have produced a usable software
infrastructure that would enable users to apply them for their applications. Hence, our goal
is to define an extensible methodology for classifying algorithms and software that supports
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reusability and can also be used for the new solvers as they evolve. We apply various
machine-learning algorithms to do the classification using Weka [21]. Weka is a tool that
contains a collection of algorithms for data analysis and predictive modeling. We classify
solvers based on the properties of the linear system and select the solver configuration that
has been determined to perform best based on an extensive training set of problems.

In the past, many researchers have used machine-learning to identify “good” solvers
in the context of parallel nonlinear PDE solution [8, 10, 28]. Depending on the conditions
specified in the simulation code, some matrices are weakly diagonally dominant (difficult to
solve), whereas others are strongly diagonally dominant (easy to solve). For matrices that are
weakly diagonally dominant, this machine-learning framework was successful in identifying
solvers with expensive preconditioners (such as BoomerAMG [34]). It was also successful
in identifying that very simple solvers (such as Jacobi [30]) would be fairly good for the
strongly diagonally dominant. The success of the limited-domain exploration motivated the
work presented in this report, which covers a wider variety of domains and considers a much
greater number of machine-learning methods.

3 Background

Existing numerical software taxonomy approaches are general and support relatively stand-
alone algorithms. However, these approaches do not accommodate tasks for which no library
implementation exists, or tasks that involve more complex software packages. For instance,
the functionality of large HPC toolkits, such as Trilinos [4] and PETSc, is difficult or rather
impossible to represent and maintain in most previous taxonomies, which at present simply
direct the user to the toolkit’s home pages and do not provide any support for selecting
solution methods based on performance requirements. In this report we focus on adding
support in our larger project, Lighthouse, in the area of preconditioned iterative solvers with
PETSc.

PETSc provides good support for getting started with the toolkit. There are many ways
of downloading PETSc: using a Git repository, installing a Debian package, or following a
direct web download link. Once PETSc has been successfully installed, it is easy to find the
guidelines to configure and build with the help of appropriate PETSc tutorials and other
online documentation. Mandatory packages are automatically downloaded, configured, built
and installed with PETSc. A number of PETSc examples are also available to instruct the
user on writing PETSc programs and setting various command line options.

Selecting the appropriate PETSc algorithms, however, presents substantial difficulties. A
sparse linear solver is typically paired with a preconditioner. To the uninformed user, the set
of parallel Krylov methods and preconditioners contained in PETSc, summarized in Table 1,
can be overwhelming because there are more than 300 possible pairings. Moreover, each
solver-preconditioner pair can be configured through a set of algorithm-specific parameters,
further expanding the search space. From this collection, the best choices for iterative solvers
and preconditioners for a given linear system, depend on properties of its coefficient matrix
and may also depend on the physics of the problem. Choosing a solution configuration
requires a search of the extensive numerical linear algebra literature and may also require
intense document reading or knowledge in the domain. The users may or may not have
the expertise, knowledge and time required to do these tasks, therefore making the selection
process very challenging.
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Figure 1: PETSc Krylov iterative solvers and preconditioners [2].

Next, the performance of a chosen solver-preconditioner pair strongly depends on specific
features of the linear system, and the PETSc implementation of each method has several
configuration parameters that can affect the accuracy and performance of the solution com-
puted by that method. Neither specific system features nor parameter details are clearly
stated in the literature, and as a result, achieving best performance is generally a matter
of experimenting with a variety of options, which typically cover only a small fraction of all
possible methods. All libraries for the solution of sparse matrix algebra problems inherit
the same difficulties in selecting the best methods, and some introduce new complications
of their own.

With our technique we classify solvers based on the system features and select the solver
configuration that performs best on an extensive training set of problems. We then use the
resulting models to classify the solvers and finally make the solver prediction for the new
linear systems based on their features. This technique would eliminate the need for the users
to make the solver selection choice and automates the process, making it easier and faster.
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4 Approach

Our work includes creating a comprehensive machine learning-based workflow for the classifi-
cation of sparse solvers and then presenting a comparative analysis of the solver classification
results for various machine-learning methods and input problems from different domains,
achieving up to 87% accuracy in identifying the well-performing linear solution methods in
PETSc. The overall structure of our system involves various stages, which are discussed in
detail later in this section. The first stage involves taking the linear systems as input and
computing the properties of these systems. The second stage involves solving these linear
systems with various solver and preconditioner combinations and timing the solution. Next,
the solvers need to be categorized as “good” or “bad” based on the time it takes to solve the
system. The categorization is followed by the classifier construction process. To construct
the classifier, the learning algorithm receives a training set as input. The training set is a set
of features of the linear system and the solver with its classification. The classifier searches
for a linking that makes good predictions on the training set, with respect to the resource.
The final stage involves choosing the best classifier to suggest a solution for an unknown
linear system. Figure 2 shows the complete workflow of the process of linear system solver
selection.
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Figure 2: The overall workflow of the linear system solver selection process.

4.1 Creating the Dataset

The sparse linear systems used for our experiments are obtained from the University of
Florida sparse matrix collection [5]. Our dataset comprises 1,015 sparse matrices. The size
of these matrices varies from 14 to 43,460 rows and columns. These matrices cover a wide
spectrum of domains and include those arising from problems with underlying 2D or 3D
geometry (computational fluid dynamics, acoustics and other discretization) and the ones
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which typically do not have such geometry (optimization, circuit simulation and networks
and graphs). Below are some of the kinds of the problems that are covered by our dataset:

• Electromagnetics problems

• Linear programming problems

• Acoustics problems

• Computational fluid dynamics problems

• Circuit simulation problems

• Undirected weighted graph problems

• Optimization problems

• Power network problems

• Undirected random graph problems

• Chemical process simulation problems

When using supervised machine-learning methods for building models, a common prob-
lem is overfitting. Overfitting occurs when a model begins to “memorize” training data
rather than “learning” to generalize from the trend. The chances of overfitting are reduced
by the large variety of problem domains that our dataset covers.

The input matrices are in Matrix Market format [1]. For reading in parallel, Matrix
Market is not very suitable; hence, for all cases, serial and parallel, we pre-process and
convert the Matrix Market format to PETSc binary format.

4.2 Preparing Data for Training

Once we have the dataset ready, the next step is to convert the data in the training set into a
form that is usable by Weka. The input to the learning process is Weka’s Attribute-Relation
File Format (ARFF) ASCII text file, which describes a list of instances that share some
attributes. Each data point includes a list of feature values, the solver identifier, and a label.
The solver identifier is unique to each pairing of specific Krylov method and preconditioner.
So for M matrices, we have M ∗ N data points, N being the number of possible solvers.
Because this number can be prohibitively large, we constructed the training set by computing
a smaller number of randomly selected points. We labeled each data point as “good” or “bad”
based on the performance of the solver on a matrix based on a threshold parameter b in the
range 0,1 specifying how close the solver’s performance is to the known best performing
method. For example, when b = 0.25, solvers whose performance for a given problem is
within 25% of the best were labeled as “good”, while all other solvers were labeled as “bad”.
The threshold used for labeling the dataset in this case was b = 0.35, which means that
methods within the top 35% of the best solver time were labeled as good. This value of b
was chosen as the best among several sampled values between 0.01 and 0.45. We considered
binary labels for classification, because our experiments with three-class labels showed that,
with the given number of data points collected, they are not enough to be distributed in
three classes, as we need enough data points in each class. We do not consider ranking either,
because binary classification has the greatest number of machine-learning methods available
for classification.
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4.3 Solving the linear systems

PETSc has a collection of parallel algorithms for direct solvers, Krylov iterative methods,
and preconditioners that can be used in application codes written in C, C++, Fortran
and Python. Our focus is on iterative Krylov methods and preconditioners. To solve the
sparse linear systems derived from the input matrices, we used 154 preconditioner-solver
configurations chosen from more than 300 valid options available in PETSc, with all right-
hand side elements set to one. These 300 options can be expanded further as they are
configurable with additional parameters, for both, solvers and preconditioners. We consider
the following preconditioners and solvers chosen from PETSc.

4.3.1 Preconditioners

Preconditioning refers to the process of applying a transformation on the original problem
and brings it into a form that is more suitable for the solving methods. The main idea
behind applying a preconditioner is that, instead of solving Ax = b, solve M−1Ax = M−1b
using a nonsingular m x m preconditioner M, which has the same solution x.

Here we mention the various preconditioners we considered and the subset of parameters
for them. The preconditioners are as follows:

1. Incomplete factorization preconditioners (ILU): ILU is an approximation of the
LU (Lower Upper) factorization. LU factorization factors a matrix as the product of
the lower and the upper triangular matrix.

Parameters: Factor levels which are the number of levels of fill for ILU.

Parameter values: 0, 1, 2 and 3.

2. Additive Schwarz method (ASM): Solves an equation approximately by splitting
it into boundary value problems and adds the results.

Parameter considered: The amount of overlap between sub-domains.

Parameter values: 0, 1, 2 and 3.

3. Jacobi or diagonal: One of the simplest forms of preconditioning in which the pre-
conditioner is the diagonal of the matrix as shown below.

M = diag(A) for M−1Ax = M−1 b.

4. Block Jacobi: It is similar to Jacobi, except that in this case, instead of the diagonal,
the block-diagonal is chosen as the preconditioner (M).

5. Incomplete Cholesky factorization (ICC): It is a sparse approximation of the
Cholesky factorization. The Cholesky factorization A is A = LL∗ where L is a lower
triangular matrix. An incomplete Cholesky factorization is given by a sparse lower
triangular matrix K that is very close to L. The corresponding preconditioner is
KK∗.

Parameter considered: Factor levels which are the number of levels of fill for ICC.

Parameter values: 0, 1, 2 and 3.

These and other Krylov methods are described in more detail in [31].
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4.3.2 Solvers

Similar to preconditioners, solvers also have their own parameters. For this research we are
considering only default parameters. We considered the following iterative solvers.

1. Generalized minimal residual method (GMRES): This method approximates
the solution by the vector in a Krylov subspace with minimal residual. The Arnoldi
iteration is used to find this vector.

2. The Flexible Generalized minimal residual method (FGMRES): It is a gen-
eralization of GMRES that allows larger flexibility in the choice of solution subspace
than GMRES.

3. LGMRES: It augments the standard GMRES approximation space with approxima-
tions to the error from previous restart cycles.

4. Conjugate gradient method (CG): This method starts with an initial guess of the
solution, with an initial residual and with an initial search direction.

5. Biconjugate Gradient Method (BICG): Implements the Biconjugate gradient
method, similar to running the conjugate gradient on the normal equations.

6. Biconjugate gradient stabilized method (BCGStab): It is a stabilized version
of BiConjugate Gradient Squared method.

7. Improved Stabilized version of BiConjugate Gradient Squared (IBCGS): It
is an improved stabilized version of BiConjugate Gradient Squared method.

8. Transpose-Free Quasi-Minimal Residual Method (TFQMR): It is a quasi-
minimal residual version of CGS. It retains the desirable convergence features of CGS
and corrects its erratic behavior.

9. TCQMR: It is a variant of quasi-minimal residual provided by Tony Chan.

10. LSQR: This is an algorithm for sparse linear equations and sparse least squares.

11. Chebyshev: This method requires enough knowledge about the spectrum of the ma-
trix, which is an upper estimate for the upper eigenvalue and lower estimate for the
lower eigenvalue. Chebyshev iteration method avoids the computation of inner prod-
ucts as is necessary for the other methods.

We capture the time taken to solve the system, the number of iterations, and solver and
preconditioning options, such as number of blocks and overlap.

4.4 Feature Computation

We used Anamod [20], which is a library of modules that uses PETSc functions, to compute
various properties of a system and extracted sixty-eight features shown in Figure 1 of the
coefficient matrices. These features include several categories as mentioned below:

1. Simple (norm-like quantities): Properties which are estimates of the departure
from normality such as 1-norm, infinity-norm and Frobenius-norms of the matrix, as
well as these norms taken of the symmetric and non-symmetric part of the matrix.
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Feature names

avgnnzprow right-bandwidth
avgdistfromdiag symmetry
n-dummy-rows blocksize
max-nnzeros-per-row diag-definite
lambda-max-by-magnitude-im lambda-max-by-magnitude-re
ellipse-cy nnzup
ruhe75-bound avg-diag-dist
nnz left-bandwidth
lambda-min-by-magnitude-im lambda-min-by-magnitude-re
norm1 sigma-min
upband n-struct-unsymm
colours diagonal-average
diagonal-dominance dummy-rows
ritz-values-r symmetry-snorm
symmetry-fanorm symmetry-fsnorm
lambda-max-by-real-part-im lambda-max-by-real-part-re
lambda-max-by-im-part-re lambda-max-by-im-part-im
col-variability trace-abs
ritz-values-c nnzeros
diag-zerostart loband
positive-fraction trace
min-nnzeros-per-row diagonal-sign
row-variability nrows
colour-offsets n-colours
relsymm diagonal-variance
departure nnzlow
n-nonzero-diags sigma-max
dummy-rows-kind kappa
n-ritz-values colour-set-sizes
sigma-diag-dist symmetry-anorm
ellipse-ax ellipse-ay
ellipse-cx lee95-bound
normInf normF
nnzdia trace-asquared

Table 1: Full feature set (68 features) [20].
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2. Variability: Properties that are various heuristic measurements of how far the matrix
is from a model problem, such as diagonal-variance.

3. Structure: Properties that describe the sparsity structure of the matrix, such as
bandwidth, average number of non-zeros per row or maximum or minimum number of
non-zeros per row, etc.

4. Spectrum: Properties that describe the spectrum or field of values of the coefficient
matrix. These properties can not be computed exactly, but estimation is feasible.
Examples of such properties include eigenvalue and singular value estimates.

5. JPL: These features compute a Jones-Plassmann multicolouring of a matrix such as
colours, colour offsets, etc.

4.5 Feature Reduction

The cost of computing features varies widely from milliseconds to minutes or even hours
depending on the timeout parameter chosen for interrupting non-convergent feature com-
putations. For instance, spectrum properties such as eigenvalues take a very long time to
compute as compared to some other properties. Therefore, in order to reduce the overall
cost of the process, we performed analysis to remove features that do not make a significant
contribution to the classification process. This was achieved in two ways. First, we reduced
the number of features by using Weka’s RemoveUseless filter. This filter removes the data
points corresponding to those features whose values either remain constant or vary too much
(over 99% variance). Using this simple filter brought down our number of features from 68 to
54 with 0% drop in accuracy, in fact typically improving the accuracy of subsequent classifi-
cations. We completed the selection with Weka by combining five attribute evaluators with
two search methods. The evaluator determines a method to assign a weight to each subset of
features. The search method determines what style of search is performed. These evaluators
rank the features, allowing us to discard those that are not very significant. The evaluators
we used are Gain Ratio, ChiSquared, CfsSubset, Information Gain, and Principle Compo-
nent Analysis [25]. The search methods we chose were Greedy Stepwise and Ranker [22].
These evaluators may or may not have the same set of features; therefore, we chose the
subset of features ranked highly by all or the majority of these evaluators for maximizing
the classifier’s true positive rate or sensitivity (“good” as “good” predictions). Sensitivity
is the probability that the classifier will label a “good” entry as “good”. We generated two
reduced feature sets for PETSc solvers, one of which is a subset of the other set. These best
features are expected to vary if new feature sets are evaluated and re-ranked, but since we
started with a very comprehensive set, it is not likely that they will vary.

Computing the smallest eigenvalue can take time on the order of 10−2 seconds for rela-
tively small matrices (<1,000,000 non-zeros), while a bandwidth computation requires time
on the order of 10−5 seconds. Our experiments show that the expensive features do not con-
tribute significantly to the performance of the classification, and hence, they can be safely
removed. Removing expensive features ensures that this approach is feasible, incurring min-
imal runtime overhead of selecting a good linear solver configuration.
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Figure 3: Weka workflow snapshot showing a subset of the classifiers. The same workflow
was used for the full and reduced feature sets.

4.6 Solver Classification

We classify solvers based on linear system features and select the solver configuration that
performs best on an extensive training set of problems. In machine learning, classification
is the problem of predicting to which category from a set of categories does a new instance
belong. This prediction is made on the basis of a training set of data that is used to
train the classifier. The training set contains instances with known categories. We used
Weka to compare the performance of several classification algorithms. Weka allows us to
choose different classifiers. In this report, we examine Bayesian networks [13], Alternating
Decision Trees [7], K-nearest neighbor [18], Random Forests [16], J48 [29] and Support
Vector Machines (SVM) [17]. We also tested bagging [15], which is a technique used to
improve accuracy of models by generating multiple versions of a predictor and then using
these to get an aggregated predictor. We used Decision Stump [24] and LADtree [23] bagging
techniques for our experiments. Figure 3 shows the Weka knowledge flow components we
defined and used to generate the results described in the next section.

4.7 Performance Evaluation

We measured the prediction accuracy by using the confusion matrix produced by Weka,
which enabled us to compute the sensitivity and specificity of each classifier. Specificity
is the probability that the classifier will label a “bad” entry as “bad”. In this stage, we
compared the performance of the machine-learning methods in terms of their sensitivity
and the cost of building these classifiers. We used 10-fold cross validation on each dataset.
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Feature name Reduced
Feature Set 1

(RS1)

Reduced
Feature Set 2

(RS2)
avg-diagonal-dist X X
nnz X
norm1 X X
min-nnzeros-per-row X X
norm1 X X
row-variability X X
n-nonzero-diags X
kappa X X

Table 2: Reduced feature sets RS1 and RS2.

0%#
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20%#
30%#
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50%#
60%#
70%#
80%#
90%#

100%#
LibSVM'

RF'

BayesNet*'

knn'

ADT'

J48'

All#Features# Reduced#Set#1# Reduced#Set#2#

Method TAll TRS1 TRS2

LibSVM 6.88 1.94 1.79
RF 2.67 2.40 1.43
BayesNet 0.10 0.02 0.01
knn 0.001 0.001 0.001
ADTree 0.74 0.18 0.09
J48 0.24 0.19 0.06

Figure 4: Machine-learning algorithm comparison for PETSc linear solvers using full and
reduced Anamod-based feature sets for training and prediction: “good as good” prediction
accuracy (left) and the time (in seconds) for constructing the classifier with each method
(right) using all features (TAll) and two different reduced feature sets (TRS1and TRS2) shown
in Table 2.

For any given sparse linear system, predicting the best solver is impossible by using a purely
analytical approach, i.e., without any empirical performance analysis [35]. Hence, we adopted
the approach described in this work. Because we are using a binary labeling scheme (“good”
and “bad”), the accuracy of the classifier is determined by measuring true positives (TP)
and false negatives (FN). We focus on the true positive rate (TPR) because the main goal is
to identify solution methods that are likely to perform well. Hence, the accuracy measures
presented in Section 5 are computed using the usual true positive rate formula shown below:

TPR = TP/P = TP/(TP + FN)
where P is the actual number of positive instances, i.e., solvers labeled as “good”.
The performance of a given method is strongly dependent on the problem features. The
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Occurrence Krylov
Method

Preconditioner

3.8% LSQR Jacobi
3.6% BiCG ASM (0)
3.4% BCGS ILU (0)
3.2% GMRES ASM (2)
3.0% BCGS ASM (0)
2.8% BiCG BJacobi
2.3% Chebyshev Jacobi
2.2% BCGS ASM (3)
2.1% iBCGS ASM (2)
2.0% CG ASM (0)

Table 3: Top 10 good solvers for PETSc.

most appropriate solutions also depend on the specific input, the scale of the problem, and
the available computing resources. The best choice of method depends on its application, as
well. If a student in a linear algebra class is working on homework involving small matrices,
a simple and easy-to-use sequential method will satisfy the particular need. On the other
hand, a climate scientist seeking an efficient parallel solver for a very large system should
ideally be guided to an HPC implementation such as those available in PETSc.

4.8 Solver Prediction

The choice of solver depends mainly on the features of the linear system in consideration.
Therefore, it is likely that the solvers that perform well for systems recorded in our training
set would also be applicable for any other systems that have similar characteristics. The
feature set of such a new system and the set of solvers, without labels, are given as input
to the classifier. The output is a prediction which labels each solver as “good” or “bad”
according to its suitability for the new system. This information is further used to provide
suitable solver(s) for a linear system given as input. This can be better explained with an
instance. For example, a user has the input file, which has the linear system to be solved, and
the user wants the list of suggestions for the solvers that are good and a list of solvers that
are bad for that system. The flow in this case would be as follows. First, the user provides
the input file which has the linear system. Next the user chooses to get the suggestions
for solving the system. Finally, our infrastructure provides the suggestions for solvers. We
also maintain the information about the solvers that are likely to be bad for the input in
consideration.

5 Analysis and Results

For each linear system the features were computed, and then the system was solved using
a specific solver configuration. A total of 4648 data points were considered in the dataset,
and various machine-learning classification techniques were applied to classify the solvers.
The classification has binary labels, “good” and “bad”. The results were evaluated using
10-fold cross-validation [32]. The experiments for measuring the performance of the various
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solver and preconditioner combinations in PETSc version 3.5.3 were performed on the Blue
Gene/Q supercomputer. The classification was performed on an Intel Core i5 MacBook Pro.

In our work, we focus mainly on true positives (i.e., best-performing solvers predicted
as best-performing). Our experiments include performance for the full feature set and two
reduced feature sets. The first reduced set (RS1) is obtained by removing the features that
do not contribute much towards the classification using Weka. The features in RS1 are:

1. avg-diag-dist: This is the average diagonal distance.

2. nnz: The total number of non-zeros in the matrix.

3. norm1: The maximum absolute column sum of A. It is given by the following formula.

One norm of A is max
1≤j≤m

(
∑m

i=1 |ai,j|)

4. col-variability: The element variability in columns.

5. min-nnzeros-per-row: The minimum number of non-zeros per rows.

6. row-variability: The element variability in rows.

7. n-nonzero-diags: The number of diagonals that have any nonzero element.

8. kappa: The estimated condition number of the matrix.

We further reduced RS1 to create Reduced Set 2 (RS2). This was achieved by removing
size-dependent features to evaluate the sensitivity of the classification process to the problem
size. Our observations reveal that removing size-based features has minimal impact on the
accuracy of the best classification. This interesting finding suggests that future classifiers
can be created, without including data points for a wide range of matrix sizes. Among all
machine-learning methods we applied, BayesNet showed the best performance in all cases:
full feature set as well as both the reduced feature sets (RS1 and RS2). The accuracy was
87.60% with the full feature set, which has 68 input features. Using only eight compu-
tationally inexpensive features in RS1, the BayesNet-based classifier predicted good solvers
correctly 86.91% of the time and 86.40% with RS2. RS1 and RS2 are shown in Figure 2. Fig-
ure 4 shows the true positive prediction accuracy of several of the machine-learning methods
we tested for the full and reduced feature sets. We tested more methods than are included
in the figure, but none of them performed better than the best method shown in the figure.
We tested a subset of the configurations possible for the solvers and preconditioners and
observed the occurrence of each of them to conclude which methods and preconditioners
were the most successful. Table 5 summarizes these configurations that were most likely to
perform well among all the configurations we tested.

6 Related Work

There have been several attempts and software developments for selecting efficient solvers
for linear systems. One such attempt is the Linear System Analyzer (LSA) [14] which is
a component-based environment that allows the user to specify combinations of precondi-
tioner and solver, without the need to know the details of the implementation. Other similar
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approaches include: a poly-iterative linear solver [6], which applies several iterative meth-
ods simultaneously to the same system; a composite multi-method solver [11, 12], where a
sequence of solvers is applied to the linear system; an adaptive multi-method solvers ap-
proach [9, 26], where linear solvers are selected dynamically to match closely the evolving
numeric properties of the linear systems; and a self-adapting large scale solver architecture
(SALSA) [19], which uses statistical techniques such as principal component analysis for
solver selection.

7 Challenges

There were many challenges involved in the entire process of providing solver suggestions
for sparse linear systems. In this section we summarize those challenges. Given a linear
system, we derived the features of those systems. The time required to compute the features
varied depending on the category of the features. For instance, the cost of computation of
the spectral features, is theoretically much higher than even solving the system. Running
the solvers is yet another expensive step, and some of the methods do not even converge.
Another challenging issue arose during the format conversion from Matrix Market to PETSc
binary format. Matrix Market format does not store all diagonal entries, but PETSc format
requires all diagonal entries to be stored, even when they are zero. This resulted in errors
for many of the matrices.

8 Conclusion

This work demonstrates how machine-learning can be applied to select solution algorithms
for large sparse linear systems. Given that solutions of linear systems are involved in many
scientific and engineering problems, there is immense scope in automating the process of
solver selection. Our study shows that we can rank the properties of matrices according to
their share of contribution towards the classification process. The correlation between matrix
properties and linear solvers is a recent topic of study among researchers, and understanding
the structure of the classifiers can result in strong contributions in this field.

There can be many solutions for a linear system, and there also can be many machine-
learning algorithms that can be applied to choose among these solutions. The more options
available to choose from, the more confounding it becomes. We present [27, 33] a compara-
tive analysis of the solver classification results for a variety of input problems belonging to
different domains and various machine-learning methods, achieving up to 87% accuracy in
identifying the well-performing linear solution methods in PETSc.
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