
DRP Report:
Accelerating Advection Via Approximate Block Exterior Flow Maps

Ryan Bleile
University of Oregon

ABSTRACT

Flow visualization techniques involving extreme advection work-
loads are becoming increasingly popular. While these techniques
often produce insightful images, the execution times to carry out the
corresponding computations are lengthy. With this work, we intro-
duce an alternative to traditional advection. Our approach centers
around block exterior flow maps (BEFMs). BEFMs can be used to
accelerate flow computations by reducing redundant calculations,
at the cost of decreased accuracy. Our algorithm uses Lagrangian
interpolation, but falls back to Eulerian advection whenever regions
of high error are encountered. In our study, we demonstrate that the
BEFM-based approach can lead to significant savings in time, with
limited loss in accuracy.

1 INTRODUCTION

A myriad of scientific simulations, including those modeling fluid
flow, astrophysics, fusion, thermal hydraulics, and others, model
phenomena where constituents move through their volume. This
movement is captured by a velocity field stored at every point on the
mesh. Further, other vector fields, such as force fields for electricity,
magnetism, and gravity, also govern movement and interaction. A
wide range of flow visualization techniques are used to understand
such vector fields. The large majority of these techniques rely on
placing particles in the volume and analyzing the trajectories they
follow. Traditionally, the particles are displaced through the vol-
ume using an advection step, i.e., solving an ordinary differential
equation using a Runge-Kutta integrator.

As computational power on modern desktops has increased, flow
visualization algorithms have been empowered to consider designs
that include more and more particles advecting for longer and
longer periods. Techniques such as Line Integral Convolution and
Finite-Time Lyapunov Exponents (FTLE) seed particles densely in
a volume and examine where these particles end up. For these oper-
ations, and many others, only the ending position of the particle is
needed, and not the details of the path the particle took to get there.

Despite seemingly abundant computational power, some tech-
niques have excessively long running times. For example, ocean
modelers often study the FTLE within an ocean with both high
seeding density and very long durations for the particles (years of
simulation time) [11, 13]. As another example, fusion scientists are
interested in FTLE computations inside a tokamak where particles
travel for hundreds of rotations [19]. In both cases, FTLE calcula-
tions, even on supercomputers, can take tens of minutes.

With this work, we consider an alternative to traditional Eule-
rian advection. The key observation that motivates the work is that,
in conditions with dense seeding and long durations, particles will
tread the same (or very similar) paths over and over. Where the cur-
rent paradigm carries out the same computation over and over, we
consider a new paradigm where a computation can be carried out a
single time, and then reused. That said, we find that, while particle
trajectories do often travel quite close to each other, they typically

follow their own (slightly) unique paths. Therefore, to effectively
reuse computations, we consider a method where we interpolate
new trajectories from existing ones, effectively trading accuracy for
speed.

Our method depends on Block Exterior Flow Maps, or BEFMs.
The idea behind BEFMs is, for block-decomposed data, to pre-
compute known trajectories that lie on block boundaries. When a
compute-intensive flow visualization algorithm is then calculated, it
consults with the BEFMs and does Lagrangian-style interpolation
from its known trajectories. While this approach introduces error, it
can be considerably faster, since it avoids Eulerian advection steps
inside each block.

The contributions of the paper are as follows:

• Introduction of BEFMs as an operator for accelerating dense
particle advection calculations;

• A novel method for generating an approximate BEFM that
can be used in practice;

• A study that evaluates the approximate BEFM approach, in-
cluding comparisons with traditional advection.

2 RELATED WORK

McLouglin et al. recently surveyed the state of the art in flow visu-
alization [9], and the large majority of techniques they described in-
corporate particle advection. Any of these techniques could possi-
bly benefit from the BEFM approach, although the tradeoff in accu-
racy is only worthwhile for those that have extreme computational
costs, e.g., Line Integral Convolution [4], finite-time Lyapunov ex-
ponents [6], and Poincare analysis [18].

One solution for dealing with extreme advection workloads is
parallelization. A summary of strategies for parallelizing particle
advection problems on CPU clusters can be found in [15]. The basic
approaches are to parallelize-over-data, parallelize-over-particles,
or a hybrid of the two [14]. Recent results using parallelization-
over-data demonstrated streamline computation on up to 32,768
processors and eight billion cells [12]. These parallelization ap-
proaches are complementary with our own. That is, traditional
parallel approaches can be used in the current way, but the phase
where they advect particles through a region could be replaced by
our BEFM approach.

In terms of precomputation, the most notable related work comes
from Nouanesengsy et al. [10]. They precomputed flow patterns
within a region and used the resulting statistics to decide which re-
gions to load. While their precomputation and ours have similar
elements, we are using the results of the precomputation in differ-
ent ways: Nouanesengsy et al. for load balancing and ourselves to
replace multiple integrations with one interpolation.

In terms of accelerating particle advection through approxima-
tion, two works stand out. Brunton et al. [3] also looked at accel-
erating FTLE calculation, but they considered the unsteady state
problem, and used previous calculations to accelerate new ones.
While this is a compelling approach, it does not help with the steady
state problem we consider. Hlwatsch et al. [7] employ an approach
where flow is calculated by following hierarchical lines. This ap-
proach is well-suited for their use case, where all data fits within
the memory of a GPU, but it is not clear how to build and con-
nect hierarchical lines within a distributed memory parallel setting.

In contrast, our method, by focusing on flow between exteriors of
blocks, is well-suited for this type of parallelism.

Bhatia et al. [2] studied edge maps, and the properties of flow
across edge maps. While this work clearly has some similar ele-
ments to our, their focus was more on topology and accuracy, and
less on accelerating particle advection workloads.

Scientific visualization algorithms are increasingly using La-
grangian calculations of flow. Jobard et al. [8] presented a
Lagrangian-Eulerian advection scheme which incorporated forward
advection with a backward tracing Lagrangian step to more accu-
rately shift textures during animation. Salzbrunn et al. delivered a
technique for analyzing circulation and detecting vortex cores given
predicates from pre-computed sets of streamlines [17] and path-
lines [16]. Agranovsky et al. [1] focused on extracting a basis of
Lagrangian flows as an in situ compression operator, while Chan-
dler at al. [5] focused on how to interpolate new pathlines from
arbitrary existing sets. Of these works, none share our focus on
accelerating advection.

3 METHOD

Our method makes use of block exterior flow maps (BEFM). We
begin by defining this mapping, in Section 3.1. We then describe
our method, and how it incorporates these maps, in Section 3.2. Fi-
nally, in Section 3.3, we present some analysis of the computational
complexity of our method, compared to the traditional technique.

3.1 Block Exterior Flow Map
3.1.1 Definition

In scientific computing, parallel simulation codes often partition
their spatial volume over their compute nodes. Restated, each com-
pute node will operate on one spatial region, and that compute node
will be considered the “owner” of that region. Such a region is fre-
quently referred to as a block. For example, a simulation over the
spatial region X: [0-1], Y: [0-1], and Z: [0-1] and having N compute
nodes would have N blocks, with each block covering a volume of
1
N .

Consider a point P that lies on the exterior of a block B. If the
velocity field points toward the interior of B at point P, then Eu-
lerian advection of a particle originating at P will take the particle
through the interior of B until it exits. In this case, the particle will
exit B at some location P′, where P′ is also located on the exterior
of B. The BEFM captures this mapping. The BEFM’s domain is
all spatial locations on the exterior of blocks, and its range is also
spatial locations on the exteriors of blocks. Further, for any given P
in the BEFM’s domain, BEFM(P,B) will produce a location that is
on B’s exterior. Saying it concisely, the BEFM is the mapping from
particles at exteriors of blocks to the locations where those particles
will exit the block under Eulerian advection. Figure 1 illustrates an
example of a BEFM.

3.1.2 Using BEFMs for Calculating Particle Trajectories
Now consider a particle P that lies on the interior of block B0. Fur-
ther, consider the trajectory of P when traveling for T time units.
Assume P travels through blocks B1, B2, ..., BN−1, before terminat-
ing in the interior of block BN at time T. Consider how BEFMs can
be used to calculate P’s trajectory:

• Since P lies in the interior of B0, traditional advection is
needed to calculate the path of P until it reaches B0’s exte-
rior.

• The BEFM can then be used to calculate the path of P through
B1, B2, ..., BN−1.

• P’s trajectory into the interior of BN is then again calculated
with traditional advection.

𝑃0

𝐵1 𝐵2 𝐵3

𝐵4 𝐵5 𝐵6

𝑃1 𝑃2

𝑃3

Figure 1: Notional example of a BEFM on a two-dimensional vec-
tor field. This example shows the path of a particle moving through
a region, with an emphasis on the blocks it travels through. Par-
ticle P0 travels through block B6 and exits B6 at location P1. Thus,
BEFM(P0,B6) = P1. Similarly, BEFM(P1,B3) = P2, and BEFM(P2,B2)
= P3 etc. In the case of particles placed in an outgoing region of flow,
the BEFM returns the particle itself, e.g., BEFM(P1,B6) = P1.

Putting it all together, if BEFMs can calculate mappings more
quickly than the calculations for advecting a particle through a
block, then this method should be faster than traditional advection.
Further, the speedup for the BEFM-style calculation is then limited
only by the cost for the steps through the initial and final blocks (B0
and BN).

3.1.3 Approximate BEFMs
There are many ways to implement a BEFM. For example, a

BEFM could respond to each mapping request (i.e., a BEFM(P,B))
by going back to the original vector field and employing traditional
advection. In this case, the BEFM would have the same perfor-
mance characteristics as traditional advection, and the abstraction
of BEFMs on top of traditional advection would be unnecessarily
complicated.

For our research, we are interested in BEFMs where each map-
ping request can be satisfied much more quickly than the work it
takes to advect a particle using traditional advection. For this rea-
son, we consider precomputation, i.e., evaluating the BEFM be-
fore the main work begins of calculating particle trajectories. How-
ever, it is not obvious how to precompute a perfect BEFM. Our
approach to this problem is to precompute an approximate BEFM
or ABEFM. This ABEFM will know the exact mappings for cer-
tain locations on the boundary. We refer to this list of locations as
the KnownParticleList.

When an ABEFM is asked to calculate mappings for particles
that are not in the KnownParticleList, it will interpolate the exit lo-
cation from the nearest particles that are in the KnownParticleList.

There are many ways to establish an ABEFM’s KnownParti-
cleList. We chose to generate locations uniformly along the exte-
rior of a block at some chosen sample density. With this approach,
the accuracy and pre-computation time are in tension. High sample
densities will increase accuracy at the cost of pre-computation time.
Low sample densities will reduce pre-computation time at the cost
of accuracy. We explore this issue more in Section 5.

3.1.4 Conditions Where an ABEFM Cannot Be Used
It is not always possible to interpolate new trajectories from the

ABEFM’s known trajectories. Through our experiments, we have
identified three ways in which interpolation is not possible. They
are:

1. If a particle trajectory from the exterior of block B never again
reaches the exterior of block B, i.e., if a particle lands in a sink
or is caught in a vortex inside the block.

2. If a particle trajectory differs too significantly from its neigh-
bors, i.e., neighboring trajectories separated and exit through
different faces of B.

3. If all neighboring trajectories are not uniformly entering the
block or uniformly exiting the block, e.g., some neighboring
particles get displaced to the interior of the block while others
are displaced into neighboring blocks.

Case 1 Case 2 Case 3

Figure 2: Cases where an ABEFM cannot interpolate a new trajec-
tory. Note that on the right figure one of the particles enters the block
while the other particle exits the block.

Fortunately, we can detect each of these three cases, and fall back
to traditional advection to determine a particle trajectory. However,
it is important that we understand the rate at which these conditions
occur. The rate is data set dependent, and we determine these rates
experimentally.

3.2 An Approach for Creating and Using an ABEFM
In this section we describe our algorithms for creating an ABEFM

and utilizing an ABEFM for advection.
Examples in this outline will follow the assumption that

ABEFM’s KnownParticleList points are uniformly generated at the
mesh resolution, i.e., one particle trajectory for every node in the
mesh that lies on the exterior of a block. For example, in a 10×10
two-dimensional mesh with 4 blocks laid in a 2× 2 pattern, each
block’s external edge will consist of 5 cells and therefore 6 points.
Additionally, these mapped points are not duplicated across shared
faces. Figure 3 illustrates this example.

Figure 3: Initial locations for particle trajectories to be mapped during
the pre-computation phase of an ABEFM. Depicted is a 10x10 mesh
with 2x2 blocks overlaid and the locations of the mappings defined
on the block’s exteriors

3.2.1 Building an ABEFM
ABEFM construction consists of generating flows for each loca-

tion in the KnownParticleList. This is done by initializing particles
at each location in the KnownParticleList and then advecting those
particles across a block. Advection is done using traditional Eule-
rian methods such as Runge-Kutta. Pseudo code for this method is
outline in Algorithm 1.

Algorithm 1 Build Flow Map
1: function GET BLOCK ID(Particle P)
2: Determine the block that P advects through
3: return BlockID
4: end function
5: function ADVECT ON BLOCK(Particle P, Block B)
6: Advect P until it exits B (using Eulerian advection)
7: Stop P on boundary of B
8: Compute which Face of B that P landed on
9: return P, FaceID

10: end function
11: for all P in KnownParticleList do
12: Bid = GET BLOCK ID(P)
13: NewP, Fid = ADVECT ON BLOCK(P, Bid)
14: Def: Flow F as the set < P, NewP, Bid, Fid >
15: end for

3.2.2 Advecting With an ABEFM
Section 3.1.2 describes how to use a BEFM for particles at arbitrary
locations in a volume. For this discussion, we focus on the case of
a particle P that lies on the boundary of block B, and calculating
where P exits B.

The trajectory for a particle P is calculated as follows. First,
the neighboring particles, P1, P2, ... , Pn (Pi) from the KnownPar-
ticleList are identified. For our study, the KnownParticleList had
particles seeded at regular intervals, so n would be four, and we
would find the four particles that formed a square around P. Next,
we check the Pi for our three conditions where an ABEFM cannot
be used (see 3.1.4). If we cannot use the Pi, then we fall back to
traditional Eulerian advection using Runge-Kutta solves. If we can
use the Pi, then we take the output location to be the weighted aver-
age of the exit locations of the Pi. For our construction of four Pis
in a square configuration, this entailed bilinear interpolation. We
also interpolated the time to advance through the volume from the
times of the Pis. If this time was greater than the amount of time re-
maining for the particle to travel, then we rejected the interpolated
result (since it traveled too far), and fell back to Eulerian advection.
However, if the interpolated projection was within the time bounds,
then we used it and avoid Eulerian advection. Pseudo code for this
method is outline in Algorithm 2.

Algorithm 2 Advect with Flow Map
1: function ADVECT BLOCK(Particle P, Block B)
2: Integrate to find P’s exit location
3: Stop P on boundary of B
4: if P.Time ≥ End Time then
5: return 0
6: else
7: return 1
8: end if
9: end function

10: function ADVECT VIA FLOW MAP(Particle P, Block B)
11: Interpolate Output location and time from (P,B)
12: if Output.Time > End Time then
13: return ADVECT BLOCK(P,B)
14: end if
15: Set P = Output
16: return 1
17: end function

18: AdvectionList: List of particles to be advected
19: for all Particles P in AdvectionList do
20: keepGoing = 1
21: while P.time < End Time && keepGoing do
22: Bid = GET BLOCK ID(P)
23: if Particle on Computable Face then
24: keepGoing = ADVECT VIA FLOW MAP(P,Bid)
25: else
26: keepGoing = ADVECT BLOCK(P, Bid)
27: end if
28: end while
29: end for

3.3 Computational Analysis
Our method can only be used to accelerate flows under certain

conditions, and those conditions are data dependent. Therefore,
our discussion of the method in this section can only be presented
in terms of probabilities. The Results sections will demonstrate the
accuracy we can achieve, and the performance speedups we observe
in real-world settings.

Looking closely at each sub-component of the ABEFM algo-
rithm in comparison too the traditional Eulerian approach, helps to
clarify the differences between these algorithm’s complexities and
run times. For this analysis we assume a full mesh resolution advec-
tion problem, advecting one particle for every node in the mesh, for
integration time T. Also, we assume a cubic mesh with N cells per
dimension and cubic blocks with B blocks in each dimension. For
simplicity we also assume large N so that we can approximate the
N+1 vertices in each dimension as N vertices. In order to make cer-
tain simplifying assumptions we will also consider the case where
our underlying vector field is pointing in exactly one direction ev-
erywhere. This assumption should work for many fields as an aver-
age. This analysis is not intended to produce exact answers; simply
to provide a general guideline for performance as well as to increase
our understanding of the underlying connections between compo-
nents of our model.

Mesh := N×N×N
Blocks := B×B×B

Points per Block :=
N
B
× N

B
× N

B

We will start by breaking the traditional method down into its
components. If we are advecting a full mesh resolution number of
particles, for some integration time, T , with a step size of S, and the
cost of a single Eulerian update step is E, then the total advection
time for the traditional method is:

Time to Advect E := N×N×N× T
S
×E

:= N3× T
S
×E

If we do a similar break down of the run times for an ABEFM,
we will need to consider both phases and each of the important sub-
components mentioned in Section 3.2.

For the phase where we generate an ABEFM, we will need to
consider:

[
Faces
Block

]× [#Blocks]× [
#Points

Face
]× [#Steps]× [

Time
Step∗Point

]

Time to Build Flows := [6]× [B3]× [
N2

B2]× [
N
B
]× [E]

:= 6×N3×E

This expression over counts the total number of flows. There-
fore, we can consider this as an upper bound for this phase’s run
time. Fixing this would effectively make the constant, 6, a smaller
constant.

For the first and last parts of phase two, advecting with an
ABEFM, we can estimate that the time to advect all of the parti-
cles to a face will be roughly equal to the time to advect all of the
particles through their last Eulerian advection steps. Additionally,
on a constant flow, the average time to advect a particle to a face,
from any point in the mesh, will be the time it takes to advect that
particle half way through a block. For all particles this can be ex-
pressed as:

Time to f ind Start/End := N3× 1
2
× N

B
×E

Finally the time to advect all particles with the ABEFM, can be
expressed as a probability function. Probability, P, is the probability
that we will use the ABEFM to interpolate to a new location instead
of falling back to traditional advection. The following equation rep-
resents the total time for the ABEFM update steps to run on all of
the Particles for time T, given that I is the time to do one interpola-
tion update.

ABEFM U pdate := N3×
(
(I×P)+(

N
B
×E× (1−P))

)
× T/S

N/B

:=
[
(N2× T

S
× I)×P

]
+

[
(N3× T

S
×E)× (1−P)

]
Which in words is the total number of points, N3, times the total
number of steps, T

S , divided by the number of steps per block, N
B ,

times the sum of the time to do one block interpolation update times
the probability to do an update, (I ×P), plus the time to do one
Eulerian update times the probability to an Eulerian update times
the number of steps in one block, E× (1−P)× N

B .
Something interesting to note here is that the ABEFM update

step, if P = 1, reduces the problem by a whole order of N, which is
a significant decrease in number of computations, O(N3) to O(N2).

If we wish to compare the total time for each algorithm we can
simply add together the portions of the ABEFM method and com-
pare them to the Eulerian method. If we set the equation such that
the ABEFM method is faster than the Eulerian method, Eulerian >
ABEFM, then we can solve for any interesting parameters.

Eulerian > ABEFM

N3× T
S
×E >

[
6×N3×E

]
+[

2×N3× 1
2
× N

B
×E

]
+[[

(N2× T
S
× I)×P

]
+

[
(N3× T

S
×E)× (1−P)

]]
N3× T

S
×E > N4 E

B
+N3E

(
6+

T
S

)
+N2 T P

S
(I−NE)

This Equation Simplifies too:

T
S
× (N×E− I)×P > N×

(
6+

N
B

)
×E

ASSERT :

N > 1 T > 0 E > 0 I > 0
1 < B≤ N 0 < S≤ 1 0≤ P≤ 1

There are two possible cases for the (NE−I) portion of the equa-
tion. And looking at both closely we can see that:

i f : NE < I
then : (NE− I) =−(I−NE)

AND : P <−
(

S
T

N(6+(N/B)E
(I−NE)

)
Given our assert that P is a probability between 0 and 1, and

given the combinations of the the asserts that make the expres-
sion on the right hand side positive, this equation is not possible.
This means that given this formulation, the ABEFM approach is
not faster in the space where NE < I. Given that I and E are both
roughly small constants this places a bound on the size of N re-
quired to make doing an ABEFM useful.

3.4 Discussion
When trying to understand a new method it is important to know

when the method will be useful and when it will not. We can gain
some basic understanding of this from the algorithmic analysis. The
analysis makes certain assumptions however and therefore can only
be relied on to help us gain a basic understanding and set up some
bounds on the useful range of the method.

Using this analysis we can look at some real world problems and
decide if this method is worth applying.

N B T S P E I Etime > ABEFM
100 3 10 0.001 .8 0.01 0.1 1
1 3 10 0.001 .8 0.01 0.1 0

10 3 10 0.001 .8 0.01 0.1 0
11 3 10 0.001 .8 0.01 0.1 1
100 3 10 0.1 .8 0.01 0.1 1
100 3 10 0.2 .8 0.01 0.1 0

4 STUDY OVERVIEW

4.1 Data Sets
We considered three data sets. Each had steady state flow (i.e., one
time slice) and was defined on a regular mesh. They are:

• Tokamak: the magnetic field inside a tokamak. Inside the
tokamak, the velocity vector values lead to circulation around
the tokamak. Outside the tokamak, the velocity field is all
zero vectors. This data set had dimensions 3003.

• Astro: a supernova simulation. The vector field has high vari-
ability in its central spherical region, and steadily points out or
in when approaching the edges. This data set had dimensions
2563.

• TH: a thermal hydraulics simulation of air mixing in a “fish
tank” box with two inlets — one with hot air and one with
cold air — and an outlet. This data set had dimensions 5003.

4.2 Testing Factors
We considered six dimensions of configurations:

• Domain block layout: what are the impacts of having fewer
or more blocks?

• Density of known particles: what are the impacts in calculat-
ing more or less particles during preprocessing? — time for
preprocessing, time for regular execution, and accuracy?

• Integration time: how does performance and accuracy change
as particles go for shorter or longer periods?

• Step size: how does step size affect performance and accu-
racy?

• Number of particles: how does the number of particles to be
processed affect overall run times?

• Data set: how does the underlying vector field affect perfor-
mance and accuracy?

4.3 Testing Methodology
Our methodology consisted of seven phases. The first phase stud-
ied our “default” case in detail. Each of the remaining six phases
sweep through one dimension of our testing factors, and explores
the impact of that factor.

4.3.1 Phase 1: Default Workload
Our default case consists of a workload, and a configuration for
ABEFM. The default workload was 203 particles integrating for 5
time units with a step size of 0.001 on the vector field from the
Tokamak data set. The default ABEFM configuration on the Toka-
mak was (5x5x5) blocks and 300 particles precomputed in each
dimension for the KnownParticleList.

4.3.2 Phase 2: Block Layout
With this phase, we wanted to understand the effects of changing
block size. Large blocks cause particles to travel larger distances,
but the interpolated path may be less accurate. Small blocks cause
particles to travel shorter distances – and so the number of opera-
tions needed to go the same distance is greater – but the interpolated
path may be more accurate. With this phase, we wanted to under-
stand the magnitude of these effects.

We considered 8 block layouts: (5x5x5), (10x10x10),
(15x15x15), (20x20x20), (25x25x25), (30x30x30), (40x40x40),
and (50x50x50). Additionally we use the outcome from this phase
to focus a more detailed look at a few more layouts.

4.3.3 Phase 3: Density of Known Particles
With this phase, we wanted to understand the effects of changing
the number of known particles in the precomputation phase. In-
creasing this density will increase accuracy and the ability to use
an ABEFM, but also increases precomputation costs. Decreasing
this density could impact accuracy and decrease the ability to use
an ABEFM, but reduces precomputation costs. With this phase, we
again wanted to understand the magnitude of these effects.

We considered 5 densities along each dimension of the mesh:
100, 200, 300, 400, and 500.

4.3.4 Phase 4: Integration Time
With this phase, we considered integration time. Short integration
times imply that we spend the majority of our time using traditional
advection to get to block boundaries, mitigating the opportunity for
speedup. Longer integration times, however, create the potential for
applying the ABEFM repeatedly, and possibly significant speedups.

We considered 7 integration times: 1, 5, 10, 20, 40, 80, and 100
time units.

4.3.5 Phase 5: Step Size
With this phase, we considered step size. Small steps sizes move
more slowly through a volume, while large step sizes move more
quickly. However, for the ABEFM method, the step sizes only
impact performance for stepping to the boundary, so the principal
change is in the comparison with traditional advection.

We considered 9 step sizes: 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005,
0.0001, 0.00005, and 0.00001.

4.3.6 Phase 6: Number of Particles
With this phase, we considered the number of particle trajectories
to calculate. As this number becomes large, the cost for precompu-
tation is amortized, making ABEFMs more effective.

We consider configurations where the particles were placed in a
cubic formation of evenly spaced samples. We considered 3 reso-
lutions: 203, 1003, and 3003.

Time (seconds)
ABEFM Build Time 54.883
ABEFM Run Time 26.185
Eulerian Run Time 145.984

Speedup
ABEFM Run Time over Eulerian Time 5.573
ABEFM Total Time over Eulerian Time 1.801

Usability
Percent Usable Faces 90.4847%

Percent ABEFM Jumps 84.610%
Error

Average Percent Error 0.991%
Average Displacement Distance 0.00657

Table 1: Results from Phase 1.

4.3.7 Phase 7: Data Set

The performance of the ABEFM can clearly be affected by the un-
derlying vector field. With this phase, we considered all three data
sets. We performed the study from Phase 2 on each of the data sets
keeping the total number of Eulerian steps constant. The Tokamak
data set values are already listed in phase 2. The Astro data set used
an integration time of 5000 and a step size of 1. The TH data set
used the same configuration as the Tokamak data set. Each data set
used their own native resolution for precomputed particles for the
KnownParticleList: 256 for Astro and 500 for FH. Each considered
workloads of 203 particles.

4.4 Hardware
All studies were performed on a machine with a 2.5 GHz E5-2609
v2 Intel Xeon processor and 64 GB of RAM. This initial study was
done in serial, since the serial results will enable direct comparisons
between the ABEFM approach and traditional Eulerian integration.

4.5 Measurements
The measurements we took for each experiment were:

• Time: the total run time of the ABEFM approach (meaning
both build time and advection time using the ABEFM). We
also would run a separate experiment with the traditional, Eu-
lerian approach and measure its time.

• Speedup: the total speed up from using an ABEFM compared
to just Eulerian integration.

• Usability Metric: the percentage of time spent interpolating
with the ABEFM versus using Eulerian integration and the
percentage faces that an ABEFM can be used.

• Error: the average percent error and average displacement dis-
tance of an FTLE computed with the ABEFM advected par-
ticles with respect to the Eulerian advected particles. Differ-
ences in FTLE are used as the error metric since one of the
leading motivations for ABEFMs use is the FTLE.

5 RESULTS

5.1 Phase 1: Single Test Analysis
Phase 1 delves into a single test, to set baseline expectations for
the ABEFM method, and how the ABEFM method compares with
traditional Eulerian advection. Table 1 shows the key results from
this phase.

This baseline test demonstrates the viability of the ABEFM ap-
proach. Although the precomputation is non-trivial, it is still much
smaller than the time to perform Eulerian advection. Additionally,
the errors incurred were minimal — only about 1% different from
the Eulerian value and 0.006 different in the actual FTLE values.

Figure 4 shows the FTLE computed using both the ABEFM method
and traditional Eulerian advection.

Figure 4: The FTLE field computed using the ABEFM (left) and the
Eulerian advection technique (right).

5.2 Phases 2: Varying Domain Block Layouts

This phase studies the effect on ABEFM calculations when dividing
the mesh into different numbers of blocks. Figure 5 shows trade-
offs in accuracy and speedup as the number of blocks increases. It
shows that with the lowest number of blocks, both speedup and ac-
curacy is quite good. By going to 103 or 153, the speedup is main-
tained, but error increases. Ultimately, when going even higher,
speedups drop off, but error is also reduced.

 0.006
 0.007
 0.008
 0.009
 0.01

 0.011
 0.012
 0.013
 0.014

 5 10 15 20 25 30 35 40 45 50
 1.5
 2
 2.5
 3
 3.5
 4
 4.5
 5
 5.5
 6

Av
er

ag
e

D
is

pl
ac

em
en

t
D

is
ta

nc
e

Sp
ee

du
p

(E
ul

er
ia

n/
AB

EF
M

)

Number of Blocks Per Dimension

Tokamak: Varying Block Dimensions

Displace Dist
Speedup

Figure 5: Results from Phase 2: The accuracy and runtime for the
Tokamak data set with respect to varying block dimensions.

A subsequent study considered additional block layouts, tailored
to the nature of the Tokamak data set, and its circular flow. In this
case, blocking occurred along the flow, but there was no vertical
blocking, since flow moves horizontally. Figure 6 shows the results
of this study.

 0
 0.002
 0.004
 0.006
 0.008
 0.01

 0.012
 0.014

 1 2 3 4 5 6 7 8
 3.5
 4
 4.5
 5
 5.5
 6
 6.5

Av
er

ag
e

D
is

pa
lc

em
en

t
D

is
ta

nc
e

Sp
ee

du
p

(E
ul

er
ia

n/
AB

EF
M

)

Block Layout Test Number

Tokamak: Varying Block Dimensions

Displace Dist
Speedup

Figure 6: Results from Phase 2: accuracy and runtime of the Toka-
mak data set with respect to additional block dimensions. Block di-
mensions are as follows: [1] = (2x2x2), [2] = (3x3x3), [3] = (4x4x4),
[4] = (5x5x5), [5] = (20x20x20), [6] = (20x20x1), [7] = (3x3x1), [8] =
(2x2x1)

This configuration confirms that fastest run times with the Toka-
mak data set come from the block layouts with smaller numbers.
However, it also shows that, for this data set, it is beneficial to re-
duce the number of blocks in Z with respect to the number of blocks
in X and Y. Before these studies, our initial intuition was that the
closer the block jumps are the less error there will be, but this was
not true here. Having less block jumps can also decreases the error
as there are less interpolations that are approximating the flows lo-
cations and/or there is a greater percent of Eulerian updates. This
displays a trade-off between the number of times an error is intro-
duced versus the size of the errors introduced.

5.3 Phase 3: Vary KnownParticleList Density

Phase 3 varied the density of the KnownParticleList. Figure 7
shows the tradeoffs between accuracy and build time for the
ABEFM as a function of KnownParticleList density. For this test,
the percentage error decreased significantly faster when the den-
sity increased from below the mesh resolution up to the mesh res-
olution. Then, as the KnownParticleList density is increased even
more, there is an improvement in accuracy, although not as signifi-
cantly as before. Additionally, the time to build the ABEFM grew
slower and slower from 100 to 300 to 500, starting at 8.7s, going to
61.9s, and then to 184s.

0.2%
0.3%
0.4%
0.5%
0.6%
0.7%
0.8%
0.9%
1.0%
1.1%

 100 150 200 250 300 350 400 450 500
 0
 20
 40
 60
 80
 100
 120
 140
 160
 180
 200

Av
er

ag
e

Pe
rc

en
t

Er
ro

r

Ti
m

e
(s

)

Flow Map Density

Varying KnownParticleList Density

Average Percent Error
Build Time
Run Time

99%

99.2%

99.4%

99.6%

99.8%

 100 150 200 250 300 350 400 450 500
 0
 20
 40
 60
 80
 100
 120
 140
 160
 180
 200

Av
er

ag
e

Ac
cu

ra
cy

Ti
m

e
(s

)

Flow Map Density

Varying KnownParticleList Density

Average Percent Error
Build Time
Run Time

Figure 7: Results from Phase 3: accuracy and runtimes as a function
of KnownParticleList density. Run time drops slightly and build time
increases steadily as the density of known (precomputed) particles
is increased.

5.4 Phase 4: Integration Time

This phase looked at performance and accuracy as particles were
allowed to travel for longer and longer distances. Figures 8 and 9
show the results of this study. The take away from these figures is
that, as integration time increases, the speedups from the ABEFM
method become increasingly higher. While this is expected, the
study shows the extent of speedup that is possible, which is ulti-
mately limited by the number of faces along a block that can be
used for interpolation (and thus do not have to fall back to Eulerian
advection).

 0
 5

 10
 15
 20
 25

 0 10 20 30 40 50 60 70 80 90 100
 0
 500
 1000
 1500
 2000
 2500
 3000
 3500

Sp
ee

du
p

Ti
m

e
(s

)

Integration Time

Integration Time Study

ABEFM
Eulerian
Speedup

Figure 8: Results from Phase 4: runtimes and speedup for both the
ABEFM and Eulerian methods as a function of integration time. Val-
ues for run time of the ABEFM method vary from 115 seconds to 159
seconds with a 62 second construction time. The Eulerian run time
varies from 64 seconds to 3320 seconds.

0.2%
0.4%
0.6%
0.8%

1%
1.2%
1.4%
1.6%

 0 10 20 30 40 50 60 70 80 90 100
 0.0011
 0.0012
 0.0013
 0.0014
 0.0015
 0.0016
 0.0017
 0.0018
 0.0019
 0.002
 0.0021

Av
er

ag
e

Pe
rc

en
t

Er
ro

r

Av
er

ag
e

D
is

pl
ac

em
en

t
D

is
ta

nc
e

Integration Time

Integration Time Study

Displace Dist
Percent

98.4%

98.8%

99.2%

99.6%
99.9%

1 20 40 60 80 100
 0.0011
 0.0012
 0.0013
 0.0014
 0.0015
 0.0016
 0.0017
 0.0018
 0.0019
 0.002
 0.0021

Av
er

ag
e

Ac
cu

ra
cy

Av
er

ag
e

D
is

pl
ac

em
en

t
D

is
ta

nc
e

Integration Time

Integration Time Study

Displace Dist
Percent

Figure 9: Results from Phase 4: average absolute error and average
percent error as a function of integration time.

5.5 Phase 5: Step Size

This phase varied the step size. Figures 10 and 11 show the results
of this phase.

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2

 0.0001 0.001 0.01 0.1
 0
 200
 400
 600
 800
 1000
 1200
 1400
 1600

Sp
ee

du
p

Ti
m

e
(s

)

Step Size

Varying Step Size

ABEFM
Eulerian
Speedup

Figure 10: Results from Phase 5: runtimes and speedup for the
ABEFM method and Eulerian Method as a function of step size.

0.5%
1%

1.5%
2%

2.5%
3%

3.5%
4%

4.5%
5%

 0.0001 0.001 0.01 0.1
 0
 0.005
 0.01
 0.015
 0.02
 0.025
 0.03
 0.035
 0.04

Av
er

ag
e

Pe
rc

en
t

Er
ro

r

Av
er

ag
e

D
is

pl
ac

em
en

t
D

is
ta

nc
e

Step Size

Varying Step Size

Percent
Displace Dist

95%
95.5%

96%
96.5%

97%
97.5%

98%
98.5%

99%
99.5%

 0.0001 0.001 0.01 0.1
 0
 0.005
 0.01
 0.015
 0.02
 0.025
 0.03
 0.035
 0.04

Av
er

ag
e

Ac
cu

ra
cy

Av
er

ag
e

D
is

pl
ac

em
en

t
D

is
ta

nc
e

Step Size

Varying Step Size

Accuracy
Displace Dist

Figure 11: Results from Phase 5: average absolute error and aver-
age percent error as a function of step size.

Step size affects both the Eulerian method and the Eulerian por-
tions of the ABEFM preprocessing phase. As step size decreases,
the speedup increases, although it appears to be asymptotically
bound.

5.6 Phase 6: Varying Number of Particles

This phase shows the effects of varying the number of particles. As
the number of particles increases, the precomputation costs for the
ABEFM are increasingly amortized. Figure 12 shows that as the
number of particles is increased, the speedup also increases.

 0
 2
 4
 6
 8

 10
 12
 14

 0 10 20 30 40 50 60 70 80 90 100
 0
 2
 4
 6
 8
 10
 12
 14

Sp
ee

du
p

Sp
ee

du
p

(E
ul

er
ia

n/
AB

EF
M

)

Integration Time

Number Particles for Integration Times

100 Cubed
300 Cubed

Figure 12: Results from Phase 6: The Speedups of 100 and 300
cubed particles as integration time is increased.

5.7 Phase 7: Varying The Data Set

This study incorporated the remaining two data sets (TH and Astro)
to see how well they performed compared to the Tokamak data set.
The data sets were studied with a variety of blocks (i.e., the same
study that was performed in Phase 2, but for these new data sets).
For reference, the Tokamak data set’s results for this analysis were
listed in Figure 5.

In the Astro data set, there is significant mixing in the center
and headed straight out or straight in on the edges. The result of
varying block dimension can be seen in Figure 13. It shows an
optimal layout for run time at around 203 resolution of blocks. The
accuracy at this level is also at a local minimum though it is greater

then at smaller block sizes. The accuracy also seems to level off at
around this level for all of the next tested block sizes.

0.00004
0.00005
0.00006
0.00007
0.00008
0.00009
0.00010
0.00011

 5 10 15 20 25 30 35 40 45 50
 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8

Av
er

ag
e

D
is

pl
ac

em
en

t
D

is
ta

nc
e

Sp
ee

du
p

(E
ul

er
ia

n/
AB

EF
M

)

Number of Blocks Per Dimension

Astro: Varying Block Dimensions

Displace Dist
Speedup

Figure 13: Results from Phase 7: accuracy and runtime for the astro
data set as a function of varying block dimensions.

The second data set, TH, captures the mixing of hot and cold air
currents. The vector field for this data set has significant mixing
throughout its volume. The results of varying block dimension can
be seen in Figure 14. The optimal layout for runtime is at around a
block resolution of 153 to 203. Between these two values, 203 has
lower error. As the number of blocks increases or decreases, the
errors go down but so too does the speedup.

 0.0295
 0.03

 0.0305
 0.031

 0.0315
 0.032

 0.0325
 0.033

 0.0335
 0.034

 0.0345
 0.035

 5 10 15 20 25 30 35 40 45 50
 1.7
 1.8
 1.9
 2
 2.1
 2.2
 2.3
 2.4
 2.5
 2.6
 2.7

Av
er

ag
e

D
is

pl
ac

em
en

t
D

is
ta

nc
e

Sp
ee

du
p

(E
ul

er
ia

n/
AB

EF
M

)

Number of Blocks Per Dimension

Thermal Hydraulic: Varying Block Dimensions

Displace Dist
Speedup

Figure 14: Results from Phase 7: accuracy and runtime for the TH
data set as a function of varying block dimensions.

6 CONCLUSION AND FUTURE WORK

We introduced Block Exterior Flow Maps (BEFMs) and designed
an algorithm for accelerating flow calculations using Approximate
BEFMs (ABEFMs). The approach has two significant “knobs” —
block layout and density of known particles calculated in the pre-
processing phase — and we studied the impacts of these knobs for
multiple particle advection workloads. We found that ABEFMs
provided significant winnings for extreme particle advection work-
loads, with one workload completing in 159 seconds where the tra-
ditional approach took 3,320 seconds, a speedup of more than 20X
and with an average error of less than 2%. Further, as particles
are advected for longer and longer distances, our technique has the
possibility to show even greater gains.

This technique was developed in response to needs within the
fusion community to advect for long periods around a tokamak.
While our technique is currently useful for stand-alone post hoc
analysis, our future work will be to insert the method into their
simulation codes for in situ processing. While our preprocessing
times are currently large, we believe they can be accelerated on
the many-core architectures now prevalent on top supercomputers.
Further, our block-centric approach lends itself well to distributed
memory parallelism. In another branch of future work, we would
like to consider constructing the ABEFM adaptively, in an effort

to minimize unneeded calculations, and to increase resolution in
complex flow regions.

ACKNOWLEDGEMENTS

The authors wish to thank Christoph Garth Ph.D of University
of Kaiserslautern for his inspiration of the originoal idea, Linda
Sugiyama Ph.D of Massachusetts Institute of Technology for pro-
viding the underlying problem to solve as well as a data set for
testing and validation.

REFERENCES

[1] A. Agranovsky, D. Camp, C. Garth, E. W. Bethel, K. I. Joy, and
H. Childs. Improved Post Hoc Flow Analysis Via Lagrangian Rep-
resentations. In Proceedings of the IEEE Symposium on Large Data
Visualization and Analysis (LDAV), pages 67–75, Paris, France, Nov.
2014.

[2] H. Bhatia, S. Jadhav, P. Bremer, G. Chen, J. A. Levine, L. G. Nonato,
and V. Pascucci. Flow visualization with quantified spatial and tem-
poral errors using edge maps. Visualization and Computer Graphics,
IEEE Transactions on, 18(9):1383–1396, 2012.

[3] S. Brunton and C. Rowley. A method for fast computation of ftle
fields. In APS Division of Fluid Dynamics Meeting Abstracts, vol-
ume 1, 2008.

[4] B. Cabral and L. C. Leedom. Imaging vector fields using line integral
convolution. In Proceedings of the 20th Annual Conference on Com-
puter Graphics and Interactive Techniques, SIGGRAPH ’93, pages
263–270, New York, NY, USA, 1993. ACM.

[5] J. Chandler, H. Obermaier, K. Joy, et al. Interpolation-based pathline
tracing in particle-based flow visualization. Visualization and Com-
puter Graphics, IEEE Transactions on, 21(1):68–80, 2015.

[6] G. Haller. Distinguished material surfaces and coherent structures
in three-dimensional fluid flows. Physica D: Nonlinear Phenomena,
149(4):248 – 277, 2001.

[7] M. Hlawatsch, F. Sadlo, and D. Weiskopf. Hierarchical line integra-
tion. Visualization and Computer Graphics, IEEE Transactions on,
17(8):1148–1163, Aug 2011.

[8] B. Jobard, G. Erlebacher, and M. Hussaini. Lagrangian-eulerian ad-
vection of noise and dye textures for unsteady flow visualization. Vi-
sualization and Computer Graphics, IEEE Transactions on, 8(3):211–
222, Jul 2002.

[9] T. McLoughlin, R. S. Laramee, R. Peikert, F. H. Post, and M. Chen.
Over Two Decades of Integration-Based, Geometric Flow Visualiza-
tion. In EuroGraphics 2009 - State of the Art Reports, pages 73–92,
April 2009.

[10] B. Nouanesengsy, T.-Y. Lee, and H.-W. Shen. Load-Balanced Parallel
Streamline Generation on Large Scale Vector Fields. IEEE Trans-
actions on Visualization and Computer Graphics, 17(12):1785–1794,
2011.

[11] T. M. Özgökmen, A. C. Poje, P. F. Fischer, H. Childs, H. Krishnan,
C. Garth, A. C. Haza, and E. Ryan. On Multi-Scale Dispersion Under
the Influence of Surface Mixed Layer Instabilities. Ocean Modelling,
56:16–30, Oct. 2012.

[12] T. Peterka, R. Ross, B. Nouanesengsey, T.-Y. Lee, H.-W. Shen,
W. Kendall, and J. Huang. A Study of Parallel Particle Tracing for
Steady-State and Time-Varying Flow Fields. In Proceedings of IPDPS
11, Anchorage AK, 2011.

[13] L. Pratt, I. Rypina, T. Özgökmen, P. Wang, H. Childs, and Y. Be-
bieva. Chaotic Advection in a Steady, Three-Dimensional, Ekman-
Driven Eddy. Journal of Fluid Mechanics, 738:143–183, Jan. 2014.

[14] D. Pugmire, H. Childs, C. Garth, S. Ahern, and G. H.
Weber. Scalable Computation of Streamlines on Very
Large Datasets. In Proceedings of the ACM/IEEE
Conference on High Performance Computing (SC09), Nov. 2009.

[15] D. Pugmire, T. Peterka, and C. Garth. Parallel Integral Curves. In
High Performance Visualization—Enabling Extreme-Scale Scientific
Insight, pages 91–113. Oct. 2012.

[16] T. Salzbrunn, C. Garth, G. Scheuermann, and J. Meyer. Path-
line predicates and unsteady flow structures. The Visual Computer,
24(12):1039–1051, 2008.

[17] T. Salzbrunn and G. Scheuermann. Streamline predicates. Visual-
ization and Computer Graphics, IEEE Transactions on, 12(6):1601–
1612, Nov 2006.

[18] A. R. Sanderson, G. Chen, X. Tricoche, D. Pugmire, S. Kruger,
and J. Breslau. Analysis of recurrent patterns in toroidal magnetic
fields. Visualization and Computer Graphics, IEEE Transactions on,
16(6):1431–1440, 2010.

[19] L. Sugiyama and H. Krishnan. Finite time lyapunov exponents for
magnetically confined plasmas. Bulletin of the American Physical So-
ciety, 57, 2012.

