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(a) Image from analysis of a 4,0963 turbulent flow

data set.

(b) 8:1 compressed data using a multi-resolution

technique and the Haar kernel.

(c) 128:1 compressed data using prioritized coeffi-

cients and the CDF 9/7 kernel.

Figure 1: Three renderings of a turbulent-flow data set. The left image comes from an analysis performed previously in conjunction with a
simulation scientist. This analysis focused on connected components, and so the rendering assigned each component a unique color. The
remaining two images repeat this analysis on wavelet compressed versions of the same data. The middle image has only an 8:1 reduction, and
yet poorly captures the features of interest for this analysis. However, the wavelet settings used for the right image gives much better results:
it is significantly more accurate even though it uses far fewer bytes to represent the data.

ABSTRACT

We explore the ramifications of using wavelet compression on
turbulent-flow data from scientific simulations. As upcoming I/O
constraints may significantly hamper the ability of scientific simu-
lations to write full-resolution data to disk, we feel this study en-
hances the understanding of exascale science with respect to po-
tentially applying wavelets in situ. Our approach repeats existing
analyses with wavelet-compressed data, using evaluations that are
quantitatively based. The data sets we select are large, including
one with a 4,0963 grid. Our findings show that the efficacy of
wavelets vary across the analyses, and that prioritized coefficient
compression is consistently superior to a multi-resolution approach,
and that the biorthogonal kernels CDF 9/7 and CDF 8/4 perform
better than the Haar kernel.

1 INTRODUCTION

The design of modern supercomputers is constrained by both fi-
nancial and power budgets. These constraints force supercomputer
architects to make difficult tradeoffs among the system components
(e.g., networking, I/O, memory, and computational speed) to bal-
ance the budgets. Over the last decade, architects have devoted
smaller and smaller percentages of their budgets toward I/O. While
I/O bandwidth is still increasing on almost every new supercom-
puter, it is often not keeping pace with these supercomputers’ abil-
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ities to generate data.

Simulation codes use the I/O subsystem to store their state (a
time slice), for subsequent post hoc analysis and visualization.
When I/O bandwidth slows down, relatively speaking, simulation
codes often respond by saving their state less often, leading to tem-
poral sparsity. Looking forward, the I/O subsystem may become so
underpowered that the resulting temporal frequency will not be suf-
ficient for meaningful analysis and visualization. If this happens,
simulation codes will need to pursue a new strategy, where they
dramatically reduce the size of their time slices before writing to
disk, i.e., compression. Obviously, simulation scientists prefer to
perform visualization and analysis on their raw data; an important
premise of this research is that future supercomputing architectures
will have I/O capabilities that require simulation scientists to accept
the compromises inherent to compression.

There are several existing compression schemes which could
be appropriate for scientific data (meaning mesh-based simulation
data). Here, we explore wavelet compression, which is most fre-
quently used with images, movies, and signal processing. There
have been far fewer applications to scientific data, however, and
this relative dearth of work is significant: as the nature of scientific
data is different from that of wavelet’s traditional applications, the
efficacy of wavelets for this data is still not fully understood.

With this study, we applied wavelet compression to large scien-
tific data sets, specifically turbulent-flow data sets, and measured
how well the compressed forms could be used for analysis. An
important goal for our effort was to quantify the efficacy — we
only wanted to consider analyses where we could evaluate how ef-
fectively the wavelet representation captured the original data, and
where we could state accuracies in quantitative ways. That said,



evaluating accuracy is frequently an application-dependent process.
Lost data accuracy may be insignificant for some analyses, but very
important for other analyses. Our approach for this issue was to
consider two specific analyses, drawn from existing in-depth stud-
ies with simulation scientists, and then repeat them with wavelet-
compressed data.

The work in this paper is an evaluation study. We felt the evalu-
ations were needed because wavelets are frequently mentioned as
a possible solution for the upcoming constraints posed by exas-
cale computing [1, 8], and because the effectiveness of wavelets for
analysis on scientific data is still not fully understood. The specific
contributions of this paper are:

• Additional evidence of the usefulness of wavelet compression
on scientific data sets, as well as evidence of how much com-
pression is possible while still keeping specific analyses vi-
able;

• Evaluation of wavelet compression that focuses on quantify-
ing differences, which enables intuitive comparisons; and

• Exploration of multiple wavelet compression techniques, illu-
minating which techniques may be useful for scientific data.

This paper is organized as follows: after reviewing related work
in Section 2, Section 3 describes options for applying wavelet com-
pression, Section 4 gives an overview of our experiment method-
ology, Section 5 and 6 summarize the analysis results on wavelet-
compressed data, Section 7 discusses savings in I/O, and Section 8
presents I/O performance measurements in practice.

2 RELATED WORK

We survey related work in wavelet compression applied to visual-
ization (Section 2.1) and in analysis of turbulent-flow data (Sec-
tion 2.2).

2.1 Wavelet Compression in Visualization

Wavelet compression is a common method for reducing the mem-
ory footprint of data, and has been applied widely in visualization
approaches. When reconstructing slices of a CT data set, two-
dimensional wavelet transforms have been proven to provide high
compression rates with fast decoding for performing random ac-
cess of voxels [14, 19]. When used on three-dimensional volume
data sets, such as hydrodynamic simulations or global ocean mod-
els, wavelet compression is effective for both data reduction and
visualization with different levels of detail [2, 22]. Wavelet com-
pression also brings new possibilities for real-time analysis on large
scale data sets, for example, both large mesh reconstruction and an-
imated volume data decompression are achievable in real-time on
commodity hardware using wavelet compression [10, 12].

The work most closely related to our project aims not only to
exploit the power of wavelet compression, but to also help users
understand the precision lost from the data compression process.
The latter is essential for making good decisions on the tradeoffs
between compression and information loss. Wong et. al. proposed
an energy-based model to analyze the authenticity of orthogonal
wavelet compressed volume data [23]. Woodring et. al. and Ma
et. al. further introduced visualization techniques to encode the
amount of variance in the same volume space, providing the ability
to examine local information loss at points of interest [16, 24]. Ex-
act error bounds can be found for each data compression level [24],
allowing domain scientists to get a precision guarantee when ana-
lyzing compressed data sets.

In contrast to previous work, the focus of this study is in under-
standing the effects of two widely used wavelet kernels on specific
data analysis procedures. The goal is to understand the efficacy of
wavelets in a variety of configurations and evaluate the trade off
between data integrity and visual analytics tasks on turbulent-flow
data sets.

2.2 Turbulent-Flow Data Analysis

Our study investigates the use of wavelet compressed data with two
established analyses of turbulent-flow data. We do not aim to ad-
vance the analyses themselves, but instead evaluate the effects of
wavelet kernel and compression ratio on the resulting analysis com-
pared to uncompressed data.

The first analysis finds critical structures in massive time-varying
turbulent-flow simulations [9]. Clusters of enstrophy are found and
grouped into connected components, using a distributed-memory
parallel algorithm [13]. Characteristics of the components are then
tracked over time, providing a time-varying profile of the enstrophy
structure population. A performance study showed that the analy-
sis was parallelizable and scalable, which is essential for analyzing
large data sets.

The second analysis is by Gruchalla et. al., which studies the
structural and statistical analysis of turbulent flows by focusing on
local structures and their dynamics [11]. In their analysis, identified
critical structures were first grouped into three populations based on
their dynamic properties, which were then profiled based on vortic-
ity and helicity. More local dynamic properties were further stud-
ied, including detailed dynamics of single structures as well as ag-
gregated group statistics.

3 DATA COMPRESSION WITH WAVELETS

Let x[n] be a one-dimensional data array and uk[n] be a set of K
basis functions. Then a wavelet transform expands x[n] as:

x[n] =
K−1

∑
k=0

ak ·uk[n]. (1)

The set of basis function consists of two subsets, a scaling func-
tion set Φ and a wavelet function set Ψ. A basis function uk[n]
belongs to either one of these two subsets. Each coefficient ak mea-
sures the similarity between the corresponding basis function uk[n]
and the data array x[n]. This transform itself is lossless and x[n]
can be recovered by calculating the above expansion using all K
coefficients. However, wavelets are frequently used in a lossy man-
ner [7, 17, 21]: when reconstructing x[n], an approximation can be
calculated by using a subset of the K coefficients, specifically the

first K̃:

x̃[n] =
K̃−1

∑
k=0

ak ·uk[n]. (2)

Data compression is thus achieved by storing fewer coefficients and
reconstructing x̃[n] using only those fewer coefficients. The com-
pression ratio is derived from the fraction of coefficients used to
reconstruct the data set. For instance, to achieve the 8:1 compres-
sion ratio, one eighth of the total number of coefficients would be
used.

3.1 Wavelet Kernels

We consider two types of wavelet kernels: Haar and biorthogonal.
Biorthogonal kernels [6] can have multiple forms, and in this study
we consider two of those forms: CDF 9/7 and CDF 8/4.

3.1.1 Haar Kernel

The Haar kernel is one of the most basic wavelet kernels. It uses a
series of “square-shaped” functions for its basis function set.

The Haar kernel is one type of orthogonal kernels, i.e., wavelet
kernels that require any pair of its basis functions to have a zero
inner product. While the Haar kernel is simple and easy to use,
the image processing community has favored biorthogonal kernels,
since they can compact image data into fewer wavelet coefficients.



3.1.2 Biorthogonal Kernels

Biorthogonal kernels relax the constraint of orthogonal kernels that
all basis functions must be orthogonal. A biorthogonal kernel only
requires the scaling function set Φ to be orthogonal with the dual
of the wavelet function set Ψ, and the wavelet function set Ψ to be
orthogonal with the dual of the scaling function set Φ. This addi-
tional freedom increases the flexibility to design and optimize the
basis functions. Biorthogonal kernels always use the same number
of coefficients as the original data array. The Haar kernel also has
this property, although orthogonal wavelets, with the exception of
Haar, are expansive and their transforms result in more coefficients
than samples from the original array.

The two biorthogonal kernels in our experiments are from the
popular Cohen-Daubechies-Feauveau family of wavelets: CDF 9/7
and CDF 8/4 [6]. Each member of the CDF wavelet family has
its own filter size, which is indicated by its suffix, e.g., 9/7 or 8/4.
CDF 9/7 has been widely embraced, and is often used in image
compression (e.g. JPEG 2000 [20]). However, CDF 8/4 has slightly
less computational complexity.

3.2 Compression Using Wavelets

There are different strategies for laying out wavelet coefficients in
order to achieve compression. With our study, we evaluated a multi-
resolution scheme and prioritized coefficient storage scheme.

3.2.1 Multi-resolution

With a multi-resolution approach, the wavelet transform is applied
in a recursive fashion: each application of the transform divides the
signal — the data array in our case — into “approximation” (i.e.,
scaling) and “detail” (i.e., wavelet) coefficients. The approxima-
tion coefficients provide a coarsened representation of the signal,
while the detail coefficients contain the information that is missing
from the approximation coefficients. The transform is repeatedly
applied to the approximation coefficients, and each pass creates a
coarser and coarser approximation. In the case of the Haar wavelet,
the approximation is a simple unweighted averaging of neighboring
samples. Finally, note that coefficients stored in this manner have
implicit addressing based on their spatial locations and resolution
levels, and thus do not introduce additional storage costs.

In effect, the multi-resolution property offers a pyramid repre-
sentation. This pyramid representation is strictly limited to power-
of-two reductions along each axis. Thus, in the case of three-
dimensional regular grids, the available reduction ratios are of the
form 8N :1, i.e., 8:1, 64:1, 512:1, etc. Techniques such as this
one are widely used by the visualization community, although the
wavelet approach differs from approaches such as mipmapping, as
it does not require additional storage for coarse versions, and such
as space-filling curves, as these curves create coarse representations
where the value for a region comes from a single data point, rather
than average of all points in that region.

3.2.2 Prioritized Coefficients

When reconstructing the original data from the wavelet expansion
given in equation 1, coefficients are of different importance, i.e., co-
efficients representing the more rapidly changing parts of the data
array are more important than coefficients representing the more
self-similar parts of the data array. The prioritized-coefficient tech-
nique makes use of this property by storing all coefficients in or-
der of their importance. This practice collects the most informative
wavelet coefficients into a relatively small group stored together.
The original data array can still be reconstructed, however, this
scheme augments the coefficients with information about the co-
efficients’ spatial location in the volume. This extra information
requires additional storage overhead, and the cost for this book-
keeping is discussed in Section 7.

Figure 2: Our experiment methodology. D denotes the raw data,
WC denotes an operator that applies wavelet compression to the
data (with VAPOR), D′ denotes the newly created wavelet data,
ANALY SIS represents the analysis performed (with VisIt or VA-
POR), and R and R′ represent the results of the analysis for D and
D′ respectively. Our study then evaluated the difference between R
and R′.

4 EXPERIMENT OVERVIEW

Our experiments were designed to quantitatively evaluate the effi-
cacy of wavelet compression on the analysis of turbulent flow data.
We evaluated many configurations, varying over kernels, coefficient
storage schemes, and compression levels. Section 4.1 describes
our experiment methodology for a generic configuration, and Sec-
tion 4.2 describes the different configurations we studied.

4.1 Experiment Methodology

Our experiment methodology, illustrated in Figure 2, was as fol-
lows:

• We began with turbulent flow data in its raw form.

• We applied wavelet compression to the raw data. This step
was performed using the VAPOR software package [4, 5].

• We applied an analysis routine to both data sets (raw form
and wavelet compressed). The analysis was done using ei-
ther VisIt [3] or VAPOR, depending on the original analysis
performed.

• We evaluated the difference between the resulting analyses.

4.2 Configurations Studied

We varied three parameters in our experiments: wavelet kernel,
wavelet compression strategy, and compression ratio. We first
considered wavelet compression strategy (i.e., how does multi-
resolution compare with prioritized coefficients) using only the
Haar kernel because our implementation of biortogonal kernels
only supported priortized coefficients. We then looked at the ef-
fects of the wavelet kernel (i.e., Haar vs two biorthogonal kernels:
CDF 9/7 and CDF 8/4), all within the context of a prioritized coeffi-
cient compression strategy. We compared seven different compres-
sion ratios: 8:1, 16:1, 32:1, 64:1, 128:1, 256:1, and 512:1. How-
ever, using the multi-resolution compression strategy restricted pos-
sible compression ratios to only 8:1, 64:1, and 512:1. Finally, in the
evaluation of wavelet applied in the local dynamics analysis, we in-
volved all available kernel and compression strategy combinations,
and studied them using five compression ratios. Figure 3 shows
the studied configurations. The cross sign denotes wavelet settings
used in evaluating wavelet compression strategies; the circle de-
notes wavelet settings used in evaluating wavelet kernels; and the
square denotes wavelet settings used in evaluating local dynamics.

4.3 Analysis Performed

We performed two distinct visual analysis routines on two scien-
tific data sets, both of which come from turbulent flow simulations
in a cubic space. For simplicity, we denote the first data set as



Figure 3: Wavelet configurations studied. Cross signs show com-
pression settings examined when comparing multi-resolution vs
prioritized coefficients (Section 5.3.1). Circles show the compres-
sion settings when comparing Haar vs biorthognal kernals (Sec-
tion 5.3.2). Squares denote compression settings used in evaluating
the wavelet in local dynamics analysis (Section 6.3).

Mesh Number of Number of Number of
Resolution Time Slices Scalar Fields Vector Fields

DS1 4,0963 13 1 0

DS2 1,0243 1 3 1

Table 1: Properties of our two scientific data sets.

DS1, and the second as DS2. Table 1 describes their key proper-
ties. Both analyses, described earlier in Section 2.2, came from
established studies that included domain scientists [9, 11]. Though
each analysis is performed multiple times on data sets with different
wavelet settings (raw form, Haar+multi-resolution, CDF 9/7+prior-
itized, etc.), the underlying analysis itself is the same each time.

5 CRITICAL STRUCTURE IDENTIFICATION

This section is divided into three sub-sections: overview of the anal-
ysis task (5.1), description of evaluation methodology (5.2), and
results (5.3).

5.1 Analysis Overview

This analysis identifies critical structures using various settings for
each type of wavelet compression method, comparing each to the
baseline, or uncompressed, data. It operates on the “enstrophy”
scalar field of DS1. A critical structure is defined as a region with
significantly higher enstrophy values than the area surrounding it.
Identification of these critical structures requires two steps. The first
step isolates regions with enstrophy values higher than some α , a
fixed value provided by the domain scientists. DS1 contains mil-
lions of these high-enstrophy regions. The second step eliminates
structures with a volume smaller than some threshold β , again a
fixed value provided by the domain scientists. In DS1, this process
results in hundreds of critical structures for further study. Figure 1a
shows the results from this analysis using the first time slice of DS1.

While sensitivity to α and β is one potential concern about this
analysis, a bigger concern is that of errors resulting from compres-
sion. If a compressed version of the enstrophy field breaks a compo-
nent (or joins two disjoint components), then the result may put that
component below β (or the joined component above β ). Our goal
with this research is not to modify the established analysis method
to perform more robustly — although that is a worthy goal even
outside the context of compression — but rather to identify how
well wavelet compression can maintain the integrity of the data for
such an analysis.

5.2 Evaluation Methodology

The baseline analysis, i.e., performing the identification task on the
raw data, yields some number of critical structures. Similarly, the
analysis on the wavelet-compressed data also yields some number
of critical structures. In the ideal case, the number of critical struc-
tures for both would be the same, and each critical structure in the

Figure 4: A Venn diagram describing the three types of structures:
false negative, false positive, and correct (i.e., identified by both).
False negatives refer to structures identified in the baseline but not
in the compressed data. False positive structures identified in the
compressed data but not in the baseline.

baseline analysis would have a corresponding structure in the same
location in the compressed data. However, the critical structures do
not align in this ideal way in practice.

There are two types of error that can occur. First, a critical struc-
ture can appear in the compressed data that does not appear in the
raw data. We refer to this type of error as a false positive. Second,
a critical structure can fail to appear in the compressed data, even
though it does appear in the raw data. We refer to this type of er-
ror as a false negative. Figure 4 illustrates this concept as a Venn
diagram.

To provide a better comparison among all compression ratios, we
consider the proportion of error among the critical structures, rather
than absolute numbers. Formally, for a compressed data set being
compared to the raw data, let FN be the number of false negatives,
FP be the number of false positives, and IB be the number of critical
structures common to both. Then we define:

proportion o f FN =
FN

FN + IB
(3)

proportion o f FP =
FP

FP + IB
(4)

Overall, the lower these two proportions are, the better a compres-
sion setting matches the baseline.

We only placed a critical structure in IB, i.e., identifying it as
the same between the raw and compressed data, if it passed our
proximity test. This test compared the bounding boxes of all struc-
tures in the baseline with the bounding boxes of all structures in the
compressed data. For each pair of baseline-and-compressed struc-
tures, the overlap was measured. The overlap was calculated so
that structures with similar sizes and similar spatial extents would
have high values. Specifically, if V was the volume of intersection
between the two, VB was the volume of the baseline structure, and
VC was the volume of the compressed structure, then their overlap
was scored as V 2/(VB ×VC). A perfect overlap would score 1, and
no overlap would score 0. A baseline-compressed structure pair
was then identified as the “same” if, for a baseline structure B and
a compressed structure C, then B’s best match (i.e., highest score)
was C, and C’s best match was B. This meant that large baseline
structures that got split during compression would contribute false
positives (as only one compressed structure would match, but one
would find no match), and separate baseline structures that got com-
bined during compression would contribute false negatives (as only
one baseline structure would match the combined structure).

5.3 Results

We break our evaluation into two steps. First, in Section 5.3.1,
we study the impact of coefficient storage schemes. Second, in
Section 5.3.2, we explore the impact of wavelet kernel choice.



5.3.1 Wavelet Compression Strategy

We evaluate the two coefficient storage schemes — prioritized coef-
ficients and multi-resolution — with three compression ratios: 8:1,
64:1, and 512:1, with each test using the Haar kernel. This results
in six different wavelet settings. Figure 5 shows renderings from
our analysis using each of the six settings on the first time slice of
DS1.

Figure 6 compares the false positive and false negative propor-
tions between prioritized coefficients and a multi-resolution tech-
nique. At the 8:1 compression ratio, results with prioritized coeffi-
cients have approximately 10% error for both metrics. This likely
could be acceptable to the domain scientist in practical use. In-
terestingly, the other wavelet settings all fall outside the 10% range,
making them likely unacceptable for this analysis. That said, priori-
tized coefficients clearly outperform the multi-resolution approach:
prioritized coefficients with 512:1 compression are more accurate
than the multi-resolution approach with 8:1 compression. As can
be seen in Figure 6, the multi-resolution approach fails to identify
many of the structures that exist in the baseline, leading to a high
false negative rate.

5.3.2 Wavelet Kernel Choice

We then expanded our kernel choices to include the biorthogonal
kernels CDF 9/7 and CDF 8/4. This meant there were a total of
three kernels, since we still considered the Haar kernel. We no
longer considered a multi-resolution approach, and this allowed us
to consider more compression ratios. We studied five: 8:1, 64:1,
128:1, 256:1, and 512:1. Thus, the resulting number of experiments
was fifteen. (Three of these fifteen are repeated from Section 5.3.1:
Haar+8:1, Haar+64:1, and Haar+512:1.) Figure 7 shows the dif-
ference among three wavelet kernels using the 256:1 compression
ratio.

We plotted the false positive and false negative proportions for
these three wavelet kernels in Figure 8 . Figure 8a shows that the
CDF 9/7 kernel has the lowest false positive rates at compression
ratios 8:1, 64:1, 128:1, and 256:1 by a clear margin. Figure 8b
shows that the CDF 9/7 and CDF 8/4 have similar false negative
rates, but they are both lower than the Haar kernel. Summing up,
these results indicate that the CDF 9/7 is the best choice among
these three wavelet kernels for this analysis. However, once again,
the false negative and false positive proportions are likely too high
for real-world analysis for any compression ratio but 8:1.

6 LOCAL DYNAMICS ANALYSIS

This section is again divided into three sub-sections: overview of
the analysis task (6.1), description of evaluation methodology (6.2),
and results (6.3).

6.1 Analysis Overview

The second analysis studies dynamic properties of local structures,
comparing the results of analysis on compressed data to the raw
data baseline. The analysis operates on the three data fields of the
DS2 data set: vector field “velocity,” and scalar fields “enstrophy”,
“vorticity”, and “helicity”. Local structures are first identified fol-
lowing steps similar to those described in Section 5.1, and then an
analysis on two distinct types of local dynamics is performed. The
two types of local dynamics differ in their helicity distribution – one
has the majority of its helicity values close to zero, and the other
has the majority of values close to one. A radial-enstrophy pro-
file captured the local dynamics, since it was able to provide flow
information from inside and immediately outside of the structure.

While the analysis described in Section 5.1 studied the global
behavior of structures, this analysis focused on individual struc-
tures. Specifically, one type of structure, which we refer to as S1,
twists around a core (and has low mean helicity). Another type of
structure, which we refer to as S2, writhes around a core (and has

(a) 8:1 Multi-resolution (b) 8:1 Prioritized

(c) 64:1 Multi-resolution (d) 64:1 Prioritized

(e) 512:1 Multi-resolution (f) 512:1 Prioritized

(g) Baseline analysis on raw data

Figure 5: Screenshots from our critical structure identification task
using multi-resolution coefficients (left column) and prioritized co-
efficients (right column), with the baseline result on the raw data
at the bottom. Each identified structure has a unique color. Pre-
liminary visual inspection shows that results using prioritized co-
efficients produce a significantly higher fidelity than results using
a multi-resolution technique: results using prioritized coefficients
not only retain more critical structures from the baseline, but also
preserve more shape details.



(a) False positive proportion

(b) False negative proportion

Figure 6: False positive (a) and false negative (b) proportions for
the multi-resolution (red) and prioritized (blue) coefficients at three
compression levels. Each dotted line connects results from one time
slice of our thirteen-time-step turbulent-flow data. The bold lines
represent the average from all thirteen lines of that setting.

(a) The Haar kernel (b) CDF 9/7 kernel

(c) CDF 8/4 kernel

Figure 7: Screenshots from our critical structure identification anal-
ysis using three different wavelet kernels on the first time slice of
DS1. Each is compressed by a ratio of 256:1 and using prioritized
coefficients. Preliminary visual inspection shows they all success-
fully capture many structures, but CDF 9/7 and CDF 8/4 manage to
keep more details than Haar.

(a) False positive proportion

(b) False negative proportion

Figure 8: False positive (a) and false negative (b) proportion for
three wavelet kernels: Haar (blue), CDF 9/7 (purple), and CDF 8/4
(green). All experiments use prioritized coefficients. Each dotted
line represents results from one time slice of our thirteen-time-slice
turbulent-flow data set. The bold lines represent the average value
from all thirteen lines for a setting.

high mean helicity). Figure 9 shows renderings of S1 and S2, with
the local dynamics illustrated by streamlines seeded in the velocity
field.

The nominal radii of each structure was approximately five cells
(inside a 10243 grid), so the radial-enstrophy profile uses a radius
of ten cells to enclose the space surrounding the structure. The
analysis samples the enstrophy values at each radius, using fifteen
planes orthogonal to the major axis of each structure. The final
radial-enstrophy profile was an average of these fifteen samples.

6.2 Evaluation Methodology

Our evaluation process began by identifying the two structures, S1
and S2, in the wavelet-compressed versions of the data and then
calculating their radial-enstrophy profiles. We then evaluated how
well the compressed data preserved local dynamics by quantifying
the difference between their radial-enstrophy profiles. Ideally, the
profile produced using compressed data would be the same as the
baseline, i.e., the radial-enstrophy plots produced using compressed
data would overlap with the baseline plots. However, in practice,
there were differences between the two profile lines.

To measure the difference between two profiles, we used a nor-
malized root mean square error (NRMSE) metric. Specifically,
given the baseline radial-enstrophy series E[r] (0 6 r < N) and the

compressed radial-enstrophy series Ẽ[r] (0 6 r < N), we define:

RMSE =

√
∑N−1

r=0 (E[r] − Ẽ[r])2

N
(5)



(a) Local dynamics of S1

(b) Local dynamics of S2

Figure 9: Visualizations of local dynamics. Streamlines are seeded
in the velocity field in areas of high vorticity, showing the distinct
local dynamics of the two structures. On the top (and referred to as
S1), streamlines twist tightly around the core; these types of struc-
tures were identified by low mean helicity. On the bottom (and
referred to as S2), streamlines writhe around the core; these types
of structures were identified by high mean helicity.

and RMSE is then normalized to be:

NRMSE =
RMSE

Emax − Emin
(6)

If E[r] and Ẽ[r] are exactly the same, then NRMSE would have a
value of zero. However, in the worst case, if one array had nearly
all values equal Emax and the other had nearly all values equal Emin,
then the NRMSE would approach a value of one.

6.3 Results

The two populations of vortical structures could be identified and
distinguished at high levels of compression. Figure 10 displays
screenshots of the local dynamics from compressed data sets us-
ing different wavelet settings. It shows that using the Haar kernel
with multi-resolution coefficients differentiates the two types of lo-
cal dynamics at a compression ratio 64:1, while all three wavelet
settings using prioritized coefficients differentiate the two types at
a compression ratio 256:1.

Figure 11 shows the NRMSE of the radial-enstrophy profile for
the two structures. Both NRMSE charts show that three wavelet
settings using prioritized coefficients are significantly better than
Haar+multi-resolution. This result is consistent with our findings
in Section 5.3.1. In addition, when using prioritized coefficients,
the two biorthogonal kernels (CDF 9/7 and CDF 8/4) always per-
form better than the Haar kernel at all compression ratios other than
512:1. We notice that for both structures, S1 and S2, the 128:1 com-
pressed data using biorthogonal kernels and prioritized coefficients
yields an NRMSE less than 3%. This indicates that biorthogonal
kernels and prioritized coefficients at compression ratio 128:1 are
likely to be acceptable in many real-world applications.

7 STORAGE CONSIDERATIONS

Wavelet compression is achieved by reconstructing the data from
a subset of all wavelet coefficients (Section 3). Ideally the re-
sulting file size is strictly proportional to the applied compression
ratio, e.g., an 8:1 compressed file has one-eighth the size of the
raw data. Table 2 shows data sizes and compression ratios for the
first time slice of the turbulent flow data (a ∼256 GB data set)
using the Haar kernel with multi-resolution and prioritized coef-
ficient schemes. (We found that the prioritized coefficient scheme
introduces exactly the same storage overhead with different wavelet

(a) S1, Haar+multi-resolution, 64:1 (b) S2, Haar+multi-resolution, 64:1

(c) S1, Haar+Prioritized, 256:1 (d) S2, Haar+Prioritized, 256:1

(e) S1, CDF 9/7+Prioritized, 256:1 (f) S2, CDF 9/7+Prioritized, 256:1

(g) S1, CDF 8/4+Prioritized, 256:1 (h) S2, CDF 8/4+Prioritized, 256:1

Figure 10: Renderings of local dynamics of two structures: S1
(left) and S2 (right). Visual inspection shows that the Haar+multi-
resolution wavelet setting (a) and (b) at compression ratio 64:1
yields comparable results as other wavelet settings using prioritized
coefficients at compression ratio 256:1.

(a) NRMSE of the radial-enstrophy profile for structure S1

(b) NRMSE of the radial-enstrophy profile for structure S2

Figure 11: NRMSE of the radial-enstrophy profile for the two
studied structures. Lines of different colors represent different
wavelet settings. The red ones represent the setting of Haar+multi-
resolution, which only supports compression ratios at 8:1, 64:1, and
512:1 (Section 3.2.1). In this line chart we connect the data points
of 64:1 and 512:1 using a straight line. However, it does not indi-
cate any valid NRMSE values at 128:1 and 256:1 positions.



Ideal Multi-res Prioritized

1:1 256.0 256.0179 (0.99:1) 274.1094 (0.93:1)
8:1 32.0 32.0022 (7.99:1) 50.1094 (5.11:1)

16:1 16.0 N/A 25.0938 (10.20:1)
32:1 8.0 N/A 12.5781 (20.35:1)
64:1 4.0 4.0003 (63.99:1) 6.3125 (40.55:1)

128:1 2.0 N/A 3.1719 (80.71:1)
256:1 1.0 N/A 1.5938 (160.62:1)
512:1 0.5 0.5000 (511.97:1) 0.7969 (321.24:1)

Table 2: Ideal and actual on-disk sizes for compression in differ-
ent ratios. Our test data set has an original file size of 256 giga-
bytes (GB), and is compressed using the Haar kernel with multi-
resolution and prioritized coefficient schemes. The actual achieved
compression ratios (including implementation overhead) are shown
in parentheses. The four “N/A” cells are ratios that the multi-
resolution scheme does not support.

kernels, thus we only represent results from the Haar kernel here.)
The multi-resolution scheme achieves ratios close to ideal, with the
slight differences explained by optional metadata stored in the VA-
POR file format. However, the prioritized compression rates we
achieve are significantly less than ideal. While the wavelet coef-
ficients generated by the multi-resolution scheme may simply be
stored in the order output by the forward wavelet transform - thus
making their addressing implicit - the prioritized coefficients are
ordered based on their information content, and this re-ordering re-
quires us to keep track of their addresses. State of the art com-
pression encoders, such as SPIHT [15] and SPECK [18], are able
to cleverly encode wavelet coefficients in a manner that introduces
no storage overheard. However, these schemes require that the co-
efficients are first byte-scaled to integers, introducing information
loss. A requirement of the VAPOR storage format is the ability to
reconstruct the original data perfectly (up to floating point round-
off). Hence, VAPOR uses a less efficient encoding scheme, but one
that avoids errors introduced by quantization.

8 I/O PERFORMANCE MEASUREMENTS

We measure I/O performance for various wavelet compression set-
tings in this section. Here we consider specifically the time to read
data from disk, and the time to possibly decompress the data. In
a computing environment without data compression, reading data
from disk dominates the total data preparation time with little or
no computational overhead. However, reading wavelet compressed
data sets requires time to perform the inverse wavelet transform
needed to reconstruct the data set (thus decompress the data), which
is no longer negligible. We present our I/O performance measure-
ments with time breakdowns to reflect the two major steps: 1) data
read from disk; and 2) inverse wavelet transform. We describe our
experiment setup in Section 8.1, and present results in Section 8.2.

8.1 Experiment Setup

The test environment is a commodity Apple iMac desktop computer
with a quad-core Intel Core i5 processor, a 7,200 RPM hard disk,
and 16GB memory. The experiment task was solely for the purpose
of performance measurement: it reads in the wavelet compressed
data, performs inverse wavelet transform, and writes it back to disk
in raw format. We perform this task 10 times on each available
wavelet settings (Haar+multi-resolution, CDF 9/7+prioritized, etc.)
and compression ratios (8:1, 64:1, etc.). We report the final results
as average time used for reading data from disk and performing
inverse wavelet transform.

The data set we experiment on is a portion of the entire 4,0963

turbulent-flow data set, which measures 4GB in raw format. We no-
tice that cache mechanism of the operating system also have an im-

pact on the measured disk-read time. To minimize this impact, we
perform a separate disk-read task that reads in 16GB of irrelevant
data first before each time we perform our intentional measurement.

8.2 Measurement Results

We present our measurement results in Table 3. It shows that the
achieved read time speed-ups (in parentheses) keep in line with the
applied compression ratios. We also notice that the inverse wavelet
transform takes a majority of total data access time when the com-
pression ratio goes higher. This is less likely to keep being a bottle-
neck in a supercomputing setting, since the relative speed of CPUs
in supercomputers is much faster.

The inverse wavelet transform time varies when the multi-
resolution scheme is in use, although it almost keeps constant
across different compression ratios with the prioritized-coefficient
scheme. This property also indicates an upper bound of how much
performance one could possibly gain from prioritized-coefficient-
based wavelet compressions for a particular computer system.

9 CONCLUSION

We performed an evaluation study looking at the efficacy of wavelet
compression for very large turbulent-flow data sets. Our ap-
proach took two existing analyses and repeated them using multi-
ple compressed data sets, varying over compression scheme (multi-
resolution versus prioritized) and kernel (Haar, CDF 9/7, and
CDF 8/4). The findings showed that, for our applications, priori-
tized coefficients are significantly better at storing the essence of
the data than multi-resolution techniques. Further, the CDF 9/7 and
CDF 8/4 kernels better encoded data than the Haar kernel.

Interestingly, the local dynamics analysis showed good results up
to 256:1 compression, but the critical structure identification analy-
sis showed error much more quickly, and likely was unusable start-
ing at 64:1 compression. This variation reinforces the importance
of keeping in mind the analysis to be performed.

In terms of future work, we would like to apply wavelet compres-
sion in an in situ setting. Ultimately, we would like to demonstrate
that wavelet compression is a viable option for exascale simulation
scientists.
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