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Abstract

We introduce SparkGalaxy, a big data processing toolkit that is able to encode

complex data science experiments as a set of high-level workflows. SparkGalaxy

combines the Spark big data processing platform and the Galaxy workflow manage-

ment system to o↵er a set of tools for graph processing and machine learning using

a novel interaction model for creating and using complex workflows. SparkGalaxy

contributes an easy-to-use interface and scalable algorithms for data science. We

demonstrate SparkGalaxy use in large social network analysis and other case stud-

ies.

1 Introduction

Big data processing becomes more and more important as significant increases in storage
capacity makes it possible for systems to keep track of their users and events, which
results in large amounts of data stored as heterogeneous data sources. Understanding
this data is important for scientists and business owners as it reveals the structure and
dynamics of the underlying system. However, in addition to having knowledge about data
sciences, mining big data requires expertise in the area of high-performance computation
and parallel processing, which is not trivial for a considerable group of data scientists.

Although recent advances in data-parallel computation give the users a high-level
abstraction through procedural and relational APIs, dealing with programming environ-
ments and encoding whole experiments as a set of programs and scripts can decelerate
research progress.

We observe that a successful practice to address this problem is to provide a web-
based and easy to use toolkit which encapsulates details, and enables its users to encode
complex research experiments as high-level diagrams. One of the very successful examples
is Galaxy. Galaxy1 is an open-source web-based platform for biomedical projects. We
describe Galaxy in more details here in Section 2.4.

In this project, we introduce SparkGalaxy, a workflow-based toolkit built on top of
Galaxy that provides a set of components for analyzing and mining big data. Using the
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toolkit, data scientists can construct complex workflows for their experiments, and run
their experiments on cluster systems.

The remainder of this report is organized as follows. In Section 2, we describe the
background. In Section 3, we introduce our SparkGalaxy toolkit and its components,
and in Section 4, we provide some case studies to verify the potential of SparkGalaxy
for describing complex experiments. Finally, in Section 5, we describe future work and
conclude this report.

2 Background

2.1 Data-parallel distributed processing

One of the most significant advances in distributed data processing is the Map-Reduce
programming model [5]. In Map-Reduce, data is converted to key-value pairs and then
partitioned to nodes. A Map-Reduce system consists of a set of workers that are coordi-
nated by a master process. The master process assigns partitions to workers, and then
workers apply a user-defined map function to the key-value pairs, resulting in interme-
diate key-value pairs stored on the local disks of workers. The intermediate key-value
pairs are passed to another set of workers that group the key-values by keys and apply a
user-defined reduce function on the group of values associated to a particular key. The
workers then apply the reduce function, and store the output on their local disks, so one
can combine di↵erent partitions of the output together and create a single output file, or
pass the output as the input to another map-reduce call.

For using the map-reduce programming model, the problem has to be defined as a set
of map and reduce functions, so we cannot alternate the orders, for example, by applying
two map functions and then a reduce function. Although this problem can be solved by
constructing a more complex map function that consists of more than one map function,
it reduces the reusablity and modularity of the model.

Another restriction of Map-Reduce model is that we can only apply the Map-Reduce
model on homogeneous data sources, which limits the usage of Map-Reduce models when
we have to join the information from di↵erent sources. This problem has been addressed
by variant models of Map-Reduce, such as Map-Reduce-Merge [23].

2.2 Spark big data processing framework

Apache Spark2 is a fast growing framework for large data processing. Spark provides in-
terfaces for popular programming languages such as Python, Scala, and Java. Moreover,
it includes many libraries for machine learning, graph algorithms, streaming processing,
and relational data processing. Spark supports a distributed architecture, in which an
application is running as set of processes. The main program, called the driver, consists
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Figure 1: Schematic diagram of the relation of transformations and actions on RDDs.

of an object called SparkContext which coordinates the execution of the application’s pro-
cesses on Spark worker nodes through a Spark master, which manages the workers. The
most important concept in Spark is its resilient distributed datasets (RDDs). RDDs [24]
are immutable collection of objects that are partitioned across di↵erent Spark nodes in
the network. There are two main instructions to create RDDs: through loading a dis-
tributed file from HDFS, for which Spark maps each block of HDFS to a partition of
RDDs, or by parallelizing an object across di↵erent Spark nodes.

An RDD is transformed to another RDD using transformation instructions such as
map and filter. Spark introduces the notion of lineage for RDDs, which means that Spark
keeps the information about how it derives a new RDD through the transformation of
the other RDD. In this way, if one partition gets lost, Spark has enough information to
rebuild it. Lineage makes Spark fault-tolerant and e�cient because it does not have to
keep redundant blocks of data to provide fault-tolerance. Transformations in Spark are
lazy, which means that Spark does not apply transformations immediately. It, instead,
constructs a directed acyclic graph (DAG) of data parts and transformations followed by
final steps as actions. Then it executes the formed DAG by sending it as several tasks to
Spark nodes. The actions in Spark reduce RDDs to values. For example, count computes
the number of records in RDDs, so it needs all the transformation to be applied first, and
then it returns the result. Figure 1, shows how the transformations and actions applies
to RDDs.

The other benefits of lazy transformation is that Spark can optimize the operations.
For example, suppose we have an RDD of strings and we want to filter the RDD based
on the appearance of word ”Oregon” and then we have another filter of the intermediate
RDD, which looks for word ”Eugene”, and finally, we want to count the number of
objects in the final RDD. When we trigger the transformation by calling the count, Spark
jointly applies both filters and count the number of occurrence without constructing the
intermediate RDDs, this optimization will speed up the evaluation of consecutive RDD
operations.

Another data abstraction in Spark is the dataframe [1]. A dataframe is a distributed
collection of data organized into named columns, which is conceptually equivalent to a
table in a relational database. Dataframes can be manipulated using relational APIs,
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which o↵ers richer optimizations. Dataframes can also be viewed as RDDs of Row ob-
jects, which enables users to process dataframes using procedural APIs o↵ered by RDDs.
Similar to RDDs, the relational operation are lazily applied on dataframes.

Dataframes supports a domain-specific language for relational operations, including
select, filter, join, and groupBy. Dataframes also can be registered as relational tables,
which enables users to perform pure SQL queries on them.

2.3 Graph parallel processing

Many real-world problems are described using networks and graphs such as social net-
works, Internet maps, and protein interactions. These graphs may scale to billions of
nodes and edges. The complexity of graph algorithms is usually polynomial in the num-
ber of vertices of the graph. As a result, running such algorithms over very large graphs
is very time consuming. Graph parallel processing frameworks have been introduced to
process these very large graphs. Pregel [15], GraphLab [14] and Spark GraphX [22] are
all examples of graph parallel processing frameworks that have been widely used recently.

Pregel [15] is a bulk synchronous message passing abstraction such that it iteratively
runs the program associated with each vertex simultaneously. In each iteration, it gathers
all messages from the previous iteration, and prepares messages for the next iteration.
The program terminates when there are no more messages and every vertex votes to halt.
Apache Giraph3 is an open source implementation of Pregel, and works over the Hadoop
MapReduce paradigm.
GraphLab [14] is a commercial machine learning and graph processing framework based
on the Gather-Apply-Scatter (GAS) model, similar to Pregel. In the GAS model, the
algorithm runs over three stages: data preparation, iteration, and output. In the data
preparation stage, it initializes the values of vertices and edges, and then executes the
iteration stage until all vertexes vote to halt, then it gathers the output. Each iteration
itself consists of gather, apply, and scatter. A vertex gathers the values of its adjacent
vertexes and edges and then applies its partial algorithm and scatters the results. A very
common example of an algorithm written GAS paradigm is PageRank.

GraphX is another large-scale graph processing framework developed on top of Apache
Spark. Since Spark is a data-parallel computation system, GraphX implements graph op-
erations based on data-parallel operations available in Spark. GraphX represents graphs
using an RDD for vertices and another for edges [22]. However, handling graphs in a
data-parallel computation system is more complex than map-reduce operations since the
vertices should be processed in the context of their neighbours. To address that, GraphX
introduces the triplet concept, which joins the structure of vertices and edges. Each
triplet carries the attributes of an edge and the attribute of vertices that incident with
that edge. Therefore, by grouping triplets on id of the head or tail vertices, one can
access the attributes of all the neighbors of each vertex. Moreover, since the triplets
are distributed, if the neighbors of a vertex are located on di↵erent machines, then we
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Figure 2: Edge-cut vs. Vertex-cut. The colors depict di↵erent machines. The left figure
shows a edge-cut, in which four edges are assigned to two di↵erent machines. The right
figure, shows a vertex-cut, in which a vertex is assigned to three di↵erent machines [22].

have a communication overhead to construct the groupBy result. Therefore, strategies
for distributing graphs over di↵erent partitions become important in terms of communi-
cation overhead and storage overhead. Two main partitioning strategies for graphs exist:
edge-cut and vertex-cut [22]. In edge-cut, the vertices of a graph are evenly assigned to
di↵erent machines, so the edges may span across di↵erent machines. We can optimize
the partitioning to reduce the number of edges that span on di↵erent machines (reduce
the number of cuts). Vertex-cut, on the other hand, evenly distributes the edges over
the machines and may keep multiple copies of a vertex on di↵erent machines if the edges
that incident with the vertex are assigned to di↵erent machines. Here, the communica-
tion overhead is to synchronize the information of a copied vertex on the machines that
store the copies. Experimentally it has been shown that real-world graphs have better
vertex-cut than edge-cut [8, 11].

As mentioned earlier Gather-Apply-Scatter (GAS) model is a widely used paradigm
for graph parallel processing. GraphX implements this paradigm on top of Spark data-
parallel computation. GraphX implements gathering attributes from neighbours using
the groupBy operation on triplets, and then applies map-reduce functions on the grouped
data associated with each vertex. This operation results in another vertex RDD, which
includes the aggregated message in each vertex. By joining this RDD to edge RDD,
GraphX constructs a new triplet collection that can be used in the next iteration. GraphX
o↵ers GAS paradigm through aggregateMessage method of Graph class.

2.4 Galaxy

Galaxy [7] is a public and user-friendly data integration and workflow management sys-
tem, mostly used in biomedical sciences. Recently, it also has been used for social sci-
ences [16], but the provided tools are based on common statistical algorithms, and are not
intended for big data processing. Galaxy does not have any abstraction for graph data.
Galaxy enables users to graphically describe workflows by drawing pipes to connect tools.
Then, the system manages the execution of the workflow by running the tools over input
datasets in a defined order. Galaxy is supported by an app-store called Toolshed, which
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Figure 3: Example of XML files that describe Galaxy tools and a simple workflow pro-
duced using Galaxy.

supplies di↵erent, mostly bioinformatic tools, for gathering and processing data. The
toolshed allows users to introduce new tools and include them in the workflows. Once a
workflow has been created, Galaxy stores it, so it can reproduce the experiment. Galaxy
runs each tool as a separate program, and provides it with the output of the previous
tool in the workflow as the input of the program, and takes its output for the next step
in the workflow.

Galaxy tools are described using XML files. An XML file specifies the input, parame-
ters and output of the tools and also specifies how the tool should be executed. Figure 3
shows an example XML file and describes a simple tool that outputs top lines of a ASCII
file. It also shows a simple workflow using the described tool.

To run a tool, Galaxy creates a working directory for the tool and prepare the input
and output addresses and run the tool. It gives the user an option of keeping the output
in a permanent data history. The data in the history are deleted on demand.

Many bioinformatic applications are data-intensive, so running the Galaxy workflows
in the cloud increases the resources available to each tool and speeds up the evaluation of
workflows. In such cloud-based environment, tools in a workflow that do not depend on
each others run in parallel on di↵erent machines [13]. In these platforms Galaxy is o↵ered
as service on purchasable computational resources. BioBlend [20] is another approach for
parallelizing Galaxy workflows, and o↵ers a rich API for accessing Galaxy workflows
and jobs and run them over clouds. Nevertheless, these platform and frameworks do
not parallelize the execution of each tool over di↵erent machines, so many data science
experiments that are usually expressed as a pipeline of tools and scripts would not benefit
from these cloud-based scalable approaches.
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Figure 4: The architecture of SparkGalaxy. The Spark-based tools in Galaxy interact
with Spark nodes on the cluster system using a cluster-adapter.

3 SparkGalaxy Toolkit

In this section, we introduce SparkGalaxy, a workflow-based big data processing toolkit.
The SparkGalaxy toolkit is a set of Galaxy compatible tools that o↵er the rich procedural
API in a higher level abstraction. Using SparkGalaxy, we can construct complex data
science experiments as a workflow of Spark-based tools.

Figure 4 shows the general architecture of SparkGalaxy. Each Galaxy tool submits
a Spark application to cluster systems through cluster-adapter or runs it on the local
machine. The cluster-adapter provides tools by the address of Spark master node, which
can be run on the cluster or on the local machines.

The input data provided by Galaxy must be accessible to Spark applications and
output data generated by Spark applications must be accessible to Galaxy. The cluster-
adapter also responsible for this data accessibility, so we may need di↵erent cluster-
adapters depending on the underlying cluster system.

In addition, Galaxy expecting the input data to be stored as single locally stored
file in a conventional file-systems (not distributed file system such as HDFS), which is
inconsistent with the fact that Spark partitions data into multiple files, which may also
be distributed over several machines.

To address this inconsistency, Pireddu et al. [17] introduce a functional and extensible
integration layer, which enables the users of Galaxy to combine Hadoop-based tools with
conventional tools in their workflows.

Their adaptation layer combines the HDFS address of input data files as a pathset
and pass the constructed pathset to a Hadoop-based tool, which outputs another pathset
as results. This resulting pathset can be input of another Hadoop-based tool. We build
on this indirect referencing and introduce Metafile as the input and output format of
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Spark tools. A Metafile is an XML description of the objects, the address type, and
object address. Using the information about the address type, and the cluster-adaptor
can determine whether the object is stored locally, on HDFS, or on a network file system,
so it posts the application to the requested cluster-system or local machines if the data is
available to it. Moreover, to avoid data migration, the address type is used for allocating
space for the output data at the same file server as the input data.

Metafiles also include the schema of the data, which helps users attain general under-
standing about the underlying data because only Metafiles are accessible to users through
the Galaxy experiment history.

3.1 Interaction Model

The ultimate goal of SparkGalaxy is to provide a workflow-based environment that is
capable of encoding complex data science experiments. Each tool is a Spark application
that manipulate distributed collection of objects in format of RDDs or dataframes, so
we can consider that each Spark-based tool is a complex map, reduce, or join function
that transforms RDDs or dataframes to another RDD or dataframe, or reduces them to
a scalar value.

Loading and storing typed collection objects such as RDDs reduces the generalization
of Spark-based tools because RDDs have to be manipulated di↵erently based on the type
of the object they encapsulate. For example, an RDD of a String array is di↵erent from an
RDD of a Double array. This becomes more complicated when we have more structured
objects such as tuples.

Therefore, to boost the generalization, each Spark-based tool expects the input to be
in a named column format such as CSV files. The Spark application loads the input CSV
file into a dataframe, and applies a set of functions to it and transforms it into another
dataframe. Finally the application stores it as another CSV file. It is worth mentioning
that these CSV files are multi-part files, and tools actually expect a Metafile as input
that contains the schema of these CSV files and their addresses, and produces another
Metafile as output. The schema of an output Metafile may be di↵erent from the schema
of the input Metafile. We use the Spark-CSV library4 for reading/writing dataframes
from/to CSV files.

Tools may expect more than one dataframe as the input and may produce more than
one dataframe as the output. For example, the tools that work on graphs expect a graph
as input, and graphs are representable as two dataframes, one for vertices and another
for edges.

3.2 SparkGalaxy components

The SparkGalaxy tools are grouped into cluster management tools, input/output tools,
graph tools, and machine learning tools. All SparkGalaxy tools return a log file in addition
to their expected output. This log output is a single text file understandable by Galaxy.

4
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The log files usually includes a small sample of output dataframes and execution log of
the tool. For simplicity, we do not explicitly mention the log output in the description of
the tools. Next, we describe SparkGalaxy components in more detail.

3.2.1 Cluster management tools

This set of tools helps the user to manage the execution of Spark master and workers on
the cluster system.

3.2.2 Input/output tools

Input/output tools are used to convert single-file data into dataframes and also to convert
them back to single-file data.
PathToMeta: We expect SparkGalaxy’s users to upload their big data files directly to
the clusters instead of uploading through Galaxy’s Web interface. Since the input and
ouput of SparkGalaxy tools has a Metafile format, the PathToMeta tool can be used as
the initial tool of any workflow to generate a Metafile from an already stored big data.

Data2RDD: The Data2RDD tool converts single-file data to a dataframe. It can be used
for loading CSV files into general dataframes or special dataframes used for machine
learning tools, which expects the input dataframes to have label and feature columns.
Data2RDD tool is also able to load libsvm data format into machine learning-specific
dataframes.

RDD2Data: The RDD2Data tool converts a dataframe into single-file data readable by
Galaxy.

Data2Graph: The Data2Graph tool takes a Metafile pointing to an edge-view file of a
graph, loads it into a Spark’s graph structure, and returns another Metafile that points
two dataframes: one dataframe for vertices of the graph, and another dataframe for the
edges of the graph. The output graph is used by graph tools.

3.2.3 Datasets

These tools output predefined Metafiles for CSV files and graph datasets available on the
cluster system.

3.2.4 Graph tools

PageRank: PageRank is a well-known graph vertex ranking algorithm introduced by
Google for ranking Web pages. SparkGalaxy’s PageRank takes a graph represented as
two dataframes of its vertices and edges, and produces a dataframe with two columns
of vertex ID and rank value, in which the rank values is computed using the PageRank
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algorithm.

DegreeCount: Similar to PageRank tools, DegreeCount takes a graph and returns a
dataframe of vertex ids and degree count values.

LargestCC: LargestCC takes a graph and outputs the subgraph of its largest con-
nected components, so the output of LargestCC is another graph represented using two
dataframes as described earlier.

Subgraph: Subgraph is a functionality of the GraphX’s graph abstraction that con-
structs a subgraph of the original graph. The subgraph function lets the user provide
either an edge or a vertex indicator function. The purpose of the indicator function is
to determine whether the given edge or vertex belongs to the resulting subgraph. The
subgraph tool is based on this subgraph function, and takes a dataframe that consists
of two columns of vertices and boolean values, then it returns two subgraphs that are
complement of each others. The first subgraph consists of the vertices that their corre-
sponding value is true, and similarly, the second subgraph consists of the vertices that
their values are false.

GraphClustering: The graph clustering tool takes a graph as its input and returns
two outputs. The first output is a graph called cluster graph. Cluster graph is a graph
such that the attribute of each vertex is the cluster number of that vertex. The other
output of the graph is dataframe of vertex IDs and cluster numbers. GraphClustering
includes Spectral, PCA, and PIC algorithms for clustering as well as a random clustering
algorithm which uniformly assigns the vertices to the clusters. We describe the clustering
algorithms we developed in more details in Section 3.3.

ClusterEval: ClusterEval includes two clustering metrics: modularity [4] and normal-
ized cut [19]. This tool takes a cluster graph (as described in GraphClustering) and
computes the modularity and normalized cut. The ClusterEval act similar to a reduce
function that takes two dataframes and returns some values.

TriangleCount: Triangle count is an important measure in graph and network analysis.
A triangle count of a vertex is the number of all complete subgraph with three nodes
that the vertex is a member of the subgraphs. The TriangleCount tool takes a graph and
returns a dataframe containing the traingle count for each vertex, so the columns of the
output dataframe are the vertex id and triangle count.

3.2.5 Relational tools

Query: Query tool runs an SQL query over the input dataframes. In order to run a query
over a dataframe, it first register the input dataframe as a relational table with the given
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Figure 5: The Query tool expects a table name and query on the given table name.
Providing the Query tool with the output schema is optional.

name in the parameters, and then executes the query on the relational table. Figure 5
shows the parameter of page of the Query tool and an example SQL query. Query tool
also expects the schema of the output dataframe in order to construct appropriate named
columns. The given names are specifically useful when we want to run other queries on
the output dataframe.

JoinQuery: JoinQuery tool is similar to Query except it accepts two dataframes as
inputs, so we can run join queries on both dataframes. Similar to Query, we have to
provide names for the tables and a schema for the results, and the SQL query. JoinQuery
is specifically useful when we want to combine the information of two dataframes.

3.2.6 Machine learning tools

These set of tools provides the user with machine learning tools available on Spark. Here
we only describe SVMLearner and SVMClassifer, the other classification tools have the
same format.

SVMLearner:This tool takes a dataframe as training data, which includes a label col-
umn and feature column, and learns a SVM model from the training data. It ouputs the
learned model. The tool’s log includes the classification accuracy on the training data.

SVMClassifier: SVMClassifier takes a learned model from SVMLearner and a dataframe
containing the test data, and outputs another dataframe that includes true labels as well
as predicated ones. The tool’s log file includes the accuracy of the learned model on test
data.
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3.3 Graph clustering

In this section, we describe our implementation of graph clustering algorithms using
Spark.

3.3.1 Spectral clustering

Graph G is an undirected graph that is represented using its adjacency matrix A The
Laplacian of G is defined using following relation:

L = D�A (1)

where D is a diagonal matrix, in which Dii is the degree of node i in the graph. L is
symmetric, positive semi-definite matrix. The eigensystem of L is all pairs of (µi,vi) for
which the following equation is true:

Lvi = µiDvi (2)

This relation is a generalized eigensystem. The eigenvector corresponding to the second
smallest eigenvalue of a graph’s Laplacian matrix can be used to partition the graph,
while the eigenvector corresponding to the largest eigenvalue of the graph only shows
the connectivity. We can also construct the Markov transition matrix of graph G as :
P = D

�1
A. Suppose ui and �i are the eigenvectors and eigenvalues of P , then we can

show that

�i = 1� µi and ui = D ⇤ vi (3)

Because the dominant eigenvectors of P are related to the smallest eigenvectors of L,
spectral algorithms usually use matrix P for graph partitioning because finding dominant
eigenvectors is more e�cient than finding smallest eigenvectors.

Spectral clustering finds two partitions in a graph by partitioning the nodes in graph
based on the entry values of their second dominant eigenvector of transition matrix P.
They partition the nodes into parts using di↵erent cut methods such as ratio cut, bispec-
tral cut, gap cut, or normalized cut [21, 19]. A cut is a set of edges that are removed if we
disjoint the two partition of the graph. The ratio cut is the most accurate cut method,
in which for every cut, the goodness of cut is evaluated based on the cut value, and then,
it selects the best cut. This cut has high computational complexity and practically has
no usage, especially for large graphs. The bispecteral cut, on the other hand, is a fast
method in which the median of eigenvector entries is selected as a pivot, and then, all the
nodes corresponding to entries less than the pivot become the member of one partition
and the other partition includes all the remaining nodes.

The main problem of bispectral cut is that it partitions the graph into balanced
equal-size parts, which may not show the clusters of the graph.

Gap cut sorts the entries of the second dominant eigenvector, and then finds the entry
corresponding to maximum gap between two consecutive sorted entries. Gap cut selects
this entry as a pivot, and similar to bispectral cut, partitions the graph into two parts.
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Gap cut may find significantly unbalanced partitions, which is not useful in practice.
Therefore, Shi and Malik [19] introduce normalized cut, which describes how partitions
are relatively balanced in term of cut and total connections from each partition to all
vertices of a graph:

Ncut =
X

k

Cut(Ak,V � Ak)

Assoc(Ak,V)
, (4)

where V is the set of all vertices of the graph, and Ak is the set of nodes in partition k.
Cut is the total number of the edges from Ak to V � Ak, and Assoc is the total number
of the edges from Ak to V .

Shi and Malik [19] also show that finding the Gap cut on the second dominant eigen-
vector of transition matrix minimizes normalized cut.

The Power method is a well-known method for finding the dominant eigenvector of
any square matrix as well as transition matrix P by recursively multiplying the matrix
by a vector:

v

t+1 = P ⇤ vt, (5)

where v

0 is a normalized random vector. It is easy to show that vector v in Relation 5
converges to the dominant eigenvector of matrix P.

Now, suppose that we know that dominant eigenvector of matrix P is vector u then
we can show that if we update v in each iteration using Gram-Schmidt algorithm:

v

t = v

t � (uT .vt)u (6)

Then the recursive relation converges to the second dominant eigenvector of the matrix.
Gram-Schmidt orthogonalizes vector v to vector u by subtracting the projection of v on
u from v.

Therefore, we use a combination of the Power method and Gram-Schmidt to e�ciently
find the second dominant eigenvector of Markov transition matrix P.

For implementing the spectral clustering using Spark API, we need matrix-vector mul-
tiplication, which is the main computation of Relation 5 for computing the eigenvectors
and spectral clustering. Here we describe how we can use Spark Gatter-Apply-Scatter
(GAS) model to e�ciently compute matrix-vector multiplication w = P

T .v. Suppose
matrix P has non-zero elements Pij if and only if there exist an edge between node i
and node j, and suppose that we assign value vk to node k of the graph, and we want to
compute wi =

P
j Pijvj. Since Pij is only non-zero if node i and node j are neighbours, we

can compute the summation as wi =
P

j2N(i) Pijvj, where N(i) is the set of neighbours of
node i. The summation result wi is stored at node i in the graph. Therefore, to compute
wi in the GAS model, every node sends their value vi multiplied by the edge weight Pij

to their neighbors and the destination node sum up all received messages and construct
wi. Then we can collect all the values as the result of the multiplication. Spark supports
this message passing using aggeragteMessage:
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Figure 6: Gram-Schmidt implementation using Spark GraphX.

graph.aggregateMessages[Double](
sendMsg = ctx => ctx.sendToSrc(ctx.attr * ctx.dstAttr),
mergeMsg = _ + _,
TripletFields.Dst),

After computing the dominant eigenvectors, we use the kmeans algorithm to partition
them into two groups, which constructs two partitions of the graph, also used by PIC
clustering [12]. Figure 6 shows an implementation of Gram-Schmidt algorithm using
Spark GraphX. We can combine the Map-Reduces for computing v1-dot-v2 and v1-norm
to decrease the number of passes over data, but, here, we compute them as separate
Map-Reduces for simplicity.

3.3.2 PIC clustering

Power iteration clustering (PIC) [12] is a graph clustering algorithm. It uses power
method, Relation 5 to find the dominant eigenvector of transition matrix. However, it
stops early before convergence. Lin and Cohen [12] show that this unconverged vector
carries information about graph clusters. To find the partitions, PIC uses the kmeans
algorithm to split the unconverged vectors into groups of vertices.

The Spark machine learning library provides PIC clustering, which we used as the
graph clustering algorithm. The Spark implementation of PIC uses similar matrix-vector
multiplication for applying the power method algorithm.

3.3.3 PCA clustering

The principal components (PCs) of transition matrix P can be used for graph cluster-
ing [3]. For PCA clustering, we compute the PCs using the provided Spark API, and
then applies the kmean algorithm on the PCs to find the graph partitions. The main
limitation of this implementation is that Spark cannot e�ciently represent a big square
matrix, so this approach is not applicable to the graphs with more 65,535 nodes.
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Figure 7: Comparing the performance of di↵erent clustering algorithms to reveal the
high-level structure of the input graph.

4 Case studies

In this section we provide some case studies to show the capability of SparkGalaxy to
represent and run complex data science experiments.

4.1 Graph clustering

Graph clustering is important in many areas specially in social network analysis [6], in
which it used for community detection and studying the structure of underlying social
network. Figure 7 shows a workflow that loads graph data sets from their edge-view
files, finds the largest connected components of the graph, and then applies two di↵erent
clustering algorithms on the largest connected components of the graphs and evaluates
the clustering results using modularity and normalized cut (Eq. 4) metrics.

Modularity compares the existing structure with the expected structure that may
exist randomly. Modularity of a set of clusters C is defined as [4]:

M(C) =
X

C2C

hE(C)

m
� (

P
v2C dv
2m

)2
i
, (7)

where m is the total number of edges in the graph, dv is the degree of vertex v, and E(C)
is the number of edges inside cluster C. Figure 8 shows the Map-Reduce implementation
of modularity using Spark GraphX.

4.2 Graph mining

Mining graph metrics such as degree distribution, triangle count or vertex rank is very
common in social network analysis [18, 9]. Here, we show that how we can capture the
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Figure 8: Modularity implementation using Spark GraphX.

joint information about vertex rank metric using PageRank algorithm and triangle count
on a graph similar to experiments done in [2]. The workflow in Figure 9 loads a graph
from a edge-view file and applies PageRank tool and TriangleCount tool separately on the
input graph. To combine the information from these two tools, we used the JoinQuery
tool. JoinQuery register the output of PageRank and TriangleCount as relational tables
ranks and counts, respectively and run the following SQL query to find the traingle count
of the top 100 vertices with higher ranks:

SELECT ranks.vertex,ranks.rank, counts.count
FROM ranks,counts
ORDER BY ranks.rank LIMIT 100

The output of the JoinQuery tool is not big data, so we can use RDD2Data to combine
the multi-part data into a single file, and let the Galaxy to store in its experiment history.

4.3 Machine learning

Many data science problems use machine learning methods such as classification, clus-
tering, or regression to produce an accurate model to describe data. Figure 10 depicts a
workflow that loads training and test data and learns SVM models using training data
and evaluate the learned model on the test data.

The learning tools are able to select hyper-parameters through cross-validation or
train/validation split. To do so, learning tools expect the user to provide all the possible
values for each hyper-parameter as a comma separated list. The learning tool creates a
parameter grid from the provided values and fit the best possible model.
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Figure 9: Computing graph metrics using PageRank and TriangleCount and combining
the output of them using JoinQuery to have joint inference about rank and triangle count
of vertices.

Figure 10: Classification workflow using SVM.
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Figure 11: Ranking universities using Wikipedia

4.4 Ranking using Wikipedia

In this workflow, we try to mine the Wikipedia datasets5. This dataset is a crowd-source
gathered information from Wikipedia and includes several data files such as pagelinks and
abstracts. Each line in the pagelink dataset contains a pair of URIs such that the second
URI appears in the Wikipedia webpage of the first URI. The abstracts includes the URI
of a Wikipedia page and first paragraph of the page. Moreover, the Wikipedia dataset
includes the same information for Wikipedia pages in di↵erent language. However, we
limit our experiment to English pages. Our goal here is to rank universities based on
their appearance in the Wikipedia using the PageRank algorithm [10]. Therefore, the
rank of a university depends on the Wikipedia pages that have links to the Wikipedia
page of the university and importance of those pages based on the ranking.

To find the Wikipedia pages of universities we simply use the URI name and look for
related words such university, institute, or college. An alternative approach would using
the abstract file, but here the URI name seems su�cient. Therefore the result of the
search is a dataframe that includes the id and URI of universities.

To create the graph of Wikipedia, we parse the pagelink data file, and by assigning
a unique id to each URI, we convert the pagelink file into an edge-view file. Moreover,
we keep the URIs and the assigned ids in a CSV file as URI data file, which we use for
detecting university Wikipedia pages.

5
http://wiki.dbpedia.org/
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Table 1: Top 10 universities found using workflow of Figure 11 compared to Wikipedia
university ranking from [10].

Ranking from [10] SparkGalaxy
1st University of Cambridge Harvard Universitiy
2nd University of Oxford University of Oxford
3rd Harvard University Columbia University
4th Columbia University University of Cambridge
5th Princeton University Yale University
6th Massachusetts Institute of Technology Stanford University
7th University of Chicago University of California, Berkeley
8th Stanford University Massachusetts Institute of Technology
9th Yale University University of Michigan
10th University of California, Berkeley Princeton University

Figure 11 shows the workflow of the experiment. The graph dataset points to the
edge-view of Wikipedia graph constructed from the pagelink file, and the CSV dataset
points to the URI data file. The Query tool recognizes universities in the URI dataframe
registered as relational table uri:

SELECT vertex, name from uri
WHERE (name LIKE ’\%University\%’
OR name LIKE ‘\%Institute\%’
OR name LIKE ‘\%College\%’)

The PageRank tool ranks the vertices of the Wikipedia graph, and the output rank
dataframe is given to JoinQuery tool. The SQL query given to the JoinQuery joins two
dataframes, so the output dataframe only include the rank of universities found using
the Query tool. The JoinQuery register the output of the PageRank and Query tools as
relational tables ranks and univ, respectively, and runs the following SQL query on them:

SELECT name, rank from univ, ranks
WHERE ranks.vertex = univ.vertex
ORDER BY ranks.rank DESC limit 10

Table 1 includes the final ranking as the result of the given workflow as well as the
Wikipedia ranking reported by Lages et al. [10]. The set of top 10 universities have 9
intersects. The di↵erence in ranking is mainly attributable to this fact that we only used
English Wikipedia pages while Lages et. al use all provided Wikipedia pages.

5 Feature work and conclusion

SparkGalaxy can still be improved by following extensions:
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• Galaxy is Web interface has the functionallity of managing the data in the experi-
ment history, so as soon as the user removes a tool result from the history, Galaxy
will remove the file from the filesystem. However, because in the SparkGalaxy
toolkit, Galaxy only has Metafiles of the real data, SparkGalaxy needs to remove
the real data when Galaxy deletes the Metafile. Currently the users can manually
delete the intermediate data.

• Galaxy runs the tools separately, so in the current model they cannot share Spark
sessions. However, running serveral tools in one session could avoid serialize-
deserialize overhead of intermediate data. The solution would be creating cus-
tomized workflow management system for SparkGalaxy, so we can have more flex-
ibility for executing Spark-based tools. Another application for this customized
workflow management is handling stream data. Galaxy cannot runs two tools in
parallel if they depends on each other, so it is suitable for piping tools together to
process stream data.

• Finally, to boost the application of SparkGalaxy, we need to have a ready to use
distributions of SparkGalaxy for di↵erent cluster systems such as Amazon EC2.

To recapitulate, we introduced the SparkGalaxy toolkit, which can simplify many big
data science experiments. SparkGalaxy provides the user a set of Spark-based tools that
can be combined together using Galaxy workflow manger in order to describe complex
data science experiments. Researchers can re-run their experiments with di↵erent param-
eter settings and over di↵erent input data, and SparkGalaxy encapsulates the complexity
of interacting with cluster systems and data-parallel processing.
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