
Scalable Ray-Casted Volume Rendering
Roba Binyahib∗

University of Oregon
Research Advisor: Hank Childs†

University of Oregon
Lawrence Berkeley Nat’l Lab

ABSTRACT

Computational power has been increasing tremendously in recent
years, resulting in an increase in data size and complexity. Vol-
ume rendering is an important method for visualizing such data,
as it provides insight over the entire data set. However, traditional
volume rendering techniques are not sufficient to handle such data
because they are too large to fit in the memory of a single computer.
Using a distributed system to visualize massive data improves the
performance. That said, while parallelization has its benefits, it also
creates challenges. There are two main approaches for parallel vol-
ume rendering: image order and object order. While these methods
have advantages, they fail to achieve load balance in some cases.
With our work, we present a hybrid parallel volume rendering al-
gorithm that guarantees good performance and maintains load bal-
ance, since at each step of our hybrid approach the execution time
is bounded. We compare our algorithm with the object order ap-
proach and demonstrate that our algorithm achieves performance
and data scalability in cases where object order fails.

1 INTRODUCTION

The use of computer simulation continues to increase. Scientists
use simulations to predict and understand the structure and behav-
ior of important systems. For example, a simulation can be used
to study reaction of chemicals, bacterial reproduction, or stars ex-
ploding. These simulations generate 3D data that contains critical
and complex details that must be understood. Visualization is often
used to present this data to provide insight to researchers. It is a way
of simplifying the exploration of complex data, while maintaining
accuracy.

Performance and scalability are important considerations for vi-
sualization algorithms. Traditionally, simulations on supercomput-
ers have stored data at regular intervals and separate programs have
loaded this data and visualized it, so called post hoc processing. In
this paradigm, performance and scalability make interactivity pos-
sible, which is often a key factor in enabling insights. That being
said, the push towards exascale is changing the balance of super-
computers. In particular, the rate at which supercomputers can gen-
erate data is going up much faster than the rate at which supercom-
puters can store and load data. As a result, visualization routines
are increasingly being run in situ, meaning that these routines are
run at the same time as the simulation, and they can access the data
directly, instead of through a file system. In the in situ paradigm,
failing to achieve performance and scalability can slow down the
simulation code, making the entire supercomputer less efficient.

Volume rendering is an essential visualization algorithm. The
basic idea behind volume rendering is to use a combination of color
and transparency to allow all parts of a three-dimensional volume
to be visible in a single image. Further, while many visualization
algorithms transform data to create surfaces and then use tradi-
tional computer graphics approaches to render the surfaces, vol-

∗e-mail: roba@cs.uoregon.edu
†e-mail:hank@uoregon.edu

ume rendering incorporates the rendering portion directly into its
algorithms. As a result, the performance characteristics of volume
rendering are different as compared to most other visualization al-
gorithms.

Parallel volume rendering is frequently used to visualize very
large data sets that typically do not fit in the memory of a single
computer. The two most studied approaches for parallel volume
rendering are object-order (where the parallelization begins by it-
erating over cells from a mesh) and image-order (where the paral-
lelization begins by iterating over pixels on the screen). While both
of these approaches have been used successfully, they can become
highly inefficient for some volume rendering workloads, in particu-
lar when the cell sizes in the mesh vary greatly or when the camera
position emphasizes some regions of the scene over others. In these
cases, performance can slow down significantly, which has negative
ramifications on both post hoc and in situ processing.

Childs et al. [3] introduced an algorithm in 2006 that showed
promising results. Their algorithm improves on the object-order
approach by detecting conditions for imbalance and adapting its
execution. However, their study was lacking in several significant
ways: (1) the benefits of the algorithm were not demonstrated by
means of a comparison with the object-order approach, (2) it con-
sumed significant amounts of memory, (3) it was written for single
core CPUs, and (4) it considered scalability only up to 400 cores.

With our study, we revisit Childs et al.’s algorithm, making adap-
tations for modern supercomputers. Specifically, we introduce en-
hancements that minimize memory usage and work on many-core
architectures, and we consider workloads that demonstrate the ben-
efit of the approach over traditional methods. After the Directed
Research Project, I will pursue the fourth limitation of their prior
study (scalability up to only 400 cores), when I intern at Argonne
National Laboratory and run experiments on their supercomputer.
Ultimately, we will pursue a journal publication for this project, as
an extension of the original work by Childs et al.

The contribution of our study is an improved algorithm beyond
that of Childs et al. Specifically, our use of partial composites dra-
matically reduces memory usage, and our incorporation of many-
core processing leads to a more efficient hybrid parallel solution.
We demonstrate these benefits by running a performance study, and
varying parameters such as data set, camera position, concurrency,
image size, and transfer function. We compare the results with the
traditional object-order approach. Our findings are that the new al-
gorithm incurs some overhead and that it can be slightly slower with
some visualization workloads. However, for workloads with high
load imbalance, we find that our new algorithm is highly superior
to the traditional approach.

2 BACKGROUND AND RELATED WORK

2.1 Volume Rendering
Different visualization techniques can be used depending on the
data structure and the purpose of visualization. There are two cate-
gories of 3D data visualization, surface rendering and volume ren-
dering [2, 14, 30]. Surface rendering presents a surface of the data.
This approach hides the interior of the data and can provide a lim-
ited insight. While volume rendering present the data as a whole,
and different layers of the data can be visualized. Volume render-
ing is used when the transparency of the data is important (e.g., fog



and human anatomy). For example, when visualizing a CT scan
of a human head, if the purpose is to visualize one layer (the bone
layer), using surface rendering would be sufficient. But if the goal
is to present the different layers, for instance skin, bones, tissues,
etc., then volume rendering would be superior.

Volume rendering produces 2D images of 3D volumetric data
without extracting geometry explicitly. The main idea of volume
rendering is to map a scalar field to color and opacity as an RGBA
(red, green, blue, alpha) value using a transfer function. The trans-
fer function maps numerical values within a certain range into
RGBA values. It can be a curve, a linear function, or a random
table.

There are two ways of performing volume rendering: image
based and object based. In an image based approach, the algo-
rithm loops over the pixels and computes RGBA values. The final
RGBA value for a pixel is calculated by accumulating the RGBA
values along that ray. While in an object-based approach, the algo-
rithm loops over the cells and determines the impacted pixels. The
RGBA value of a pixel is calculated by accumulating the contri-
bution of different cells. While there are several volume rendering
techniques, we focus on the ray casting technique in our algorithm.

2.1.1 Ray Casting
Ray casting [10] is an image based technique for volume rendering.
It is a commonly used approach due to its simplicity and the quality
of the results. In this technique, a ray is cast for each pixel into
the volume. Then the data is sampled along the ray, and for each
sample an RGBA value is computed using the transfer function.
These values are accumulated to produce the final RGBA value of
the pixel. The accumulation process can be performed either in a
front-to-back order or in a back-to-front order. Our algorithm uses a
front-to-back order, which uses the following equation for blending
the final RGBA value:

C =
n

∑
i=0

Ci

i−1

∏
j=0

(1−Ai) (1)

Where C is the RGBA value of the pixel, Ci is the color of the
current scalar value at sample i, n is the number of samples along
the ray, and Ai is the opacity at sample i.

Figure 1: A single ray is cast into the volume [1].

2.2 Parallel Volume Rendering
Volume rendering is computationally expensive and it is challeng-
ing to achieve interactive frame rates. Several solutions use GPUs
to perform volume rendering in parallel [11, 27]. But with tremen-
dous increases in computational power, simulations are generating
data sets that exceed the capacity of a single machine’s memory.
Thus, distributed memory solutions are increasingly needed. The
main idea is to distribute work among different processors, per-
form some operation in parallel, then gather results into one image.

There are two approaches for performing parallel volume rendering
[4, 22]: image order and object order.

2.2.1 Image Order
The image pixels are distributed among processors and data are
copied to each processor. Each processor samples the cells that con-
tribute to its tile and apply ray casting to generate a sub-image. The
sub-images are collected into one processor that acts as the server
and the final image is produced. While image order is a ray co-
herent algorithm and thus samples along the ray can be composited
without extra cost, the method has several disadvantages:

• When one tile contains more cells than the other tiles, then
one processor performs more work (load imbalance)

• A cell can be covering more than one tile of the image result-
ing in replicating data over several processors

Moloney et al. [20] provides a solution to achieve data scaling using
image order. Data is divided into equal blocks and each processor
only loads the blocks that contributes to its view, thus reducing the
amount of loaded data. Although this solution increases data scal-
ability, load imbalance might still occurs when one tile has larger
cells than others.

Image order approach has also been used for multi-projector ren-
dering systems. Samanta et al. [28] render the volume onto multiple
screens. Each processor is responsible for a projector. The prob-
lem occurs when the data assigned to one screen contains larger
cells, resulting in one processor performing more work than others.
To solve this, the authors distribute virtual tiles that can be of any
shape and size. The distribution of these virtual tiles depends on
the size and complexity of the data contributing to the tile. Pro-
cessors sample and render their virtual tiles while maintaining load
balance. Next, the resulting sub-images are exchanged depending
on the actual screens assignments. Each processor displays its part
of the scene.

2.2.2 Object Order
Data are divided into blocks and distributed among processors.
Each processor samples its own cells, and the generated samples
need to be arranged in a front-to-back order. Rays are composited
producing the final image.

Object order has the advantage of distributing data among pro-
cessors, which guarantees data scalability. Several solutions have
been proposed. Ma et al. [16] present an algorithm that divides
the data into sub-volumes distributed among processors, and each
processor applies the ray-casting algorithm to its data. A parallel
compositing is used to merge the results of each process into a fi-
nal image. Wylie et al. [31] present an object order approach to
achieve high rendering rates. Their solution divides the data be-
tween processors, then each processor performs rasterization on its
data and stores the result in a frame buffer. Next, the frame buffer
values are arranged in front-to-back order by performing a z-buffer
comparison for each pixel. Finally, pixels are composited and the
final image is generated. Strengert et al. [29] extend the advantage
of data scalability by using hierarchical compression. They used a
single GPU wavelet compression by Guthe et al. [9] to reduce the
size of data blocks.

While the object order approach has high data scalability, it has
some drawbacks.

• Ordering samples in front-to-back (i.e, image compositing) is
the most expensive step of the object order and might become
the bottleneck

• When dealing with unstructured data, one processor can own
larger cells than the others. Or camera view might cover a
region of the data that is owned by one processors. Both of
these scenarios result in an unequal amount of work (load im-
balance).



The previous methods [16, 29, 31] could lead to a load imbalance
in cases similar to those mentioned above. Marchesin et al. [18]
presents a solution to guarantee load balance. The data is divided
into blocks and an estimation step of the rendering cost is per-
formed. The transfer function and camera view are used to discard
any blocks that are out of the camera view or has no opacity. The
remaining blocks are then distributed among nodes and each node
renders its data. Finally, binary swap [17] is used to composite the
final image.

Ma [15] uses a graph-based data-partitioning software package
to achieve equal sub-volume distribution among processors. While
this approach maintains load balance for most cases, it fails to
achieve load balance in cases where the camera is inside the vol-
ume. Muller et al. [23] demonstrated a dynamic load balancing
technique, where the balance of each processor is calculated while
sampling the cells. Blocks of data are transferred between proces-
sors, moving blocks to processors with less workload. The draw-
back of their method is the cost of moving data between processors.
In addition it might still fail to maintain equal workload among pro-
cessors, if the camera zoomed into a particular cell. This results in
a heavier workload for one processor.

Our work solves this problem by deferring sampling of cells with
large number of samples and distributes the workload among pro-
cessors in a later phase.

2.2.3 Image Compositing

The final step in the object order approach is image compositing.
This step orders the samples along each ray in front-to-back order.
Image compositing is the most expensive step in the object order
approach. Several techniques have been developed to perform im-
age compositing and reduce its cost.

Direct send [5] is the simplest method, where all processors com-
municate with each other to acquire the required samples. Each
processor owns a tile of the image and all other processors send
the contributing samples to the owner processor. Another approach
is binary swap [17]. This method requires the number of proces-
sors to be a power of two. Binary swap divides the communication
between processors over different rounds. The number of rounds
is equal to log2(N), where N is the number of processors. The
size of the exchanged tiles gets smaller by half in each round. In
each round processors communicate in pairs, and processors swap
pairs. Although, binary swap reduces network conjunction, it re-
quires the number of processors to a be power of two and it has a
synchronization overhead after each round. Direct send offers flex-
ibility in terms of number of processors and has been used often
in prior work [5, 26]. A modified version of the binary swap was
implemented by Yu et al. [32] to overcome the limitation of the of
number of processors. The algorithm allows any number of proces-
sors to be used and perform the communication in multiple rounds.
These processors are divided into groups of twos or threes, and each
group exchange data using the send direct approach. At the next
round current image tiles are divided, and processors owning the
same tiles on different groups exchange data. Another approach
that combines the flexibility of the direct send and the performance
of binary swap is radix-k [25]. This method divides the communi-
cation into multiple rounds, and defines a group size for each round
ki. The multiplication of the group sizes of all rounds is equal to
N, where N is the number of processors. At each round, the current
image tile is divided into ki partitions. Processors of each group ex-
change the samples using a direct send method, with each processor
owning a region of the current image tile.

2.3 Load Balancing in Parallel Systems
Load balancing is the process of maintaining equal amounts of
work over all available processors at all times. Achieving load
balance is the biggest challenge when performing parallel volume

rendering. Load imbalance impacts the performance of the algo-
rithm, since the execution time is determined by the time of the
slowest processor. Additionally, load imbalance results in wasting
resources that are being held. A hybrid solution that combines im-
age order and object order approach can lead to load balance and
better performance.

Childs et al. [3] used a hybrid approach to implement a highly
scalable volume rendering algorithm. Their paper explored a prede-
cessor idea to our own approach. Their algorithm consists of three
steps. In the first step, the data is distributed among processors us-
ing the object order method. They use a cell classification step to
determine the size of the cell. Small cells are sampled and large
cells are deferred into a later stage. After sampling the small cells,
the bounding box of each large cell is used along with the cam-
era view to assign the large cells to processors. The second step is
exchanging data (large cells and samples) using a direct send ap-
proach [5]. In the third step, each processor samples the large cells
that it owns in an image order manner and composite its pixels to
generate a sub-image. The sub-images are collected and the final
image is generated. Our solution is similar to the previous work,
in its three main phases. However, we reduce the memory cost by
using partial composites, which is discussed in section 3.2. In addi-
tion, our study compares object order with hybrid. Finally, we use
multi-threading for sampling and partial compositing to enhance
the performance.

Another hybrid solution was demonstrated by Montani et al.
[21]. Nodes are grouped into clusters and the image order approach
is used to assign a tile for each cluster. The data is copied to each
cluster and data are distributed among its nodes in an object order
approach. Their solution helps to achieve data scalability by us-
ing object order on the nodes level and reduces the amount of data
replication. Load imbalance can happen at the cluster level if one
tile of the image has larger cells, causing a group of nodes to do
more work. It might also occur among the nodes of a cluster, if the
data assigned to one processor has a larger region of the tile than
other processors. In our solution, we use a hybrid approach along
with cell classification to maintain load balance.

2.4 Unstructured Data and Volume Rendering

An unstructured mesh [12] represents different cell types and sizes
in an arbitrary order. Unlike structured data, cells connectivity
is explicitly specified. There are some cases where unstructured
meshes enable more accurate representation of the data. Since un-
structured data does not have an indexing approach, volume render-
ing complexity increases. Both Ma [15] and Garrity [8] computed
cell connectivity as a pre-step that is used to traverse points along
a ray. The pre-step also determines the exterior faces (i.e, faces
that are not shared between different cells). Ma [15] presented a
solution for parallel volume rendering on unstructured data. Their
solution used hierarchical data structure (HDS) to store face-node,
cell-face, and cell-node relationships. Each processor performed
the cell connectivity pre-step. Next, the camera view is used to ex-
clude cells that are outside the camera view. Each processor applies
the ray-casting algorithm to its data. The ray enters the volume from
an exterior face and uses the connectivity information to determine
the next cell. When the ray intersects with another exterior face, it
exits the volume. Later, image pixels are assigned to different pro-
cessors and HDS is used to exchange rays. Rays are composited to
produce the final image. Max et al. [19] used a slicing based ap-
proach to render unstructured data. For each cell, three slices are
generated perpendicular to the three X, Y, and Z axes. The camera
view determines which of these slices is used. The value of each
sample is computed by interpolating the cell vertices. This scalar
value is used as 1D texture coordinates to obtain the color. Slices
are rendered depending on their distance from the viewing direc-
tion in a back to front order. Colors are blended to generate the



final pixel color.
Our solution adapts a many-core sampler implemented by

Larsen et al. [13], where cells are sampled in parallel using multi-
threading. The samples of each cell are stored in a shared buffer.
The index of each sample is calculated depending on its screen
space coordinates (x, y and z). In the compositing stage the samples
of each ray are combined to produce the final color. We incorpo-
rated their routine to work within a distributed system, since their
routine was designed for a single node.

3 ALGORITHM

This section presents our solution, which extends the approach by
Childs et al. [3]. A hybrid approach is used to solve the prob-
lems associated with object order and image order techniques, and
achieve load balance. The algorithm compares the number of sam-
ples per cell with a given threshold to determine if a cell is a small
cell (SC) or large cell (LC). This cell assessment step is discussed
further in section 3.1. This step results in two sampling steps: one
is performed in object order and the other in image order. Sampling
large cells is deferred to the image order phase to maintain load
balance and decrease execution time. In addition, we use partial
composites to reduce the memory and communication cost. This
concept is discussed in section 3.2.

Our algorithm consist of three main phases:

1. Object Order Phase
Data are distributed among processors and each processor
samples its small cells.

2. Exchange Phase
The algorithm assigns image pixels to the different proces-
sors. Using the pixel assignment and the cell screen space
coordinates, the destination processor for each cell is deter-
mined and data are exchanged. Partial composites are used to
reduce the size of exchanged data, which is discussed in more
details in section 3.2.

3. Image Order Phase
Each processor samples the large cells that contribute to its
pixels. For each pixel the samples are composited producing
a sub image.

These phases are presented in Figure 2.

3.1 Cell Assessment
The first step of the algorithm is to exclude cells that are outside
the camera view. This is done by considering the camera view, the
coordinates of the cells and the number of samples per ray. Our
hybrid approach also uses this information to classify cells as small
or large by comparing the number of samples with a given thresh-
old. This classification is used to achieve load balance by deferring
the sampling of large cells. The value of this step rises when one
of the processors has more samples than the rest. Meaning there
is a processor performing more work, while other processors are
idle. This scenario can occur in two different cases. The first takes
place when the camera is zoomed into a specific region of that data,
which is owned by one processor. The second occurs when render-
ing unstructured data with different cell sizes, which may result in
assigning large cells into one processor. Both cases result in load
imbalance, causing the execution time to increase. To achieve load
balance, sampling large cells is deferred to the image order phase,
thus distributing the cost of sampling among different processors.

3.2 Partial Composites
Partial composites is a technique to reduce memory and communi-
cation cost. It reduces the size by compositing a group of floating
points into 24 bytes representing color, opacity and depth informa-
tion. The transfer function is used to assign a color and opacity

Figure 2: The algorithm pipeline highlight the three main phases,
object order, exchange, and image order phase.

to each sample. Next, these colors are composited in front-to-back
order using the following equation:

C =
n

∑
i=0

Ci ∗Ali
i−1

∏
j=0

(1−Oi) (2)

Where C is the RGB value of the partial composite, Ci is the color of
the current sample, Ali is the opacity of the sample, n is the number
of samples along the ray and Oi is the accumulated opacity.

Consider an example. Let P0 be the first processor, Z be the
depth of the samples, n be the number of samples per ray, and the
value of each sample be a floating number of size 4 bytes. If n =
1000 and P0 has the samples for Z = 3 to Z = 104, that will cost
100 * 4 = 400 bytes. Compositing these samples into a color RGB
and opacity A will result in storing 4 floating point values. Two
additional integers are used to keep track of the depth information,
The first additional integer Zs stores the depth of the first value in
the partial composite (i.e. Zs = 3). The second Ze stores the depth
of the final sample in the partial composite (i.e. Ze = 104). This will
result in 4 floating point values and 2 integer point values instead
of a 100 thus reducing the cost from 400 bytes to 24 bytes, which
benefits both communication and memory.

3.3 Object Order Phase

Each processor classifies its cells into small and large cells and sam-
ples its small cells.

3.3.1 Small Cell Processing

This step contains two sub-stages: 1) sampling small cells and 2)
generating partial composites along each ray. We adapt a multi-
threaded sampler implemented by Larsen et al.[13] to perform the



sampling. Parallelism is applied by working on different cells si-
multaneously. Cells are sampled and the values are stored in a sam-
ple buffer.

Next, partial composites are generated for each pixel by work-
ing on different pixels simultaneously. For each group of continu-
ous samples along the z axis, samples are composited into a partial
composite, as described in section 3.2.

3.4 Exchange Phase
In this phase, two types of data are being exchanged: 1) large cells
and 2) partial composites. In preparation for the image order phase,
image tiles are assigned to different processors and each processor
receives the data contributing to its tile.

Processors determine the destination of the data and pack the
messages into a buffer. Then, processors perform the exchange us-
ing Message Passing Interface (MPI) [7]. Each processor receives
its data and unpacks the messages into a defined structure (partial
composite or large cell).

3.5 Image Order Phase
After the exchange phase, each processor has all the data contribut-
ing to its tile of the image. This phase employs three consecutive
sub-phases.

3.5.1 Large Cell Processing
Large cells are sampled and then partial composites are gener-
ated. Both of these operations are performed using multi-threading.
While sampling large cells, each processor uses its tile coordinates
to sample only the contributing part of the cell. This reduces redun-
dant sampling that can be performed by different processors. After
sampling, partial composites are generated and stored. Now each
processor has the data it needs to generate its sub-image.

3.5.2 Compositing
Each processor orders and combines its partial composites to pro-
duce the final color of the pixel. The depth information stored as
Zs and Ze, as described in section 3.2, are used to order the partial
composites. Finally, these partials are combined in a front-to-back
order using the following equation:

C =
np

∑
i=0

Ci

i−1

∏
j=0

(1−Oi) (3)

Where C is the RGB value of the pixel, Ci is the color of the current
partial, np is the number of partial composites along the ray and Oi
is the accumulated opacity. This equation combines the colors of
the partial composites computed earlier, so it does not need to take
the opacity of each sample into consideration, as it was calculated
already in equation 2.

3.5.3 Collecting Final Image
Image tiles are collected to produce the final image. One processor
acts as the host and all other processors send their tiles to the host.
The host processor receives the tiles and arranges them according
to the assignment of each processor.

4 ANALYSIS

4.1 Performance
In this section we compare the performance of the algorithm be-
tween the Object Order (OO) and our Hybrid approach (HB).

We define the following abbreviations, which we use in the rest
of the paper:

• Ci: The number of cells owned by processor i
• SPC: The number of samples per each cell
• SCi: The number of small cells owned by processor i.

• S: The number of samples per ray
• PCi: The number of partial composites owned by by processor

i
• LCi: The number of large cells owned by by processor i
• P: The total number of pixels
• N: The total number of processors

The first step for both algorithms is cells assessment discussed in
section 3.1. The time of this step is bounded by (Ci). The second
step is sampling, and the performance of this step varies between
the two approaches. In the OO, all cells are sampled, thus the per-
formance depends on the number of cells owned by the processor
(Ci) and also the number of samples per each cell (SPC). While in
the HB only small cells are sampled and thus the time is bounded by
the number of small cells owned by the processor (SCi). Since the
number of samples for each sampled cell is small, it does not have
an impact on performance. Partial compositing time is proportional
tp (S) for OO, while for HB the execution time is bounded by the
number of small cells. Both approaches exchange partial compos-
ites (PCi). HB has an additional cost in the exchange phase, which
is the cost of exchanging large cells (LCi). Thus the cost of the ex-
change phase is lower for OO than HB. HB also has two additional
steps: large cell sampling and another partial composites for pro-
cessing these large cells. As mentioned in section 3.5.1, these two
steps are performed in image order. Thus the performance depends
on the number of pixels (P) multiplied by the number of samples
per ray divided by the number of processors (N). Finally, both ap-
proaches perform the final composite producing the final image and
the cost is the same for both.

Table 1, summarizes the performance of each step for the two
approaches.

Table 1: Performance of Object Order and Hybrid approaches

Steps OO HB

Cells Assessment O(Ci) O(Ci)

SC Sampling O(Ci)+O(SPC) O(SCi)

Partial Composite O(S) O(SCi)

Exchange
n

∑
i=0

PCi

n

∑
i=0

PCi +
n

∑
i=0

LCi

LC Sampling – O(
P∗S

N
)

Partial Composite – O(
P∗S

N
)

Final Compositing O(
P
N
) O(

P
N
)

4.2 Benefits and Drawbacks

Both approaches have pros and cons, and their three main differ-
ences are listed in Table 2. The first difference is that OO does not
perform large cell exchange. The second difference is that OO has
fewer partial composites to exchange due to its sampling strategy.
In OO, all cells are sampled and thus a processor might be able to
composite all the samples in a ray into one partial composite. While
in HB, small and large cells are sampled in different steps, pro-
ducing more partial composites along the ray. The third difference
is load imbalance: OO approach can have a high load imbalance
but HB can prevent load imbalance. Although the first two points
are advantages for object order and they result in lower exchange
cost than hybrid, using hybrid can result in lower execution time



and load imbalance in some cases. Examples include, if the cam-
era is zoomed-in to one of the regions owned by one processor, or
dealing it is an unstructured mesh has an equal cell sizes. In these
cases, one processor is performing most of the work, resulting in
high load imbalance and long execution time. Thus, using a hybrid
approach and paying the additional cost of exchange, can result in
much lower execution time and better load balance.

Table 2: Differences between Object Order and Hybrid
OO HB

No LC Exchange + –
Fewer PC Exchanged + –

Handling Load imbalance – +

5 EXPERIMENT OVERVIEW

This section describes the details of our experiment.

5.1 Factors

We explored the following four factors in our study.

• Algorithm: The main purpose of our algorithm is to achieve
load balance and reduce execution time We compare the per-
formance and load balance of our hybrid approach with the
object order method.

• Data set: Aligned with our motivation of implementing a par-
allel volume rendering for large data sets, we test the perfor-
mance using different data sizes.

• Parallelism: Our algorithm is designed to achieve high per-
formance and load balance on a distributed system, so we test
the performance scaling on two machines.

• Camera position: Our algorithm uses the camera view in the
sampling step. Thus we study the impact of camera position
on load balance and execution time. For each position the ex-
ecution time is measured for the exchange step, the sampling
step, and the total execution time.

• Image Size: The image size affects both sampling and com-
positing. We measure the execution time for different image
sizes.

• Transfer function: The algorithm excludes cells that have zero
opacity value. We study the effect of different opacity values
on the execution time.

5.2 Experiment Configuration

Our experiment vary the six factors and test them by running 66
experiments in six phases.

• Algorithm (2 options)
• Parallelism (8 options)
• Data set (4 options)
• Camera position (3 options)
• Image size (4 options)
• Transfer function (5 options)

Each of these factors and their options are discussed in the fol-
lowing subsections.

5.2.1 Algorithm

We performed our experiment using hybrid and object order meth-
ods.

• Hybrid: The algorithm described in section 3.
• Object order: The algorithm described in section 2.2.2.

5.2.2 Parallelism
We test the performance scaling of our algorithm varying the num-
ber of nodes as the following: 1, 2, 3, 4, 8, 12, 16, 32, 64, and 128
nodes. We used Twelve threads per node, and 1 MPI task per node.

5.2.3 Data set
• Enzo-1M: A cosmology data set from the Enzo simulation

code [24]. The data set was originally on a rectilinear grid but
was mapped to a tetrahedral grid.

• Enzo-10M: A 10.2M tetrahedron version of Enzo-1M.
• Enzo-80M: An 83.9M tetrahedron version of Enzo-1M.
• Nek-50M: An unstructured mesh that contains 50M tetrahe-

drons from a Nek5000 [6] thermal hydraulics simulation.

Figure 3, shows a rendering of both data sets.

Figure 3: The data set used in the experiment, (a)Enzo, (b)Nek.

5.2.4 Camera position
We compare the performance and load balance of hybrid and object
order methods for three different camera positions. The variation of
camera positions demonstrates the points discussed in section 4.

• Zoom-in
• Mid-zoom
• zoom-out

Figure 4, shows the different camera positions.

Figure 4: The three camera positions, (a)zoom-in, (b)mid-zoom and
(c)zoom-out



5.2.5 Image Size
Four image sizes are used to measure the impact of the size on the
execution time for both methods.

• 100×100
• 200×200
• 500×500
• 1024×1024

5.2.6 Transfer function
The opacity of the transfer function varies as the following:

• Very Dense (highest opacity)
• Dense
• Middle
• Light
• Very Light (lowest opacity)

The rendering of the different transfer functions is presented in
figure 5.3.

5.3 Performance Measurements
We measure the execution time (in seconds), and we calculate the
load imbalance for each test with the following equation:

Load imbalance =
Ts

TA

Where Ts is the execution time of the slowest processor, and TA
is the average execution time of overall processors.

For some of the experiments, we also present the time for differ-
ent phases of the algorithm.

We run our experiments on following the two machines:

• Alaska: A University of Oregon machine. Four cluster nodes
each has an Intel Xeon E5-1650v3 CPU running at 3.5GHz,
containing 6 physical cores and 12 threads.

• Edison: One of NERSC’s machines. Each node contains two
”Ivy Bridge” CPUs running at 2.4 GHz, each CPU containing
12 physical cores and 24 threads.

6 RESULTS

In this section, we present and analyze the results of our experiment.

6.1 Phase 1: Base Case
Our base case tests the performance and load balance of our hybrid
algorithm and compares it with the object order method.

This phase use the following configuration:

• Enzo-1M data set
• 4 nodes, 1 MPI task per node
• 12 cores per node for multi-threading
• Machine: Alaska
• Fixed camera position (zoom-in)
• Image size 1024×1024
• 1000 samples per ray
• Medium opacity for transfer function

Table 3 presents the time (in seconds) for each step and load imbal-
ance for both algorithms.

The object order approach suffered from load imbalance when
the camera view is focused on the data of one processor. We test
this case here and show that our hybrid approach achieves load bal-
ance. The results presented in Table 3 demonstrate the advantages
of the hybrid approach over object order. Since object order sam-
ples all the cells in one phase (SC processing), one processor is

Table 3: A comparison of the performance of hybrid and object order
approach.

OO HB

SC Processing 6.41 0.100
Exchange LC – 0.11
LC Processing – 1.60
Exchange PC 0.12 0.09
Compositing 0.004 0.005

Collect 0.003 0.003
Other 0.05 0.48

Total Time 6.59 2.40
Load imbalance 3.47 1.12

taking 6.41 seconds while others are much faster. In our hybrid
approach, the processor only processes small cells and defers pro-
cessing large cells into the image order phase (LC processing). This
results in reducing the sampling time from 6.41 to 1.7 seconds (to-
tal of both sampling steps). While the hybrid approach has an extra
exchange cost, the total execution time is less than the object order.
In addition it reduces the load imbalance from 3.47 to 1.12.

6.2 Phase 2: Distributed Memory Scalability
This phase use the following configuration:

• Enzo-1M data set
• 12 cores per node for multi threading
• Machine: Alaska and Edison
• Two camera position: zoom-in and mid-zoom
• Image size 1024×1024
• 1000 samples per ray
• Medium opacity for transfer function

Table 4: Distributed Memory Alaska mid-zoom
1 2 3 4

OO Time 7.15 4.80 3.87 2.98
OO Speedup 1 1.48 1.84 2.39

HB Time 7.15 4.82 3.91 3.10
HB Speedup 1 1.48 1.82 2.30

Table 4 presents the execution time and the speedup for both
approaches for a mid-zoom camera position. The speedup for both
methods is comparable. In this mid-zoom case, some of the cells
are large and thus they are sampled in the image order phase. While
others are small and sampled in the object order phase.

Table 5: Distributed Memory Alaska zoom-in
1 2 3 4

OO Time 6.49 6.49 6.71 6.59
OO Speedup 1 1.00 0.96 0.98

HB Time 6.49 3.46 2.67 2.40
HB Speedup 1 1.87 2.43 2.70

The results of Table 5 demonstrate one of the cases mentioned
earlier in section 3.3, where the camera is zoomed into the volume.
The results shows that object order is taking much more time in the
zoom-in camera position because there is one processor always do-
ing more work. Adding more processors harms the algorithm since
the workload is not being distributed and the cost of exchanging
partials increases.

Table 6 shows the results of running on a higher scale concur-
rency by running on Edison. Although the algorithm outperforms



Figure 5: Different transfer function opacity, starting with (a) the highest opacity to (e) the lowest.

Table 6: Distributed Memory Edison zoom-in
Num of
proc

OO Time OO
Speedup

HB Time HB
Speedup

1 8.97 1 8.97 1
2 8.40 1.06 4.33 2.06
4 8.45 1.06 2.84 3.15
8 6.03 1.48 1.89 4.73
16 3.53 2.53 1.09 8.19
32 3.86 2.32 0.84 10.64
64 4.29 2.08 0.52 17.01
128 4.11 2.17 0.38 23.52

the object order approach at small scale, it is designed to achieve
even better performance at large scale. We plan to take this ex-
periment further and run on more resources in the coming months
at Argonne National Laboratory. We expect to achieve even better
results at larger scale.

6.3 Phase 3: Camera Position
This phase use the following configuration:

• Enzo-1M data set
• 4 nodes, 1 MPI task per node
• 12 cores per node for multi threading
• Machine: Alaska
• Image size 1024×1024
• 1000 samples per ray
• Medium opacity for transfer function

Table 7: Camera Position
Zoom-In Mid-Zoom Zoom-Out

OO HB OO HB OO HB
Exchange Time 0.12 0.20 0.20 0.35 0.14 0.14
Sampling Time 6.41 1.7 2.76 2.59 1.05 1.05

Total Time 6.59 2.40 2.98 3.10 1.25 1.25
Load Imbalance 3.47 1.12 1.37 1.04 1.13 1.12

The results presented in Table 7 align with the discussion in sec-
tion 4.2. The table shows that for the zoom-in case the load imbal-
ance is high for object order. Our hybrid approach reduces the load
imbalance and execution time. While in cases where the camera
is mid-zoom and load imbalance is low, paying the extra exchange
cost in hybrid result in higher execution time even thought it re-
duces the load imbalance. Finally, in the zoom-out case both ap-

proaches give comparable results since the number of samples per
cell is small and thus all cells are sampled in the first phase.

6.4 Phase 4: Data Set
This phase use the following configuration:

• 4 nodes, 1 MPI task per node
• 12 cores per node for multi threading
• Machine: Alaska
• Image size 1024×1024
• 1000 samples per ray
• Medium opacity for transfer function

Table 8: Data Set
Data Set #Cells OO HB Camera

Enzo-1M 1.25M 6.59 2.40 near
Enzo-10M 10.2M 7.31 5.72 near
Enzo-80M 83.9M 7.88 7.83 near

Nek 50M 5.36 4.31 near

Table 8 demonstrates that using hybrid approach reduces the ex-
ecution time for both small and large data sets. As the number of
cells increases for the Enzo data set, the size of the cells become
smaller. This explains the decrease in the difference between the
performance of the hybrid and object order. In the smaller version
Enzo-1M, the cells are larger so the hybrid algorithm defer sam-
pling these cells into the image order approach. While in the larger
versions, the size of cells gets smaller so most of the cells are sam-
pled in the object order phase of our algorithm.

6.5 Phase 5: Image Size
This phase use the following configuration:

• Enzo-1M data set
• 4 nodes, 1 MPI task per node
• 12 cores per node for multi threading
• Machine: Alaska
• Fixed camera position (zoom-in)
• 1000 samples per ray
• Medium opacity for transfer function

Table 9 shows that our hybrid approach still maintains a lower
execution time than object order when the image size increases. The
image size information is used in the sampling step, and since our
hybrid approach distributes the cost of sampling among processors



Table 9: Image Size
Image Size OO HB

100×100 0.15 0.24
200×200 0.41 0.35
500×500 1.41 0.75

1024×1024 6.59 2.40

it achieve better performance. As the size of the image increases
the number of samples per cell increases, which means more larger
cells. This explains the increase in the difference between the object
order execution time and the hybrid execution time. When the size
of the image is small there are few large cells and thus the hybrid
algorithm samples most of the cells in the object order phase. With
the increase of the image size the hybrid approach samples more
cells in the image order phase.

6.6 Phase 6: Transfer Function
This phase use the following configuration:

• 4 nodes, 1 MPI task per node
• 12 cores per node for multi threading
• Machine: Alaska
• Fixed camera position (zoom-in)
• Image size 1024×1024
• 1000 samples per ray

Table 10: Transfer Function
Transfer Function OO HB

Most Dense (highest opacity) 7.78 3.20
Dense 7.51 3.06
Middle 6.59 2.40
Light 5.15 2.18

Most Light (lowest opacity) 5.05 2.10

The opacity of the transfer function determines the amount of
visible data. A more dense transfer function results in computing
more samples, thus higher execution time.Table 10 shows that both
approaches increase proportionally as the opacity increases.

7 CONCLUSIONS AND FUTURE WORK

We implemented a scalable ray casting algorithm that achieves load
balance and reduces execution time. These are the main contribu-
tions of our algorithm:

• We improve load balance even for cases where the camera is
inside the volume

• We compare our hybrid approach with the object order ap-
proach and demonstrate that our method achieves higher per-
formance and load balance

• Our algorithm reduces communication and memory cost by
using partial composites

• We adapt a many-core sampler to increase the performance

Our algorithm is intended for high scale rendering, but we per-
formed our experiments on the resources we have currently. As a
future work, we plan to study the performance of our algorithm on
a higher scale using Argonne National Laboratory resources. We
expect the performance to increase at higher scale. We also plan to
extend our algorithm to include more image compositing methods.

REFERENCES

[1] U. Ayachit, B. Geveci, K. Moreland, J. Patchett, and J. Ahrens.
The ParaView Visualization Application. In High Performance
Visualization—Enabling Extreme-Scale Scientific Insight, pages 383–
400. Oct. 2012.

[2] E. Bethel, H. Childs, and C. Hansen. High Performance Visualization:
Enabling Extreme-Scale Scientific Insight. Chapman & Hall/CRC
Computational Science. Taylor & Francis, 2012.

[3] H. Childs, M. Duchaineau, and K.-L. Ma. A scalable, hybrid scheme
for volume rendering massive data sets. pages 153–161, 2006.

[4] S. Eilemann and R. Pajarola. Direct send compositing for parallel sort-
last rendering. In Proceedings of the 7th Eurographics Conference on
Parallel Graphics and Visualization, EGPGV ’07, pages 29–36, Aire-
la-Ville, Switzerland, Switzerland, 2007. Eurographics Association.

[5] S. Eilemann and R. Pajarola. Direct send compositing for parallel sort-
last rendering. In Proceedings of the 7th Eurographics Conference on
Parallel Graphics and Visualization, EGPGV ’07, pages 29–36, Aire-
la-Ville, Switzerland, Switzerland, 2007. Eurographics Association.

[6] P. F. Fischer, J. W. Lottes, and S. G. Kerkemeier. nek5000 Web page,
2008. http://nek5000.mcs.anl.gov.

[7] M. P. Forum. Mpi: A message-passing interface standard. Technical
report, Knoxville, TN, USA, 1994.

[8] M. P. Garrity. Raytracing irregular volume data. In Proceedings of the
1990 Workshop on Volume Visualization, VVS ’90, pages 35–40, New
York, NY, USA, 1990. ACM.

[9] S. Guthe, M. Wand, J. Gonser, and W. Strasser. Interactive rendering
of large volume data sets. In Visualization, 2002. VIS 2002. IEEE,
pages 53–60, Nov 2002.

[10] M. Hadwiger, J. M. Kniss, C. Rezk-salama, D. Weiskopf, and K. En-
gel. Real-time Volume Graphics. A. K. Peters, Ltd., Natick, MA,
USA, 2006.

[11] J. Kruger and R. Westermann. Acceleration techniques for gpu-based
volume rendering. In Proceedings of the 14th IEEE Visualization 2003
(VIS’03), VIS ’03, pages 38–, Washington, DC, USA, 2003. IEEE
Computer Society.

[12] H. Kutluca, T. M. Kurç, and C. Aykanat. Image-space decomposi-
tion algorithms for sort-first parallel volume rendering of unstructured
grids. J. Supercomput., 15(1):51–93, Jan. 2000.

[13] M. Larsen, S. Labasan, P. Navrátil, J. Meredith, and H. Childs.
Volume Rendering Via Data-Parallel Primitives. In Proceedings of
EuroGraphics Symposium on Parallel Graphics and Visualization
(EGPGV), pages 53–62, Cagliari, Italy, May 2015.

[14] M. Levoy. Display of surfaces from volume data. IEEE Comput.
Graph. Appl., 8(3):29–37, May 1988.

[15] K.-L. Ma. Parallel volume ray-casting for unstructured-grid data on
distributed-memory architectures. In Proceedings of the IEEE Sym-
posium on Parallel Rendering, PRS ’95, pages 23–30, New York, NY,
USA, 1995. ACM.

[16] K. L. Ma, J. S. Painter, C. D. Hansen, and M. F. Krogh. A data
distributed, parallel algorithm for ray-traced volume rendering. In
Proceedings of the 1993 Symposium on Parallel Rendering, PRS ’93,
pages 15–22, New York, NY, USA, 1993. ACM.

[17] K.-L. Ma, J. S. Painter, C. D. Hansen, and M. F. Krogh. Parallel
volume rendering using binary-swap compositing. IEEE Computer
Graphics and Applications, 14(4):59–68, July 1994.

[18] S. Marchesin, C. Mongenet, and J.-M. Dischler. Dynamic load bal-
ancing for parallel volume rendering. In Proceedings of the 6th Euro-
graphics Conference on Parallel Graphics and Visualization, EGPGV
’06, pages 43–50, Aire-la-Ville, Switzerland, Switzerland, 2006. Eu-
rographics Association.

[19] N. Max, P. Williams, C. Silva, and R. Cook. Volume rendering for
curvilinear and unstructured grids. In Computer Graphics Interna-
tional, 2003. Proceedings, pages 210–215. IEEE, 2003.

[20] B. Moloney, M. Ament, D. Weiskopf, and T. Moller. Sort-first parallel
volume rendering. IEEE Transactions on Visualization and Computer
Graphics, 17(8):1164–1177, Aug 2011.

[21] C. Montani, R. Perego, and R. Scopigno. Parallel rendering of vol-
umetric data set on distributed-memory architectures. Concurrency:
Practice and Experience, 5(2):153–167, 1993.

[22] C. Mueller. The sort-first rendering architecture for high-performance
graphics. In Proceedings of the 1995 Symposium on Interactive 3D
Graphics, I3D ’95, pages 75–ff., New York, NY, USA, 1995. ACM.

[23] C. Müller, M. Strengert, and T. Ertl. Optimized volume raycasting
for graphics-hardware-based cluster systems. In Proceedings of the
6th Eurographics Conference on Parallel Graphics and Visualization,



EGPGV ’06, pages 59–67, Aire-la-Ville, Switzerland, Switzerland,
2006. Eurographics Association.

[24] B. W. O’Shea, G. Bryan, J. Bordner, M. L. Norman, T. Abel, R. Hark-
ness, and A. Kritsuk. Introducing Enzo, an AMR Cosmology Appli-
cation. ArXiv Astrophysics e-prints, Mar. 2004.

[25] T. Peterka, D. Goodell, R. Ross, H. W. Shen, and R. Thakur. A con-
figurable algorithm for parallel image-compositing applications. In
Proceedings of the Conference on High Performance Computing Net-
working, Storage and Analysis, pages 1–10, Nov 2009.

[26] T. Peterka, H. Yu, R. Ross, and K.-L. Ma. Parallel volume rendering
on the ibm blue gene/p. In Proceedings of the 8th Eurographics Con-
ference on Parallel Graphics and Visualization, EGPGV ’08, pages
73–80, Aire-la-Ville, Switzerland, Switzerland, 2008. Eurographics
Association.

[27] D. Ruijters and A. Vilanova. Optimizing gpu volume rendering. 2006.
[28] R. Samanta, J. Zheng, T. Funkhouser, K. Li, and J. P. Singh. Load bal-

ancing for multi-projector rendering systems. In Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS Workshop on Graphics Hard-
ware, HWWS ’99, pages 107–116, New York, NY, USA, 1999. ACM.

[29] M. Strengert, M. Magallón, D. Weiskopf, S. Guthe, and T. Ertl. Hier-
archical visualization and compression of large volume datasets using
gpu clusters. In Proceedings of the 5th Eurographics Conference on
Parallel Graphics and Visualization, EGPGV ’04, pages 41–48, Aire-
la-Ville, Switzerland, Switzerland, 2004. Eurographics Association.

[30] A. C. Telea. Data Visualization: Principles and Practice, Second
Edition. A. K. Peters, Ltd., Natick, MA, USA, 2nd edition, 2014.

[31] B. Wylie, C. Pavlakos, V. Lewis, and K. Moreland. Scalable rendering
on pc clusters. IEEE Computer Graphics and Applications, 21(4):62–
69, Jul 2001.

[32] H. Yu, C. Wang, and K.-L. Ma. Massively parallel volume ren-
dering using 2-3 swap image compositing. In Proceedings of the
2008 ACM/IEEE Conference on Supercomputing, SC ’08, pages 48:1–
48:11, Piscataway, NJ, USA, 2008. IEEE Press.


