
A Scalable Observation System for Introspection
and In Situ Analytics

Chad Wood∗, Sudhanshu Sane∗, Daniel Ellsworth∗, Alfredo Gimenez†, Kevin Huck∗, Todd Gamblin†, Allen Malony∗

∗ Department of Computer and Information Science
University of Oregon

Eugene, OR United States
Email: {cdw,ssane,dellswor,khuck,malony}@cs.uoregon.edu

† Lawrence Livermore National Laboratory
Livermore, CA United States

Email: {gimenez1,gamblin2}@llnl.gov

Abstract—SOS is a new model for the online in situ charac-
terization and analysis of complex high-performance computing
applications. SOS employs a data framework with distributed
information management and structured query and access ca-
pabilities. The primary design objectives of SOS are flexibil-
ity, scalability, and programmability. SOS provides a complete
framework that can be configured with and used directly by an
application, allowing for a detailed workflow analysis of scientific
applications. This paper describes the model of SOS and the
experiments used to validate and explore the performance char-
acteristics of its implementation in SOSflow. Experimental results
demonstrate that SOS is capable of observation, introspection,
feedback and control of complex high-performance applications,
and that it has desirable scaling properties.

Index Terms—hpc; exascale; in situ; performance; monitoring;
introspection; monalytics; scientific workflow; sos; sosflow;

I. INTRODUCTION

Modern clusters for parallel computing are complex envi-
ronments. High-performance applications that run on modern
clusters do so often with little insight about their or the sys-
tem’s behavior. This is not to say that information is unavail-
able. After all, sophisticated parallel measurement systems can
capture performance and power data for characterization, anal-
ysis, and tuning purposes, but the infrastructure for observation
of these systems is not intended for general use. Rather, it is
specialized for certain types of performance information and
typically does not allow online processing. Other information
sources of interest might include the operating system (OS),
network hardware, runtime services, or the parallel application
itself. Our general interest is in parallel application monitoring:
the observation, introspection, and possible adaptation of an
application during its execution.

Application monitoring has several requirements. It is im-
portant to have a flexible means to gather information from
different sources on each node — primarily the application and
system environment. Additionally, for the gathered informa-
tion to be processed online, analysis will need to be enabled in
situ with the application [3]. Query and control interfaces are
required to facilitate an active application feedback process.
The analysis performed can be used to give feedback to both
the application, the operating environment, and performance

tools. There exists no general purpose infrastructure that can
be programmed, configured, and launched with the applica-
tion to provide the integrated observation, introspection, and
adaptation support required.

This paper presents the Scalable Observation System (SOS)
for integrated application monitoring. A working implemen-
tation of SOS is contributed as a part of this research ef-
fort, SOSflow. The SOSflow platform demonstrates all of
the essential characteristics of the SOS model, showing the
scalability and flexibility inherent to SOS with its support for
observation, introspection, feedback, and control of scientific
workflows. The SOS design employs a data model with
distributed information management and structured query and
access. A dynamic database architecture is used in SOS to
support aggregation of streaming observations from multiple
sources. Interfaces are provided for in situ analytics to acquire
information and then send back results to application actuators
and performance tools. SOS launches with the application,
runs along side it, and can acquire its own resources for
scalable data collection and processing.

A. Scientific Workflows

Scientific workflows feature two or more components that
are coupled together, operating over shared information to
produce a cumulative result. These components can be instan-
tiated as lightweight threads belonging to a single process,
or they may execute concurrently as independent processes.
Components of workflows can be functionally isolated from
each other or synchronously coupled and co-dependent. Some
workflows can be run on a single node, while others are
typically distributed across thousands of nodes. Additionally,
parts of workflows may even be dynamically instantiated
and terminated. The computational profile of a workflow can
change between invocations or even during the course of one
execution.

B. Multiple Perspectives

Application state and events can be sent to SOS from within
the application at any point during its execution. Developers
can instrument their programs to be efficiently self-reporting



Fig. 1. Applications Coupled Together Into a Workflow

the data that is relevant to their overall performance, such as
progress through specific phases of a simulation.

Application performance can be dramatically impacted by
changes in the state of the operating environment that is
hosting it. The effects of contention for shared resources by
multiple concurrent tasks can be discovered when the events
of concurrent tasks are fixed into a common context for
reasoning about their individual and combined performance.
SOS’s distributed in situ design is well-suited for capturing
perspective of the global state of a machine. By co-locating
the observation system with the workflow components that are
observed, SOS improves the fidelity of system performance
data without requiring the costly delays of synchronization or
congesting the shared network and filesystem resources in use
by applications.

Many existing performance tools can provide useful obser-
vations at runtime of applications, libraries, and the system
context. The low-level timers, counters, and machine-level data
points provided by specialized performance tools can be a
valuable addition to the higher-level application and system
data.

C. Motivation

Observing and reasoning about the performance of work-
flows on exascale computational platforms presents new chal-
lenges. Exascale systems will be capable of more than a billion
billion calculations per second, a factor of between 50 to 100
times faster than present day machines. The physical scale
and complexity of exascale machines is expected to grow by
similar factors as its computational speed, motivating a model
that can scale to the same extent.

II. RELATED WORK

Traditionally, HPC research into enhancing performance has
been focused on the low-level efficiency of one application,
library, or a particular machine.

Tools like TAU [6] are able to bring HPC developers a closer
look into to their codes and hardware, gathering low-level
performance data and aggregating it for integrated analysis
after an application concludes. Low-level metrics can help
identify performance bottlenecks, and are naturally suited for
non-production or offline episodic performance analysis of

individual workflow components. Such deep instrumentation
is necessarily invasive and can dictate rather than capture the
observed performance of the instrumented application when
the application is running at scale or required to engage in
significant amounts of interactivity. SOS provides a model that
can accept low-level information such as what TAU collects,
while also operating over light-weight higher-level information
suitable for online operation during production runs.

Focused on the needs of large scale data centers, Monalytics
[8] demonstrated the utility of combining monitoring and
analytics to rapidly detect and respond to complex events.
SOS takes a similar approach but adopts a general purpose
data model, runtime adaptivity, application configurability, and
support for the integration of heterogenous components for
such purposes as analytics or visualization.

Falcon [5] proposed a model for online monitoring and
steering of large-scale parallel programs. Where Falcon de-
pended on an application-specific monitoring system that was
tightly integrated with application steering logic and data
visualizations, SOS proposes a loosely-coupled infrastructure
that does not limit the nature or purpose of the information it
processes.

WOWMON [11] presented a solution for online monitoring
and analytics of scientific workflows, but imposed several
limitations and lacked generality, particularly with respect to
how it interfaced with workflow components, types of data it
could collect and use, and its server for data management and
analytics.

Online distributed monitoring and aggregation of infor-
mation is provided by the DIMVHCM [10] model, but it
principally services performance understanding through visu-
alization tools rather than the holistic workflow applications
and runtime environment. DIMVHCM provides only limited
support for in situ query of information.

Cluster monitoring systems like Ganglia [9] or Nagios [7]
collect and process data about the performance and health of
cluster-wide resources, but do not provide sufficient fidelity to
capture the complex interplay between applications competing
for shared resources. In contrast, the Lightweight Distributed
Metric Service [2] (LDMS) captures system data continuously
to obtain insight into behavioral characteristics of individual
applications with respect to their resource utilization. However,
neither of these frameworks can be configured with and used
directly by an application. Additionally, they do not allow for
richly-annotated information to be placed into the system from
multiple concurrent data sources per node.

LDMS uses a pull-based interaction model, where a daemon
running on nodes will observe and store a set of values
at a regular interval. SOS has a hybrid push-pull model
that puts users in control of the frequency and amount of
information exchanged with the runtime. Further, LDMS is
currently limited to working with double-precision floating
point values, while SOS allows for the collection of many
kinds of information including JSON objects and ”binary large
object” (BLOB) data.



TACC Stats [4] facilitates high-level datacenter-wide log-
ging, historical tracking, and exploration of execution statistics
for applications. It offers only minimal runtime interactivity
and programmability.

The related work mentioned here, and many other perfor-
mance monitoring tools, are well-implemented, tested, main-
tained, and regularly used in production and for performance
research studies. However, each have deficiencies that render
them unsuitable for a scalable, general-purpose, online perfor-
mance analysis framework.

III. SOS ARCHITECTURAL MODEL

Multi-component complex scientific workflows provide a
focus for the general challenge of distributed online monitor-
ing. Information from a wide variety of sources is relevent to
the characterization and optimization of a workflow.

In order to gather run-time information and operate on
it, SOS needs to be active in the same environment as the
workflow components. This online operation is capable of
collecting data from multiple sources and efficiently servicing
requests for it. Information captured is distinct and tagged with
metadata to enable classification and automated reasoning.
SOS aggregates necessary information together online to en-
able high-level reasoning over the entire monitored workflow.

A. Components of the SOS Model

The SOS Model consists of the following components:
• Information Producers : SOS APIs for getting informa-

tion from different sources to SOS.
• Information Management : SOS online information

databases/repositiories.
• Introspection Support : Online access to the information

databases.
• In Situ Analytics : Components to perform the online

analysis of the information.
• Feedback System : SOS APIs for sending feedback

information to non-SOS entities.

B. Core Features of SOS

• Online : It is necessary to obtain observations at run
time to capture features of workflows that emerge from
the interactions of the workflow as a whole. Relevant
features will emerge given a program’s interactions with
its problem set, configuration parameters, and execution
platform.

• Scalable : SOS targets running at exascale on the next
generation of HPC hardware. SOS is a distributed runtime
platform, with an agent present on each node, using
a small fraction of the node’s resources. Observation
and introspection work is distributed across the observed
application’s resources proportionally. Performance data
aggegation can run concurrently with the workflow.
Node-level SOS agents transfer information off-node us-
ing the high-performance communication infrastructure
of the host cluster. SOS supports scalable numbers and
topologies of physical aggregation points in order to

provide timely runtime query access to the global infor-
mation space.

• Global Information Space : Information gathered from
applications, tools, and the operating system is captured
and stored into a common context, both on-node and
across the entire allocation of nodes. Information in this
global space is characterized by —

– Multiple Perspectives - The different perspectives
into the performance space of the workflow can be
queried to include parts of multiple perspectives,
helping to contextualize what is seen from one
perspective with what was happening in another.

– Time Alignment - All values captured in SOS are
time-stamped, so that events which occured in the
same chonological sequence in different parts of the
system can be aligned and correlated.

– Reusable Collection - Information gathered into
SOS can be used for multiple purposes and be
correlated in various ways without having to be
gathered multiple times.

– Unilateral Publish - Sources of information need
not coordinate with other workflow or SOS com-
ponents about what to publish, they can submit
information and rely on the SOS runtime to decide
how best to utilize it. The SOS framework will
automatically migrate information where it is needed
for analysis while managing the retention of unused
information efficiently.

IV. IMPLEMENTATION

The SOSflow library and daemon codes are programmed in
C99 and have minimal external dependencies:

• Message Passing Interface (MPI)
• pthreads
• SQLite

SOSflow’s core routines allow it to:
• Facilitate online capture of data from many sources.
• Annotate the gathered data with context and meaning.
• Store the captured data on-node in a way that can be

searched with dynamic queries in real-time as well as
being suitable for aggregation and long-term archival.

SOSflow is divided into several components, central among
them:

• libsos - Library of common routines for interacting with
sosd daemons and SOS data structures.

• sosd listener - Daemon process running on each node.
• sosd db - Daemon process running on dedicated re-

sources that stores data aggregated from one or more in
situ daemons.

• sosa - Analytics framework for online query of SOS data.

A. Architecture Overview

Data in SOSflow is stored in a “publication handle” (pub)
object. This object organizes all of the application context
information and value-specific metadata, as well as managing



the history of updates to a value pending transmission to
a sosd listener, called value snapshots. Every value that is
passed through the SOSflow API is preserved and eventually
stored in a searchable database, along with any updated
metadata such as its timestamp tuples. Prior value snapshots
are queued and transmitted along with the most recent update
to that value.

Fig. 2. Complete History of Changing Values is Kept, Including Metadata

SOSflow utilizes different information transport methods
and communication patterns where appropriate [1]. Communi-
cation between client applications and their on-node daemon
takes place over a TCP socket connection. Messages read

Fig. 3. Client/Daemon Socket Communication Protocol

from the socket are immediately placed in the daemon’s
asynchronous queues to be processed by a worker thread.
The socket is then ready for the next queued message to be
received. Messages are first enqueued for storage into an on-
node database. The same message is re-enqueued for trans-
mission to an off-node data aggregation target. The SOSflow
runtime uses MPI and the high-speed interconnect network
of the HPC machine when transmitting information off-node.
SOSflow does not participate in the MPI communicator[s] of
the applications that it is monitoring, so no special integra-
tion programming is required of application developers who
already use MPI or sockets in their code.

B. Library: libsos

Applications that make direct use of SOSflow through its
API are called clients. Clients must link in the libsos library

which provides them with all of the data structures and
routines essential for interacting with the SOSflow runtime
platform. The library routines are thread-safe, and no process-
wide state is maintained within the library, allowing applica-
tion components to interact with SOSflow independent of each
other.

The primary interaction between a client and SOSflow
is through the pub. When a client initializes its SOSflow
instance, it communicates with the daemon and obtains a set
of global unique ID (GUID) tags. Clients pack values into a
pub and they are automatically assigned a GUID. When the
client publishes that handle, all values are transmitted to the
SOSflow on-node daemon, including the complete history of
each value’s updates from the last to the present publish call.

All communication functions in the SOSflow client library
are handled transparently. Users need only interact with a
simple API to define and store values that they can then
publish to the daemon as appropriate. The protocols and the
codes of the client library are designed to be fast and minimize
resource usage, though they will buffer values for the user if
they choose to hold them and only transmit to the daemon at
intervals.

Communications with the sosd listener are always initiated
by the clients, such as when they explicitly publish their pub.
SOSflow clients can voluntarily spawn a light-weight back-
ground thread that periodically checks with their local daemon
to see if any feedback has been sent for them. This loosely-
coupled interactivity allows for run-time feedback to happen
independent of an application’s schedule for transmitting its
information to SOSflow.

C. Daemon: sosd listener

The sosd daemon is itself an MPI application, and it is
launched as a background process in the user space at the
start of a job script, before the scientific workflow begins. The
daemons first go through a coordination phase where they each
participate in an MPI Allreduce() with all other daemon ranks
in order to share their role (DAEMON, DB, or ANALYTICS)
and the name of the host they are running on. During the
coordination phase, listener daemons select the sosd db aggre-
gate database that they will target for automatic asynchronous
transfer of the data they capture. After initialization, SOSflow
does not perform any further collective communications.

D. Database: sosd db

The open-source SQLite database engine is used by sosd db
for the on-node database. SQLite databases are persistent,
lightweight, fast, and flexible, suitable to receive streams of
tuple data with very low overhead. SOSflow provides a simple
API for interacting with its database to streamline access both
on and off-node.

At the time of this writing, SQLite technology is also used
for the aggregate databases, though work is ongoing to provide
alternatives for aggregation, starting with an interface to the
Cassandra database.



E. Analytics: sosa

SOSflow analytics modules are independent programs that
are launched and operate alongside the SOSflow run-time. The
primary role of the analytics modules is to query the database
and produce functional output such as real-time visualizations
of performance metrics, feedback to facilitate optimizations,
or global resource bound calculation and policy enforcement.
The modules can be deployed in a distributed fashion to run
on the nodes where the applications are executing, or they
can be deployed on dedicated resources and coupled with
the aggregate databases for fast queries of the global state.
Analytics modules have the ability to make use of the high-
speed interconnect of the HPC machine in order to share data
amongst themselves.

SOSflow provides an API for client applications to register a
callback function with a named trigger handle. Those triggers
can be fired off by analytics modules, and arbitrary data
structures can be passed to the triggered functions. Triggers
may be fired for a specific single process on one node, or
for an entire node, or an entire scientific workflow. This
capability facilitates the use of SOSflow as a general-purpose
observation, introspection, feedback, and control platform.

V. RESULTS

A. Evaluation Platform

All results were obtained by either interrogating the dae-
mon[s] directly to inspect their state or by running queries
against the SOSflow databases.

B. Experiment Setup

The experiments performed had the following purposes:
• Validation : Demonstrate that the SOSflow model works

for a general case.
• Exploration : Study the latency and overhead of SOS-

flow’s current research implementation.
The SOSflow implementation is general-purpose and we did
not need to tailor it to the deployment environment. The same
SOSflow code base was used for each of the experiments. The
study was conducted on three machines, the details of which
are given below —

1) ACISS : The University of Oregon’s 128-node compute
cluster. Each node has 72 GB of memory and 2x Intel
X5650 2.66 GHz 6-core CPUs, providing 12 cores per
node. Each node is connected together with a 10GigE
ethernet switch.

2) Cori : A Cray XC40 supercomputer at the National En-
ergy Research Scientific Computing Center (NERSC).
Nodes are equipped with 128 GB of memory and 2x
Intel Xeon E5-2698v3 2.30 GHz 16-core CPUs. Cori
nodes are connected by a Cray Aries network with Drag-
onfly topology, that has 5.625 TB/s global bandwidth.

3) Catalyst : A Cray CS300 supercomputer at Lawrence
Livermore National Laboratory (LLNL). Each of the
324 nodes is outfitted with 128 GB of memory and
2x Intel Xeon E5-2695v2 2.40 GHz 12-core CPUs.

Catalyst nodes transport data to each other using a
QLogic InfiniBand QDR interconnect.

We simulated workflows using the following —
1) LULESH with TAU : An SOSflow-enabled branch of

the Tuning and Analysis Utilities program (TAUflow)
was created as a part of the SOSflow development work.
On Cori, TAUflow was used to instrument the Livermore
Unstructured Lagrangian Explicit Shock Hydrodynamics
(LULESH) code. During the execution of LULESH,
a thread in TAUflow would periodically awaken and
submit all of TAU’s observed performance metrics into
the SOSflow system.

2) Synthetic Workflow : Synthetic parallel MPI applica-
tions were developed that create example workloads for
the SOSflow system by publishing values through the
API at configurable sizes and rates of injection.

C. Evaluation of SOS Model

This experiment was performed to validate the SOS Model
and demonstrate its applicability for the general case of
workflow observation. The Cori supercomputer was used to
execute a LULESH + TAUflow simulation. Power and memory
usage metrics were collected and stored in SOSflow for each
node. During the execution of the workflow, a visualization
application was launched from outside of the job allocation
which connected to SOSflow’s online database and was able
to query and display graphs of the metrics that SOSflow had
gathered.

The LULESH job was run both with and without the
presence of SOSflow (all other settings being equal) in order
to validate the ability of SOSflow to meet its design goals
while being minimally invasive.

D. Evaluation of Latency

Experiments were performed to study the latency of data
moving through SOSflow. When a value is published from a
client into SOSflow, it enters an asynchronous queue scheme
for both database injection and off-node transport to an ag-
gregation target. Latency in this context refers to the amount
of time that a value spends in these queues before becoming
available for query by analytics modules. To study latency we
ran experiments on both ACISS and Catalyst.

Tests run on ACISS were deployed with the Torque job
scheduler as MPICH2 MPI applications at scales ranging from
3 to 24 nodes, serving 10 Synthetic Workflow processes per
node in all cases. The ACISS battery of runs were tuned as
stress tests to ensure that the sosd daemons could operate under
reasonably heavy loads. In the 24-node ACISS experiment
(Figure 9), SOSflow clients published 72,000,000 double-
precision floats with associated metadata during a 90 second
window containing three rounds of extremely dense API calls.

Latency tests were performed on LLNL’s Catalyst machine
at various scales up to 128 nodes, with 8 data sources
contributing concurrently on each node in each case. Catalyst’s
tests measured the latency introduced by sweeping across three
different parameters:



• Count of unique values per publish
• Number of publish operations per iteration
• Delay between calls to the publish API

Unlike the ACISS experiments, the Catalyst tests did not
attempt to flood the system with data, but rather aimed to
observe how slight adjustments in size and rates of value
injection would impact the latency of those values.

E. Results

1) SOS Model Validation: SOSflow was able to effi-
ciently process detailed performance information from multi-
ple sources on each node. During the LULESH run, SOSflow’s
online database successfully serviced queries on-line, and
the results were plotted as an animated live view of the
performance of the workflow. The cost of using SOSflow was

Fig. 4. On-line Workflow Performance Visualization Using SOSflow on Cori.
Live View of 512 Processes From Three Perspectives: OS, LULESH, TAU

calculated simply as the increase in walltime for LULESH
+ SOSflow, expressed as a percentage of the walltime of
LULESH by itself. The results of these runs are shown in
Figure 5.

Fig. 5. Percent Increase in LULESH Running Time When SOSflow is Used

2) Evaluation of Latency: The on-node (Figure 6) and
aggregate (Figure 7) results from the largest 128-node runs
are presented here. Results from smaller runs are omitted for
space, as they show nothing new: “Time in flight” queue
latency at smaller scales linearly approached the injection
latency figures for a single (on-node) database.

In the 128-node runs, across all configurations, the mean
latency observed was 0.3 seconds (and a maximum of 0.7
seconds) for a value, and its full complement of metadata
and timestamps, to migrate from one of 1,024 processes to
the off-node aggregate data store, passing through multiple
asynchronous queues and messaging systems on 128 nodes.

Fig. 6. Average Latency for In Situ Database (128 nodes on Catalyst)

Fig. 7. Average Latency for Aggregate Database (128 nodes on Catalyst)

The in situ and aggregate results in Figures 6 and Figure 7
are promising, given the research version of SOSflow being
profiled is not optimized. Exploring the optimal configuration
and utilization of SOSflow is left to future research effort.



F. Discussion

Many of the behavioral characteristics of SOSflow are the
product of its internal parameters and the configuration of its
runtime deployment, rather than products of its data model and
algorithms. For now, the effort was made to select reasonable
default SOSflow configuration parameters and typical/non-
priviledged cluster queues and topologies. Because of the
general novelty of the architecture, the results presented here
could be considered the performance baseline for SOSflow to
improve on as the research matures.

Expanding on the direct experimental results, here are some
additional experiences and observations about the behavior of
SOSflow: —

1) Aggregation Topology: The current version of SOSflow
is configured at launch with a set number of aggregator
databases. The validation tests on ACISS used 3 sosd db
instances to divide up the workload, while the TAUflow +
LULESH experiments on Cori used a single aggregator. The
parameter sweeps run on the LLNL Catalyst machine were
done with four sosd db aggregation targets at 128 nodes.
Tests on ACISS and Catalyst were exploring the latency of
data movement through SOSflow, and so both configurations
featured dedicated nodes for sosd db aggregators to avoid
contention with other on-node work. The Cori runs captured
a real application’s behavior, and was primarily intended to
demonstrate the fitness of SOSflow for capturing the perfor-
mance of a scientific workflow along with meaningful context.
Instances of aggregators can be spawned, as many as needed,
in order to support the quantity of data being injected from a
global perspective. All data sent to SOSflow is tagged with a
GUID. This allows for shards of the global information space
to be concatenated after the run concludes without collision
of identities wiping out distinct references.

The data handling design trade-offs made for SOSflow do
not prioritize the minimization of latency, but focus rather
on gracefully handling spikes in traffic by growing (and then
shrinking) the space inside the asynchronous message queues.
After a value is passed to SOSflow, it is guaranteed to find its
way into the queryable data stores, and there are timestamps
attached to it that capture the moment it was packaged into
a publication handle in the client library, the moment it was
published to the daemon, and even the moment it was finally
spooled out into the database. Once it is in the database, it
is trivial to correlate values together based on the moment of
their creation, no matter how long the value was sequestered
in the asynchronous queues.

During the ACISS stress-tests, values were injected into the
SOSflow system faster than they could be spooled from the
queues into the database. While every value will eventually
be processed and injected into the data store, some values
wound up having to wait longer than others as the queue depth
increased. The asynchronous queues have thread-sequential
FIFO ordering, but because the MPI messages are queued up
based on their arrival time, and a batch is handled completely
before the next is processed, there is no real-time interleaving

of database value injections, they are injected in batches.
Near the bottom of the pile of MPI messages, the latency
continually increases until that batch is injected. This accounts
for the observed saw-tooth pattern of increasing latency seen
in Figure 9, which is not seen in Figure 8.

Fig. 8. In Situ Latency (24 nodes on ACISS, 240 Applications)

Fig. 9. Aggregate Latency (24 nodes on ACISS, 240 Applications)

2) Time Cost of Publish API: As an accessory to the study
of value latency, the length of time that a client application will
block inside of an SOSflow API routine was also evaluated.
In situ interactions between libsos routines and the daemon
are nearly constant time operations regardless of the daemon’s
workload. Care was taken in the daemon’s programming
to prioritize rate of message ingestion over immediacy of
message processing so that SOSflow API calls would not
incur onerous delays for application and tool developers. The
constancy of message processing speed is shown in figures 10
and 11, where the round trip time (RTT) of a probe message
between a client and the daemon (blue) is projected over a
graph of the number of new messages arriving in a sample
window (red).

This information was gathered by sending 9000+ probe
messages over a 15 minute window, with a single sosd listener
rank processing an average of 724 client messages a second in
total, arriving from four different processes on an 8-way Xeon
node. The messages from SOS clients contained more than
14.7 GB of data, averaging to 338kB per message. Though
there are a few spikes in the probe message RTT visible
in Figure 10, they are likely not related to SOSflow at all,
as Figure 11 reveals in detail. The RTT holds steady during
low and high volume of traffic from the other in situ client



processes. The mean RTT for the probe messages was 0.003
seconds, and the maximum RTT was 0.07 seconds.

Fig. 10. SOSflow Socket Communication Cost, Projected Over Message
Count

Fig. 11. SOSflow Socket Communication Cost (Detail)

These results show that the cost of making SOSflow API
calls is relatively low, and holds constant under changing
sosd listener workload.

VI. CONCLUSION

The SOS Model presented is online, scalable and supports a
global information space. SOS enables online in situ character-
ization and analysis of complex high-performance computing
applications. SOSflow is contributed as an implementation
of SOS. SOSflow provides a flexible research platform for
investigating the properties of existing and future scientific
workflows, supporting both current and future scales of ex-
ecution. Experimental results demonstrated that SOSflow is
capable of observation, introspection, feedback and control of
complex scientific workflows, and that it has desirable scaling
properties.

As part of future development, we aim to continue refining
and expanding the core SOSflow libraries and the SOS model.
The SOSflow codes can be optimized for memory use and data
latency. Mechanisms can be added for throttling of data flow to
increase reliability in resource-constrained cases. Subsequent
work will map out best-fit metrics for dedicating in situ

resources to monitoring platforms for the major extant and
proposed compute clusters. Additionally, we plan on exploring
options for deployment and integration with existing HPC
monitoring and analytics codes at LLNL and other national
laboratories.

VII. ACKNOWLEDGMENTS

The research report was supported by a grant (DE-
SC0012381) from the Department of Energy, Scientific Data
Management, Analytics, and Visualization (SDMAV), for
“Performance Understanding and Analysis for Exascale Data
Management Workflows.”

Part of this work was performed under the auspices of the
U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344 (LLNL-
CONF-XXXXXX).

REFERENCES

[1] Omar Aaziz, Jonathan Cook, and Hadi Sharifi. Push me pull you:
Integrating opposing data transport modes for efficient hpc application
monitoring. In Cluster Computing (CLUSTER), 2015 IEEE International
Conference on, pages 674–681. IEEE, 2015.

[2] Anthony Agelastos, Benjamin Allan, Jim Brandt, Paul Cassella, Jeremy
Enos, Joshi Fullop, Ann Gentile, Steve Monk, Nichamon Naksineha-
boon, Jeff Ogden, et al. The lightweight distributed metric service: a
scalable infrastructure for continuous monitoring of large scale com-
puting systems and applications. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, pages 154–165. IEEE Press, 2014.

[3] Guilherme da Cunha Rodrigues, Glederson Lessa dos Santos, Vinicius
Tavares Guimaraes, Lisandro Zambenedetti Granville, and Liane Mar-
garida Rockenbach Tarouco. An architecture to evaluate scalability,
adaptability and accuracy in cloud monitoring systems. In Information
Networking (ICOIN), 2014 International Conference on, pages 46–51.
IEEE, 2014.

[4] Todd Evans, William L Barth, James C Browne, Robert L DeLeon,
Thomas R Furlani, Steven M Gallo, Matthew D Jones, and Abani K
Patra. Comprehensive resource use monitoring for hpc systems with
tacc stats. In Proceedings of the First International Workshop on HPC
User Support Tools, pages 13–21. IEEE Press, 2014.

[5] Weiming Gu, Greg Eisenhauer, Eileen Kraemer, Karsten Schwan, John
Stasko, Jeffrey Vetter, and Nirupama Mallavarupu. Falcon: On-line
monitoring and steering of large-scale parallel programs. In Frontiers
of Massively Parallel Computation, 1995. Proceedings. Frontiers’ 95.,
Fifth Symposium on the, pages 422–429. IEEE, 1995.

[6] Kevin A Huck, Allen D Malony, Sameer Shende, and Alan Morris.
Taug: Runtime global performance data access using mpi. In Recent
Advances in Parallel Virtual Machine and Message Passing Interface,
pages 313–321. Springer, 2006.

[7] Gregory Katsaros, Roland Kubert, and Georgina Gallizo. Building a
service-oriented monitoring framework with rest and nagios. In Services
Computing (SCC), 2011 IEEE International Conference on, pages 426–
431. IEEE, 2011.

[8] Mahendra Kutare, Greg Eisenhauer, Chengwei Wang, Karsten Schwan,
Vanish Talwar, and Matthew Wolf. Monalytics: online monitoring and
analytics for managing large scale data centers. In Proceedings of the
7th international conference on Autonomic computing, pages 141–150.
ACM, 2010.

[9] Matthew L Massie, Brent N Chun, and David E Culler. The ganglia
distributed monitoring system: design, implementation, and experience.
Parallel Computing, 30(7):817–840, 2004.

[10] Rafael Keller Tesser and Philippe Olivier Alexandre Navaux. Dimvhcm:
An on-line distributed monitoring data collection model. In Parallel,
Distributed and Network-Based Processing (PDP), 2012 20th Euromicro
International Conference on, pages 37–41. IEEE, 2012.

[11] Xuechen Zhang, Hasan Abbasi, Kevin Huck, and Allen Malony. Wow-
mon: A machine learning-based profiler for self-adaptive instrumentation
of scientific workflows. Procedia Computer Science, 80:1507–1518,
2016.


