
An In Situ Approach for Explorative Visualization using Temporal Intervals
Nicole Marsaglia

Advisor: Hank Childs

We explore a technique for saving full spatio-temporal simula-
tion data for visualization and analysis. While such data is typically
prohibitively large to store, we consider an in situ reduction ap-
proach that takes advantage of temporal coherence to make storage
sizes tractable in some cases. As I/O constraints continuously in-
crease and hamper the ability of simulations to write full-resolution
data to disk, our work presents an in situ data reduction technique
with an accuracy guarantee. Rather than limiting our data reduction
to individual time slices or time windows, our algorithms act on in-
dividual locations and saves data to disk as temporal intervals. Our
results show that the efficacy of piecewise approximations, as com-
pared to full spatio-temporal resolution, varies based on the desired
error bound guarantee and turbulence of the time-varying data.

1 INTRODUCTION

Traditionally, scientific simulations have enabled their data to be
visualized by saving many “time slices” to disk. That is, at regular
(or irregular) intervals, a simulation code will take the current state
of the simulation and store it to a file (or group of files). Visualiza-
tion programs then operate on this data by loading it from the disk.
In this model, the simulation code performs a temporal sampling,
meaning that it contains accurate information about the simulation’s
state for the time slices that were stored, but no information about
what happened for the intervals between its time slices. If the scien-
tist running the simulation code determines the temporal sampling
will be too sparse, then the scientist can remediate by having the
code save more and more time slices.

This traditional model may not be well suited with trends in high-
performance computing (HPC). Specifically, the ability to generate
data on each new generation of supercomputers is increasing much
faster than their ability to store data. One response to this relative
decrease in I/O power is to apply all visualization algorithms in situ.
This response is reasonable, provided the visualizations to perform
are known a priori. Assuming that the desired visualizations are not
known a priori (which is the case with explorative visualization),
then data needs to be stored for post hoc processing. In this case,
a simulation can respond to this relative decrease in I/O power by
saving fewer time slices. That said, this would lead to increasingly
sparse data from the temporal perspective. This temporal sparsity
would, in turn, increase the rate at which interesting phenomena
is lost, namely in the cases where the phenomena occurs within
intervals that are not saved or in the cases where the phenomena
does not have enough temporal resolution to properly observe.

Recent research has focused on a new processing paradigm to
address this problem. This research has explored a combination of
in situ and post hoc processing. The role of in situ processing is to
reduce the simulation data. This reduction often happens through
some sort of transformation, which can range from compression
(e.g., wavelets) to alternate representations (e.g., topology). The
key tension in this process is between data reduction and data in-
tegrity — too much reduction creates forms that are not useful, and
too much emphasis on integrity can limit possible reductions.

With our research, we introduce a new operator for the in situ re-
duction / post hoc exploration paradigm. Specifically, we save data
as temporal intervals, and focus our data reduction within these in-
tervals. That is, while the traditional approach stores data in groups
that all have the same time, our approach stores data in groups that
all have the same location. Similarly, while the traditional approach
lends itself to reductions that take advantage of spatial coherency,
our approach lends itself to reduction that take advantage of tempo-
ral coherency.

Our approach is only feasible because of recent changes in
HPC. First, deep memory hierarchies are increasingly common
on leading-edge supercomputers. These hierarchies provide sig-
nificantly more memory than was previously available, including
places like the “burst buffer,” which can be used to store and an-
alyze multiple time slices of simulation state before it is saved to
disk. Second, in situ processing is rapidly becoming an accepted
processing paradigm by simulation codes. This creates the oppor-
tunity for visualization and analysis routines to access more tempo-
ral data than ever before, even at the resolution of simulation cycle.
This increased access in turn enables visualization and analysis to
consider ways to store the data in more efficient forms that were not
previously possible.

Temporal interval data is different in nature than the data tra-
ditionally stored by simulation codes. Where traditional output has
complete accuracy at few time slices, temporal interval data has full
temporal resolution. However, temporal interval data is too large to
store to disk — just as the traditional model would be if it stored all
time slices — so it is only feasible if the intervals are compressed
as they are stored. With our approach, we compress the data in a
way that guarantees accuracy, e.g. 95% accurate, 99% accurate, etc.
Our approach, then, has the benefit of being able to present known
error bounds to stakeholders. However, the storage to achieve this
accuracy guarantee is variable, and, for some types of data, may
require more storage than the stakeholder is willing to allocate. For
this research, we decided to embrace this decision (fixed error rate
with unknown storage requirements) rather than consider the alter-
native (fixed storage requirements with unknown error rates), since
we feel the former proposition is more desirable to stakeholders.

This work implemented three algorithms that all have a guar-
anteed error rate, and compress data temporally in situ. For the
chosen algorithm and user defined error rate, the algorithm oper-
ates individually on every data point within a simulation. Within
each data point, for every generated value, the algorithm decides
whether to store the subsequent approximation on the SSD, or to
write the compressed value to disk. We ran each algorithm on mul-
tiple data sets and analyzed the I/O improvement compared to the
traditional paradigm of saving time slices. By implementing tempo-
ral data reduction in situ, this research has shown an improvement
over saving every time slice with full spatial resolution; compress-
ing data as we go temporally, the algorithms provide full temporal
resolution of the simulation data and match storage requirements
of code that outputs time slices as infrequently as every 500th time
step.

The paper is broken up into the following sections: Section 2
discusses related work; Section 3 describes the algorithms utilized
in this research as well as the error guarantee and reconstruction
process; Section 4 provides an overview of the factors of the ex-
periments; Section 5 lays out the results of this research; Section 6



sums up the conclusion of this research; and Section 7 describes the
future work of this research.

2 RELATED WORK

This section classifies related work into categories of compression
algorithms for data reduction:

• Individual Time Slice Data
• Multiple Time Slice Data
• Complete Temporal Data

2.1 Individual Time Slice Data
This approach to data reduction disregards the temporal coherence
between data points. Most of these data reduction techniques do
however use spatial coherence to perform compression.

One approach to compress individual time slice data is to use
lossless data reduction. However, lossless compression techniques
[2, 16] can only reduce data by modest amounts and is computa-
tionally intensive, and thus unfit for in situ data reduction. FPC [2],
a lossless technique, is a predictive coding method targeted at 64-bit
values. FPC fails to achieve good compression ratios when operat-
ing on scientific data or data with significant randomness. The fpzip
compression [13] also utilizes predictive coding and achieves good
compression as a result of an improved entropy coder. MAFISC [6]
is a preconditioner that applies multiple filters and transformations
to data before using a standard compression technique; MAFISC
achieves better lossless compression on climate data compared to
classic lossless techniques such as gzip and lzma. ISOBAR [17]
is another preconditioner that statistically separates data into com-
pressible and incompressible, and then determines the optimal com-
bination of standard lossless compression techniques. Another pre-
coditioner by Gomez et al. [5] applies binary masks to mimic zero
entropy before compressing.

Another approach to compressing individual time slices is lossy
data reduction. ZFP [12] achieves high compression via spatial co-
herence and bit reduction, but this technique strongly favors smooth
data. Similarly, the RBD algorithms [7] utilize spatial locality by
viewing data point grids as graphs and representing subgraphs as
singular values based on a user defined error bound. Additionally,
fpzip can be altered and used for lossy compression. APAX [18],
similar to the lossy version of fpzip, also uses predictive encoding
but employs an absolute rather than relative error bound.

This work is unfit for in situ compression because these methods
are computationally intensive and compress data based solely on
spatial coherency. By not considering temporal coherency, while
this limits their memory requirements to a single time slice, it also
limits their potential compression capabilities.

2.2 Multiple Time Slice Data
This approach to data reduction takes into account multiple time
slices, utilizing the temporal coherence present in many scientific
data sets, and potentially spatial coherence as well.

ISABELA, developed by Lakshminarasimhan et al. [9], is a lossy
in situ preconditioner that can compress tumultuous data by nearly
85% with a 99% average correlation between the original and com-
pressed data with little overhead in runtime. ISABELA takes ad-
vantage of monotonic inheritance of points over time by first sort-
ing a time slice, applying B-spline curves, and then representing
multiple temporal windows with a reconstructed curve. The rep-
resentative window is continued temporally until an average error
bound has been exceeded. Lehmann [11] extends ISABELA by
adding corrective computations to the sorted data and loosening the
restrictions of when to write a window to memory. Additionally, it
adds support for selective loading of regions with varying levels of
resolution.

SZ [4] is a predictive algorithm that converts multidimensional
matrices to 1D arrays and applies multiple curve fitting models.

Based on a user defined error, SZ only saves a bit corresponding to
the model best fitting the current section of values, or if none of the
models fall within the user error bounds the value is compressed via
a binary representation analysis.

There are several reasons why this work is unfit for in situ data
compression on every time slice. For one, these works require a sig-
nificant amount of memory, namely a number of entire time slices
if temporal coherency is to be considered, not to mention the mem-
ory requirements for their computations. Computations that could
impose significant strain on the simulation if they are conducted for
each time slice. Second, if they are going to take into temporal co-
herency, none of these works know the number of consecutive time
slices that would optimize compression.

While these works take into account both spatial and temporal
coherency, they do not provide full spatio-temporal resolution as
their compression only applies to several consecutive time slices,
and not every temporal interval.

2.3 Complete Temporal Data
This section encompasses full spatio-temporal resolution. Our
work operates on each grid point’s continuous stream of data, at-
tempting to compress every incoming value. Unlike other works,
that only provide an average error bound, our work guarantees a
user defined error bound relative to every grid point.

Our research includes three in situ algorithms that reduce tempo-
ral data into piecewise approximations. It is inspired by the SWAB
[8] data mining technique for segmenting time series data.

IDEALEM [10] relies on statistical similarities and breaks
streams of data into windows, then compresses those windows
based on point distribution to reduce data in situ. IDEALEM does
well with tumultuous data as it provides a heavy distribution of
points. However, it performs poorly with smooth curves as the data
distribution is sparse within each window.

2.4 How Our Approach Differs From Previous Work
All of the works mentioned above, with the exception of RBD,
guarantee at most an average error bound. IDEALEM guarantees
a user defined statistical similarity but not a definite point by point
correlation. Our objective is to guarantee a known error bound per
point.

In this work, we compress data at each grid point location over
time rather than compressing entire time slices or groups of time
slices at once. By employing independent compression operators at
each grid point, we can guarantee an accuracy relative to each grid
point’s time-varying data. Our technique provides infinite temporal
resolution of a time series, and full spatio-temporal resolution of a
simulation.

3 COMPRESSION OPERATORS

The objective of this work is to provide full spatio-temporal res-
olution with guaranteed error bounds; this is accomplished via a
tailored compression technique.

Our algorithms transform grid point values generated in situ into
piecewise approximations with a guaranteed error bound. Data is
only queued for storage when the difference of the approximated
data exceeds the user defined error bound relative to the original
data.

The algorithms work as follows. To compress simulation data,
there is an instance of a compression object for each data point in
the grid. Each such object reduces its respective time series into
piecewise approximations. The compression algorithm at a given
data point runs independent of the compression algorithms at other
data points. For every generated value at a data point there are
two possible outcomes. One, the simulation’s current value falls
within the error bound of the current approximation. Or two, the
simulation’s current value does not fall within the error bound of



Figure 1: Image (a) represents the simulation and the corresponding data points. As the simulation runs, each data point generates a stream of
data. Each data point employs a compression operator that independently compresses its time series into a piecewise approximation. Images
(b)-(d) symbolize the . This image shows the original time series of one data point (b), the piecewise approximation (c), and the per point
difference of the two (d). Image (d) shows that each point falls within a 5% per point error bound defined by the user.

the current approximation. In this case, the former approximation
is written to disk or memory and the process begins anew with the
current value.

3.1 Error Bound
For most of the research presented in Section 2, a user defined er-
ror is realized as an average error bound, and not as a maximum
error bound. Using an average error bound allows for more flexi-
bility within the approximation process, but can lead to unexpected
artifacts and errors. By using a maximum error bound, we guaran-
tee an error bound specific to each time series and prevent artifacts
when reconstructing the approximations. Maximum error can ei-
ther mean a maximum absolute error (all reconstructed values must
be within X units of the original values) or a relative absolute error
(all reconstructed values must be within X% of the original val-
ues). In our case, we focus on relative absolute error, because max-
imum absolute error can lead to loss of important information when
a value is near zero. However, the maximum and minimum values
used for normalization can not be known a priori. To tackle this
problem, each data point employs a “learning curve”: the range of
values is initially unset and is updated as new values are generated.
This results in a learning overhead as each data point’s error bound
increases as they encounter a wider range of values.

3.2 Algorithms
The three algorithms considered are:

• Piecewise Linear (PL)
• Piecewise Constant (PC)
• Piecewise Constant Mean (PCM)

While each algorithm is similar in that they all employ a sliding
window of size two, they are differentiated by how they approxi-
mate the time series. The first element in the window is either the
starting value of a new approximation or the current approximated
value. Each incoming value becomes the second element in the
window and that window is reduced to size one either by compres-
sion or saving the first element in the window. If the second element
is approximated, the first element is overwritten with the new ap-
proximation and the second element is overwritten with the next
generated value. In the case that the starting/approximated value is
saved to disk or memory, the second element becomes the new start-
ing point, overwriting the first element, and the second element is
overwritten with the next generated value. Figure 1 illustrates an in-
stance of a compressor on a single grid point, the resulting approx-
imation, and the difference between the original and approximated

time series. Figure 2 shows our three algorithms approximating the
same time series. During post-hoc analysis, specific time slices of
the simulation can be reconstructed with values that reside within
the user defined error bound.

3.2.1 Piecewise Linear (PL)
This algorithm transforms consecutive data point values into piece-
wise linear approximations as the simulation progresses. The com-
pression object deployed for each data point keeps track of the local
maximum and minimum, as well as the set of consecutive values it
is currently approximating. The algorithm approximates piecewise
linear equations for each data point’s time series.

For each piecewise approximation is it necessary to calculate the
slope using the starting value of the approximation and the subse-
quent generated value. From the starting value, the slope is then
extended one unit for every time step, creating our approximation.
For each time step, the approximation is compared to the current
value. If the difference between the approximated value and the
current value is within the error bound then this process continues.
If the difference between the current value and the approximated
value does not fall within the error bound then the value, slope, and
current time step are saved to disk. Once an approximated line has
been saved, the algorithm then restarts with a new starting point.
The new starting point is the last value that was not within the error
bound of the approximation; a new slope will then be calculated
using the starting point and the subsequent value.

3.2.2 Piecewise Constant (PC)
The second algorithm, Piecewise Constant, is much like Piecewise
Linear. Each data point runs its own Piecewise Constant compres-
sor and keeps track of their local minimum, maximum and associ-
ated error bound based on the user defined error percentage. How-
ever, in the Piecewise Constant algorithm, a single value represents
an interval of the time series. The approximated line is extended
until the difference between the approximated value and the current
value exceeds the error bound. Once the error bound is exceeded,
the value that could not be represented by the approximation be-
comes the reference value going forward. This algorithm saves the
representative value and current time step to disk.

3.2.3 Piecewise Constant Mean
The third algorithm, Piecewise Constant Mean, is similar to the first
two, but takes the average of the encountered values per approxima-
tion interval. This algorithm uses the local extrema of each approx-
imation interval to ensure the error bound guarantee is met.



Figure 2: Figure (a) shows the original values. Figures (b)-(d) are the approximations created by our algorithms with a fixed 5% user-defined
error bound. Figure (b) is the piecewise approximation created by the PCM algorithm. Figure (c) is the piecewise approximation created by the
PC algorithm. And figure (d) is the piecewise approximation created by the PL algorithm.

Initially, and after the error bound has been exceeded, the al-
gorithm restarts and the local maximum and minimum are reset.
With each new incoming value, the algorithm calculates an approx-
imated line that is the mean of all the encountered values. The
algorithm also checks if each new value is greater than the current
local maximum or less than the current local minimum. If so, the
local maximum and minimum are set accordingly. The algorithm
also makes sure that no previous point falls outside the error bound
in relation to the mean. That is, for every new value the algorithm
checks to make sure that the current minimum and maximum are
within [mean− ε,mean+ ε] where ε is the error bound.

3.3 Memory Requirements
Within memory, each grid point is required to save several values
that facilitate the compression process. Table 1 lists all the neces-
sary data that each grid point must store.

3.4 Reconstruction
The reconstruction process from the compressed data is relatively
straightforward. The data from every grid point is written and sub-
sequently available in its own file. This information consists of the
saved data values and the corresponding time steps. In addition, the
piecewise linear algorithm saves the slope.

To construct an approximation of the original data requires the
desired time slice along with the compressed data. Currently, re-
construction is dependent on the entire compressed data being in
memory. But our future work plans on eliminating this dependency,
allowing for faster reconstruction.

Given the desired time slice, it is straightforward to find the cor-
responding value within each data point’s file. Since each data point
saves both the current time step and the associated representative
value, we know that the value represents the range of time steps
between the previously saved time step to the current. Let td be
the desired time slice and let tc be the current time slice with the
associated value v and tp be the previous time slice before tc. If
td ∈ [tp +1, tc] then v is the approximated value for the desired time
slice.

For piecewise linear, it is necessary to calculate the value at the
desired time step from the saved output. Let td be the desired time
step for reconstruction, let tp and tc be the previously saved time
step and the current saved time step, respectively, and let v be the
value associated with tc and within [tp + 1, tc]. Given the slope s
associated with v, if td ∈ [tp +1, tc] then the approximated value is
v+ s∗ (td − (tp +1)).

Algorithm Memory

4 Byte Min and Max
Piecewise Linear 4 Byte Slope

(PL) 4 Byte Starting Value
4 Byte Count

Piecewise Constant 4 Byte Min and Max
(PC) 4 Byte Value

4 Byte Min and Max
Piecewise Constant Mean 4 Byte Approx. Value

(PCM) 4 Byte Local Min and Max
4 Byte Count

Table 1: Depending on the algorithm, each grid point is required to
store necessary values in memory. Each grid point calculates it’s
own error bound tailored to the range of values encountered — this is
stored via the minimum and maximum. Also, for each approximated
line it is necessary to have either the starting value or the current
approximated value. For the PL each grid point stores the slope as-
sociated with the current piecewise linear approximation. And the PL
and PCM require the count, or count, of time steps their respective
lines approximate; the PL needs the count to calculate the current
position of the line using the slope and starting value, and the PCM
to calculate the mean of all relevant values for the approximated line.
Additionally, PCM requires the local extrema to be stored in order to
guarantee the error bound criteria.

4 EXPERIMENT OVERVIEW

Our experiments were designed to quantitatively evaluate the ef-
ficacy of data reduction with full temporal resolution. We evalu-
ated several algorithms over several data sets with differing error
bound guarantees. This section outlines the parameters of the re-
search conducted; Section 4.1 lists the parameters we varied over
our experiments; Section 4.2 goes over the measurements and met-
rics used in this study; Section 4.3 describes the machine these ex-
periments were conducted on.

4.1 Parameters
We varied the following factors:

• Algorithms (3 options)



• Data Sets (4 options)
• User Defined Error Bounds (3 options)

4.1.1 Algorithms
We evaluated the three algorithms described in Section 3.

• Piecewise Constant (PC)
• Piecewise Linear (PL)
• Piecewise Constant with Local Extrema (PCM)

4.1.2 Data Sets
For this research we tested the efficacy of our compression in two
phases. For the first phase, we looked at time series data from indi-
vidual grid points over four simulation codes. For the second phase,
we evaluated our algorithms on a full simulation in situ for one of
the data sets. The results from the first phase show the compression
ratio of a stream of values over time. Whereas the results of the
full simulation shows the compression ratio of the entire simulation
per time step, the full simulation compression ratio is a culmina-
tion of the compression ratios of all the individual grid points. We
considered four data sets for the first phase:

• LULESH [1]: A data set with 8 different grid points each with
4,561 time steps.

• Tornado [15]: A data set with 10 different grid points each
with 500 time steps.

• XGC1 Ion Particles [3]: A data set with 25 different grid
points each with 818 time steps.

• GHOST [14]: A data set with 20 different grid points each
with 9,990 time steps.

The Geophysical High Order Suite for Turbulence, or GHOST,
simulates turbulent rotational flows.

For the second phase, we continued with the GHOST simulation
data, running in situ compression for a 128×128×128 grid point
simulation run for 250,000 time steps.

4.1.3 User Defined Error Bound
We applied three user defined error bounds:

• 1%
• 3%
• 5%

To guarantee an error bound, our error bound is relative to the
range of values encountered at each data point. For example, an
error bound of 1% means the approximation will fall within a 1%
error window of the original value that is based on the range of
values that particular grid point has encountered.

4.2 Measurements and Metrics
In total this work ran 36 experiments each with multiple measure-
ments.

In the first phase comprised of the four data sets, LULESH, Tor-
nado, XGC1 Ion Particles and GHOST, we ran each with the three
algorithms and the user defined error bounds of 1, 3, and 5 percent.
For each data set we calculated the maximum compression ratio,
the minimum compression ratio, average compression ratio and the
average Pearson Correlation Coefficient.

The Pearson Correlation Coefficient (PCC) ranges from [1,-1]. A
PCC of 1 or -1 indicates that there is a perfect positive or negative
linear correlation, respectively. If the PCC is 0 then the two values
share no linear relationship. In our case, a PCC close to 1 indicates a
near identical correlation between the original data and the reduced
data.

In the second phase, each of the three algorithms were run on
GHOST in situ with each error bound. Our GHOST simulation
setup has 128*128*128 data points oriented as a cube. Each simu-
lation configuration ran for 250,000 time steps. The measurements
on GHOST include the number of values saved per time step; the
resulting improvement compared to saving an entire time slice ev-
ery N time steps; as well as the average time of computation for all
three algorithms at each error bound and the resulting impact on the
simulation.

4.3 Hardware
This research was done on Alaska, our in-house research cluster.
Alaska is composed of a Xeon E5-2667v3 (16 core) head node and
four Intel Xeon E5-1650v3 (6 core) cluster nodes.

5 RESULTS

5.1 Individual Data Points: LULESH, XGC1 Particle
Ions, and Tornado

Table 2 lists four metrics — maximum compression ratio (CR),
minimum compression ratio, average compression ratio, and av-
erage PCC — for each combination of algorithm, *data set*, and
error bound. For each data set the piecewise algorithms achieved
a high PCC value, meaning the approximated values are closely
correlated to the actual values. Each data set having a higher aver-
age PCC value when the algorithms employ a smaller error bound
percent. Apart from the PL algorithm on the Tornado data set, all
algorithms that employed a 1% error bound had an average PCC of
> .999. Additionally, apart from the PL algorithm on the Tornado
data set, all algorithms using the 3% and 5% error bound attained
an average PCC of > .99 on all data sets.

The four data sets displayed a wide range of compression ra-
tios compared to the size of the original time series. Using a 5%
error bound, the XGC1 data set had the lowest compression ratio,
varying between 2.06X and 7.18X with an average compression
ratio of 2.91X. The Tornado data set had compression ratios only
slightly better, ranging from 2.58X and 10.87X with an average
of 4.02X. LULESH and GHOST performed much better compar-
atively. LULESH achieved a significantly higher maximum com-
pression than both Tornado and XGC1 with 49.04X, but had a sim-
ilar minimum and average compression at 3.95X and 7.46X, re-
spectively. GHOST outperformed the other data sets, having a min-
imum compression ratio of 95X , a maximum compression ratio of
173.3X, and an average compression ratio of 132.80X.

The compression ratios for each algorithm using 1% and 3% er-
ror bounds follow the trends of the 5% error bound, but with smaller
compression ratios.

The compression results for these data sets depends tremen-
dously on the turbulence of the data, but also how quickly the al-
gorithm reaches a sufficient range to base its error bound. If a grid
point encounters a sufficient minimum and maximum values early
on, then the error bound will be based on a wide range of values.
Whereas, if a grid point does not encounter a sufficient maximum
and minimum until later on, then the error bound is based on an in-
sufficient range, and is saving piecewise approximations less than
the guaranteed error bound.

Comparing the graphs of the four data sets’ grid points that pro-
duced the minimum and maximum compression, it becomes clear
that achieving a sufficient range for the error bound quickly helps
increase compression capabilities. Additionally, these algorithms
work best on time series with high temporal coherence and little
fluctuation.

Figure 3 shows the curves that achieved the maximum compres-
sion ratio and minimum compression ratios within the data set.
The curve that resulted in the maximum compression ratio clearly
achieves a wider range of values sooner than the curve that re-
sulted in the minimum compression ratio. The first curve, using



Algorithm Max Min Avg. Avg.
CR CR CR PCC

LULESH
PCM
5% 49.04X 3.95X 7.46X 0.99748
3% 42.63X 3.86X 7.21X 0.99897
1% 29.05X 3.68X 6.52X 0.99986
PC
5% 42.09X 3.87X 7.17X 0.99899
3% 34.29X 3.78X 6.85X 0.99958
1% 20.83X 3.48X 5.8X 0.99995
PL
5% 49.04X 3.89X 7.46X 0.99892
3% 45.16X 3.88X 7.35X 0.99965
1% 36.2X 3.85X 7.15X 0.99995

Tokomak
PCM
5% 7.18X 2.06X 2.91X 0.99803
3% 4.65X 1.68 2.15X 0.99933
1% 2.22X 1.22X 1.24X 0.99994
PC
5% 4.7X 1.63X 2.18X 0.99868
3% 3.33X 1.36X 1.69X 0.99963
1% 1.74X 1.1X 1.26X 0.999977
PL
5% 4.76X 1.61X 2.07X 0.99480
3% 3.21X 1.35X 1.66X 0.998277
1% 1.76X 1.11X 1.25X 0.999923

Tornado
PCM
5% 10.87X 2.58X 4.02X 0.99403
3% 6.85X 1.87X 2.86X 0.99780
1% 3.07X 1.27X 1.679X 0.99980
PC
5% 7.24X 1.85X 2.9X 0.99524
3% 4.62X 1.44X 2.12X 0.99852
1% 2.1X 1.13X 1.4X 0.99990
PL
5% 9.26X 1.85X 2.87X 0.96413
3% 6.76X 1.46X 2.25X 0.98144
1% 3.01X 1.15X 1.48X 0.99807

GHOST
PCM
5% 173.3X 95X 132.80X 0.99771
3% 114.88X 59.16X 84.84X 0.99913
1% 47.5X 22.61X 33.4X 0.99989
PC
5% 99.80X 52X 73.77X 0.99765
3% 65.43X 32.71X 47.36X 0.99915
1% 28.22X 12.88X 19.24X 0.99990
PL
5% 143.18X 71.59X 101.02X 0.99880
3% 89.01X 49.9X 66.58X 0.99958
1% 30.78X 18.50X 24.65X 0.99995

Table 2: The minimum, maximum, and average compression ratio
(CR) achieved on the four data sets, as well as the average Pearson
Correlation Coefficient (PCC) for each algorithm and error bound.

the PCM algorithm and 5% error, achieved a 49.04X compression
ratio, whereas the second curve with the same heuristics achieved
a compression ratio of 3.95X. A smaller range of values to deter-
mine the error bound over the majority of the values coupled with
fact that the second curve is more turbulent resulted in a lower com-
pression ratio.

Figure 3: The curves of the LULESH data set that achieved the maxi-
mum compression ratio (a) and the curve that achieved the minimum
compression ratio (b).

Similarly, Figure 4 shows the curves of the XGC1 Ion Particle
data set that achieved the maximum compression ratio and the min-
imum compression ratio. For these two curves, the first curve, using
the PCM algorithm with a 5% error bound, resulted in a compres-
sion ratio of 7.18X whereas the second curve resulted in the min-
imum compression ratio of 2.06X. Again, this difference is due to
the first curve reaching a more sufficient range of values sooner and
the overall smoothness compared to the second curve.

Figure 4: The curves of the XGC1 Ion Particle data set that achieved
the maximum compression ratio (a) and the curve that achieved the
minimum compression ratio (b).

The curves for the Tornado data set somewhat follows this trend.
While the first curve in Figure 5 reaches roughly 40% of its range
quickly, so does curve two. The difference in compression ratios
for these two curves comes down to the high fluctuation of the data
rather than the brevity of increasing their error bounds.

The curves for the GHOST data set show the temporal coherence
and smoothness present among the values. The first curve in Fig-
ure 6 achieved a compression ratio of 173.3X and the second curve



Figure 5: The curves of the Tornado data set that achieved the maxi-
mum compression ratio (a) and the curve that achieved the minimum
compression ratio (b).

achieved a compression ratio of 95X using the PCM algorithm with
a 5% error bound.

Figure 6: The curves of the GHOST data set that achieved the maxi-
mum compression ratio (a) and the curve that achieved the minimum
compression ratio (b).

In summary, the results from phase one only produced promising
results for GHOST.

The results from the individual data sets show that the algorithms
will work well on simulations whose grid points do not have the
same level of work. While several grid points may experience tu-
multuous streams of values, others may remain smooth. The grid
points with high compression will even out those grid points with
more turbulent data and thus lower compression. This can be seen
in the results for the full simulation, Ghost.

5.2 Entire Simulation: GHOST
Each data point has a compressor object that runs the designated
algorithm with the user defined error percent. In addition, each
data point is responsible for setting their error bound based on their
minimum and maximum values, and saving values when dictated

by the algorithm.
Our experiments measured the number of values saved per time

step, computing compression ratios compared to the size of a time
slice with full spatial resolution. Due to the fact that the error bound
is based off of the encountered values of each data point, initially
the algorithms require a high volume of writes to memory. But
once there is a sufficient error bound, each data point saves values
less and less frequently. Figure 7 demonstrates that after the initial
overhead of their learning curve each algorithm eventually hits an
output equilibrium.

Figure 7: The initial overhead of each algorithm with a 5% user-set
error percent. This overhead is referred to as a learning curve, as
each algorithm slowly learns the appropriate error bound based on
the values each data point encounters.

Figure 8 shows an example of decompressed data and how close
it is to the original data, namely within the error bound. For that
particular time slice, the reconstructed data is an adequate repre-
sentation of the original data, with errors within the user defined



Figure 8: Image (a) is the original data at time slice 205,025. Image (b) is the reconstructed data that used the PCM algorithm with a 5% error.
Image (c) is a data comparison of their difference. And image (d) is the absolute value of their difference. Both the dark and light blue in image
(d) represents minimal differences between the original and reconstructed data, differences well within the 5% error.

error bound.
With a 5% user defined error, GHOST eventually only saves

2000-5000 values per time stamp depending on the algorithm as
shown in Figure 9. With the PCM and PC algorithms this means
saving an 4 byte single precision floating point value and a 4 byte
integer time step. Whereas the PL algorithm also needs to save
the 4 byte single precision floating point value, 4 byte integer time
step, as well as an 4 byte single precision floating point value for
the slope. This is an improvement 236.96X-582.54X per time step.
Table 3 shows what is saved to disk when an approximation is falls
outside the user defined error bound. Figure 10 shows an isosurface
rendering of a single time slice, an isosurface rendering of the re-
construction of the same time slice and an isosurface rendering of
their absolute difference.

Algorithm Saved to Disk

PCM 4 Byte Approx. Value
4 Byte Round

PC 4 Byte Value
4 Byte Round
4 Byte Slope

PL 4 Byte Starting Value
4 Byte Round

Table 3: When an approximation falls outside the user defined error
bound each algorithm saves the necessary information to recreate
the approximation. For the PCM and PC algorithms it is necessary to
save the approximated value and the last round of the simulation the
approximation was valid for. For the PL algorithm it is also required
to save the slope of the approximated line in addition to the line’s
starting value.

Table 4 lists the average save rate each algorithm eventually
achieves per error percent after the initial overhead.

Algorithm 1% 3% 5%
PCM 110.37X 343.79X 582.54X
PC 59.91X 201.64X 255.75X

Linear 99.86X 160.70X 236.97X

Table 4: The average compression ratio of the number of pushed
values per time step of each algorithm and each user defined error
percent. This is after the initial overhead each data point experiences
learning their error bound.

If GHOST aims to write out data every time step, this research
has a 236.96X-582.54X improvement depending on the algorithm

Figure 9: After 70,000 time steps, each algorithm only saves a few
thousand out of the 2+ million points of the simulation per time step.

with a 5% error. But if the simulation aims to write out data ev-
ery 200th time step, the algorithms only have an improvement of
1.27X-2.9X. Figure 11 further illustrates the improvement of each
algorithm using each error percentage versus the original simula-
tion with varying number of time steps between output.

Unfortunately, the algorithms cause significant strain on the sim-
ulation. Typically, the algorithms double the run time of the simu-
lation. Table 5 depicts the average time to execute each algorithm
at each error percent and the strain this causes the simulation.

6 CONCLUSION

In this work, we report the compression algorithms over time-
varying data. This work presents three piecewise approximation
algorithms that guarantee an error bound and provides full tempo-
ral resolution. We found that depending on the data set, specif-
ically for GHOST, the compression algorithms can reach a com-
pression ratio greater than 400X for individual grid points, and up-
wards of 500X for an entire simulation. The compression algo-
rithms achieved these results on a data set with smooth temporal
coherence with data fluctuation spread out over time.

These algorithms did not achieve high compression rates on the



Figure 10: Image (a) is an isosurface rendering of the 125,000th. Image (b) is the reconstruction of that same time slice from the PCM algorithm
with a 5% error bound. Image (c) is the isosurface rendering of the absolute difference between the original and reconstruction.

Figure 11: From top to bottom these charts represent the trade off
between the algorithms at 5, 3, and 1 percent error bounds, respec-
tively, versus the simulation outputting the entire time slices at vary-
ing time steps. The Y-axis represents the improvement of our algo-
rithms whereas the X-axis represents how often the original simula-
tion writes an entire time slice to memory.

Algorithm Ghost Only Total Time Time Increase
PCM
1% .6s 1.37s 128%
3% .6s 1.35s 125%
5% .6s 1.31s 118%
PC
1% .6s 1.15s 91.6%
3% .6s 1.14s 93%
5% .6s 1.1s 83%
PL
1% .6s 1.3s 116%
3% .6s 1.16s 93%
5% .6s 1.1s 83%

Table 5: The average strain that each algorithm causes the simula-
tion without writing to disk.

XGC1 or Tornado data sets, and only showed decent compression
with the LULESH times series.

7 FUTURE WORK

For future work we plan on parallelizing the work done by the com-
pression operators for each grid point of a simulation to decrease
their computation time and lessen the temporal burden on the sim-
ulation. Additionally we plan on changing the way files record out-

putted values so it is no longer necessary to have all of the com-
pressed data files loaded into memory to reconstruct a single time
slice.

We will also continue to evaluate these algorithms on other data
sets and simulations to determine the extent of their capabilities on
both smooth and tumultuous time varying data. While three out of
the four time series did not show promising compression in phase
one, we’d like to see if there are improvements if we apply the al-
gorithms in situ. Much like how the results for GHOST quadrupled
from phase one to phase two, we’d like to see if we can achieve
similar improvements for the other data sets in their corresonding
simulations.

REFERENCES

[1] Hydrodynamics Challenge Problem, Lawrence Livermore National
Laboratory. Technical Report LLNL-TR-490254.

[2] M. Burtscher and P. Ratanaworabhan. Fpc: A high-speed compres-
sor for double-precision floating-point data. IEEE Trans. Comput.,
58(1):18–31, Jan. 2009.

[3] C. Chang, S. Ku, P. Diamond, Z. Lin, S. Parker, T. Hahm, and N. Sam-
atova. Compressed ion temperature gradient turbulence in diverted
tokamak edge). Physics of Plasmas (1994-present), 16(5):056108,
2009.

[4] S. Di and F. Cappello. Fast error-bounded lossy hpc data compression
with sz. Proc. IPDPS. IEEE, 2016.

[5] L. A. B. Gomez and F. Cappello. Improving floating point compres-
sion through binary masks. In Big Data, 2013 IEEE International
Conference on, pages 326–331. IEEE, 2013.

[6] N. Hübbe and J. Kunkel. Reducing the hpc-datastorage footprint
with mafisc—multidimensional adaptive filtering improved scientific
data compression. Computer Science - Research and Development,
28(2):231–239, 2013.

[7] J. Iverson, C. Kamath, and G. Karypis. Fast and effective lossy com-
pression algorithms for scientific datasets. In Proceedings of the 18th
International Conference on Parallel Processing, Euro-Par’12, pages
843–856, Berlin, Heidelberg, 2012. Springer-Verlag.

[8] E. Keogh, S. Chu, D. Hart, and M. Pazzani. An online algorithm for
segmenting time series. Proceedings 2001 IEEE International Con-
ference on Data Mining, pages 289–296, 2001.

[9] S. Lakshminarasimhan, N. Shah, S. Ethier, S. Klasky, R. Latham,
R. Ross, and N. F. Samatova. Compressing the incompressible with
ISABELA: In-situ reduction of spatio-temporal data. Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 6852 LNCS(PART
1):366–379, 2011.

[10] D. Lee, A. Sim, J. Choi, and K. Wu. Novel data reduction based on
statistical similarity. In Proceedings of the 28th International Con-
ference on Scientific and Statistical Database Management, page 21.
ACM, 2016.

[11] H. Lehmann and B. Jung. In-situ multi-resolution and temporal data
compression for visual exploration of large-scale sientific simulations.



Journal of Chemical Information and Modeling, 53(9):1689–1699,
2013.

[12] P. Lindstrom. Fixed-rate compressed floating-point arrays. IEEE
Transactions on Visualization and Computer Graphics, 20(12):2674–
2683, 2014.

[13] P. Lindstrom and M. Isenburg. Fast and efficient compression of
floating-point data. IEEE Transactions on Visualization and Computer
Graphics, 12(5):1245–1250, Sept. 2006.

[14] P. Mininni, A. Alexakis, and A. Pouquet. Large-scale flow effects,
energy transfer, and self-similarity on turbulence. Physical Review E,
74(1):016303, 2006.

[15] L. Orf, R. Wilhelmson, and L. Wicker. Visualization of a simulated
long-track ef5 tornado embedded within a supercell thunderstorm.
Parallel Computing, 55:28–34, 2016.

[16] P. Ratanaworabhan, J. Ke, and M. Burtscher. Fast lossless compres-
sion of scientific floating-point data. In Proceedings of the Data
Compression Conference, DCC ’06, pages 133–142, Washington, DC,
USA, 2006. IEEE Computer Society.

[17] E. R. Schendel, Y. Jin, N. Shah, J. Chen, C. S. Chang, S. H. Ku,
S. Ethier, S. Klasky, R. Latham, R. Ross, and N. F. Samatova. ISO-
BAR preconditioner for effective and high-throughput lossless data
compression. Proceedings - International Conference on Data Engi-
neering, pages 138–149, 2012.

[18] A. Wegener. Adaptive Compression and Deocmpression of Bandlim-
ited Signals. US Patent 7009533, 1(12):0–4, 2006.


