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Abstract. In both high-performance computing and Internet of Things
(IoT) applications, it is important for programmers to utilize the hard-
ware as efficiently as possible in terms of both performance and power
usage. Automatic methods of tuning code for such efficiency have been
developed and used for many years in HPC, but less so in other areas. In
this paper, we apply these methods to the domain of IoT to explore the
feasibility of using autotuning in this domain. Our case study examines
the application of roadway traffic analysis. We use Computer Vision tech-
niques to count the cyclists, pedestrians, and cars as they travel through
a video of a campus intersection. A significant portion of the tracking
computations is the Kalman filter method, which is used to estimate the
paths of objects through the video. This Kalman filter is the target of
this autotuning study. We present results for the performance and power
usage of the system with multiple autotuning techniques and optimized
BLAS libraries on three disparate architectures. Our results show that
autotuning is both feasible on and beneficial to IoT platforms.

1 Introduction

Fifty years ago Moore predicted the rapid advancement in complexity and speed
of computer processors. These improvements have allowed for the development of
more and more complex computer systems that tackle larger and larger problems.
These advancements have given a great deal to HPC users, but have come at
the cost of more difficult programming. To achieve peak possible performance
on a super computer, the developer must spend hours tuning the program to
the exact specification of the system; the cache size, vector length, and so on all
must be taken into account to squeeze the best possible performance out of the
machine. As a result of these complexities, a great deal of effort is expended but
often results in sub-optimal performance.

Several methods are available to assist programmers with these challenges.
For example, vendor-tuned versions of linear algebra libraries such as BLAS [14,
15] and LAPACK [1] incorporate many optimizations but are unable to apply
those that rely on a larger perspective of the algorithm such as loop fusing and
certain methods of minimizing memory traffic. Additionally, there is a variety of
optimizing compilers (Intel, Portland Group, and Pluto [8]), but studies[23] have
shown that these often don’t utilize all available optimizations. As a result of



these short-comings, other methods of producing optimized code are constantly
being explored.

A more robust way to tune a program is to make use of an autotuning system
that can automatically transform code to find optimal or near optimal perfor-
mance. These transformations can occur at or immediately before compilation
so that the source code can be written and distributed as simple, readable code
and then optimized separately for each system in use. For this study we use the
Orio autotuner [18] which optimizes the code based on empirical tuning. The
tuning is done by specifying the portion of the code that is relevant and anno-
tating it with tuning options. Orio takes this information and applies potential
optimizations to the code, tests each version, and saves the fastest one for the
user to reintegrate with the rest of the program.

As research has shifted focus from maximizing FLOPs to maximizing FLOPs
per Watt, the process of tuning has remained largely the same but now has two
optimization goals. Many tuners now incorporate dual optimization that targets
power (or energy) usage and speed. Additionally computer hardware is becoming
increasingly complex as systems move to incorporate heterogeneous cores such
as GPGPUs, Intel MICs, and FPGAs. Which must be considered in addition to
the CPU when tuning a program.

Recently, the Internet of Things (IoT) has grown at a rapid pace and is
projected to continue become an integral part of our lives. There are many
challenges that face IoT applications that are quite similar to those in HPC.
Even simple IoT processors are beginning to incorporate multiple cores, vector
units, and GPUs. These complications require more difficult tuning of code,
particularly as applications in IoT become more sophisticated and demand more
computational power. Likewise, IoT devices often operate under strict power
limits to extend battery life or minimize cost. Given these similarities to HPC,
the realm of IoT offers another area that autotuners could make a significant
impact.

In this paper, we explore Kalman filters as a case study of autotuning on dis-
parate architectures. The Kalman filter is a common tool used for the estimation
of states in dynamic systems; in this case, for the estimation of paths for objects
moving through a two-dimensional space. We use Orio to optimize the filter and
underlying linear algebra computations and compare the results to optimized
BLAS implementations to demonstrate the effectiveness of autotuning. These
experiments are performed on Intel Xeon server, and IBM Power8 server and a
cluster of low-power ARM devices. These architectures are chosen to compare
the results of autotuning for typical HPC target systems with the results from
autotuning for IoT type devices as a first attempt at autotuning for IoT.

The rest of this paper is organized as follows. Section 2 presents background
information on autotuning and Kalman filters. Section 3 explains our experi-
mental methodology and test environment. Section 4 presents and analyzes our
results. Future work is described in Section 5. Section 6 concludes.



2 Background

In this section we present background information about the autotuning tech-
niques studied in this paper and the case study used.

2.1 Autotuning

In High Performance Computing, each program must be tuned to achieve the
best possible efficiency on the target system. This tuning can be an arduous and
time consuming task for even the most experienced developers. Automatic meth-
ods used to ease this process are called Autotuning and fall into two categories:
empirical and analytic.

Empirical autotuning generates and tests the various optimizations and saves
the best result. This method is limited by the size of the search space and the
techniques used to explore it which determine how long the process will take.
Analytic autotuning creates a model of the program and a model of the system
which are then analyzed to determine the best optimizations to apply to the
program. The modeling approach is faster and does need to be run on the target
system, but it can be limited by the ability to model the program and system.

On the empirical side, several systems are available to test numerous code
transformations and determine the best variation. CHiLL [12] is a framework for
applying loop transformations to a program. OpenTuner [2] is a framework for
creating program specific autotuners. The Orio [18] system allows a programmer
to annotate the program with potential optimizations including loop transfor-
mations, compiler flags, OMP pragmas and more. The authors of [13] explore
multicore autotuning on stencil computations. In [19], Jordan et al. present an
autotuner for parallel programs that produces multiple optimal versions that can
be selected from at runtime depending on system parameters. For heterogenous
systems, Chaimov et al. developed OrCL, [11] that tunes for GPUs, Intel MICs,
or multicore processors. To make up for the time-consuming nature of empirical
autotuning and increase portability, [34] takes an online approach to tuning. In a
setup similar to JIT compilation, the systems switches versions as the iterations
of the loop run eventually settling on one that is fastest.

The analytic method builds a model of the program and the hardware to
predict the best possible program optimization. This approach is taken in com-
pilers to improve results and also in some autotuning systems [37]. These models
tend to be limited by a lack of knowledge concerning different inputs or other
run-time characteristics. Other methods combine the model results with empir-
ical testing to restrict the search area and avoid the limitations of the model.
For example, the authors of [21] use a model of the program to limit the search
space and then explore those options empirically. The authors in [5] utilize ma-
chine learning based on empirical runs to create a more accurate model of the
program. The PLuTo system [9] combines the methods to optiize programs for
both data locality and parallelism.

While the primary goal of these systems has been optimizing performance
of a program, there are also efforts to optimize for power or energy [24, 3, 11].



The systems use single or multi-target optimization to tune for a combination
of performance, energy, and power.

2.2 Code Generation

Alternatively to tuning the code domain specific languages exist that can create
highly optimized programs based on knowledge of the domain. These systems
can take advantage of a wider view of the problem and possible inputs to the
system to identify optimizations that may not be possible in a more general
system.

One such system is BTOBLAS [23]. This system takes matrix operations as
input and transforms them into C code. By taking the full equation as an input
it can combine loops, avoid replicating computations, and perm other operations
that are not possible using regular BLAS libraries. For multithreaded applica-
tions the threads can wait to synchronize until the end of the computation,
rather than being initiated at each BLAS call.

2.3 Object Tracking in Videos

The first step in any analysis of video data is identifying which parts are inter-
esting (foreground) and which are not (background). For analysis of traffic, a
common method of differentiating between the two is by using motion to iden-
tify areas taken up by moving vehicles. This process is most basically done by
developing a background image and subtracting the most recent frame from that
image. Pixels that are different from the background are shown in white those
that are similar are in gray and those that are the same are shown in black.
Thus large blobs of white can be interpreted as cars or other moving objects.

The most basic form of background subtraction is to subtract the current
frame from the previous one, but this is overly simplistic and produces poor
results. A better way is to develop a background model as the video progresses.
In both[17] and [16] the authors develop the model by first subtracting from the
background model, then averaging the background model with the current frame,
ignoring the sections where movement occurred. An improved option calculates
likely values for each pixel in the video and differences the new frame from those
likely values (known as the Gaussian Mixture Model). Several versions of this
were produced [32, 38] and OpenCV has a built-in version, based on [38], making
it easy to use. This process has the advantage of being able to handle changing
background (i.e. buildings being constructed, weather changes, day/night) and
oscillating motion (i.e. trees in the wind). Unfortunately, it can lose track of
objects that stop for extended periods, such as those at intersections.

Alternatively, objects such as cars, bicycles, and pedestrians can be identified
based on specific features in a process called feature extraction. Features are
identified using large datasets and machine learning and then applied to the
video analysis to identify traffic. Feature extraction can be more computationally
intensive than other methods, but produces good results and can work when cars



or people are stopped at traffic lights. In [26, 27, 29, 28, 30], Shirazi et al combine
the background subtraction and feature extraction to get the best of both worlds.

Once the objects are identified it is necessary to match object from one frame
to the next. One common method is to use the shape of the object as a template
and test that against candidate in the next frame in what is called ”normalized
area of intersection” [17]. In [16], Fang et al. extend this technique to include
corner detection method to handle occlusion. Color and other attributes are
included in the calculation in [30].

A slightly different technique is to predict the next location of an object
based on its speed and direction and then find the object that best fits that
estimation. This method often incorporates Kalman filters to maintain the pre-
dictive model and adjust it as measurements and errors discovered. The simplest
method is to apply one Kalman filter to each object being tracked and assume
constant velocity of the objects as in [4]. Some implementations ([6, 31]) extend
this method use one Kalman filter per corner of each tracked object. Stauffer
and Grimson [33] include a size parameter along with the position, while Shirazi
and Morris [30] resolve ambiguities with the color and size information much like
the normalized area of intersection method. We focus on tuning a basic Kalman
implementation in our case study and discuss it further below.

A more advanced method of tracking is to use the features of different objects
to match them from frame to frame. This method, used in [26, 27, 29, 28, 30],
identifies several features (corners or edges usually) for each object in one frame
and the locates objects with similar features in the second. Like the previous
discussion of feature extraction, it can require significantly more computation
than the other methods. In [30] Shirazi and Morris combine position, size, and
features for improved accuracy.

2.4 Kalman Filters

Kalman filters [20] were originally introduced in 1960 to provide a solution to fil-
tering and prediction problems in dynamic systems. Initially, the filters targeted
the signal processing involved in communication and control systems. Since then,
the Kalman filter has been applied to many dynamic systems in fields including
physics, signal processing, economics, and climate science. In this section, we
present some background information to enable the reader to better understand
the rest of the paper. Interested readers are directed to the following sources: [7,
35, 10, 20, 22].

The Kalman filter is used to estimate the state of some dynamic system based
on measurements, models, and associated errors of that system. This information
is combined into a set of matrices that represent the whole system (Table 1).
The sizes of the matrices are based on the number of states in the system model
(n) and the number of states measured in each time step (m). While some
applications have larger state sizes, most require only a small number of states,
resulting in matrices that are on the order of 10 × 10. In addition to the matrices,
there are also two vectors; x of length n that holds the estimated state and y of
length m for the current measurements.



Table 1: List of matrices involved in the Kalman filter.
Name Description dimensions

A system dynamics n× n

C or H measurement matrix m× n

Q process (system) noise n× n

R measurement noise m×m

P error covariance n× n

K Kalman gain n×m

At each time step, the predicted state and the most recent measurement
are compared and these values, combined with the error matrices are used to
estimate the state at that time. This estimation is based on weighting the mea-
surement and model (expressed in the Kalman gain) and emphasizing one over
the other based on error values. The accuracy of the Kalman filter relies heavily
on the accuracy of the error and covariance matrices since these are integral in
determining the Kalman gain with each step.

x̂new = Ax̂ (1)

P = APAT + Q (2)

K = PCT (CPCT + R)−1 (3)

x̂ = x̂new + K(y − Cx̂new) (4)

P = (I −KC)P (5)

The Kalman equations are shown in Equations 1 - 5. Equations 1 and 2 are
the predict portion, estimating the next state based on past estimations and
system model. Equations 3 - 5 and the correct section, updating the estimated
state and Kalman gain based on the measurement and predicted state. There
are additional versions, such as the Extended Kalman Filter and Square Root
Kalman Filter that implement improvements such as time variant error func-
tions, or other changes to improve performance or accuracy.

2.5 Kalman Filter Tracking

For the case of tracking objects, positions are sampled at certain time intervals by
the tracking system and the Kalman filter is used to match the objects between
measurements. These measurements can come from many types of sensors in-
cluding radar, video, or GPS, which will determine the model used in the system
dynamics matrix. Our example uses measurements of position in 2 dimensional
Cartesian coordinates that represent positions in the video frame. Other systems
can expand on this to include measurements of velocity, 3 dimensions, and object
attributes (i.e. size, color).

For tracking, the Kalman prediction functions (see Section 2) are used to
estimate the next position (x̂new), which is used as a basis for determining which
measurement(s) in the next time step corresponds to the same object. Once



Fig. 1: Example of Kalman prediction for object tracking. Tk−1 is the previous
position Tk is the current, T ′k+1 is the prediction, and Tk+1 is the measurement

selected, these measurements (y) are then used in the update equations to adjust
the model in preparation for the next prediction step. A simple diagram is shown
in Figure 1.The measurements inherently include a certain amount of noise, and
the model cannot replicate all aspects of the system, so the Kalman filter is used
to combine all the available information into one estimate. By using the model
and measurement, the filter can handle situations such as missing measurements
in one or more time-steps or unexpected maneuvers.

Adjusting this process to work for many targets rather than a single target is
a simple matter of sorting out which measurements go with which targets. The
challenges mostly fall into the categories of targets becoming overlapped and
separating. These situations are generally handled by removing targets after they
have been missing for some time and having a ”trial period” before a new object
is fully accepted. The overlapping period can be handled by allowing several
missed time steps before the object is removed or allowing multiple targets to
”own” a measurement. Since each object operates independently, the system
maintains a separate filter for each.

3 Methodology

In this study we compare several methods of optimizing a Kalman filter used in
tracking objects through a video. In this section, we discuss the data, systems,
and autotuning techniques used for the experiments.

3.1 Data

We used three types of data to test the system. First, we generated simple
projectile motion data for 900 tracked objects. We used this data to test the
tracking system separate from the overhead of actually processing the video.

For video results we captured a video of approximately 10 minutes of mod-
erate traffic at a campus intersection. This video includes cyclists, pedestrians,
and cars traveling in all directions. Each frame of the video contains about 5 to
15 objects that must be tracked.



To further stress the system, we generated videos with various numbers of
objects moving through. These ten minute videos contain 25 to 500 objects in
each frame so that we can explore how the number of required filters impacts
the results.

3.2 Systems

For the experiments we use three different machines. Two of the machines used
are servers similar to those found in modern HPC clusters. One is an Intel(R)
Xeon(R) CPU E5-2699 v3 @ 2.30GHz with AVX instructions for vector process-
ing. The other is an IBM Power8 @ 2.0GHz. Such machines are common targets
for autotuning as they are regularly used in HPC clusters. The other machine is
a Raspberry Pi with an ARMv7 CPU @0.6GHz. The ARM CPUs used here are
similar to those common in embedded systems. Kalman filters are often used
in embedded systems used for signal processing, computer vision, and other
applications. We think that applying autotuning techniques in the embedded
environment could bring performance and power benefits to that area.

On the ARM and IBM machines, we use GCC 4.9 as the C compiler. For the
Intel machine, we used Intel’s compiler (version 17.0) and compare the results
with GCC (version 4.9) to give a broader view.

In all cases, we compared the results of the tuning to the untuned code and
versions of the BLAS that are available for the system. For all machines, we used
the ATLAS [36, 25] implementation of BLAS, which uses empirical autotuning
methods to build an optimized library upon installation. For the Intel machine,
we also included Intel’s MKL CBLAS library, which is specifically optimized for
the architecture.

3.3 Autotuning the Kalman Filter

Autotuning can be applied at different levels of the program. In this case, we
autotuned at the level of individual linear algebra operations and at the level of
full Kalman operations.

Tuning the individual linear algebra functions allows the autotuner to find
optimizations local to each function and produce an optimized library that could
be available for other applications as well. By separating out the tuning of each
function, we also make the load on the programmer significantly easier since
the operations are commonly reused and the functions small compared to tun-
ing a full algorithm. Similarly, this method reduces the cost of tuning as fewer
combinations are possible, so the search space is much smaller.

Tuning the linear algebra functions separately also presents some drawbacks.
If the goal is to create a general purpose library then the results of the autotuner
will depend significantly on the input. Orio is able to tune to a variety of different
input types and sizes, but this process extends the time required for tuning and
may not be optimal for all input sizes unless the tested sizes are extremely
fine-grained. Furthermore, if the linear algebra functions are tuned and not the



overall algorithm, then some optimization options, such as loop fusion, cannot
be used.

When tuning the Kalman filter as a whole, the first step is to write Kalman
functions in which the matrix operations are inlined. The resulting functions are
long and complex but the programmer has the option to fuse many of the loops
to improve performance. The global view also allows the programmer or auto-
tuner to use optimizations that minimize data traffic or reuse calculated values.
Additionally, the tuning specifications enable tuning for specific application and
input scenarios.

However, by tuning to a single application the results cannot be reused, thus
necessitating more work in the future. Also, the number of loops in the overall
algorithm is far greater than the individual operations (since most of the oper-
ations occur many times). As a result, the effort extended by the programmer
and the search space available to the tuner are much larger.

Listing 1.1: Orio Annotation Example

transform Composite (
unro l l jam = ( [ ’ i ’ , ’ j ’ , ’ k ’ ] , [ UI , UJ ,UK] ) ,
vec to r = (VEC, [ ’ ivdep ’ , ’ vec to r always ’ ] ) ,
r e g t i l e = ( [ ’ i ’ , ’ j ’ , ’ k ’ ] , [ RTI ,RTJ,RTK] )
)
for ( i = 0 ; i <= rows a −1; i++)

for ( j = 0 ; j <= co l s b −1; j++)
for ( k = 0 ; k <= c o l s a −1; k++)

mat c [ j + c o l s b ∗ i ] +=
mat a [ c o l s a ∗ i + k ] ∗
mat b [ c o l s b ∗ k + j ] ;

In both cases, we used Orio to apply and test a set of optimizations to
the section of code being tuned. These included loop unrolling, register tiling
(the matrices are small enough to fit in registers), and vectorization of the
loops. An example annotation is shown in Listing 1.1. The tuning parameters;
UI, UJ, UK, RTI, RTJ, RTK; are set to reasonable ranges by the programmer
for Orio to iterate over. The ”U” parameters specify unroll depth while the ”RT”
determine the register tiling for each loop. The VEC parameter is a boolean that
indicates whether the SIMD commands should or should not be included. Addi-
tionally, the optimization flags for the compilers are tested to determine if they
provide significant improvement. Once tuned the results could be compiled into
the complete application.

To this point all the autotuning discussed has focused on single-core perfor-
mance (with SIMD options); however, parallelism has become a vital part of
modern performance at all levels. We chose to focus on single threaded because
the most promising parallelism strategy is tuning the code for a single thread
and incorporating that into a multithreaded program (i.e., have the tracking
program run Kalman updates concurrently). We include some parallelism for



completeness, adding simple OpenMP pragmas to the code prior to tuning. This
method guarantees that the tuning will take the parallelism into account.

4 Results

In this case study, we present results from two types of experiments. We first
compare the performance of each version of the program and then compare the
power use. It is important to note that the autotuning is targeting performance
not power, so the latter measurement is merely a side effect.

4.1 Performance Evaluation

Our performance results are shown in Figures 2–4, which represent the speedup
of various implementations over the ”base” case of the simple C code that was
later autotuned. For the BLAS comparisons we use Intel’s MKL, openBLAS,
and ATLAS depending on system availability. The tuned versions refer to the
tuning of individual linear algebra functions (“tuned LA”) and the tuning of the
algorithm as a whole (“tuned KAL”). The tuning with the OpenMP pragmas is
listed as ”LA OMP”.
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Fig. 2: Speedup for BLAS and tuned implementations over the untuned C version
using generated data.

The results using synthetic data (Figure 2) show that, in many cases, signif-
icant speedup can be achieved with autotuning or other linear algebra libraries.
A speedup of 1.47x is achieved by ATLAS and the tuned linear algebra library
when on the ARM machine. Algorithm level tuning of the filter improves this
to 1.55x speedup. The IBM machine showed slightly better results with 1.70x,
1.76x, and 1.77x speedups. For both of these machines tuning the code through



the use of general libraries or algorithm specific tuning shows significant im-
provement to the system.

On the Intel system we used the Intel Compiler and GCC for a broader
comparison. With GCC each of the versions had a speedup of roughly 1.4x,
corroborating the results from the ARM and IBM machines. However, when
using the Intel compiler, all of the versions (including Intel’s MKL) experienced
a slowdown. We suspect this is the result of Intel’s ability to tailor the compiler
to the specific architecture even more effectively than autotuning.

Additionally, we have the results from incorporating the Kalman filter into
the full video analysis . The results from the small video (Figure 3a) show that
generally the autotuning was unable to improve the performance of the program.
On the ARM machine, tuning produced a small slow down, but the ATLAS
library did achieve a slight speedup. The Intel machine had similar results to
the synthetic data, but with less extreme slowdowns.

The results from the largest video (Figure 3b) show that the tuning and
use of libraries has almost no impact on the performance with the exception
of tuning the whole algorithm. When tuned at the algorithm level, we show a
speedup of 1.33x on the Intel machine and 1.25x on IBM. This result indicates
that tuning at the algorithm level rather than the library level has significant
potential for improving performance.
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(a) Small campus video with approxi-
mately 10 targets in each frame.
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(b) Large video with approximately 500
targets in each frame.

Fig. 3: Speedup for BLAS and tuned implementations over the untuned C version
for different numbers of targets per frame.

When OpenMP statements were inserted prior to tuning (Figures 3a and 3b)
on the Intel machine, we noted a slowdown from the base code. This slowdown
worsened as the number of threads increased from 4 to 64. The small matrix size
prevented the benefits of thread level parallelism from overcoming the overheads.



On the ARMv7 the results were quite different, with a slight slowdown on the
small video, but a speedup of 1.18x when the large video was used.

To explore how the performance varies with the number of objects tracked
we tested a range of videos on the Intel machine. The number of tracked object
ran from 25 to 475 in intervals of 25 for a total of 19 measurements. The results
are shown in Figure 4. Almost all the variations remain consistent around the
same time as the base, except the algorithm-level tuning which achieves 1.7x
speedup with 475 objects per frame.
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Fig. 4: Speedup for BLAS and tuned implementations over the untuned C version
compared to the number of objects tracked on the Intel machine.

Overall, for some of the implementations we achieved improvement with re-
spect to the original library and non-library-based versions, encouraging further
efforts on extending Orio to exploit more available architectural features. Re-
liance on the compiler alone did not typically yield satisfactory results, with a
surprising slowdown observed for the Intel ICC.

4.2 Power Evaluation

To explore how autotuning impacts power use, we take power measurements of
the machines as the various versions of the program ran. While the tuning was
intended to improve performance, it also impacts the power usage and under-
standing those effects is necessary to create autotuners that optimize for power
use. We present the results of the power measurement in tables 2 - 3. We include
the average total power and the average power above idle for each version. We
also include percent different from the base version to assist with the comparison.



Table 2 shows the average power measurements taken on the ARM proces-
sor while the smaller video was being processed. Tuning at the algorithm level
showed the most improvement, using 25% less power above idle than the base
case did. The other tuning and library options also showed significant power
reductions. For the large video on the ARM processor, the results were quite
different. All versions had worse average power use than the base case with as
much as 28% increase for the algorithm level tuning.

Table 2: Average Power Usage Processing the Small Video on ARMv7
base ATLAS LA KAL

average 3.89 3.54 3.48 3.45

difference from idle 1.75 1.40 1.31 1.34

% less than base 0 8.97 10.63 11.32

% less than base diff 0 19.91 23.50 25.13

Table 3: Average Power Usage Processing the Largest (500 objects) Video on
ARMv7

base ATLAS LA KAL

average 3.31 3.38 3.40 3.64

difference from idle 1.18 1.24 1.27 1.51

% less than base 0 -1.99 -2.58 -10.07

% less than base diff 0 -5.59 -7.24 -28.21

The total energy use for processing each video on the ARMv7 is presented in
Table 4. For the smaller video, ATLAS and the tuned versions each use slightly
more energy than the base version. For the larger video the versions have minimal
impact on the energy use, except for the algorithm level tuning which improves
the energy use by 1.31x. These results are quite similar to those seen in Figures
3a and 3b which show slight declines in speed for the smaller video and mostly
flat performance for the larger one. Notably, the large video shows only 1.07x
speedup while the energy has 1.31x reduction with the algorithm level tuning,
indicating that some power is saved through means other than racing to the
finish.

4.3 Tuning Results

The tuning included four main optimizations: loop unrolling, tiling, SIMD prag-
mas, and optimization flags. The first three were applied to individual loops
while the last one was applied to the overall program.



Table 4: Total Energy Use During Processing on ARMv7
base ATLAS LA KAL

small video (Ws) 253.3 279.7 285.0 286.4

version/base 1.00 0.91 0.89 0.88

large video (Ws) 42349.01 39663.68 39799.81 32223.55

version/base 1 1.07 1.06 1.31

For the library-based tuning the results (Tables 5, 6, 7, 8, and 9) show slight
differences between the architectures. For example, the Intel and IBM processors
uses the maximum tiling or unroll parameter on half the transformed loops, while
the ARM processor prefers shallower unroll depths than the server architectures.
Also, the server architectures were far more likely to unroll or tile multiple loops
within the nest. Finally, The Intel processor chooses to vectorize the loops in all
cases, but ARM and IBM only do so in half the loops.

The algorithm-level tuning focused on two functions: predict (Table 10) and
correct (not shown for space considerations). Of the two, predict is simpler,
and the resulting tuning was very similar to the library functions. The correct
function was much larger in size and more difficult to tune (see Section 4.4). All
three architectures required only minor transformations to the code, enabling
the compiler to optimize effectively. In addition to the autotuning optimizations,
some loop fusion and data reuse optimization was performed by hand on correct
and predict since the global view of the algorithm was available.

Table 5: Orio parameters for matrix addition (function add matrix())
CLFAGS RT i RT j UL i UL j Vectorization

Intel XEON -O3 2 1 2 1 true
IBM Power8 -O1 1 1 2 1 false

ARMv7 -O2 6 1 1 1 false

Table 6: Orio parameters for multiplying a matrix by scalar (function multi-
ply matrix by scalar())

CLFAGS RT i RT j UL i UL j Vectorization

Intel XEON -O2 1 1 1 1 true
IBM Power8 -O3 1 1 1 3 true

ARMv7 -O3 6 1 1 1 true

Although unsurprising, the differences between architectures and complexity
of the tuned code underscore the importance of automatically generating and



Table 7: Orio parameters for computing transposition (function trans-
pose matrix())

CLFAGS RT i RT j UL i UL j Vectorization

Intel XEON -O2 6 2 4 1 true
IBM Power8 -O3 2 1 2 1 true

ARMv7 -O1 6 1 1 1 true

Table 8: Orio parameters for matrix multiplication (function multiply matrix())
CLFAGS RT i0 RT j0 RT i1 RT j1 RT k1

Intel XEON -O1 6 6 6 1 1
IBM Power8 -O3 1 2 1 1 1

ARMv7 -O3 2 1 1 6 1

UL i0 UL j0 UL i1 UL j1 UL k1 Vectorization

Intel XEON 4 1 3 1 5 true
IBM Power8 4 1 1 1 3 false

ARMv7 3 1 1 4 1 true

tuning the code to a particular architecture instead of attempting to produce
optimized versions manually.

4.4 Qualitative Evaluation

Although it is easier than tuning the code by hand autotuning still requires effort
by the programmer. Annotating small functions, such as the individual linear
algebra functions is trivial as each contains only one or two sets of nested loops;
each of which receives an annotation. Tuning the larger Kalman functions is
more difficult as they are a set of linear algebra operations containing dozens of
nested loops, each of which requires individual annotation and tuning variables.

In terms of code size, most functions were originally less than 100 lines long,
while the correct function was 440 lines. As expected, some of the transforma-
tions (register tiling, loop unrolling) increase code size. Figure 5 shows the ratio
between of the code size of the tuned version and the number of lines in the
original untuned version. While some functions, such as correct did not expand

Table 9: Orio parameters for LUP factorization (function compute LUP())
CLFAGS RT i1 RT j1 RT k1 RT i2 RT i3 RT j3 RT i5 RT j5

Intel XEON -O3 1 1 6 1 1 6 6 1
IBM Power8 -O3 6 6 2 1 1 1 6 1

ARMv7 -O2 1 2 2 1 2 2 2 1

UL i1 UL i2 UL i3 UL i5 UL j1 UL j3 UL j5 UL k Vect.

Intel XEON 1 2 2 2 1 1 1 2 true
IBM Power8 1 1 2 4 1 1 1 1 false

ARMv7 1 3 1 1 2 1 1 1 false



Table 10: Orio parameters for the Kalman prediction (function predict())
CLFAGS RT i02 RT i03 RT j03 RT i04 RT j04 RT i1

Intel XEON -O3 2 1 6 1 1 1
IBM Power8 -O1 2 6 1 2 2 1

ARMv7 -O2 2 1 2 2 1 6

RT j1 RT i2 RT k2 RT i3 RT j3 RT k3 RT i4

Intel XEON 6 1 1 1 2 1 6
IBM Power8 6 1 2 1 1 1 1

ARMv7 6 1 1 1 6 1 2

RT j4 RT k4 RT i5 RT j5 UL i02 UL i03 UL j03

Intel XEON 1 1 2 6 2 1 5
IBM Power8 2 2 6 1 4 5 1

ARMv7 6 2 2 2 2 1 1

UL i04 UL j04 UL i1 UL j1 UL i2 UL k2 UL i3

Intel XEON 1 3 4 1 1 1 2
IBM Power8 1 3 2 1 5 1 1

ARMv7 2 1 1 1 4 1 1

UL j3 UL k3 UL i4 UL j4 UL k4 UL i5 UL j5 Vect.

Intel XEON 1 5 3 1 5 2 1 true
IBM Power8 1 2 1 2 1 5 1 true

ARMv7 4 1 1 3 5 5 1 false

significantly, more complex code resulted in tuned code size that was up to 26.8
times larger than the original version. There was also significant variation in
code bloat among the different target architectures.
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Fig. 5: Ratio of the code size of the best autotuned version w.r.t. the original
unoptimized version.



There is a similar difference in the time it takes to tune. The smaller functions
took much less time to tune, so we were able to exhaustively explore the search
space. Larger functions necessitated the sampling of the search space with a
limit set on the number of runs. In those cases, we used random sampling with a
focused sample once a maximum is found, except for the correct function which
needed a lower cap on the runs, so we utilized the Simplex search strategy. Full
details are available in Table 11.

Table 11: Approximate time to tune each function.
Function Search Strategy Intel XEON IBM Power8 ARMv7

addition Exhaustive 10 min 10 min 30 min

transposition Exhaustive 10 min 10 min 30 min

scalar-matrix
multiplication Exhaustive 10 min 10 min 30 min

matrix-matrix
multiplication Random (100,000) 40 min 40 min 1 hour

LUP factor Random 40 min 40 min 1 hour

Kalman predict Random (1,000,000) 30 min 30 minutes 1 hour

Kalman correct Simplex(100,000) 3 hours 3 hours 6 hours

5 Future Work

For future work focuses on the continued improvement of autotuning techniques
available in the Orio framework. In particular, the addition of new code trans-
formations and power as a tuning target or constraint.

While we included some algorithm level tuning in this case study, those op-
timizations were added by hand. Orio can be extended to perform those types
of transformations. Furthermore, additional parallel techniques using pthreads,
Intel TBB, or MPI will be explored.

Also, we will add power as a target for tuning. While important for HPC
research, IoT presents another interesting target since many of the applications
run indefinitely (e.g., traffic lights, environmental sensors) and have inconsistent
power supplies. These challenges add to the difficulty of tuning for power use.

6 Conclusion

We presented a case study of autotuning Kalman Filters on three disparate archi-
tectures. Our autotuning took several approaches, a linear algebra library based
approach, an algorithm level approach, and tuning within OpenMP annotated
loops. The performance and power results show clear areas where autotuning
research can improve the performance of both HPC and IoT targeted software.
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