
FORMAL MODELING CAN IMPROVE SMART TRANSPORTATION

ALGORITHM DEVELOPMENT

by

WATHUGALA GAMAGE DULAN MANUJINDA WATHUGALA

A THESIS

Presented to the Department of Computer and Information Science
and the Graduate School of the University of Oregon

in partial fulfillment of the requirements
for the degree of
Master of Science

June 2017

THESIS APPROVAL PAGE

Student: Wathugala Gamage Dulan Manujinda Wathugala

Title: Formal Modeling Can Improve Smart Transportation Algorithm Development

This thesis has been accepted and approved in partial fulfillment of the
requirements for the Master of Science degree in the Department of Computer and
Information Science by:

Stephen Fickas Chair

and

Scott L. Pratt Dean of the Graduate School

Original approval signatures are on file with the University of Oregon Graduate
School.

Degree awarded June 2017

ii

c© 2017 Wathugala Gamage Dulan Manujinda Wathugala

iii

THESIS ABSTRACT

Wathugala Gamage Dulan Manujinda Wathugala

Master of Science

Department of Computer and Information Science

June 2017

Title: Formal Modeling Can Improve Smart Transportation Algorithm Development

Ensuring algorithms work accurately is crucial, especially when they drive

safety critical systems like self-driving cars.

We formally model a published distributed algorithm for autonomous

vehicles to collaborate and pass thorough an intersection. Models are built and

validated using the “Labelled Transition System Analyser” (LTSA). Our models

reveal situations leading to deadlocks and crashes in the algorithm.

We demonstrate two approaches to gain insight about a large and complex

system without modeling the entire system: Modeling a sub system - If the sub

system has issues, the super system too. Modeling a fast-forwarded state - Reveals

problems that can arise later in a process.

Some productivity tools developed for distributed system development

are also presented. Manulator, our distributed system simulator, enables quick

prototyping and debugging on a single workstation. LTSA-O, extension to LTSA,

listens to messages exchanged in an execution of a distributed system and validates

it against a model.

iv

CURRICULUM VITAE

NAME OF AUTHOR: Wathugala Gamage Dulan Manujinda Wathugala

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon, Eugene
University of Colombo, Colombo

DEGREES AWARDED:

Master of Science, Computer and Information Science, 2017, University of
Oregon

Bachelor of Science, Computer Science, 2002, University of Colombo

AREAS OF SPECIAL INTEREST:

Algorithm Modeling & Simulation
Distributed Systems
Autonomous Vehicles
Machine Learning

PROFESSIONAL EXPERIENCE:

Graduate Teaching Fellow, University of Oregon, 2015 – 2017.

Graduate Research Fellow, University of Oregon, 2016.

Lecturer, University of Colombo, 2002 – 2013.

GRANTS, AWARDS AND HONORS:

Felice Proctor Award (Non-theater major who has made a significant
contribution to the theater production program in 2005), Virginia
Polytechnic Institute and State University, 2005.

v

Fulbright Scholarship, US-SL Fulbright Commission & United States
Government, 2004.

Mohan Munasinghe Award (Best Computer Science student), University of
Colombo, 2002.

CINTEC Award (Best Computer Science senior thesis), University of
Colombo, 2002.

Justin Samarasekara Award (Most outstanding science student), University
of Colombo, 2002.

Joseph Nalliah Arumugam Memorial Award (Student having the highest
average marks), University of Colombo, 2002.

Physical Science Award (Best undergraduate research project in Physics,
Computer Science, Mathematics or Statistics), Sri Lanka Association for
the Advancement of Science, 2002.

The Scholarship (Best results, B.Sc. 1st year examination), University of
Colombo, 1998.

Prof. J.E. Jayasuriya Prize for Mathematics, University of Colombo, 1998.

PUBLICATIONS:

Weliwitigoda, P. & Weerasinghe, A. R. & Wathugala, W. G. D. M. &
Dharmaratne, A. T. (2004). Music Score Recognition with Waves,
Purnima Weliwitigoda, Ruvan Weerasinghe. International Information
Technology Conference.

Yogendirakumar, K. & Weerasinghe, A. R. & Wathugala, W. G. D. M.
& Dharmaratne, A. T. (2004). Music Score Recognition with Waves,
Purnima Weliwitigoda, Ruvan Weerasinghe. International Information
Technology Conference.

Wathugala, W. G. D. M. & Kodikara, N. D. (2002). A Sinhala Finger
Spelling Interpretation System Using Nearest Neighbor Classification.
International Information Technology Conference.

vi

ACKNOWLEDGEMENTS

Professional

We thank Weigang Wu, Jiebin Zhang, Aoxue Luo and Jiannong Cao, the

authors of the paper we build our work on. We picked their work not because it

is easy to pick on but because they have done excellent work and we thought that

their work is worthy of carrying forward.

We extend our special thanks to Weigang Wu, for corresponding with us via

email and helping us acquire a copy of the supplement that accompanies the main

paper, which we were unable to locate on-line.

We thank Jeff Magee, Jeff Kramer, Robert Chatley, Sebastian Uchitel

and Howard Foster, the developers of the “Labelled Transition System Analyser”

(LTSA) tool for sharing their code-base with us. Without their generosity, our

extension to LTSA, LTSA-O, would have been impossible.

Jeff Magee is put on a separate spotlight for a big thank you. Despite

being a very busy person, he promptly responded in details for our clarifications

regarding LTSA and our models.

I thank Stephen Fickas, my thesis advisor, for everything. Without the

numerous discussions I had with him, ideas he contributed, time he spent on

reading my thesis and providing constructive feedback, and caring he extended

toward me as his student, this work would have been infeasible.

I thank C. W. W. Kannangara (13 October 1884 - 23 September 1969),

the first Minister of Education and the Father of Free Education in Sri Lanka for

establishing free education. I further thank all the governments and the general

public of Sri Lanka for keeping free education alive for the generations to come

vii

and funding my education till I graduated from college. Without this funding, the

chances of I coming this far is mere.

Personal

I thank Deepa Wathugala, my aunt. During my first term, when I did

not get a Graduate Employee position and considering going home without even

beginning this journey, she lent me money to pay for my tuition.

My mother, Indrani Wathugala, gave birth to me and raised me to be a

good person. She gave me all the psychological support from the other side of the

globe. Thank you for everything.

I greatly appreciate my wife, Sharmila Iroshmi Thenuwara. She took all the

responsibilities of managing our home on to her shoulder and allowed me to focus

fully on my work. She even helped me in my work in various regards such as proof

reading and finding articles on the web. She is the best wife a man could ever have.

I love you more each day.

My father, Wimal Wathugla, is the “Higgs Boson” that glue all the dots

together. He was the role model of my life and he taught me to be a good man.

In 1957, when he was just 21 years old, he won the second price of a lottery worth

Rs. 14,660. Instead of thinking of building a luxurious life for himself, he spent

the money for the betterment of his family and to provide a better education to

all his siblings including his youngest brother, Wije Wathugala. While my uncle

is pursuing his Ph.D., he met my aunt Deepa Wathugala. This connects the dots

and that made me survive my first term at the University of Oregon. Dear father,

you are getting the returns of your investment in multiple orders and thank you for

having a great vision.

Dots in the past are starting to connected well. I am glad about that.

viii

I dedicate my thesis to the future generations to come.

I hope my work will aid in some way to make a better universe for them.

ix

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION . 1

1.1. Autonomous Vehicles . 1

1.2. Vehicle-to-Vehicle Communication 1

1.3. Self-Driving Cars, Are they Safe? 2

1.4. Labelled Transition System Analyser (LTSA) 4

II. THE DISTRIBUTED ALGORITHM THAT WE MODEL 6

2.1. The Intersection . 6

2.1.1. Relationships Between Lanes 7

2.2. Assumptions . 8

2.3. Vehicle Mutual Exclusion for Intersections (VMEI) Problem . . . 9

2.3.1. Correctness Properties of VEMI Problem 10

2.3.2. Priority Assignment . 11

2.4. Distributed Algorithm for VMEI 12

2.4.1. High-Level View of the Algorithm 12

2.4.2. Algorithm in Detail . 12

2.4.2.1. Vehicle Labeling Convention 12

2.4.2.2. States . 12

2.4.2.3. Variables and Data-Structures 12

2.4.2.4. Messages Passed 15

2.4.2.5. Optimizations 15

2.4.2.6. Algorithm Pseudo-Code 21

2.5. Concurrent Vs. Strong Concurrent 22
x

Chapter Page

III. MODELING - AN INTRODUCTION 27

3.1. State Space . 28

3.2. Modeling . 28

3.3. Making the State Space Manageable 29

IV. MODELING - V2V COMMUNICATION 31

4.1. Modeling Synchronous Communication 31

4.2. Making the Communication Asynchronous 33

4.3. Message Ordering . 35

4.4. Reducing the State Space of the Network Process 37

V. MODELING - VEHICLE . 45

5.1. Extended State Diagram . 45

5.2. Handling PERMIT Messages . 47

5.3. Exiting the Core Area . 50

5.4. A Walk-through of the Extended State Transition Diagram 50

5.5. Modeling the Car Begins . 53

5.6. Modeling the CAR Without a Sense of Priority 53

5.6.1. Testing the Model . 53

5.7. Modeling Time . 62

5.7.1. Testing the Model . 66

5.7.2. Ideal Duration for the Timeout 72

5.8. Global Clock vs. Local Clock . 78

5.9. Using Arrival Time to Determine Priority 81

5.10. Breaking the Tie . 91

5.10.1. A Better Tie-Breaker - A Suggestion 93

5.11. A Final Remark . 94
xi

Chapter Page

VI. CONVOY CRASH . 97

6.1. Fine-Grained Conceptual Model of the Intersection 99

6.2. Modeling a CAR in the Convoy 100

6.3. Modeling the Convoy . 103

6.4. The Trouble Maker . 107

6.5. The Network . 109

6.6. Modeling the Intersection . 109

6.7. Possible Crashes . 111

6.8. A Suggested Solution . 113

VII. CORRECT MODEL — INCORRECT IMPLEMENTATION 116

7.1. Manulator - The Distributed System Simulator 117

7.1.1. Communications Class 118

7.1.2. Node Class . 120

7.1.3. manulator . 121

7.2. Message Queue Telemetry Transport (MQTT) 124

7.3. The Model Meets the Implementation 125

7.4. Manulator Meets LTSA-O . 130

7.5. Conductor & Launcher . 131

7.5.1. Conductor . 132

7.5.2. Launcher . 132

VIII. CONCLUSION . 134

8.1. Major Contributions . 137

8.2. Distributed VMEI Algorithm - Updated 138

xii

Chapter Page

IX. FUTURE WORK . 144

9.1. Modeling and Validating the Algorithm 144

9.1.1. Bigger Models . 144

9.1.2. Modeling and Validating Suggested Solutions 144

9.1.3. Experimenting with Preemptions 146

9.1.4. Reliable Communication Channel 146

9.1.5. Clock Synchronization 147

9.2. Manulator . 148

9.3. Enhancing the LTSA-O . 149

9.4. Game Tolerant Systems . 149

APPENDIX: MANULATOR AND LTSA-O - AN EXAMPLE 153

A.1. LTSA Model of a Chang-Roberts Node 153

A.2. Implementing Chang-Roberts in Manulator 153

A.3. Simulating Chang-Roberts in Manulator 154

A.4. Bringing LTSA-O to the Scene 162

A.5. Summery of Steps to Run and Validate a Simulation 167

A.6. Meglomaniac Node . 168

A.7. Catching the BAD_NODE Red-handed 170

A.8. Making the CHANG_NODE Game Tolerant 172

REFERENCES CITED . 179

xiii

LIST OF FIGURES

Figure Page

1. The intersection . 7

2. The conflict graph of lanes . 8

3. The state transition diagram of the distributed algorithm 14

4. A situation for improving concurrency 16

5. A wait for graph of a deadlock situation that can arise due
to preemption . 18

6. A situation where preemption is not applied 24

7. The extended state transition diagram 46

8. A scenario where using the same function to handle
PERMIT messages both before and after the timeout can

lead to a problem . 49

9. A scenario to walk-through the extended state diagram 51

10. Deadlock situation in Listing 15 . 58

11. Action trace leading to a crash in Listing 15 59

12. Deadlock situation in Listing 17 . 61

13. Deadlock situation in Listing 20 . 68

14. Deadlock situation in Listing 23 when TO = TOCC 74

15. Deadlock situation in Listing 23 when TO > TOCC 75

16. Action trace leading to a crash in Listing 23 when TO < TOCC 77

17. Deadlock situation in Listing 23 after making the
CLOCK_TICK_IDLE local to each car 80

18. Action trace leading to a crash in Listing 26 when TO = 6 90

19. Example - A “Follow List” convoy . 98

xiv

Figure Page

20. The finer-grained state transition diagram of a car 102

21. Action trace leading to a crash in Listing 32 when
CRASH_SEG = 1 . 113

22. Action trace leading to a crash in Listing 32 when
CRASH_SEG = 3 . 114

23. Manulator architecture . 123

24. LTSA-O main window . 127

25. “Observer & Validator ” dialog . 127

A.26. An example Manulator configuration file 161

A.27. An example LTSA-O configuration file 163

A.28. LTSA-O action trace for a well behaved system 167

A.29. Manulator configuration file for BAD_RING (Listing 39) 172

A.30. LTSA-O notifying an out of order message 173

A.31. An example Manulator configuration file 177

A.32. LTSA-O notifying an out of order message and responding
to ring update process . 178

xv

LIST OF TABLES

Table Page

1. Classical Mutual Exclusion vs. Vehicle Mutual Exclusion
for Intersections (VMEI) - A comparison 10

2. Extended state transition diagram - A walk-through 52

xvi

LIST OF ALGORITHMS

Algorithm Page

1. The gist of the algorithm . 13

2. The distributed VMEI algorithm . 22

3. Suggested algorithm to decide priority . 95

4. Compute the representative vehicles for a convoy 139

5. Check whether the caller can start passing through 139

6. The distributed VMEI algorithm - updated 141

xvii

LIST OF LISTINGS

Listing Page

1. Simple sender process . 32

2. Simple receiver process . 32

3. Composition for synchronous communication 32

4. Network process that enables asynchronous message passing 34

5. Composition for asynchronous communication 34

6. Sender and receiver for multiple messages 36

7. General purpose network that preserves the message order 38

8. Composition for asynchronous FIFO communication 39

9. Network process that takes the messaging behavior of
vehicles into account to provide a FIFO channel 41

10. Sender process that mimics the message sending behavior
of a vehicle . 43

11. Receiver process that accepts messages with the vehicle id VID . . . 44

12. Composition for algorithm plus context specific communication 44

13. Constants, sets and ranges that are used in LTSA models 54

14. CAR without a sense of priority . 55

15. Composition for testing CAR without a sense of priority 57

16. Fluents and asserts to test for crashes 59

17. Composition with low priority timeout actions for testing
CAR without a sense of priority . 60

18. CLOCK process that keeps track of time 63

19. CAR_WITH_CLOCK process that reads time from a
global clock but without a sense of priority 64

xviii

Listing Page

20. Composition for testing CAR_WITH_CLOCK without a
sense of priority . 67

21. Portion of the CAR_WITH_CLOCK process of Listing
19 updated with the tick_idle action 70

22. CLOCK process with the tick_idle action 71

23. Composition for testing CAR_TICK_IDLE without a
sense of priority . 73

24. CAR_P_TIME process that uses arrival time as priority
to decide who should pass through the intersection first 82

25. Updated network process for a FIFO channel that can
handle updated REQUEST message that includes the

arrival time . 86

26. Composition for testing CAR_P_TIME that uses arrival
time to prioritize who passes through first 88

27. Constants, sets and ranges that are used in LTSA models 101

28. CAR_CONVOY, the model of a car in the convoy 104

29. A CONVOY of CAR_CONVOY ’s 106

30. CAR_0 that conflicts with the convoy 108

31. NEWTORK process that carries the PERMIT message 109

32. The situation at the intersection after a follow list has
been broadcast . 110

33. Node class that extends the Communications class 118

34. Constants, sets and ranges used in Chang-Roberts LTSA models . . . 154

35. Model of a node that performs Chang-Roberts leader election 155

36. Composing the ring of CHANG_NODES 156

37. Making sure the model of Chang-Roberts composition
work properly . 157

38. Implementation of a CHANG_NODE (Listing 35) 158

xix

Listing Page

39. Composing a ring with a BAD_NODE 170

40. Making sure the BAD_NODE always becomes the leader 171

41. Updated initialize_node method of Listing 38 that makes
the node game tolerant . 174

42. Updated on_msg method of Listing 38 that makes the
node game tolerant . 175

xx

CHAPTER I

INTRODUCTION

1.1 Autonomous Vehicles

When we prefix any one of the adjectives “Autonomous”, “Self-Driving”,

“Driver Less” in front of the noun “Vehicle” (or Car), it means a vehicle that

can navigate on its own without human assistance. The modern day dream of

autonomous vehicles goes as far as the General Motor’s Futurama exhibit at the

1939 World’s Fair (Vanderbilt, 2012; Weber, 2014). In 1977, Japan’s attempt of

building an autonomous vehicle at Tsukuba Mechanical Engineering Laboratory

has been recorded as the first breakthrough followed by VaMoRs project in 1987

and VaMP project in 1994 (Vanderbilt, 2012). Several successive U.S. Defense

Advanced Research Projects Administration (DARPA) challenges held in 2004,

2005 and 2007 amplified the enthusiasm toward autonomous vehicle research and

helped advance the field. Since 2010, Google has become the pioneer in autonomous

vehicles with their Google Car project that aims at bringing an autonomous car at

the consumer level.

1.2 Vehicle-to-Vehicle Communication

Vehicle-to-Vehicle (V2V) Communication (sometimes referred by Car-to-

Car) is a new emerging technology that enables vehicles on road communicate with

each other by sending and receiving information via a wireless channel. National

Highway Traffic Safety Administration (NHTSA) of the U. S. Department of

Transportation defines V2V communication as:

A system designed to transmit basic safety information between vehicles

to facilitate warnings to drivers concerning impending crashes. (Harding

et al., 2014, p. xiii)

1

Along the V2V communication technology came the Vehicular Ad-hoc

Network (VANET) (Al-Sultan, Al-Doori, Al-Bayatti, & Zedan, 2014). A VANET

is a special kind of Mobile Ad-hoc Network (MANET), where nodes are vehicles

and node movement is governed by the available road network and the vehicle

movement dynamics.

Prior to the creation of V2V communication and VANETS, autonomous

vehicles used various sensors like cameras, proximity sensors and radar to sense the

surroundings of the vehicle, update a model of its environment, make individual

decisions and act on them (sense-process-act loop). Each vehicle worked on its own

and there was no collaboration among vehicles.

V2V communication opened the doors for vehicles to share information

about each vehicle’s state and intentions enabling a new range of distributed

decision making tasks. Several vehicles arriving at a four-way road intersection

communicating and deciding on their own, without any human assistance, on a

schedule for them to pass through the intersection without causing an accident is

one such application (Wu, Zhang, Luo, & Cao, 2015a).

1.3 Self-Driving Cars, Are they Safe?

A safety-critical system is defined as:

A system whose failure could result in loss of life, significant property

damage, or damage to the environment. (Knight, 2002)

With the advancement of autonomous vehicle research and technologies such

as vehicle-to-vehicle communication and Global Positioning System (GPS), the day

where self-driving cars start ubiquitously roaming our neighborhoods is not very

far-fetched. When such vehicles transport humans and start sharing roadways with

other humans, a malfunction in the underlying software systems that make driving
2

decisions could lead to accidents that cost human life. This fits the definition of

a safety-critical system and hence we should employ methods and practices of

designing and building such systems when it comes to designing and implementing

software systems for self-driving cars.

We focused on a published distributed algorithm for self-driving cars to

decide on an order to pass through a road intersection (Wu et al., 2015a). The

authors of the algorithm claim it is deadlock free (live) and it prevents cars from

crashing to each other (safe).

The paper passed the journal’s review board, which implies that the board

also found the algorithm to pass safety and liveness conditions. However, the paper

uses a non-formal approach to demonstrate its claims. Our experience in working

with complex distributed systems is that it is difficult to see all the nuances of an

algorithm without using formal techniques to prove safety and liveness properties.

This thesis sets out to re-examine the published algorithm using formal modeling

tools. The results come from several areas:

1. We prove under what conditions the published algorithm is live and safe, and

under what conditions it is not. This extends the results of the original paper.

2. We demonstrate how formal-modeling can be applied in the V2V area. Our

review of the V2V literature points to a lack of formal modeling. We believe

formal modeling can help with developing V2V algorithms that people can

rely on, and hope to show V2V researchers how to use formal modeling

techniques.

3

1.4 Labelled Transition System Analyser (LTSA)

The modeling tool of our choice is “Labelled Transition System Analyser”

(LTSA) (Magee & Kramer, 2006; Magee, Kramer, Chatley, Uchitel, & Foster,

2013). LTSA is a verification and validation tool for concurrent systems. It enables

modeling each concurrent process as a “Finite State Machine” using a program like

notation called “Finite State Processes” (FSP). FSP builds upon the ideas from

“Communicating Sequential Processes” (CSP) (Hoare, 1978, 2015) and “Calculus of

Communicating Processes” (CCS) (Milner, 1982). Individual models of processes

can then be composed to build a finite state machine for the complete concurrent

system.

Along with the process descriptions, we can describe desirable properties

the system must possess and undesirable properties that must be avoid. The

composition can then be exhaustively analyzed against the desirable and

undesirable properties to check whether the system reaches any undesirable state

or it never reaches a desirable state.

We do not provide a survey of LTSA. Magee and Kramer (2006) is the

official and only manual for LTSA, and an interested reader can get an excellent

understanding of LTSA by referring it. However, if the reader is unable to acquire

a copy of the book, the set of slides at the website accompanying the book (Magee

& Kramer, 2015) and language specifications of Finite State Processes found on-

line (Magee & Kramer, 2012; Magee, Kramer, Chatley, Uchitel, & Foster, 2007) are

excellent resources to gain knowledge sufficient to make sense of the work described

in this thesis. If anybody is interested in playing with the LTSA tool, it is freely

available at Magee et al. (2013).

4

Our investigations revealed that the algorithm could deadlock under some

circumstances and for some other circumstances it could end up causing a crash.

Chapters IV, V and VI provide more detailed descriptions of how we built our

model.

5

CHAPTER II

THE DISTRIBUTED ALGORITHM THAT WE MODEL

The paper, Wu et al. (2015a) presents two distributed algorithms to achieve

mutual exclusion of vehicles with conflicting paths simultaneously passing through

a road intersection. The first algorithm relies on a centralized control node while

the second algorithm is purely distributed. In this thesis, we only focus on the

second algorithm, which is more challenging and interesting.

A summary of the distributed mutual exclusion algorithm that we analyze

is presented here. All the material in this chapter are either direct quotations from

the original paper (Wu et al., 2015a), paraphrases of the ideas found in that paper

or our commentaries regarding what is presented there.

2.1 The Intersection

An intersection where vehicles approach from four directions is considered

(Figure 1). For each direction there are two incoming lanes. Lanes are numbered

from 0 to 7 and denoted by l0 to l7. Odd numbered lanes are for turning left.

As the paper mentions, even numbered lanes are for going forward. However,

in a typical intersection, vehicles entering from lanes that are labeled with even

numbers in the diagram are also allowed to make right turns. The paper mentions

“Obviously, the path of a vehicle is determined by the lane it is at” (Wu et al.,

2015a, p. 66). This allows us infer that disallowing vehicles from making right turns

is an implicit assumption the authors of the paper are making for their algorithm to

work. We believe that this assumption is too strong and it makes the intersection

being modeled unrealistic.

6

Figure 1. The intersection. The smaller red square in the middle of the intersection
is the critical section, which is called the core area. The larger green square marks
the queue area where vehicles wait to pass through the intersection. Vehicles within
the larger green square collaborate with each other to pass through the intersection.

2.1.1 Relationships Between Lanes. The authors of the paper have

elegantly summarized relationships between lanes in to a conflict graph, which ends

up being a cube (Figure 2).

Conflicting (∝): Two lanes are conflicting if their paths intersect within the

core of the intersection (e.g. l0 ∝ l2). Two vehicles coming

from two conflicting lanes must not enter the intersection at

the same time.

7

6

35

7

0 2

4

1

Figure 2. The conflict graph of lanes. Vertices represent lanes. Two lanes are
conflicting (∝) if and only if there is an edge between them. Vertices that are
not directly connected are concurrent (≈). Concurrent lanes that belong to the
same face of the conflict graph cube are strong concurrent (∼=).

Concurrent (≈): Two lanes are concurrent if their paths do not intersect

within the core of the intersection (e.g. l0 ≈ l3 and l0 ≈

l4). Vehicles coming from two concurrent lanes can pass

through the intersection simultaneously.

Strong concurrent (∼=): These are the pairs of concurrent lanes that belong to

the same face of the conflict graph cube (Figure 2). In

other words, two concurrent lanes that do not exit the

intersection in the same direction are strong concurrent

(e.g. l0 ∼= l4).

2.2 Assumptions

This is a list of assumptions made by the authors of the algorithm we

analyze (Wu et al., 2015a).

8

1. Assumptions about the vehicle

(a) Each vehicle has a unique identification number.

(b) Vehicles are capable of V2V communication.

(c) As vehicles are approaching the intersection, they are aware of the

respective lane numbers they are in.

(d) Vehicles can detect the boundary of the queuing area and the core area

(Figure 1). Further, they are aware when they cross those boundaries.

(e) Vehicles are armed with sensors to self-navigate without colliding with

other vehicles or infrastructure.

2. Assumptions about the communication channel

(a) The transmission range of V2V communication devices is large enough

so that any two vehicles within the “queue area” (Figure 1) can directly

communicate with each other enabling all the vehicles in the “queue

area” to form a single hop Vehicular Ad-hoc Network (VANET).

(b) Wireless channel is first-in-first-out.

(c) Wireless channel is reliable and it guarantees message delivery.

3. (Inferred) Assumptions about the intersection

(a) Vehicles are not allowed to make right turns.

2.3 Vehicle Mutual Exclusion for Intersections (VMEI) Problem

The VMEI problem differs from a classical mutual exclusion problem in

Computer Science due to two qualities (Table 1). Considering these differences the

requirement of the VMEI problem is defined as “Vehicles can pass the intersection
9

Table 1. Classical Mutual Exclusion vs. Vehicle Mutual Exclusion for Intersections
(VMEI) - A comparison

Classical ME VMEI

A fixed group of processes
compete to enter the
critical section.

The group of processes (vehicles) that compete to
enter the critical section (the intersection) is
dynamic. After passing through the intersection,
vehicles drive away (and might even never come
back).

Only one process can be in
the critical section at a
time.

Vehicles entering from concurrent lanes can
simultaneously pass through the intersection.

Vehicles entering the intersection from the same lane
can pass through the intersection as a group.

simultaneously if and only if they are in concurrent lanes or the same lane.” (Wu et

al., 2015a, p. 68)

2.3.1 Correctness Properties of VEMI Problem. For a solution

to the VEMI problem to be correct, it should demonstrate three properties:

Safety (mutual exclusion): At any moment, if there is more than one

vehicle in the core area, they must be

concurrent with each other.

Liveness (deadlock free): If no vehicles are in the core area, some

waiting vehicle must be able to enter the

core area in a finite time.

Fairness (starvation free): Each vehicle must be able to pass the

intersection after a finite number of vehicles

do so. (Wu et al., 2015a, p. 68)

10

2.3.2 Priority Assignment. The paper does not explicitly elaborate

a scheme for assigning priorities to vehicles competing to pass through the

intersection. However, at several places it hints that arrival time is used to assign a

priority to determine the passing order of vehicles:

The vehicles compete by exchanging messages among themselves and

the order of passing is determined according to arrival time. (Wu et

al., 2015a, p. 66)

The basic idea of our design is as follows. Vehicles have different

priorities to pass, which is generally determined by the arrival time.

A vehicle broadcasts request message and the receivers with higher

priority will prevent the sender via response message. If no receivers

prevent the sender, it can pass the intersection. (Wu et al., 2015a, p. 69)

The priority is generally, but not always, determined by the arrival

time of vehicles. (Wu et al., 2015a, p. 69)

For example, when a vehicle u in l0 is passing, vehicle v in l1 may be

blocked by w in l7 if w is between u and v according to the priority

(arrival time). (Wu et al., 2015a, p. 70)

Although in one occasion the paper mentions that arrival time is not always

used to determine the priority of a vehicle to pass through the intersection, it never

mentions what other attributes are considered. Further, when it comes to the

pseudo-code of the algorithm (Algorithm 2), the concept of priority seems to be

completely left out.

11

2.4 Distributed Algorithm for VMEI

2.4.1 High-Level View of the Algorithm. Algorithm 1 provides

our high-level interpretation of the distributed algorithm without cluttering the

idea with implementation oriented data-structures internal to each vehicle and

the details of various types of messages passed among vehicles. Further, we omit

various optimizations that make the algorithm more efficient.

2.4.2 Algorithm in Detail.

2.4.2.1 Vehicle Labeling Convention. For our discussions, we

let Vnl be the nth vehicle that approached the intersection and l is the lane it

approached from. Thus, n signifies the order of arrival of vehicles. Since two

vehicles in the same lane cannot arrive at the intersection at the same time, this

labeling convention provides a total ordering of vehicles at a particular snapshot of

an intersection.

2.4.2.2 States. The different states a vehicle goes through when

passing through an intersection are summarized using a state transition diagram

(Figure. 3).

2.4.2.3 Variables and Data-Structures. The pseudo-code of the

algorithm (Algorithm 2) uses the following notation for different variables and data-

structures each vehicle maintains during the execution of the algorithm:

sti: Current state of vehicle i.

lidi: The lane number of vehicle i.

CntPmp: The number of vehicles with priority lower than that of vehicle i that

vehicle i did not object of passing through the intersection before vehicle

12

Algorithm 1 The gist of the algorithm

On entering the queuing area:

1: Ask “Is there anybody who objects to me passing through the
intersection?”

2: Wait for a fixed duration for responses.

3: if nobody objects then
4: Pass through the intersection.

5: if I objected to others passing through the intersection then
6: Let them know that I passed through (and I don’t object anymore).
7: end if

8: else . others do object
9: Wait for everybody who objected to me passing through the

intersection.
10: Now I can pass through the intersection and do so.

11: if I objected to others passing through the intersection then
12: Let them know that I passed through (and I don’t object anymore).
13: end if

14: end if

On receiving a request from another vehicle to pass through the
intersection:

15: if (I came earlier than the vehicle asking for permission) and
(it is in my lane or its path conflicts with mine) then

16: Tell that vehicle that I object to it passing through the intersection.
17: end if

i. The authors call this a preemption and this is done to increase the

concurrency and efficiency of the algorithm.

TH: Maximum number of preemptions given by a vehicle. This is a threshold

to prevent a vehicle ending up preempting a large number of lower

priority vehicles and having to wait for a longer time (starvation).

13

WAITING PASSING

IDLE

Entering the
queue area

Entering the
core area

Exiting the
core area

Figure 3. The state transition diagram of the distributed algorithm. IDLE : Vehicle
is outside the queue area or has exited the intersection (Blue colored region of the
intersection diagram Figure. 1). WAITING : Vehicle is waiting in the queue area to
enter the core area (Green colored region of the intersection diagram). PASSING :
Vehicle is moving through the core area (Red colored region of the intersection
diagram).

flt: Follow list. A list of vehicles queued behind the leading vehicle in a lane

that are allowed to pass through the intersection following the leading

vehicle creating a convoy.

NP : Maximum number of vehicles that are allowed to pass through in a

convoy behind the leading vehicle. This is to prevent starvation for other

vehicles waiting to pass through.

HLi: High List. Vehicle i is waiting until all the vehicles in this list pass

through the intersection.

LLi: Low List. Vehicles in this list are waiting till vehicle i passes through the

intersection.

14

2.4.2.4 Messages Passed. Following is a list of messages exchanged

among vehicles in the process of coordinating passage through the intersection:

REQUEST(i, lid): Vehicle with id i broadcasts this message once as it enters

the queuing area informing the lane lid from which it is

approaching the intersection to check whether anybody objects

to vehicle i passing through the intersection.

REJECT(i, j): Vehicle i sends this message to make vehicle j wait till vehicle i

passes through the intersection.

PERMIT(i): Vehicle i sends this message once after passing through and

exiting the core area of the intersection to notify any vehicle

that is waiting till vehicle i passes through the intersection.

FOLLOW(i, flt): Vehicle i, which is waiting in the front of a lane, sends this

message once when it gets its chance to pass through the

intersection. flt is a list of vehicles that are queued behind i

and are allowed to pass through the intersection following i

forming a convoy.

2.4.2.5 Optimizations. Besides the issues we have uncovered with our

modeling and validation process, Algorithm 1 satisfies the correctness properties

(Section 2.3.1) required. However, implementing this algorithm as it is would be

less efficient and it would prevent from harnessing the maximum concurrency the

problem offers. The authors have presented two types of optimizations:

1. Increasing concurrency: Authors have introduced two techniques to

increase the amount of concurrency provided by the algorithm. In the bare-bones

15

algorithm, the order of arrival at the intersection is equal to the order of passing

through the intersection. Both the optimizations meaningfully alter the order of

passing through the intersection taking the concurrent nature of pairs of lanes

vehicles come in.

V31

V10

V27

Figure 4. A situation for improving concurrency. Vehicles arrive at the intersection
in the order V10, V27, V31. Under normal operation they will pass through the
intersection in the same order. However, since V31

∼= V10, V27 preempting its
opportunity to pass through the intersection before V31 enables V31 to pass along
V10 through the intersection. This improves the concurrency and hence the
throughput of the algorithm.

1. Consider the situation depicted in Figure. 4. Since V10 (green car) arrives

first, it is passing through the intersection and V27 (orange car) has to wait

till V10 exits the intersection. Now, according to the basic algorithm, if we let
16

vehicles pass through the intersection strictly based on the order of arrival,

when V31 (red car) arrives, it has to wait till V27 passes through. However,

note that V31 is strong concurrent with V10 (V31
∼= V10) and V31 can pass along

V10 adding very little additional delay for V27 and improving the concurrency

and the throughput of the intersection a lot. Authors have coined the term

“preemption” to this type of giving way: A vehicle V giving way to a vehicle

U that arrived at the intersection after V . Thus, a preemption is like we swap

the order of arrival of V and U .

Implementing this optimization naively causes two negative repercussions.

First, consider the sequence of vehicles V10, V27, V31, V(2i)0, V(2i+1)1, i =

2, 3, 4, . . . , where each successive vehicle arrives at the intersection a very

short time after its predecessor. Then, with a naive implementation of this

optimization, V27 would end up alternatively giving way to each vehicle that

comes after it making V27 wait for a longer period causing it to starve. To

mitigate this effect, the authors have introduced a threshold TH, which is the

maximum number of preemptions a vehicle is allowed to make. Lines 5 to 11

of Algorithm 2 implement this optimization.

The second repercussion is that this could lead to a deadlock situation.

Consider the set of vehicles V10, V26, V33, V44 arrived in that order (Figure 5).

Since V10 (green car) arrives before V26 (orange car), V26 waits till V10 passes

through the intersection. According to the algorithm, when V33 (blue car)

arrives, it waits till V26 (orange car) passes through the intersection adding

the arc V33 → V26. Note that, at this point, if V26 preempts, V33 could pass

through the intersection along with V10. However, in this case, since V10 and

V33 are not strong concurrent (6∼=), the algorithm is designed to prevent V26

17

V44

V10

V26

V33

Figure 5. A wait for graph of a deadlock situation that can arise due to
preemption. Suppose vehicles arrive in the order V10, V26, V33, V44. Since V10

(green car) arrives before V26 (orange car), V26 waits till V10 passes through the
intersection. According to the algorithm, when V33 (blue car) arrives, it waits till
V26 (orange car) passes through the intersection adding the arc V33 → V26. Note
that, at this point, if V26 preempts, V33 could pass through the intersection along
with V10. However, in this case, since V10 and V33 are not strong concurrent (6∼=),
the algorithm is designed to prevent V26 from preempting. When V44 (red car)
arrives, it waits till V33 passes through, introducing the arc V44 → V33. With
preemption in place, V26 gives way to V44 despite that V44 comes after V26. So, in
essence, V26 now waits till V44 passes through, adding the arc V26 → V44. This ends
up creating a wait cycle V33 → V26 → V44 → V33.

from preempting. When V44 (red car) arrives, it waits till V33 passes through,

introducing the arc V44 → V33. With preemption in place, V26 gives way to

V44 despite that V44 comes after V26. So, in essence, V26 now waits till V44

18

passes through, adding the arc V26 → V44. This ends up creating a wait cycle

V33 → V26 → V44 → V33.

This situation is avoided by making a vehicle V listen to objections destined

to other vehicles. If a vehicle U , which V objected from passing through the

intersection, objects to another vehicle P , which V preempted and allowed

passing through (this creates a wait cycle: P → U → V → P), then V revokes

the preemption it extended toward P and objects to P from passing through

(this breaks the wait cycle: P → U → V and P → V).

In addition to this, vehicle V performs the same action of revoking the

preemption if U is strong concurrent with V (U ∼= V). In this case, there

is no threat of deadlock. But, if V preempts for P , since P has to wait till

U passes, the order of passing through the intersection would be U, P, V .

However, since U ∼= V , instead of preempting and waiting till P passes,

V can pass along with U improving the concurrency. This enhancement is

implemented by lines 17 to 20 of Algorithm 2.

2. When the leading vehicle LV of a lane gets the chance to pass through the

intersection, it looks for all the vehicles piled up behind it in the same lane,

which it objected from passing through the intersection. Then it notifies those

vehicles and all the other vehicles at the intersection about those vehicles.

With this, the algorithm is enhanced in such a way those vehicles follow LV

through the intersection forming a convoy. This makes the algorithm mimic

the behavior of giving a green traffic light to a lane rather than just a single

vehicle.

19

However, if the number of vehicles behind LV is very large, it would make all

the vehicles in other conflicting lanes wait for a longer period, which makes

the algorithm unfair. This issue is controlled by a threshold NP , which is the

maximum number of vehicles that are allowed to be in a convoy. This mimics

the duration of a green traffic light given to a lane. Lines 25, 26 and 29 to 31

of Algorithm 2 incorporate this optimization to the algorithm. This leads to

the second type of optimization - reducing the number of messages exchanged.

2. Reducing the number of messages passed: This optimization is

made possible due to the second optimization for improving concurrency. Under the

basic algorithm, after each vehicle passes through the intersection, it should notify

all the vehicles it objected from passing through the intersection. However, with the

second concurrency optimization, when a group of vehicles in the same lane passes

through the intersection forming a convoy they act as one long vehicle. So, any

other vehicle that is in a lane that conflicts with the lane of the convoy has to wait

till the last vehicle of the convoy clears the intersection. Thus, vehicles in the front

and the middle of the convoy notifying that they are through only adds additional

communication overhead to the vehicles. Therefore, the enhanced algorithm makes

only the last vehicle in a convoy responsible for letting everybody else know that all

the vehicles have cleared the intersection. Lines 32 to 39 of Algorithm 2 deal with

this optimization.

However, our analysis of the algorithm uncovers one pitfall of this

optimization and we discuss a way to overcome it (Chapter VI).

We further have a hunch that the preemption logic of the algorithm could

still lead to a deadlock situation under specific message ordering. In the situation

20

portrayed in Figure 5, consider the message and action ordering (we use the colors

of the cars to identify cars):

1) REQUEST(Blue)

2) Orange Receive REQUEST(Blue) → REJECT(Orange, Blue)

3) REQUEST(Red)

4) Blue Receive REQUEST(Red) → REJECT(Blue, Red)

5) Orange Receive REJECT(Blue, Red) → Orange ignore it

6) Orange Receive REQUEST(Red) → Orange preempt

— Deadlock —

The prevention of the deadlock situation that could arise due to preemptions

relies on the REQUEST(Red) message broadcast by the Red car being received

by the Orange car prior to Orange car receiving the REJECT(Blue, Red) message

broadcast by the Blue car. Then only Orange car will have Red car on its high

list for it to execute the logic for revoking the preemption upon hearing the

REJECT(Blue, Red) message. When these two messages are received inverted

by the Orange car, as in the message sequence above, when it receives the

REJECT(Blue, Red), it has not yet granted a preemption to revoke (lines 17 - 19

of Algorithm 2). Therefore, it just ignores that message (line 5). Later when it

receives the REQUEST(Red) message, it carries out the usual preemption logic

(lines 5 - 7 of Algorithm 2) leading to a deadlock (line 6).

During the lifespan of this thesis, we did not get to the point of modeling

this situation and validating it formally.

2.4.2.6 Algorithm Pseudo-Code. With a clear idea of the gist of the

algorithm (Algorithm 1), it would be easier for the reader to follow the details of

the actual algorithm presented in the original paper (Wu et al., 2015a, p. 69-70)

21

(Algorithm 2). Please note that we have reproduced the algorithm exactly as it is

presented in the original paper.

Algorithm 2 The distributed VMEI algorithm
CoBegin //for a vehicle i

On entering the monitoring area:
1: sti = WAITING
2: broadcast REQUEST(i, lidi)
3: wait for REJECT from others

On receiving REQUEST(j, lidj) from j:
4: if ((sti = WAITING | PASSING) and (lidi = lidj ∨ lidi ∝ lidj)) then
5: if ((∃k, k ∈ HLi ∧ j ∼= k) and CntPmt < TH) then
6: add j to HLi

7: CmtPmt++
8: else
9: add j to LLi

10: broadcast REJECT(i, j)
11: end if
12: end if

On receiving REJECT(j, k) from j:
13: if (sti = WAITING) then
14: if (i = k) then
15: add j to HLi

16: end if
17: if (i 6= k and (k ∈ HLi with preemption) and

((j ∝ i ∧ j /∈ HLi) ∨ j ∼= i)) then
18: delete k from HLi

19: broadcast REJECT(i, k)
20: end if
21: end if

. Continued on the following page

2.5 Concurrent Vs. Strong Concurrent

Although the authors of Wu et al. (2015a) make a distinction between pairs

of Concurrent (≈) lanes and pairs of Strong Concurrent (∼=) lanes, they do not

22

. Continued from the previous page

On receiving PERMIT(j) or timeout tmt occurs (no REJECT
received):

22: delete j from HLi

23: if (HLi is empty) then
24: sti = PASSING
25: construct the follow list,

flt = { v | lidv = lidi ∧ v ∈ LLi ∧ flt′s length < NP }
26: broadcast FOLLOW(i, flt)
27: end if
28: move and pass through the core area

On receiving FOLLOW(j, flt) from j:
29: if (i ∈ flt) then
30: sti = PASSING
31: move and pass the core area
32: else if (i ∝ j) then
33: delete j from HLi

34: delete vehicles in flt from HLi or LLi

35: add the last one in flt to HLi

36: end if

On exiting the intersection:
37: if (the passing is triggered by a FOLLOW(x, flt) and

i is the last in flt) then
38: broadcast PERMIT(i)
39: end if

CoEnd

present a rational behind this distinction. We contacted the first author of the

paper asking for a clarification but that went in vain.

In Algorithm 2 (lines 5 - 7 and lines 17 - 19), only strong concurrency is

considered when implementing the preemption optimization (Section 2.4.2.5). In

the situation depicted in Figure 6, it seems V26 (orange car) can preempt and allow

V33 (blue car) to pass through the intersection along V10 (green car). However, the

23

algorithm prevents V26 from preempting since V10 and V33 are not strong concurrent

with each other (V10 6∼=V33).

V10

V26

V33

Figure 6. A situation where preemption is not applied due to lanes in question
being not Strong Concurrent (∼=). Vehicles arrive at the intersection in the order
V10, V26, V33. Under normal operation they will pass through the intersection in
the same order. However, since V33 ≈ V10, if V26 preempts its opportunity to pass
through the intersection before V33, that enables V33 to pass along V10 through the
intersection. This would improve the concurrency and hence the throughput of the
algorithm. However, since V33 6∼= V10, Algorithm 2 does not allow preemption at this
situation.

Looking deeper into a more complex scenario, we think we can infer the

authors’ intention behind this choice. Consider the situation depicted in Figure

5 with one difference. Instead of vehicles arriving in the order: green car, orange

car, blue car and red car one after the other, suppose that the blue car and the red

24

car arrive at the same time. Then, according to our vehicle labeling scheme, the

sequence of vehicles are labeled as: V10, V26, {V33, V34}. If the algorithm is designed

to make V26 preempt any vehicle concurrent with V10, it will preempt both V33 and

V34. Although, V33 and V34 are pairwise concurrent with V10 (V33 ≈ V10 and V33 ≈

V10), all three of them cannot pass through the intersection simultaneously since V33

and V34 conflict with each other (V33 ∝ V34). Thus, V26 preempting for both V33 and

V34 simultaneously does not add any additional concurrency.

Therefore, we think that the authors of the algorithm have “hard-coded” a

rule to automatically prioritize between two conflicting vehicles U and V (U ∝ V),

both pair-wise concurrent with a vehicle P that is already in the move through the

core area of the intersection (U ≈ P and V ≈ P), when deciding on preemptions.

Hard-coding such a rule to the algorithm reduces the concurrency in such

situations as depicted in Figure 6. Going along with our example, we believe

that even if V26 preempts both V33 and V34, since V33 ∝ V34, one of them should

REJECT the other for the algorithm to work. Therefore, V26 can listen to that

REJECT message and revoke the preemption extended toward the vehicle that got

rejected, making the algorithm work.

The process of handcrafting situations and trying to make sense of the

algorithm is a daunting task. It is not only time consuming but also error-prone.

There is a high chance that we are unable to manually enumerate and comprehend

all the possibilities and nuances of the algorithm leading to inconclusive insights.

This is where modeling tools like LTSA (Magee & Kramer, 2006; Magee et al.,

2013), which can automatically and exhaustively search for problems and validate a

system come into play.

25

Therefore, one sure way to figure out answers for these doubts is, modeling

these situations in LTSA and letting LTSA do the hard work and tell us if

something could go wrong. However, with the lifetime of this work we did not get

to the point of modeling this specific situation.

26

CHAPTER III

MODELING - AN INTRODUCTION

The idea of modeling is to replicate an actual system without implementing

or building it for real. The cost (time, effort, amount of money spent) of modeling

should generally be less than the cost of building the actual system.

On one hand, if we try to model all (or almost all) the details of the actual

system that is being modeled exactly as they operate in the actual system, the task

of modeling would be as complex as building the actual system. This would defeat

the sole purpose of modeling. Even if we can easily build such a complex model,

it would complicate the analysis phase and make it difficult for us to focus on the

specific aspects we are interested in analyzing.

On the other hand, if we abstract away too much from the actual system

and make the model too simple, we run the danger of the insights we gain via the

model not being applicable to the actual system.

So, we have to take the middle path where we omit the parts of the actual

system that are irrelevant and do not interfere with the aspects we are interested

in analyzing using the model, and simplify the parts and behaviors of the actual

system that are of interest in the analysis. The model should be neither too

complex nor too simple. It should capture the essence of the actual system to a

level that is easy to analyze and validate the actual system.

For this thesis, we model using the “Labelled Transition System Analyser”

(LTSA) (Magee & Kramer, 2006; Magee et al., 2013). In LTSA, individual

components of a concurrent system are textually described using the language

“Finite State Processes” (FSP). Then they are compiled and composed into bigger

models that approximate how the actual system would behave as a whole. Both

27

individual models and compositions essentially are finite state machines and so

we can validate these models in terms of reachability of undesired states and

unreachability of desired states.

3.1 State Space

The state of a process is defined by the values and data stored in its

variables, data structures and registers allocated to it (Magee & Kramer, 2006).

LTSA performs an exhaustive search of the state space of the model to find

anomalies. Thus, the higher the number of states, the costlier the model validation.

If process Pi has SPi
states and there are n processes in a concurrent system, a

system composed of those processes has at most:
n∏

i=1

SPi

states. The upper bound occurs when all the states of all the processes are

independent of each other, which usually is not the common case.

3.2 Modeling

The task of modeling is to make sure that the model reaches all the

desirable states at desirable moments avoiding any undesirable state. During the

model validation phase, LTSA exhaustively searches the finite state machine of the

composed model and reports three kinds of problems:

1. Any sequence of actions that leads to a deadlock in the system. A deadlock

occurs when no further action is possible. Two cars at the intersection

each waiting for other to pass through the intersection is an example for a

deadlock.

28

2. Any sequence of actions that leads to a marked undesirable state in the

system. An undesirable state could be two cars entering an intersection and

crashing.

3. A marked desirable state not being reached. There is no path or set of actions

that will get to a state that is desirable. One car never being able to pass

through the intersection while other cars are passing through is an example

for this case.

3.3 Making the State Space Manageable

The distributed mutual exclusion algorithm for intersection traffic control

(Algorithm 2) that we model has a very large state space. Our LTSA model of a

car, assuming that there are only two cars at the intersection, has 325 states. The

intersection that we model (Figure. 1) contains eight lanes coming in and going

out. So, building a full-scale model would require composing many cars coming in

from different directions, which makes the final model prohibitively large. Thus,

we take the approach of breaking down the problem into smaller sub problems

and modeling and verifying those sub problems to shed more light into the bigger

problem.

First, we model an intersection with only two approaching cars. If the two

cars approach the intersection from two concurrent lanes, there would be no issue.

Therefore, we only focus on the situation where the two cars are coming from two

conflicting lanes. This enables us to strip away the lane related variables in the

actual algorithm leading to further reduction of the logic required to check the

relationship between the two lanes (Figure. 2). With two cars at the intersection,

all the broadcast messages reduce to point to point communication, which is

29

another saving we make in modeling the V2V communication. All these reductions

save a lot of state space. The rationale behind this choice is:

Since,

Intersection with two cars ⊂ Intersection with more than two cars

we have,

(There are issues with the
algorithm when two cars are at

the intersection

)
=⇒

(There are issues with the
algorithm when more than two
cars are at the intersection

)

30

CHAPTER IV

MODELING - V2V COMMUNICATION

Since we are only considering an intersection with two cars (Chapter III),

we model broadcasts as point to point messages between the two cars. To start the

discussion of modeling communication, we define a simple sender process (Listing

1) and a simple receiver process (Listing 2).

4.1 Modeling Synchronous Communication

The action before_send of simple sender (Listing 1) resembles all the actions

the simple sender preforms before sending a message (send_message action) and

the action after_send resembles everything the sender does after sending the

message. Similarly, the simple receiver (Listing 2) has two actions before_receive

and after_receive to resemble all the actions the receiver performs before and after

receiving the message.

Listing 3 models synchronized communication between the simple sender

and the simple receiver. The line 7 (send_message/receive_message) synchronizes

the SENDER’s send_message action with the RECEIVER’s receive_message

action. In the final model, the only action visible is send_message because it is

synonymous to receive_message. Due to the synchronization, the send_message

action is not available to the SENDER until the RECEIVER is ready to receive

(in this example model, before RECEIVER performs the before_receive action). In

addition to being synchronous, this model does not take message propagation delay

into account at all. RECEIVER receives the message instantly at the same moment

the SENDER sends the message.

This level of synchronization is problematic when it comes to modeling the

V2V communication involved in the distributed mutual exclusion algorithm for

31

Listing 1 Simple sender process �
1 SENDER =
2 (
3 before_send
4 -> send_message
5 -> after_send -> SENDER
6).

Listing 2 Simple receiver process �
1 RECEIVER =
2 (
3 before_receive
4 -> receive_message
5 -> after_receive -> RECEIVER
6).

Listing 3 Composition for synchronous communication �
1 || SYNC_COMMUNICATE =
2 (
3 SENDER
4 || RECEIVER
5)
6 / {
7 send_message / receive_message
8 }.

32

intersection traffic control. Assume that the message propagation delay within the

queue area (Figure 1) is tprop milliseconds. Consider the situation where vehicles

V10 and V22 entering the queue area with V22 entering queue area less than tprop

milliseconds after V10. Then, at the time V10 enters the queue area, there is nobody

ready to receive the REQUEST message of V10. However, by the time V22 enters

the queue area, the REQUEST message V10 sent should be received by V22. With

a synchronous model of the message passing we are unable to model this behavior.

4.2 Making the Communication Asynchronous

To model an asynchronous message passing scheme, we have to introduce an

intermediate process that facilitates the communication between the SENDER and

the RECEIVER. We call this process the ASYNC_NETWORK (Listing 4). This

setup is closer to how communication between vehicles is actually implemented in

the real world. When the SENDER wants to send a message, it passes the message

to the ASYNC_NETWORK. Then the message takes some time to route through

the ASYNC_NETWORK and finally reaches the RECEIVER. Since we are not

modeling a connection oriented communication protocol (E.g. TCP/IP), we do

not have to model a handshaking phase, which establishes a connection. Thus,

a RECEIVER that is ready to receive messages is not required at the time of a

SENDER sending a message.

Composing the three processes SENDER, RECEIVER and

ASYNC_NETWORK (Listings 1, 2 and 4), we can model an asynchronous

message passing scheme as in Listing 5.

One limitation of this model is that if the SENDER sends the same message

more than once before the first message is received by the RECEIVER, they will

be lost in the ASYNC_NETWORK process and the RECEIVER will be unaware

33

Listing 4 Network process that enables asynchronous message passing �
1 const False = 0
2 const True = 1
3 range Bool = False..True

4 ASYNC_NETWORK = BUFFER[False],

5 BUFFER[in_transit : Bool] =
6 (
7 accept_message -> BUFFER[True]

8 | when (in_transit)
9 deliver_message -> BUFFER[False]

10).

Listing 5 Composition for asynchronous communication �
1 || ASYNC_COMMUNICATE =
2 (
3 SENDER
4 || RECEIVER
5 || ASYNC_NETWORK
6)
7 / {
8 send_message / accept_message ,
9 receive_message / deliver_message

10 }.

34

of these multiple transmissions. However, since the algorithm we model assumes

a reliable communication channel that provides guaranteed message delivery and

vehicles do not retransmit messages, this limitation does not affect our models. We

can easily rectify this limitation by making the NETWORK remember the number

of times the sender transmits a particular message at the cost of increased state

complexity. In our work, we favor less states and go with the more concise model.

4.3 Message Ordering

Since the algorithm being modeled assumes a first-in-first-out (FIFO)

wireless channel, we need to enforce message ordering in the model. To start the

discussion about message ordering, we need a sender who sends more than one

message and a receiver who receives them (Listing 6).

A real-world packet switched network does not preserve the message

ordering. The illusion of ordered message delivery is achieved by techniques such

as adding sequence numbers to messages (or more accurately packets) sent by the

sender and acknowledgments of messages received, sent by the receiver, handled by

low level communication subsystems at the sender and the receiver.

We can model a channel that accepts messages from a sender in any order

and then delivers them to a receiver in the same order they are accepted. This is

done by making the network process, MULTI_NETWORK_FIFO, maintain a

queue of messages accepted (Listing 7). Each new message accepted is appended

to the tail of the queue. Only the message at the head of the queue is delivered

when the receiver is ready to receive that message. Since the model is a finite state

process (FSP), the queue should be bounded and in the current model we keep it

to a size of 3. Any message sent while the network queue is full is dropped by the

35

Listing 6 Sender and receiver for multiple messages �
1 const False = 0
2 const True = 1
3 range Bool = False..True

4 // Message types
5 const REQUEST = 100
6 const REJECT = 200
7 const PERMIT = 300

8 set MESSAGES = { [REQUEST], [REJECT], [PERMIT] }

9 MULTI_SENDER =
10 (
11 before_send -> SENDING
12),

13 SENDING =
14 (
15 send_message[msg : MESSAGES] -> SENDING
16 | done_sending
17 -> work_after_send -> MULTI_SENDER
18).

19 MULTI_RECEIVER =
20 (
21 before_receive -> RECEIVING
22),

23 RECEIVING =
24 (
25 receive_message[msg : MESSAGES]-> RECEIVING
26 | done_receiving
27 -> work_after_receiving -> MULTI_RECEIVER
28).

36

network. In fact, this is exactly how real world network components such as routers

and switches operate when their internal buffers are full.

MULTI_NETWORK_FIFO process (Listing 7) can be tested by composing

it with MULTI_SENDER and MULTI_RECEIVER (Listing 6) as shown in

Listing 8.

4.4 Reducing the State Space of the Network Process

The general purpose model of the first-in-first-out network process (Listing

7) ends up having 121 states. To make the analysis more efficient, we are biased

towards smaller models. In LTSA tool, smaller models bring the added value of

being able to visualize the graph of the finite state model. In some cases, we can

look at the graph of the model, make sense what is going on and debug the model

if necessary. The current version of LTSA only visualizes models having 64 or less

states.

So, we look closely at the specific algorithm (Algorithm 2) we are modeling

and ask the question “Can we model a first-in-first-out communication channel

that is problem specific instead of the general-purpose channel we modeled (Listing

7)?”. To answer this question, we focus closely on the messaging pattern of a single

vehicle.

The first message each vehicle sends is REQUEST and each vehicle sends

only one such message as it enters the queue area of the intersection (Figure. 1).

Further, each vehicle sends at most one PERMIT message and if it does, it is

the last message a vehicle sends. In between those two messages, a vehicle may

send multiple REJECT messages in response to REQUEST messages from other

vehicles that are in conflicting lanes (Figure. 2). We can summarize this messaging

37

Listing 7 General purpose network that preserves the message order �
1 MULTI_NETWORK_FIFO = QUEUE ,

2 QUEUE =
3 (
4 accept_message[_1st : MESSAGES]
5 -> QUEUE[_1st]
6),

7 QUEUE[_1st : MESSAGES] =
8 (
9 accept_message[_2nd : MESSAGES]

10 -> QUEUE[_1st][_2nd]

11 | deliver_message[_1st]
12 -> QUEUE
13),

14 QUEUE[_1st : MESSAGES][_2nd : MESSAGES] =
15 (
16 accept_message[_3rd : MESSAGES]
17 -> QUEUE[_1st][_2nd][_3rd]

18 | deliver_message[_1st]
19 -> QUEUE[_2nd]
20),

21 QUEUE[_1st : MESSAGES][_2nd : MESSAGES]
22 [_3rd : MESSAGES] =
23 (
24 accept_message[_4th : MESSAGES]
25 -> drop_message[_4th]
26 -> QUEUE[_1st][_2nd][_3rd]

27 | deliver_message[_1st]
28 -> QUEUE[_2nd][_3rd]
29).

38

Listing 8 Composition for asynchronous FIFO communication �
1 || ASYNC_FIFO_COMMUNICATE =
2 (
3 MULTI_SENDER
4 || MULTI_RECEIVER
5 || MULTI_NETWORK_FIFO
6)
7 / {
8 send_message[msg : MESSAGES]
9 / accept_message[msg],

10 receive_message[msg : MESSAGES]
11 / deliver_message[msg]
12 }.

pattern by a regular expression:

(REQUEST)(REJECT) ∗ (PERMIT)?

Since we are focusing on an intersection with only two vehicles, each vehicle

sends one and only one REQUEST message and a REJECT message is sent only

in response to a REQUEST message, in our model each vehicle sends at most

one REJECT message. Thus, we have the opportunity to further reduce our

algorithm specific network model to a context specific model that can only handle

the messaging situation:

(REQUEST)(REJECT)?(PERMIT)?

We incorporate these observations into the network process to

model a problem specific first-in-first-out channel (Listing 9), which we call

VMEI_NETWORK. Since in the actual algorithm (Algorithm 2) each message

passed includes the vehicle id, VID, (Chapter II - Section 2.4.2.4), we have

modeled the VMEI_NETWORK process to handle that aspect as well. With these

39

modifications, we are able to reduce the number of states in the network process to

8.

To test our hypothesis regarding designing an algorithm plus context specific

first-in-first-out channel, we design a sender process (Listing 10) that mimics only

the message sending behavior of a vehicle that is running an implementation of the

distributed mutual exclusion algorithm for intersection traffic control (Algorithm 2).

The complete model for a vehicle is discussed in Chapter V. We further enhance

the receiver process so that it can receive messages with the vehicle id (Listing

11). Composing VMEI_NETWORK, VMEI_SENDER and VMEI_RECEIVER

(Listings 9, 10 and 11) as in the Listing 12, these new processes can be tested in

action.

40

Listing 9 Network process that takes the messaging behavior of vehicles into
account to provide a FIFO channel �

1 VMEI_NETWORK_FIFO(VID = 0) = QUEUE ,

2 QUEUE =
3 (
4 accept_message [REQUEST][VID]
5 -> QUEUE[REQUEST]

6 | accept_message [REJECT][VID]
7 -> QUEUE[REJECT]

8 | accept_message [PERMIT][VID]
9 -> QUEUE[PERMIT]

10),

11 QUEUE[REQUEST] =
12 (
13 accept_message [REJECT][VID]
14 -> QUEUE[REQUEST][REJECT]

15 | accept_message [PERMIT][VID]
16 -> QUEUE[REQUEST][PERMIT]

17 | deliver_message[REQUEST][VID] -> QUEUE
18),

19 QUEUE[REJECT] =
20 (
21 accept_message [PERMIT][VID]
22 -> QUEUE[REJECT][PERMIT]

23 | deliver_message[REJECT][VID] -> QUEUE
24),

25 QUEUE[PERMIT] =
26 (
27 deliver_message[PERMIT][VID] -> QUEUE
28),

41

�
29 QUEUE[REQUEST][REJECT] =
30 (
31 accept_message [PERMIT][VID]
32 -> QUEUE[REQUEST][REJECT][PERMIT]

33 | deliver_message[REQUEST][VID]
34 -> QUEUE[REJECT]
35),

36 QUEUE[REQUEST][PERMIT] =
37 (
38 deliver_message[REQUEST][VID]
39 -> QUEUE[PERMIT]
40),

41 QUEUE[REJECT][PERMIT] =
42 (
43 deliver_message[REJECT][VID]
44 -> QUEUE[PERMIT]
45),

46 QUEUE[REQUEST][REJECT][PERMIT] =
47 (
48 deliver_message[REQUEST][VID]
49 -> QUEUE[REJECT][PERMIT]
50).

42

Listing 10 Sender process that mimics the message sending behavior of a vehicle.
Any sequence of messages sent by a complete model of a vehicle at an intersection
with two vehicles can be generated by this sender. �

1 // Message types
2 const REQUEST = 100
3 const REJECT = 200
4 const PERMIT = 300

5 set MESSAGES = { [REQUEST], [REJECT], [PERMIT] }

6 VMEI_SENDER(VID = 0) =
7 (
8 before_send
9 -> send_message[REQUEST][VID] -> SEND_REJECT

10),

11 SEND_REJECT =
12 (
13 send_message[REJECT][VID] -> SEND_PERMIT
14 | skip_reject -> SEND_PERMIT
15),

16 SEND_PERMIT =
17 (
18 send_message[PERMIT][VID]
19 -> work_after_send -> VMEI_SENDER

20 | skip_permit -> VMEI_SENDER
21).

43

Listing 11 Receiver process that accepts messages with the vehicle id VID �
1 VMEI_RECEIVER(VID = 1) =
2 (
3 before_receive -> RECEIVING
4),

5 RECEIVING =
6 (
7 receive_message[msg : MESSAGES][1 - VID]
8 -> RECEIVING
9 | done_receiving

10 -> work_after_receiving -> VMEI_RECEIVER
11).

Listing 12 Composition for algorithm plus context specific communication �
1 || VMEI_FIFO_COMMUNICATE =
2 (
3 VMEI_SENDER(0)
4 || VMEI_RECEIVER(1)
5 || VMEI_NETWORK_FIFO(0)
6)
7 / {
8 send_message[msg : MESSAGES][0]
9 / accept_message[msg][0],

10 receive_message[msg : MESSAGES][0]
11 / deliver_message[msg][0]
12 }.

44

CHAPTER V

MODELING - VEHICLE

This chapter discusses the modeling process of the vehicle. In our models,

we use the term “Car” to refer to a vehicle just to keep things shorter. Our model

of a car is based on the assumption that there are only two cars at the intersection

(Chapter III - section 3.3). The only interesting scenario to model with two cars is

when they approach the intersection from two conflicting lanes (Figures 1 and 2).

These assumptions add several simplifications to the model of the car:

1. All broadcasts are reduced to point to point communication between the two

cars.

2. No need to model the logic to check the relationship between the lanes where

cars are coming from. Also, no need to include the lane a car is entering the

intersection in the messages passed.

3. No need to deal with the logic for preemptions (Chapter II : Lines 5 - 7 of

Algorithm 2).

4. No need to model the “follow list” related portions of the algorithm (Chapter

II : Lines 25 - 26, 29 - 36 and 37 - 38 of Algorithm 2).

5.1 Extended State Diagram

The state diagram (Figure 3) that is presented in the paper where

the distributed mutual exclusion algorithm for intersection traffic control is

published (Wu et al., 2015a) is too high level to be modeled or implemented. After

thoroughly analyzing the dynamics of the Algorithm 2, we extend it sufficiently so

that we can directly map it into a LTSA model (Figure 7).

45

WAITING
FOR

REJECT

PASSING

REQUEST(v)
(Enter Queue Area)

WAITING
FOR

PERMIT

PASSED

Timeout

No Objections Permission Granted

(Enter Core Area)

Exit
Core Area

| REQUEST(u) REJECT(v, u) |
| REJECT(u, w)
| PERMIT(u)

| REQUEST(u) REJECT(v, u) |
| PERMIT(u)

REQUEST(u) REJECT(v, u) |

DRIVE
IN

DRIVE
AWAY

PERMIT(v) |

IDLE
W

A
IT

IN
G

Figure 7. The extended state transition diagram of the distributed algorithm.
Both DRIVE_IN and DRIVE_AWAY states are used as synonyms for IDLE
state just to make LTSA treat them differently. WAITING state is divided
into two states WAITING_FOR_REJECT (waiting before timeout) and
WAITING_FOR_PERMIT (waiting after the timeout has expired). A PASSED
state is introduced just after a vehicle exits the core area of the intersection for
a vehicle to handle the housekeeping task of notifying other vehicles that are
waiting till this vehicle clears the core area of the intersection that this vehicle is no
longer in their way. We need two more states to process REQUEST messages each
connected to the two WAITING states. We do not include them in this diagram for
brevity and we use a shorthand notation REQUEST (u) → REJECT (v, u)|ε to
represent that.

According to the state diagram in Figure 3, a vehicle is in state IDLE both

before it enters the queue area (Figure 1) and after it exits the queue area of the

46

intersection, which means it is not actively executing the algorithm. However,

in our model if we represent both these conditions using a single state, LTSA

loops the same vehicle back into the same intersection, which is not a behavior we

intend for. Thus, we have divided the IDLE state into two states DRIVE_IN and

DRIVE_AWAY.

A vehicle starts in the DRIVE_IN state. As a vehicle enters the queue area,

it broadcasts a REQUEST message and enters the WAITING state. According

to how the algorithm works, a vehicle has two waiting stages. First, it waits for

REJECT messages from other vehicles for a designated period that ends with

the expiration of a timeout. Afterwards, a vehicle waits till all the vehicles that

objected to it passing through give it PERMISSION to pass through. Thus, we

divide the WAITING state into two states WAITING_FOR_REJECT, which is

waiting before the expiration of timeout and WAITING_FOR_PERMIT, which is

waiting after the expiration of timeout.

5.2 Handling PERMIT Messages

While a vehicle is in either of the WAITING states, it can receive PERMIT

messages. Algorithm 2 uses the same function (Lines 22 - 28) to handle the three

events: 1) receiving a PERMIT message before timeout, 2) receiving a PERMIT

message after timeout and 3) the expiration of the timeout. We believe that this is

not accurate for several reasons:

1. Line 22 of the function, delete j from HLi, is for deleting the vehicle j

from the high list, HLi, of vehicle i, upon vehicle i receiving PERMIT(j)

from vehicle j. However, when this function is called upon the expiration of

the timeout, no such vehicle j is defined, which causes a problem.

47

2. Lines 23 to 27, checks whether there is nobody objecting to vehicle i passing

through and if that is the case, vehicle i starts passing through. Consider

the situation depicted in Figure 8. Vehicles arrive in the order V10, V25, V36

and V36 arrives just before V10 exits the core area. Let the order of messages

received at V36 be: REJECT(V10, V36), PERMIT(V10) and REJECT(V25, V36).

Assume that V36 receives the first two messages before its timeout expires and

REJECT(V25, V36) gets delayed. With this setup, due to the use of the same

function to handle PERMIT messages both before and after the timeout,

after receiving the 2nd message, V36 sees that its high list is empty and starts

to pass through the intersection while the REJECT(V25, V36) is in flight. In

the meantime, V25 too gets the PERMIT(V10) message and it too enters the

core area leading to a crash.

To rectify these problems we propose breaking the “On receiving

PERMIT(j) or timeout tmt occurs” function (Lines 22 - 28) in Algorithm

2 into two separate functions:

1. On receiving PERMIT(j) that just removes vehicle j from i’s high list if

j is present in i’s high list (Line 22 of Algorithm 2). Vehicle does not change

the state.

2. Try to pass through that checks whether the high list is empty and if so

takes necessary steps and starts passing through (Lines 23 - 28 of Algorithm

2).

When a vehicle receives a PERMIT(j) message while it is in state

WAITING_FOR_REJECT, it just executes On receiving PERMIT(j)

function. When a PERMIT(j) message is received while a vehicle is in state
48

V25
V10

V36

Figure 8. A scenario where using the same function to handle PERMIT messages
both before and after the timeout can lead to a problem. Vehicles arrive in the
order V10, V25, V36. V36 (red car) arrives just before V10 (green car) exits the
core area. Let the order of messages received at V36 be: REJECT(V10, V36),
PERMIT(V10) and REJECT(V25, V36). Assume that V36 receives the first two
messages before its timeout expires and REJECT(V25, V36) gets delayed. With
this setup, due to the use of the same function to handle PERMIT messages
both before and after the timeout, after receiving the 2nd message, V36 sees
that its high list is empty and starts to pass through the intersection while the
REJECT(V25, V36) is in flight. In the meantime, V25 (orange car) too gets the
PERMIT(V10) message and it too enters the core area leading to a crash.

WAITING_FOR_PERMIT, it executes On receiving PERMIT(j) function

and then executes Try to pass through function. In either of these cases the

vehicle does not change its state. However, when the timeout expires, a vehicle

49

changes its state from WAITING_FOR_REJECT to WAITING_FOR_PERMIT

and executes only Try to pass through function.

5.3 Exiting the Core Area

A vehicle performs the housekeeping tasks after exiting the core area of the

intersection by executing the function “On exiting the intersection” (Lines

37 - 39 of Algorithm 2). However, that function prescribes what to do only if

the passing is triggered by a FOLLOW message. But, there are situations where

a vehicle starts passing through the intersection without being induced by a

FOLLOW message. The scenario we model, an intersection with only two cars,

is such a situation.

With only two cars approaching the intersection from two conflicting lanes,

one vehicle (say V) proceeds to pass through the intersection because the other

vehicle (say U) does not object (but not because it was included in a FOLLOW

list). Vehicle U would wait till vehicle V passes through and clears the core area

(Figure 1). In this case, vehicle V should broadcast a PERMIT message to notify

vehicle U that it is safe for U to enter the core area.

We believe that we can use the low list LLi (Section 2.4.2.3) for a vehicle to

decide whether to broadcast a PERMIT message or not. Vehicles that end up in

LLi are the vehicles where vehicle i objected to passing through the intersection.

Those vehicles are waiting for a PERMIT message from vehicle i. Therefore, upon

exiting the core area, if vehicle i finds that its low list LLi is not empty, it should

broadcast a PERMIT message. We model this behavior for the car.

5.4 A Walk-through of the Extended State Transition Diagram

With the aforementioned clarifications, we are sufficiently armed to dive into

the business of modeling the vehicle. To cement how a vehicle moves through the

50

𝑽𝟏𝟒

𝑽𝟑𝟑

𝑽𝟐𝟐

𝑽𝟒𝟔

𝑽𝟓𝟓

Figure 9. A scenario to walk-through the extended state transition diagram (Figure
7). Vehicles arrive in the order V14, V22, V33, V46, V55. V14 (green car) is about to
exit the core area of the intersection and V55 (blue car) is about to enter the queue
area of the intersection. V22 and V33 (orange and yellow cars) are waiting for V14 to
clear the core. V46 (red car) has just arrived in the queue area of the intersection.
The sequence of states passed and actions taken by V46 from this point onward are
presented in Table 2. Note that all the cars except V22 conflict with V46. Therefore,
V22 does not respond to the REQUEST of V46 with a REJECT. Further, V55 does
not hear the REQUEST of V46 and hence it does not respond with a REJECT.
However, V46 hears the REQUEST of V55 and it broadcasts a REJECT.

extended state transition diagram, we present an example scenario (Figure 9 and

Table 2). Figure 9 sets up an example situation that could arise at an intersection.

Table 2 summarizes the sequence of states passed in response to actions taking

place in vehicle V46 (red car) in the figure. Note that all the cars except V22 (yellow

car) conflict with V46. Therefore, V22 does not respond to the REQUEST of V46

51

Table 2. Extended state transition diagram - A walk-through: Sequence of states
passed and actions taken by vehicle V14 (red car) depicted in Figure 9 starting from
the situation depicted in that figure.

Start State Action End State HLV46 LLV46

DRIVE IN
Broadcast
REQUEST(V46)

WAITING
FOR REJECT

{ } { }

WAITING
FOR REJECT

Receive
REJECT(V14, V46)

WAITING
FOR REJECT

{ V14 } { }

WAITING
FOR REJECT

Receive
REJECT(V33, V46)

WAITING
FOR REJECT

{ V14, V33 } { }

WAITING
FOR REJECT

Receive
PERMIT(V14)

WAITING
FOR REJECT

{ V33 } { }

WAITING
FOR REJECT timeout WAITING

FOR PERMIT
{ V33 } { }

WAITING
FOR PERMIT

Receive
REQUEST(V55)

WAITING
FOR PERMIT

{ V33 } { }

WAITING
FOR PERMIT

Broadcast
REJECT(V46, V55)

WAITING
FOR PERMIT

{ V33 } { V55 }

WAITING
FOR PERMIT

Receive
PERMIT(V33)

WAITING
FOR PERMIT

{ } { V55 }

WAITING
FOR PERMIT

No Objections PASSING { } { V55 }

PASSING Exit Core Area PASSED { } { V55 }

PASSED
Broadcast
PERMIT(V55) DRIVE AWAY { } { }

with a REJECT. Further, V55 (blue car) does not hear the REQUEST of V46 and

52

hence it does not respond with a REJECT. However, V46 hears the REQUEST of

V55 and it broadcasts a REJECT.

5.5 Modeling the Car Begins

We start with the simplest model, which tries to mimic Algorithm 2 to

the letter. After showing the pitfalls of the algorithm, we make the model more

complex to rectify those issues. In this manner, we present a series of models for

the vehicle each becoming a bit more complex and each addressing an issue in its

predecessor.

To make models more readable and concise, we define some constants, sets

and ranges (Listing 13). When composing these models in LTSA, this portion

should be included for it to compile without errors.

5.6 Modeling the CAR Without a Sense of Priority

Although Wu et al. (2015a) mentions a notion of a priority in several places

(Chapter II - section 2.3.2), Algorithm 2 does not include any notion of a priority.

Our first model of the car (Listing 14) models this behavior following along the

extended state diagram (Figure 7).

Please note that in our model we have the timeout action prefixed with

a long tail of underscores (___________________timeout). We make

the choice to prefix a tail of underscores to time related actions in our models so

that they stand out in the action traces leading to undesirable states produced by

LTSA. There is no other significance than aesthetics in making this choice.

5.6.1 Testing the Model. Listing 15 demonstrates how the

model of the CAR in Listing 14 can be tested by composing it with the

VMEI_NETWORK_FIFO process (Chapter IV - Listing 9).

53

Listing 13 Constants, sets and ranges that are used in LTSA models. When
composing the models, include this section. �

1 const False = 0
2 const True = 1
3 range Bool = False..True

4 // Vehicle IDs
5 const Car_0 = 0
6 const Car_1 = 1
7 set CARS = { [Car_0], [Car_1] }

8 // A literal to indicate an empty list
9 const EMPTY = -1

10 // Possible values that can be in
11 // High (hi) or Low (lo) lists
12 set LIST_VALS = { [EMPTY], [Car_0], [Car_1] }

13 // Message types
14 const REQUEST = 100
15 const REJECT = 200
16 const PERMIT = 300

17 set MESSAGES = { [REQUEST], [REJECT], [PERMIT] }

54

Listing 14 CAR without a sense of priority. This model exactly resembles the car in
Algorithm 2. �

1 CAR(VID = 0) = DRIVE_IN ,

2 DRIVE_IN =
3 (
4 start
5 -> broadcast[REQUEST][VID]
6 -> WAITING_FOR_REJECT [EMPTY][EMPTY]
7),

8 WAITING_FOR_REJECT[lo:LIST_VALS][hi:LIST_VALS] =
9 (

10 ___________________timeout
11 -> WAITING_FOR_PERMIT [lo][hi]

12 | receive[REQUEST][sender: {[1 - VID]}]
13 -> PROCESS_REJECT [sender][hi]

14 | receive[REJECT][sender: {[1 - VID]}]
15 -> WAITING_FOR_REJECT [lo][sender]

16 | receive[PERMIT][sender: {[1 - VID]}]
17 -> WAITING_FOR_REJECT [lo][EMPTY]
18),

19 PROCESS_REJECT[lo:LIST_VALS][hi:LIST_VALS] =
20 (
21 ___________________timeout
22 -> WAITING_FOR_PERMIT [lo][hi]

23 | broadcast[REJECT][VID]
24 -> WAITING_FOR_REJECT [lo][hi]
25),

55

�
26 WAITING_FOR_PERMIT[lo:LIST_VALS][hi:LIST_VALS] =
27 (
28 when (hi == EMPTY)
29 enter -> PASSING [lo][hi]

30 | receive[REQUEST][sender: {[1 - VID]}]
31 -> broadcast[REJECT][VID]
32 -> WAITING_FOR_PERMIT [sender][hi]

33 | receive[PERMIT][sender: {[1 - VID]}]
34 -> WAITING_FOR_PERMIT [lo][EMPTY]
35),

36 PASSING[lo:LIST_VALS][hi:LIST_VALS] =
37 (
38 exit -> PASSED [lo]

39 | receive[REQUEST][sender: {[1 - VID]}]
40 -> broadcast[REJECT][VID]
41 -> PASSING [sender][hi]
42),

43 PASSED[lo:LIST_VALS] =
44 (
45 when (lo != EMPTY)
46 broadcast[PERMIT][VID]
47 -> DRIVE_AWAY

48 | when (lo == EMPTY)
49 drive -> DRIVE_AWAY
50),

51 DRIVE_AWAY =
52 (
53 drive -> DRIVE_AWAY
54).

56

Listing 15 Composition for testing CAR without a sense of priority �
1 || INTERSECION =
2 (
3 car[i: 0..1]:CAR(i)
4 || VMEI_NETWORK_FIFO(0)
5 || VMEI_NETWORK_FIFO(1)
6)
7 / {
8 start / car[0..1].start ,

9 car[i: 0..1]. broadcast[msg: MESSAGES][i]
10 / accept_message [msg][i],

11 car[i: 0..1]. receive [msg: MESSAGES][1-i]
12 / deliver_message[msg][1-i]
13 }.

When checked for safety of the model, LTSA points out a deadlock (Figure

10).

A deadlock is bad; it puts the whole system into a grinding halt. It greatly

affects efficiency of the system. However, with respect to the specific problem

we are modeling, two cars entering the core area of the intersection from two

conflicting lanes (in Computer Science terms, a critical section violation) and

crashing is catastrophic. To stress test the model for such flaws we need to use

fluents and asserts (Listing 16).

The fluent in line 1 of Listing 16 means that CAR_0_PASSING becomes

true whenever car 0 enters the core area of the intersection and it becomes false

whenever car 0 exits the core area. The assert in line 3 means that always ([])

it should not (!) be the case where both CAR_0_PASSING true and (&&)

57

Trace to DEADLOCK:

start

car.0.broadcast.100.0

car.1.broadcast.100.1

car.0.receive.100.1

car.0.broadcast.200.0

car.1.receive.100.0

car.1.broadcast.200.1

car.0.receive.200.1

car.0.___________________timeout

car.1.receive.200.0

car.1.___________________timeout

Figure 10. Deadlock situation in the composition of Listing 15 for a CAR without a
sense of priority.

CAR_1_PASSING true. In essence, both car 0 and car 1 should never enter the

core area of the intersection simultaneously.

Composing the model (Listing 15) in LTSA with the fluents and asserts

(Listing 16) in place gives us the power to investigate the model for a potential

crash by checking the Linear Temporal Logic (LTL) property “CRASH ”. It reveals

an action trace that leads to a crash in the current model (Figure 11).

According to the action trace in Figure 11, that leads to a crash, each

vehicle timeouts just after broadcasting the REQUEST (broadcast.100) message.

This result provides us important insight regarding the duration of the timeout.

As per the model of the car in Listing 14, the timeout action is available for a car

immediately after entering the WAITING_FOR_REJECT state. This is just like

58

Listing 16 Fluents and asserts to test for crashes �
1 fluent CAR_0_PASSING = <car[0].enter , car[0].exit >

2 fluent CAR_1_PASSING = <car[1].enter , car[1].exit >

3 assert CRASH = []!(CAR_0_PASSING && CAR_1_PASSING)

Trace to property violation in CRASH:

start

car.0.broadcast.100.0

car.0.___________________timeout

car.0.enter CAR_0_PASSING

car.1.broadcast.100.1 CAR_0_PASSING

car.1.___________________timeout CAR_0_PASSING

car.1.enter CAR_0_PASSING &&

CAR_1_PASSING

Figure 11. Action trace leading to a crash in the composition of Listing 15. The
CAR does not have a sense of priority

a timeout duration of 0 seconds. In reality, it takes some time for a REQUEST

message to propagate to any other car in the queue / core area of the intersection

(Figure 1) and if such vehicle exits it takes some more time for a REJECT

message (broadcast.200) to propagate back to the car requesting permission.

The model of the car in Listing 14, allows the car to timeout immediately

without waiting this round-trip time for a rejection to reach it and move into

59

Listing 17 Composition with low priority timeout actions for testing CAR without a
sense of priority �

1 || INTERSECION =
2 (
3 car[i: 0..1]:CAR(i)
4 || VMEI_NETWORK_FIFO(0)
5 || VMEI_NETWORK_FIFO(1)
6)
7 / {
8 start / car[0..1].start ,

9 car[i: 0..1]. broadcast[msg: MESSAGES][i]
10 / accept_message [msg][i],

11 car[i: 0..1]. receive [msg: MESSAGES][1-i]
12 / deliver_message[msg][1-i]
13 }
14 >> {
15 car[0..1]. ___________________timeout
16 }.

WAITING_FOR_PERMIT state. This allows the car to prematurely check its

high list and see that it is empty and enter the core area of the intersection leading

to a crash.

Disabling the car from taking the timeout action if there are any other

viable action (sending or receiving messages) is one way to avoid this timeout

period of 0 seconds. In LTSA, this can be achieved by making the timeout a low

priority action (Listing 17).

The composition of INTERSECION in Listing 17 prevents cars from

crashing into each other. However, the danger of a deadlock still prevails. The fact

that the timeout action is now low priority is evident in the new action trace LTSA

provides for a deadlock (Figure 12).

60

At this stage of modeling we can gain three key insights:

1. If the timeout duration is 0, there is the danger of a crash.

2. If the timeout duration is as long as the time necessary to complete all the

communication between the two cars, the danger of a crash goes away.

3. Cars could end up in a deadlock.

Trace to DEADLOCK:

start

car.0.broadcast.100.0

car.1.broadcast.100.1

car.0.receive.100.1

car.0.broadcast.200.0

car.1.receive.100.0

car.1.broadcast.200.1

car.0.receive.200.1

car.1.receive.200.0

car.0.___________________timeout

car.1.___________________timeout

Figure 12. Deadlock situation in the composition of Listing 17. Now the timeout
action has low priority. The CAR does not have a sense of priority

Although the composition of INTERSECTION (Listing 17) solves the issue

regarding a crash, the way we have defined the duration for the timeout is rather

awkward. This model dictates a car to timeout whenever there is no other action

it can take. This means that the timeout period is tightly coupled with all the
61

other actions a car can perform. Thus, the time has become a dependent variable of

message passing actions of a car. This prevents us from quantifying the duration of

timeout to different values and experimenting the behavior of the model.

In reality, time flows freely irrespective of whether a message is passed or

not. Also, time passes concurrently while messages are in propagation. When it

comes to digital computing, we cannot represent the analog, continuous nature of

time as it is. Instead, time is represented as discrete clock ticks, which are conveyed

by electric pulses. In an actual digital computer, all the actions take place in

response to clock pulses. Thus, actions are dependent of clock pulses, the exact

opposite of how the current model measures time leading to a timeout.

5.7 Modeling Time

We model time as a separate CLOCK process (Listing 18). The clock starts

with 0 ticks recorded and for each tick action it records one more tick. Since we

are modeling finite state processes, we must bound the maximum number of ticks

the clock can record. We achieve this by the parameter TICKS passed into the

CLOCK process. This does not limit the behavior of the model because cars only

utilize a finite number of ticks to complete the communication. Setting the number

of TICKS to a value greater than the number of ticks required to complete the

communication and reach the timeout is sufficient to experiment the complete

behavior of the system.

Now we have to enhance the model of the car to incorporate time (Listing

19). Vehicle ID (VID), maximum number of ticks the clock can record (TICKS)

and the timeout duration (TO) are passed into the CAR process as parameters.

We augment the CAR process to read time from the clock (Lines 6,

11 and 28) to come up with the CAR_WITH_CLOCK process. Further,

62

Listing 18 CLOCK process that keeps track of time �
1 CLOCK(TICKS = 6) =
2 (
3 start -> CLOCK[0]
4),

5 CLOCK[t: 0..TICKS] =
6 (
7 when (t < TICKS)
8 ___________________tick -> CLOCK[t+1]

9 | ___________________read_time[t] -> CLOCK[t]
10).

CAR_WITH_CLOCK process advances the global clock with the actions it

performs. Each tick after a messaging action signals that that action consumes

one clock tick. If we want to make an action consume more than one tick (say n

ticks), we can have a sequence of n tick actions after such action. In any case, these

ticks are dependent on the specific actions a CAR performs.

The standalone tick action in line 23 signifies that the time can flow

independent of any action taken by the CAR_WITH_CLOCK.

Since we are only interested in investigating the behavior of the system with

respect to different timeout durations, we have only augmented the parts of the

model that influence the timeout action with tick actions. This is why we do not

update the CAR with tick actions in states that follow after the expiration of the

timeout.

In a real-world implementation, timeouts are handled by operating system

interrupts that are captured by signal handlers of a process. In our model,

read_time[t+TO..t+TICKS] actions in lines 11 and 28 act as signal handlers

63

Listing 19 CAR_WITH_CLOCK process that reads time from a global clock but
without a sense of priority �

1 CAR_WITH_CLOCK(VID = 0, TICKS = 6, TO = 5) = DRIVE_IN ,

2 DRIVE_IN =
3 (
4 start
5 -> broadcast[REQUEST][VID]
6 -> ___________________read_time[t: 0..TICKS]
7 -> WAITING_FOR_REJECT [EMPTY][EMPTY][t]
8),

9 WAITING_FOR_REJECT[lo: LIST_VALS][hi: LIST_VALS]
10 [t: 0..TICKS] =
11 (
12 ___________________read_time[t+TO..t+TICKS]
13 -> ___________________timeout
14 -> WAITING_FOR_PERMIT [lo][hi]

15 | receive[REQUEST][sender: {[1 - VID]}]
16 -> ___________________tick
17 -> PROCESS_REJECT [sender][hi][t]

18 | receive[REJECT][sender: {[1 - VID]}]
19 -> ___________________tick
20 -> WAITING_FOR_REJECT [lo][sender][t]

21 | receive[PERMIT][sender: {[1 - VID]}]
22 -> ___________________tick
23 -> WAITING_FOR_REJECT [lo][EMPTY][t]

24 | ___________________tick
25 -> WAITING_FOR_REJECT [lo][EMPTY][t]
26),

64

�
26 PROCESS_REJECT[lo:LIST_VALS][hi:LIST_VALS][t:0.. TICKS]=
27 (
28 ___________________read_time[t+TO..t+TICKS]
29 -> ___________________timeout
30 -> WAITING_FOR_PERMIT [lo][hi]

31 | broadcast[REJECT][VID]
32 -> ___________________tick
33 -> WAITING_FOR_REJECT [lo][hi][t]
34),

35 WAITING_FOR_PERMIT[lo: LIST_VALS][hi: LIST_VALS] =
36 (
37 when (hi == EMPTY)
38 enter -> PASSING [lo][hi]

39 | receive[REQUEST][sender: {[1 - VID]}]
40 -> broadcast[REJECT][VID]
41 -> WAITING_FOR_PERMIT [sender][hi]

42 | receive[PERMIT][sender: {[1 - VID]}]
43 -> WAITING_FOR_PERMIT [lo][EMPTY]
44),

45 PASSING[lo: LIST_VALS][hi: LIST_VALS] =
46 (
47 exit -> PASSED [lo]

48 | receive[REQUEST][sender: {[1 - VID]}]
49 -> broadcast[REJECT][VID]
50 -> PASSING [sender][hi]
51),

65

�
54 PASSED[lo: LIST_VALS] =
55 (
56 when (lo != EMPTY)
57 broadcast[PERMIT][VID]
58 -> DRIVE_AWAY

59 | when (lo == EMPTY)
60 drive -> DRIVE_AWAY
61),

62 DRIVE_AWAY =
63 (
64 drive -> DRIVE_AWAY
65).

for the timeout interrupt. When a car enters the WAITING_FOR_REJECT state,

it reads the clock and remembers the time (t) it started waiting. The read_time

actions in lines 11 and 28 are available to a car only after TO ticks have passed

after the time it entered (t) the WAITING_FOR_REJECT state. Since the

timeout action is available only after taking the read_time[t+TO..t+TICKS]

action, we get the desired effect of a timeout in our model. We repeat the

read_time[t+TO..t+TICKS] action and timeout in line 28 to be vigilant about

the precise moment a CAR reaches its timeout.

5.7.1 Testing the Model. These time sensitive models can be

composed for testing as in Listing 20.

When composing these new models, we must provide suitable values for

the two parameters TICKS and TO constrained to the relationship: TO ≤

TICKS. While we can choose any value for TICKS, on one hand choosing a value

unnecessarily larger than required bloats the state space of the model slowing down

66

Listing 20 Composition for testing CAR_WITH_CLOCK without a sense of
priority �

1 || INTERSECION(TICKS=10, TO=6) =
2 (
3 car[i: 0..1]: CAR_WITH_CLOCK(i, TICKS , TO)
4 || VMEI_NETWORK_FIFO(0)
5 || VMEI_NETWORK_FIFO(1)
6 || car[i:0..1]:: CLOCK(TICKS)
7)
8 / {
9 start / car[0..1].start ,

10 car[i: 0..1]. broadcast[msg: MESSAGES][i]
11 / accept_message [msg][i],

12 car[i: 0..1]. receive [msg: MESSAGES][1-i]
13 / deliver_message[msg][1-i]
14 }.

the composition process. On the other hand, if we choose a very small value, it

prevents from experimenting with all the interesting situations.

We use the time to complete all the communication between the two

cars (TTCC - “Time To Complete Communication”) as the guiding principle

for choosing a good value for the parameter TICKS. Since we have associated a

single tick action with each message passing actions in the CAR_WITH_CLOCK

process (Listing 19), each car requires 3 ticks to complete all the communication.

As we have discussed in Section 5.7, this is a choice we have made to keep the

model size small. This does not alter the behavior of the model. With two cars

at the intersection, we have 3 ≤ TTCC ≤ 6. So, choosing TICKS to be a little

larger than 6 enables us to keep the model small and pick different values for TO to

experiment with all the interesting cases.

67

Trace to DEADLOCK:

start

car.0.broadcast.100.0

car.0.___________________read_time.0

car.0.___________________tick

car.0.___________________tick

car.0.___________________tick

car.0.___________________tick

car.0.___________________tick

car.0.___________________tick

car.0.___________________tick

car.0.___________________tick

car.0.___________________tick

car.0.___________________tick

car.1.broadcast.100.1

car.0.receive.100.1

car.1.___________________read_time.10

car.1.receive.100.0

Figure 13. Deadlock situation in the composition of Listing 20.
CAR_WITH_CLOCK reads and advances time in a globally shared CLOCK
process with read_time and tick actions respectively.

When tested for safety, composition in Listing 20 provides the action trace

in Figure 13 leading to a deadlock. According to this action trace, car 0 has been

just passing time in the queue area of the intersection without doing any productive

work. This is not the behavior we expect from a car that is trying to pass through

68

an intersection. The model reaches this deadlock state because the tick action is

freely available to a CAR_WITH_CLOCK in the WAITING_FOR_REJECT

state and the CAR_WITH_CLOCK repeatedly keeps on taking this action,

disregarding other possible actions, until the CLOCK runs out of ticks.

Just like we make timeout action low priority in Listing 17, our first hunch

is to make tick a low priority action and it will solve this problem. However, that

introduces other anomalies to the model. In LTSA, when an action is made low

priority, that action is removed wherever there are other actions available. This

causes the tick action to be removed in places where we do not desire the tick

action to be eliminated.

What we really want is an action in the CAR_WITH_CLOCK process to

advance the clock independent of messaging actions and that action to have a low

priority. Therefore, we replace the standalone tick action in CAR_WITH_CLOCK

process (Line 23 of Listing 19) with a different action, tick_idle, which has

the same effect as the tick action (Listing 21). We call this new process

CAR_TICK_IDLE. Please note that in the interest of saving space, we only show

the segment of the CAR_WITH_CLOCK process that is updated.

To enable the CAR_TICK_IDLE process, which has the tick_idle action,

to update the CLOCK process (Listing 18), we should update the CLOCK process

accordingly (Listing 22).

When composing the CAR_TICK_IDLE process (Listing 21) with

CLOCK_TICK_IDLE process (Listing 22) and VMEI_NETWORK_FIFO

process (Listing 9), in addition to making the tick_idle action low priority, we have

to make some other actions high priority.

69

Listing 21 Portion of the CAR_WITH_CLOCK process of Listing 19 updated
with the tick_idle action �

9 CAR_TICK_IDLE(VID = 0, TICKS = 6, TO = 5) = DRIVE_IN ,

10 DRIVE_IN =
11 (
12 start
13 -> broadcast[REQUEST][VID]
14 -> ___________________read_time[t: 0..TICKS]
15 -> WAITING_FOR_REJECT [EMPTY][EMPTY][t]
16),

17 WAITING_FOR_REJECT[lo: LIST_VALS][hi: LIST_VALS]
18 [t: 0..TICKS] =
19 (
20 ___________________read_time[t+TO..t+TICKS]
21 -> ___________________timeout
22 -> WAITING_FOR_PERMIT [lo][hi]

23 | receive[REQUEST][sender: {[1 - VID]}]
24 -> ___________________tick
25 -> PROCESS_REJECT [sender][hi][t]

26 | receive[REJECT][sender: {[1 - VID]}]
27 -> ___________________tick
28 -> WAITING_FOR_REJECT [lo][sender][t]

29 | receive[PERMIT][sender: {[1 - VID]}]
30 -> ___________________tick
31 -> WAITING_FOR_REJECT [lo][EMPTY][t]

32 | ___________________tick_idle
33 -> WAITING_FOR_REJECT [lo][hi][t]
34),

35 // Rest of the process is the same as the CAR process

70

Listing 22 CLOCK process with the tick_idle action �
1 CLOCK_TICK_IDLE(TICKS = 6) =
2 (
3 start -> CLOCK[0]
4),

5 CLOCK[t: 0..TICKS] =
6 (
7 when (t < TICKS)
8 ___________________tick -> CLOCK[t+1]

9 | when (t < TICKS)
10 ___________________tick_idle -> CLOCK[t+1]

11 | ___________________read_time[t] -> CLOCK[t]
12).

With the tick_idle action in place, the sole purpose of the tick action is

to take the time the CAR_TICK_IDLE process spends sending and receiving

messages. So, it is better to try to force the model to take the tick action

immediately after a messaging action. In other words, it is better to tightly couple

each messaging action with its respective tick action that follows making it to be

atomic. To achieve this we make the tick action high priority.

In a real-world implementation, operating system interrupts take precedence

over the other actions a process is performing. In this light, we do not want the

CAR_TICK_IDLE process to keep on performing other actions whenever the

timeout action is available. We can make our model behave this way by making

the read_time action of lines 11 and 28 of Listing 19, which is the signal handler in

our model, high priority. As a byproduct, this makes the read_time action in line

6 high priority as well. This is where a car reads and notes the time when it enters

71

the queue area of the intersection. It becoming high priority forces a car to read

and note the time as soon as it broadcasts the REQUEST message making these

two actions atomic. This too is the logical thing for a car to do and hence it does

not add any artificial behavior to our final model.

When read_time action in lines 11 and 28 of Listing 19 is available to a

CAR_TICK_IDLE process, that means the signal handler for the timeout is

called. In that case, we need the process to immediately take the timeout action.

By making the timeout action high priority, we can achieve this behavior.

The prime motivation of each car is to pass through the intersection as

quickly as possible. To achieve this, we make enter action high priority so that

as soon as the conditions for a car to enter the core area of the intersection is met,

enter action is taken.

With all the considerations in place, the final composition is presented in

Listing 23. This composition is robust enough for us to experiment with different

timeout durations.

5.7.2 Ideal Duration for the Timeout. In the final model we

compose (Listing 23), the time to complete communication (TTCC) is 6 ticks.

We test the model with varying values for the timeout (TO) duration. This covers

three cases: TO < TTCC, TO = TTCC and TO > TTCC.

When TO ≥ TTCC, the system ends up in a deadlock. Since cars deadlock

prior to entering the core area of the intersection, there is no danger of a crash.

Figure 14 shows the action trace leading to a deadlock when TO = TTCC. We

present the action trace leading to a deadlock when TO = 9, which represents the

TO > TTCC case, in Figure 15. The only difference between these two deadlock

traces is that the trace for TO = 9 contains 3 tick_idle actions. During these

72

Listing 23 Composition for testing CAR_TICK_IDLE without a sense of priority �
1 || INTERSECION(TICKS=10, TO=6) =
2 (
3 car[i: 0..1]: CAR_TICK_IDLE(i, TICKS , TO)
4 || VMEI_NETWORK_FIFO(0)
5 || VMEI_NETWORK_FIFO(1)
6 || car[i: 0..1]:: CLOCK_TICK_IDLE(TICKS)
7)
8 / {
9 start / car[0..1].start ,

10 car[i: 0..1]. broadcast[msg: MESSAGES][i]
11 / accept_message [msg][i],

12 car[i: 0..1]. receive [msg: MESSAGES][1-i]
13 / deliver_message[msg][1-i]
14 }
15 << {
16 car[0..1].enter ,
17 car[0..1]. ___________________tick ,
18 car[0..1]. ___________________timeout ,
19 car[0..1]. ___________________read_time
20 [0.. TICKS]
21 }.

22 || INTERSECION_TICK_IDLE(TICKS=10, TO=6) =
23 INTERSECION(TICKS , TO)
24 >> {
25 car[0..1]. ___________________tick_idle
26 }.

73

Trace to DEADLOCK:

start

car.0.broadcast.100.0

car.0.___________________read_time.0

car.1.broadcast.100.1

car.1.___________________read_time.0

car.0.receive.100.1

car.0.___________________tick

car.0.broadcast.200.0

car.0.___________________tick

car.1.receive.100.0

car.1.___________________tick

car.1.broadcast.200.1

car.1.___________________tick

car.0.receive.200.1

car.0.___________________tick

car.1.receive.200.0

car.1.___________________tick

car.0.___________________read_time.6

car.1.___________________read_time.6

car.0.___________________timeout

car.1.___________________timeout

Figure 14. Deadlock situation in the composition of Listing 23 when timeout
duration is equal to the time to complete communication (TO = TOCC).

74

Trace to DEADLOCK:

start

car.0.broadcast.100.0

car.0.___________________read_time.0

car.1.broadcast.100.1

car.1.___________________read_time.0

car.0.receive.100.1

car.0.___________________tick

car.0.broadcast.200.0

car.0.___________________tick

car.1.receive.100.0

car.1.___________________tick

car.1.broadcast.200.1

car.1.___________________tick

car.0.receive.200.1

car.0.___________________tick

car.1.receive.200.0

car.1.___________________tick

car.0.___________________tick_idle

car.0.___________________tick_idle

car.0.___________________tick_idle

car.0.___________________read_time.9

car.1.___________________read_time.9

car.0.___________________timeout

car.1.___________________timeout

Figure 15. Deadlock situation in the composition of Listing 23 when timeout
duration is greater than the time to complete communication (TO > TOCC).
Here we use TO = 9.

75

3 ticks, cars were waiting at the intersection just passing time till the timeout is

reached. Therefore, setting timeout higher than necessary negatively affects the

throughput at the intersection.

Setting TO < TTCC, leads to the danger of cars crashing into each other

while passing through the core area of the intersection. Here, we present the action

trace for a CRASH when TO = 2 (Figure 16). In this situation, each car timeouts

prior to getting to know about the other car. Hence, each car thinks that it is the

only car waiting at the intersection and that causes the crash.

We observed that when TO = 5, the model works without any deadlocks or

crashes. However, this is just a case of being lucky. According to how we are timing

the actions of a car, with 5 ticks there is not enough time for car 1 to receive the

REJECT message sent by car 0 (or vice versa). This leads to the situation where

car 0 is aware of car 1’s rejection but car 1 is not. Thus, car 0 ends up waiting for

car 1 to pass through first making the system work nicely just out of luck. Thus,

TO = 5 is not the ideal timeout duration for the system to work smoothly.

With this modeling exercise, we gained a considerable amount of insight into

the behavior of the distributed mutual exclusion algorithm for intersection traffic

control algorithm (Wu et al., 2015a) with respect to the value for the duration of

the timeout:

TO < TTCC: When the duration of the timeout is less than time to complete

communication, there is the danger of a crash.

TO ≥ TTCC: When the duration of the timeout is greater than or equal to the

time to complete communication, the algorithm deadlocks.

76

Trace to property violation in CRASH:

start

car.0.broadcast.100.0

car.0.___________________read_time.0

car.1.broadcast.100.1

car.1.___________________read_time.0

car.0.receive.100.1

car.0.___________________tick

car.0.broadcast.200.0

car.0.___________________tick

car.0.___________________read_time.2

car.1.___________________read_time.2

car.0.___________________timeout

car.0.enter CAR_0_PASSING

car.1.broadcast.100.1 CAR_0_PASSING

car.1.___________________timeout CAR_0_PASSING

car.1.enter CAR_0_PASSING &&

CAR_1_PASSING

Figure 16. Action trace leading to a crash in the composition of Listing 23 when
timeout duration is less than the time to complete communication (TO < TOCC).
Here we use TO = 2.

TO >> TTCC: Setting the duration of the timeout greater than necessary reduces

the throughput at the intersection.

77

In conclusion, setting and tuning the duration of the timeout is a serious

business when it comes to implementing this algorithm for real. It is a trade-off

between avoiding crashes vs. the throughput. A timeout duration less than the

time to complete communication is not acceptable at any time, since it can lead to

crashes.

Although our model is set to have a time to complete communication to be

6 ticks, in a real system it is dependent on many parameters such as, how reliable

the network is, how congested the network is and the distance between vehicles

that communicate. When it comes to a real-world implementation, we need good

answers to questions regarding the time to complete communication like:

1. Is it the same for all the intersections?

2. Is it independent of the number of vehicles waiting at the intersection?

3. Is it the same for all the types of vehicles?

4. Is it the same for different weather conditions?

If the answer to any of these questions is “No”, we need a way to adapt the

timeout duration according to the situation. Finding a universal upper bound

for the time to complete communication and setting the timeout duration higher

than that could solve the problem of a crash. But it would result a very inefficient

transportation system.

5.8 Global Clock vs. Local Clock

Line 6 of the composition in Listing 23 models the CLOCK_TICK_IDLE

to be a global resource shared by both the cars: �
6 car[i: 0..1]:: CLOCK_TICK_IDLE(TICKS)

78

In LTSA, “ :: ” signifies this. So, a tick or tick_idle action advances the

clock of both the cars despite which car executed that action. For example, in

Figure 15, the 3 tick_idle actions taken by car 0 mean both the cars were idle.

Due to this choice, in the model, none of the actions by the two cars happen

concurrently within the same tick. In other words, within each tick only a single

action by any car takes place.

Making the clock local to each car is quite straightforward and it is just the

difference of a semicolon (:). We only need to change the “ :: ” in line 6 of the

Listing 23 to “ : ”. �
6 car[i: 0..1]: CLOCK_TICK_IDLE(TICKS)

With a local clock, a tick taken by one car does not affect the clock of

the other car. This reduces the time to complete communication (TTCC) to

3. Irrespective of this change, the insights we gain with a global clock remains

unchanged with a local clock as well. We only include the action trace for the

deadlock with TTCC = 4 in this case to show the behavior of the model (Figure

17). Note that in this action trace both car 0 and car 1 take independent tick_idle

actions.

As opposed to the version of the model with a global clock, when we make

the clock local, the simulation is like all the actions are happening in parallel. For

each clock tick both the cars perform some actions. Although the action trace in

Figure 17 contains two tick_idle actions, both these ticks resemble a single tick in a

global clock. Another thing to note in this model is that despite the clocks are local

to cars, they are perfectly synchronized.

79

Trace to DEADLOCK:

start

car.0.broadcast.100.0

car.0.___________________read_time.0

car.1.broadcast.100.1

car.1.___________________read_time.0

car.0.receive.100.1

car.0.___________________tick

car.0.broadcast.200.0

car.0.___________________tick

car.1.receive.100.0

car.1.___________________tick

car.1.broadcast.200.1

car.1.___________________tick

car.0.receive.200.1

car.0.___________________tick

car.1.receive.200.0

car.1.___________________tick

car.0.___________________tick_idle

car.0.___________________read_time.4

car.0.___________________timeout

car.1.___________________tick_idle

car.1.___________________read_time.4

car.1.___________________timeout

Figure 17. Deadlock situation in Listing 23 after making the
CLOCK_TICK_IDLE local to each car. With a local clock, time to complete
communication (TTCC) becomes 3. Here we use TO = 4.

80

With these we have covered the two extremes of all the actions being

sequential and all the actions being concurrent. The algorithm has issues in either

case. In reality, we get a mix of both. However, during this study we did not

embark our efforts in modeling such a model. Another aspect we did not model

is out of synchronized local clocks.

5.9 Using Arrival Time to Determine Priority

In several occasions, Wu et al. (2015a) discuss using arrival time to

determine the priority of a vehicle to pass through the intersection (Chapter II -

section 2.3.2). In this section, we bring arrival time into our models and experiment

the caveats of this choice.

For the algorithm to use arrival time to decide which car should pass

through the intersection first, each car should notify its arrival time to the other

car. Therefore, we have to augment the REQUEST message with the arrival time

of the car (Listing 24).

In addition to changing the REQUEST message, we have to change the

way a car responses to a received REQUEST message. Instead of responding with

a REJECT message to each REQUEST message received, now a car V sends a

REJECT message only if the arrival time of the car U that sent the REQUEST

message is greater than that of car V (lines 16 - 18 and 42 - 44 of Listing 24).

Since the current network process (Listing 9) is not designed to handle the

updated REQUEST message format, we updated it accordingly (Listing 25).

CAR_P_TIME (Listing 24) and VMEI_NETWORK_FIFO_TIME

(Listing 25) processes that can handle the new REQUEST message can be

composed together with CLOCK_TICK_IDLE (Listing 22) to model the behavior

at the intersection as in Listing 26.

81

Listing 24 CAR_P_TIME process that uses arrival time as priority to decide who should pass through the intersection
first. �

1 CAR_P_TIME(VID = 0, TICKS = 6, TO = 5) = DRIVE_IN ,

2 DRIVE_IN =
3 (
4 start
5 -> ___________________read_time[t_mine: 0.. TICKS]
6 -> broadcast[REQUEST][VID][t_mine]
7 -> WAITING_FOR_REJECT[EMPTY][EMPTY][t_mine]
8),

82

�
9 WAITING_FOR_REJECT[lo: LIST_VALS][hi: LIST_VALS][t_mine: 0.. TICKS] =

10 (
11 ___________________read_time[t_mine + TO .. t_mine + TICKS]
12 -> ___________________timeout
13 -> WAITING_FOR_PERMIT[lo][hi][t_mine]

14 | receive[REQUEST][sender: {[1 - VID]}][t_other: 0..TICKS]
15 -> ___________________tick
16 -> if (t_other > t_mine)
17 then PROCESS_REJECT_1 [sender][hi][t_mine]
18 else WAITING_FOR_REJECT[lo][hi][t_mine]

19 | receive[REJECT][sender: {[1 - VID]}]
20 -> ___________________tick
21 -> WAITING_FOR_REJECT[lo][sender][t_mine]

22 | receive[PERMIT][sender: {[1 - VID]}]
23 -> ___________________tick
24 -> WAITING_FOR_REJECT[lo][EMPTY][t_mine]

25 | ___________________tick_idle
26 -> WAITING_FOR_REJECT[lo][hi][t_mine]
27),

83

�
28 PROCESS_REJECT_1[lo: LIST_VALS][hi: LIST_VALS][t_mine: 0..TICKS] =
29 (
30 ___________________read_time[t_mine + TO .. t_mine + TICKS]
31 -> ___________________timeout
32 -> WAITING_FOR_PERMIT[lo][hi][t_mine]

33 | broadcast[REJECT][VID]
34 -> ___________________tick
35 -> WAITING_FOR_REJECT[lo][hi][t_mine]
36),

37 WAITING_FOR_PERMIT[lo: LIST_VALS][hi: LIST_VALS][t_mine: 0.. TICKS] =
38 (
39 when (hi == EMPTY)
40 enter -> PASSING [lo][hi]

41 | receive[REQUEST][sender: {[1 - VID]}][t_other: 0.. TICKS]
42 -> if (t_other > t_mine)
43 then PROCESS_REJECT_2 [sender][hi][t_mine]
44 else WAITING_FOR_PERMIT[lo][hi][t_mine]

45 | receive[PERMIT][sender: {[1 - VID]}]
46 -> WAITING_FOR_PERMIT[lo][EMPTY][t_mine]
47),

84

�
50 PROCESS_REJECT_2[lo: LIST_VALS][hi: LIST_VALS][t_mine: 0..TICKS] =
51 (
52 broadcast[REJECT][VID]
53 -> WAITING_FOR_PERMIT[lo][hi][t_mine]
54),

55 PASSING[lo: LIST_VALS][hi: LIST_VALS] =
56 (
57 exit -> PASSED [lo]

58 | receive[REQUEST][sender: {[1 - VID]}][ot: 0.. TICKS]
59 -> broadcast[REJECT][VID]
60 -> PASSING [sender][hi]
61),

62 PASSED[lo: LIST_VALS] =
63 (
64 when (lo != EMPTY)
65 broadcast[PERMIT][VID]
66 -> DRIVE_AWAY

67 | when (lo == EMPTY)
68 drive -> DRIVE_AWAY
69),

70 DRIVE_AWAY =
71 (
72 drive -> DRIVE_AWAY
73).

85

Listing 25 Updated network process that provides a FIFO channel that can handle
updated REQUEST message that includes the arrival time. �

1 VMEI_NETWORK_FIFO_TIME(VID = 0, TICKS = 6) = QUEUE ,

2 QUEUE =
3 (
4 accept_message [REQUEST][VID][t: 0..TICKS]
5 -> QUEUE[REQUEST][t]

6 | accept_message [REJECT][VID]
7 -> QUEUE[REJECT]

8 | accept_message [PERMIT][VID]
9 -> QUEUE[PERMIT]

10),

11 QUEUE[REQUEST][t: 0..TICKS] =
12 (
13 accept_message [REJECT][VID]
14 -> QUEUE[REQUEST][t][REJECT]

15 | accept_message [PERMIT][VID]
16 -> QUEUE[REQUEST][t][PERMIT]

17 | deliver_message[REQUEST][VID][t] -> QUEUE
18),

19 QUEUE[REJECT] =
20 (
21 accept_message [PERMIT][VID]
22 -> QUEUE[REJECT][PERMIT]

23 | deliver_message[REJECT][VID] -> QUEUE
24),

25 QUEUE[PERMIT] =
26 (
27 deliver_message[PERMIT][VID] -> QUEUE
28),

86

�
29 QUEUE[REQUEST][t: 0..TICKS][REJECT] =
30 (
31 accept_message [PERMIT][VID]
32 -> QUEUE[REQUEST][t][REJECT][PERMIT]

33 | deliver_message[REQUEST][VID][t]
34 -> QUEUE[REJECT]
35),

36 QUEUE[REQUEST][t: 0..TICKS][PERMIT] =
37 (
38 deliver_message[REQUEST][VID][t]
39 -> QUEUE[PERMIT]
40),

41 QUEUE[REJECT][PERMIT] =
42 (
43 deliver_message[REJECT][VID]
44 -> QUEUE[PERMIT]
45),

46 QUEUE[REQUEST][t: 0..TICKS][REJECT][PERMIT] =
47 (
48 deliver_message[REQUEST][VID][t]
49 -> QUEUE[REJECT][PERMIT]
50).

87

Listing 26 Composition for testing CAR_P_TIME that uses arrival time to prioritize who passes through first �
1 || INTERSECION(TICKS=10, TO=6) =
2 (
3 car[i: 0..1]: CAR_P_TIME(i, TICKS , TO)
4 || VMEI_NETWORK_FIFO_TIME(0, TICKS)
5 || VMEI_NETWORK_FIFO_TIME(1, TICKS)
6 || car[i: 0..1]:: CLOCK_TICK_IDLE(TICKS)
7)
8 / {
9 start / car[0..1].start ,

10 car[i: 0..1]. broadcast[REQUEST][i][t: 0..TICKS]
11 / accept_message[REQUEST] [i] [t],

12 car[i: 0..1]. broadcast[msg: {[REJECT], [PERMIT]}][i]
13 / accept_message[msg][i],

14 car[i: 0..1]. receive[REQUEST][1-i][t: 0..TICKS]
15 / deliver_message[REQUEST][1-i][t],

16 car[i: 0..1]. receive[msg: {[REJECT], [PERMIT]}][1-i]
17 / deliver_message[msg][1-i]
18 }
19 << {
20 car[0..1].enter ,
21 car[0..1]. ___________________tick ,
22 car[0..1]. ___________________timeout ,
23 car[0..1]. ___________________read_time[0..TICKS]
24 }.

88

�
25 || INTERSECION_P_TIME(TICKS=10, TO=6) =
26 INTERSECION(TICKS , TO)
27 >> {
28 car[0..1]. ___________________tick_idle
29 }.

We test the model that uses arrival time to prioritize cars while varying the

timeout duration. It does not suffer from any deadlocks. However, when the arrival

times of cars are the same there is the danger of a crash for every timeout duration

(Figure 18).

When cars are using arrival time as the priority, a car sends a REJECT

message in response to a REQUEST message only if the car that is requesting

permission arrived later than the car that is giving or denying permission.

Consequently, when both cars arrive at the same time, neither of the cars reject

the other car. This allows both the cars to enter the intersection creating a crash

situation.

In Listing 24, if we change lines 16 and 42 from: �
-> if (t_other > t_mine)

to: �
-> if (t_other >= t_mine)

, when cars arrive at the same time, each car would end up rejecting the other.

A composition with a car (say V) modeled to prevent any other car (say U) that

arrives at the same time or later than V , ends up in a deadlock when both cars

arrive at the same time and the timeout duration is set to greater than or equal to

89

Trace to property violation in CRASH:

start

car.0.___________________read_time.0

car.1.___________________read_time.0

car.0.broadcast.100.0.0

car.1.broadcast.100.1.0

car.0.receive.100.1.0

car.0.___________________tick

car.1.receive.100.0.0

car.1.___________________tick

car.0.___________________tick_idle

car.0.___________________tick_idle

car.0.___________________tick_idle

car.0.___________________tick_idle

car.0.___________________read_time.6

car.1.___________________read_time.6

car.0.___________________timeout

car.0.enter CAR_0_PASSING

car.1.___________________timeout CAR_0_PASSING

car.1.enter CAR_0_PASSING &&

CAR_1_PASSING

Figure 18. Action trace leading to a crash in the composition of Listing 26 when
cars use arrival time to prioritize who passes through the intersection first. Here we
use TO = 6.

the time to complete communication. In fact, when cars arrive at the same time,

such a model behaves exactly the same as a model that does not use any notion of

priority (Composition in Listing 23).

90

The lesson learned after these set of experiments is that the arrival time

alone is not sufficient to prioritize which car should pass through the intersection

first.

Since a car that arrives first passing through the intersection is the fair thing

to do, we should use the arrival time in the formula to decide the priority. This

way, we can maintain a first-come-first-served nature at an intersection. However,

when both cars arrive at the same time, we face the dilemma of deciding who came

first. Therefore, the algorithm fails when both the cars arrive at the same time.

In this situation, we need some tie-breaker to give precedence to one car over the

other.

5.10 Breaking the Tie

One quality of the attribute (or attributes) we choose to break the tie is that

whenever the arrival times of the cars are the same, the value of the attribute used

to break the tie should be unique for each car. Since arrival time gets precedence

over the attribute used to break the tie, when arrival times are different (there is no

tie), we do not need to worry about the value of the tie-breaker.

For example, in the situation where two human drivers arrive at a 4-way

intersection at the same time from two conflicting lanes, the driver on the right

gets the right of the way to pass though. In this case, the relative position of cars is

being used as the tie-breaker.

The messages exchanged between cars in the current model already contain

the vehicle id (VID). Further, it is unique to each car. Because of this, we can

easily use VID as the tie-breaker and run experiments, without changing the

models a lot.

91

The only minor change required is to the model of the CAR_P_TIME

(Listing 24). Yet again, the change is to lines 16 and 42, which models the logic

for processing an incoming REQUEST message and makes the decision - to reject

or not to reject. We have to change lines 16 and 42 from: �
-> if (t_other > t_mine)

to: �
-> if ((t_other > t_mine) ||

(t_other == t_mine && sender > VID))

Without loss of generality, we have given higher priority to the vehicle with

the lower VID ’s, whenever their arrival times are the same. In this experiment, our

only intention is to demonstrate how a tie-breaker can aid remove the problems of

the algorithm we have uncovered so far but not to decide what the best tie-breaker

is.

With this change, when the duration for the timeout (TO) is set greater

than or equal to the time to complete communication (TTCC), the algorithm

works fine for two cars free of deadlocks and crashes. Whenever two cars arrive

at the intersection at the same time, car 0, which has the lower VID gets to pass

through before car 1. In this case, car 1 does not broadcast a REJECT message

and hence car 0 does not receive a REJECT message. This takes two ticks off

the TTCC, reducing it to 4 from the earlier value of 6 we had. In other cases,

where cars arrive at different times, the car that comes late does not broadcast a

REJECT message resulting in the car that came earlier not receiving such message

keeping TTCC to 4 ticks.

92

Consider the architecture of the intersection we are analyzing (Figure

1). Also, consider the situation where both car 0 and car 1 are arriving at the

intersection at the same time.

In the case of human drivers and the driver on the right gets the right of

the way rule, if car 0 arrives in lane 0 and car 1 arrives in lane 2, then car 0 gets to

pass through the intersection first. Now if car 1 arrives in lane 0 and car 0 arrives

in lane 2, car 1 gets to go first.

However, in the case of the algorithm with VID as the tie-breaker, car 0

always gets to pass through first irrespective of the lane it is coming from. This

is a subtle fairness issue. Thus, the parameters we use to break the tie between

cars that arrive at the same time dictate how fair the algorithm ends up. In this

light, using something as VID which is tightly coupled with each vehicle makes the

algorithm unfair. Looking for attributes that a car can dynamically inherit based

on its context, such as the lane it is approaching the intersection or the direction it

is traveling (e.g. north-south or east-west) would lead to a fairer algorithm.

5.10.1 A Better Tie-Breaker - A Suggestion. We suggest

combining two attributes to come up with a better tie-breaker:

1. Out of the two cross-roads, designate one as the main road (say lanes 2, 3, 6,

7 of Figure 1) and the other as the sub road (lanes 0, 1, 4, 5). Vehicles on the

main road get high priority.

2. Vehicles moving straight through the intersection get high priority.

Depending on which rule of the tie-breaker gets precedence, we

get two distinct traffic patterns at the intersection. To implement this

93

mechanism, the REQUEST(vid, lid) message should be enhanced to:

REQUEST (vid, time, lidin, lidout):

vid: Vehicle id.

time: Time when the vehicle enters the queue area of the intersection.

lidin: Lane id where the vehicle is entering the intersection.

lidout: Lane id where the vehicle will be exiting the intersection.

By inspecting lidin, we can determine whether a vehicle is approaching the

intersection from the main road or the sub road. The pair lidin and lidout serves as

a turning signal. If lidin = lidout then the vehicle is going straight. If lidin 6= lidout

then it is turning.

The function iHiPriority (Algorithm 3) describes how to use these attributes

to decide who has the priority. It returns true if and only if the caller of the

function (the vehicle that is trying to decide on the priority - referred to as I) has

higher priority than the vehicle that is requesting permission (referred to as you).

This function gives higher precedence to the rule “vehicles on the main road (lanes

2, 3, 6, 7) have higher priority than vehicles on the sub road ” (lines 8 - 13) over

the rule “vehicles going straight have higher priority than vehicles that are turning”

(lines 14 - 17). The precedence of these two rules can be inverted in the Algorithm

3 by checking for turns before checking whether the vehicles are on the main road

or not.

5.11 A Final Remark

With this final set of experiments, we have demonstrated that using a

tie-breaker in addition to arrival time to decide who should pass first makes the

94

Algorithm 3 Suggested algorithm to decide priority.
. iT ime — Time I entered the queue area

. uT ime — Time you entered the queue area
. iLidin — Lane I am approaching from

. uLidin — Lane you are approaching from
. iLidout — Lane I am exiting to

. uLidout — Lane you are exiting to

. Returns True if and only if I (the caller of the function) have higher priority
than you (the vehicle requesting permission)

1: function iHiPriority(iT ime, uT ime, iLidin, iLidout, uLidin, uLidout)

2: if iT ime < uTime then
3: return True . I came earlier
4: end if

5: if iT ime > uTime then
6: return False . You came earlier
7: end if

. We arrived at the same time

8: if (iLidin ∈ {2, 3, 6, 7}) and (uLidin /∈ {2, 3, 6, 7}) then
9: return True . I am in the main road, you are not
10: end if

11: if (iLidin /∈ {2, 3, 6, 7}) and (uLidin ∈ {2, 3, 6, 7}) then
12: return False . You are in the main road, I am not
13: end if

. Arrived at the same time on the same road

14: if (iLidin = iLidout) and (uLidin 6= uLidout) then
15: return True . I am going straight, you are not
16: end if

17: return False

18: end function

algorithm operate smoothly when there are two cars at the intersection. This does

95

not automatically certify that the algorithm works flawlessly with more than two

cars at the intersection.

For example, in the 4-way intersection with human drivers, “the driver on

the right gets the right of the way” rule works perfectly as long as less than 4 cars

(say n and n < 4) simultaneously approach the intersection from n directions.

However, if 4 cars arrive simultaneously from 4 directions, this rule would complete

a wait cycle, which is a deadlock. Although such a situation is highly improbable,

it is not impossible for sure. A group of civilized human drivers will be able to

understand the situation, use their common sense, collaborate, improvise and

resolve such a situation easily. Unfortunately, the drivers of self-driving cars,

computers, not yet have invented common sense. Therefore, we need to stress test

the algorithm with intersections with larger number of cars to give it the certificate

of approval for real use. Making it work for two cars is just the first step.

96

CHAPTER VI

CONVOY CRASH

One goal of designing a distributed protocol is to keep the number of

messages exchanged to a minimum. This leads to better network resource

utilization.

In designing the distributed mutual exclusion algorithm for intersection

traffic control (Algorithm 2), the authors try to reduce the number of messages

by leveraging how vehicles behave at an intersection (Wu et al., 2015a). This

optimization is discussed in detail in Chapter II - Section 2.4.2.5. We just present

the gist of the idea behind the optimization here to give the reader some context.

When the vehicle at the head of a lane gets the chance to pass through the

intersection, it allows vehicles queued behind it to form a convoy. Instead of each

of the vehicles in the convoy broadcasting a PERMIT message to notify other

vehicles waiting in conflicting lanes that it is no longer in their way, the algorithm

designates the last vehicle of the convoy as the representative for the whole convoy

and requires only that vehicle send a single RERMIT message.

For example, in the situation pictured in Figure 19, when the green car gets

the turn to pass through the intersection, the yellow car and the orange car too get

to follow along the green car. Only the orange car broadcasts a PERMIT message

and when that is received the red car starts passing through the intersection.

The premise leading to this optimization is that the last vehicle in a convoy

is the last to exit the core area (Figure 1) of the intersection. It seems that the

authors of the paper are relying on the unspoken assumption of “right turns are

not allowed ” to achieve this reduction of messages exchanged (Chapter II - Sections

97

0

0 1 2 3

23

4

1

Figure 19. Example - A “Follow List” convoy, a situation induced by the follow list
related logic of the algorithm. The green car (car 1) has broadcast a follow list. It
contains the yellow car (car 2) and orange car (car 3). Therefore, cars 1, 2, and 3
form a convoy and pass through the intersection together. In the meantime, the
red car (car 0) is waiting till the convoy passes through the intersection. According
to follow list logic of the algorithm, orange car is responsible for notifying others
(in this case the red car) that the convoy has cleared the core of the intersection.
The convoy passes through segments 0, 1, 2, 3 of the core in sequence and exits the
core area to the segment 4, which is the open road after the core. In the specific
case shown in the figure, if car 0 enters the core while the convoy is still in transit
through the core, a crash is possible in segment 3.

2.1 and 2.2). We believe that disallowing right turns at an intersection is a terrible

price to pay in exchange for a reduction of a few messages.

In this chapter, we demonstrate how this optimization ends up creating a

crash if right turns are allowed.

98

Building a complete model to highlight the problem in this situation requires

a lot of effort. It requires at least 3 cars, 2 of which form the convoy while the other

car enters the intersection from a lane that conflicts with the convoy. Further,

we have to model all the logic behind the “Follow List” (Chapter II, Section

2.4.2.3) related portions of Algorithm 2: creation (line 25), broadcast (line 26)

and processing after receiving (lines 29 - 37). This could end up with a quite large

model.

Instead, we take a shortcut just to pinpoint the problem. We fast forward

to an intersection where a follow list has been already broadcast and a convoy

is passing through the intersection (e.g. car 1 - green, car 2 - yellow and car 3 -

orange in lane 6) and there is another vehicle (e.g. car 0 - red) waiting in a lane

that conflicts with the convoy (lane 4) till the convoy is through the intersection

(Figure 19).

6.1 Fine-Grained Conceptual Model of the Intersection

To highlight the crash situation, we model the core area of the intersection

with a finer granularity than we do in Chapter V. In Chapter V, we consider the

core area of the intersection as a whole. Each car, after taking the enter action

is considered to be in the core area of the intersection. Taking the exit action, a

car exits the intersection. We do not model what happened to a car in between

these two actions. In other words, we do not model the trajectory of a car within

the core area of the intersection. Two cars simultaneously entering the core from

conflicting lanes is considered a crash.

Since right turns are only applicable to lanes with even numbers (Figure

1), we only consider those lanes. We segment the portion of such a lane that runs

through the core area of the intersection to 4 segments as shown in Figure 19.

99

Cars of the convoy enter the core area of the intersection into segment 0. Then

they enter segments 1, 2, 3 in sequence and exit the core area when they exit the

segment 3.

We label the road after segment 3 where cars exit the core area and drive

away as segment 4. This choice makes our models a bit simpler and uniform. With

this we can model exiting segment 3 as entering segment 4. This comes handy in

several places such as building the convoy and defining fluents to test the model.

With these segments, we keep track which segment a car is in while passing

through the intersection. A car can be in one segment for some time before moving

into the next segment. Also, in the convoy, a car cannot enter a segment occupied

by the car in front and cars cannot overtake while in transit as a convoy passes

through the intersection. Further, a car in front can move faster than its followers if

the segments in front of the fast-moving car are empty. This allows to have gaps of

empty segments between cars of the convoy (e.g. The car at the head of the convoy

moves fast up to segment 3 while the car behind it is still in segment 0. This leaves

segments 1 and 2 empty.)

As per the Figure 19, if a car coming from any of the lanes 3, 4 or 5

enters the intersection while the convoy from lane 6 is still passing through the

intersection, there is the possibility of a crash in segments 1, 3 and 2 respectively.

To make the models concise and more readable, we use the constants, ranges

and sets defined in Listing 27. When compiling models these definitions should be

included in the code.

6.2 Modeling a CAR in the Convoy

The new model of car breaks the passage of a car within the core area of the

intersection into 4 states to resemble passage through the 4 segments we describe

100

Listing 27 Constants, sets and ranges that are used in LTSA models related to
follow list. When compiling the models, include this section. �

1 // Segment under investigation for a potential crash
2 // Acceptable values: 0, 1, 2, 3
3 const CRASH_SEG = 3

4 const False = 0
5 const True = 1
6 range Bool = False..True

7 // Number of vehicles in the convoy
8 const N = 3

9 // A literal to indicate an empty list
10 const EMPTY = -1

11 // Possible values that can be in
12 // High (hi) or Low (lo) lists
13 set LIST_VALS = { [EMPTY], [N] }

14 // Message types
15 const PERMIT = 300

101

in Section 6.1 (Figure 19). With this the PASSING state of our extended state

transition diagram (Figure 7) gets broken into to 4 smaller states (Figure 20).

IN_3

WAITING
FOR

PERMIT

PASSED
(IN_4)

enter.0

IN_2IN_0 IN_1
enter.1 enter.2 enter.3

exit

in.0 in.1 in.2 in.3

PERMIT(v) | DRIVE
AWAY

Figure 20. The finer-grained state transition diagram of a car. This breaks the
PASSING state of our extended state transition diagram (Figure 7) into 4 smaller
states to provide a more detailed description of a car passing through the core area
of the intersection. Please note that we only show the part of the state diagram
that is relevant for the fast-forwarded state of the algorithm we are modeling.

The model of a car in the convoy is presented in the Listing 28. Since we

have fast forwarded to a state where follow list is created, broadcast and the convoy

is about to enter the core area of the intersection, the CAR_CONVOY process

starts straightaway in the WAITING_FOR_PERMIT state. Also, we do not

bother to model the high and low lists as they are empty and do not matter at

this stage. The process follows the state diagram shown in Figure 20.

We model the CAR_CONVOY in a way so that we can later model a

convoy of N such cars. No matter how long the convoy is, we model car N to

be the tail of the queue and it is the vehicle responsible for broadcasting the

PERMIT message. Notice that we have hard-coded this fact into the model of

CAR_CONVOY (lines 32 - 35 of Listing 28).

102

The CAR_CONVOY process accepts one special Boolean parameter RT to

signal whether a car is to drive straight or to take a right turn. When RT is set to

True, that car takes a right turn (lines 9 - 13 of Listing 28).

The lines 8, 17, 22 and 27 of Listing 28 (“[VID].in[s]”, s = 0, 1, 2, 3),

allow a car to spend some time in each segment before moving into the next

segment.

6.3 Modeling the Convoy

Now, stitching several CAR_CONVOY ’s (Listing 28) into a queue, we

are building a CONVOY. In doing so, we have to make sure the final convoy

demonstrates the behavior outlined in the Section 6.1.

For our experiments, we build a convoy of 3 cars (N = 3), where car 1

followed by car 2 followed by car 3. Car 3 is the last in the convoy (Listing 29).

The ORDER process (lines 10 - 18) enforces the order of entering

into and exiting from segments 1, 2 and 3. When we compose the CONVOY

we compose 3 ORDER processes, one per each segment (line 23). Line 12

([1].enter[SEG] -> [1].enter[SEG+1] ->) enforces that car 1 must enter

segments in sequence. Line 13 enforces the same constraint on car 2 and so forth.

The line for car 2 (line 13) appearing after the line for car 1 (line 12) dictates that

car 2 cannot enter a segment prior to car 1 vacating that segment by moving into

the next segment. This logic follows for the other lines in the ORDER process

and this prevents cars from overtaking while moving through the intersection as

a convoy.

If cars are allowed to make right turns, a car performs this maneuver

in segment 0. Therefore, a car has two options after entering segment 0

and hence we have to model the order of entrance and exit of segment

103

Listing 28 CAR_CONVOY, the model of a car in the convoy �
1 CAR_CONVOY(VID = 1, RT = False) = WAITING_FOR_PERMIT ,

2 WAITING_FOR_PERMIT =
3 (
4 [VID].enter[0] -> IN_0
5),

6 IN_0 =
7 (
8 [VID].in[0] -> IN_0

9 | when (RT == False)
10 [VID].enter[1] -> IN_1

11 | when (RT == True)
12 [VID]. right_turn
13 -> [VID].exit -> PASSED
14),

15 IN_1 =
16 (
17 [VID].in[1] -> IN_1
18 | [VID].enter[2] -> IN_2
19),

20 IN_2 =
21 (
22 [VID].in[2] -> IN_2
23 | [VID].enter[3] -> IN_3
24),

25 IN_3 =
26 (
27 [VID].in[3] -> IN_3

28 // This means the car is exiting the core area
29 | [VID].enter[4] -> PASSED
30),

104

�
30 PASSED =
31 (
32 when (VID == N)
33 [VID]. broadcast[PERMIT][VID] -> DRIVEAWAY

34 | when (VID != N)
35 [VID].drive -> DRIVEAWAY
36),

37 DRIVEAWAY =
38 (
39 [VID].drive -> DRIVEAWAY
40)
41 + {
42 [VID].enter[1],
43 [VID]. right_turn
44 }.

0 separately. ORDER_0 process takes care of this business. Line 3

([1].enter[0] -> { [1].enter[1], [1].right_turn } ->) specifies that car 1

must enter segment 0 before either entering segment 1 or making a right turn. Line

4 specifies the same for car 2 and so forth. Similar to the logic in ORDER process,

the order of lines prevents a car with a higher number entering segment 0 occupied

by a car with a lower number.

Current ORDER_0 and ORDER processes are set for a convoy of 3 cars.

Uncommenting lines 6 and 15, and setting N = 4 in line 5 of Listing 27 give

us a convoy of 4 cars. If we also uncomment lines 7 and 16, and set N = 5, it

gives a convoy of 5 cars. Following this pattern, adding more lines and setting N

accordingly will give longer convoys.

Line 21 (forall [i: 1.. N] car:CAR_CONVOY(i, i == N)) brings in

N CAR_CONVOY processes to the composition. “i == N” becomes true only

105

Listing 29 A CONVOY of CAR_CONVOY ’s �
1 ORDER_0 =
2 (
3 [1]. enter[0] -> { [1]. enter[1], [1]. right_turn } ->
4 [2]. enter[0] -> { [2]. enter[1], [2]. right_turn } ->
5 [3]. enter[0] -> { [3]. enter[1], [3]. right_turn } ->
6 //[4].enter[0] -> { [4].enter[1], [4]. right_turn } ->
7 //[5].enter[0] -> { [5].enter[1], [4]. right_turn } ->

8 ORDER_0
9).

10 ORDER(SEG = 1) =
11 (
12 [1]. enter[SEG] -> [1].enter[SEG+1] ->
13 [2]. enter[SEG] -> [2].enter[SEG+1] ->
14 [3]. enter[SEG] -> [2].enter[SEG+1] ->
15 //[4].enter[SEG] -> [4]. enter[SEG+1] ->
16 //[5].enter[SEG] -> [5]. enter[SEG+1] ->

17 ORDER
18).

19 || CONVOY =
20 (
21 forall [i: 1..N] car:CAR_CONVOY(i, i == N)
22 || car:ORDER_0
23 || forall [seg: 1..3] car:ORDER(seg)
24).

106

for car N , which is the car at the tail of the convoy. By changing N to any value

between 1 and N , we can make any car in the convoy take a right turn. Further, in

“i == x”, by setting x to something other than 1, 2, . . . , N (e.g. -1, 0, N+1 etc.),

this clause becomes false for all the cars. By this we can have a convoy with all the

cars that go straight.

6.4 The Trouble Maker

Just a convoy passing through the intersection does not give rise to any

problems. We need another car, in a lane that conflicts with the convoy, waiting

till the convoy exits the intersection to enter the intersection (Listing 30). We call

this CAR_0.

Like the CAR_CONVOY (Listing 28), we boot-up the CAR_0 process

in the fast-forwarded state of WAITING_FOR_PERMIT where it has already

received the follow list and its high list contains the last vehicle in the convoy (N)

and its low list is empty. Only thing CAR_0 needs to enter the intersection is a

PERMIT message from car N .

The parameter SEG specifies which segment CAR_0 is going to pass

through. That is the segment where a crash is possible. If we fix a lane for the

convoy, setting the SEG parameter determines which lane the CAR_0 is coming

in from. For example, if we follow the setting of the intersection in Figure 19 where

the convoy is coming from lane 6, SEG = 3 means the CAR_0 is coming from

lane 4, which is the red car depicted in the figure. Similarly, other associations are:

SEG = 2 =⇒ lane 5, SEG = 1 =⇒ lane 3, and SEG = 0 =⇒ lane 0. If we

change the lane of the convoy from 6 to another possible lane (lanes 0, 2, 4), we will

get different lane associations for different SEG values.

107

Listing 30 CAR_0 that conflicts with the convoy �
1 CAR_0(SEG = 0) = WAITING_FOR_PERMIT[EMPTY][N],

2 WAITING_FOR_PERMIT[lo: LIST_VALS][hi: LIST_VALS] =
3 (
4 when (hi == EMPTY)
5 [0].enter[SEG] -> IN_SEG

6 | [0]. receive[PERMIT][N]
7 -> WAITING_FOR_PERMIT[EMPTY][EMPTY]
8),

9 IN_SEG =
10 (
11 [0].in[SEG] -> IN_SEG

12 | [0].exit[SEG]
13 -> [0]. pass_through
14 -> [0].exit -> DRIVEAWAY
15),

16 DRIVEAWAY =
17 (
18 [0].drive -> DRIVEAWAY
19).

We do not have any interest in the behavior of car 0 after it exits the

segment SEG we are investigating for a potential crash (after car 0 takes the action

[0].exit[SEG] in line 12). For completeness, we model the rest of the states

of car 0 till it exits the core of the intersection. The “[0].pass_through” action

in line 13 resembles any other additional distance car 0 has to travel within the core

of the intersection before exiting the intersection (taking the action [0].exit in

line 14).

108

Listing 31 NEWTORK process that carries the PERMIT message �
1 NETWORK = BUFFER[False],

2 BUFFER[in_transit : Bool] =
3 (
4 accept_message [PERMIT][N]-> BUFFER[True]

5 | when (in_transit)
6 deliver_message[PERMIT][N]-> BUFFER[False]
7).

6.5 The Network

We do not need a network as elaborate as the networks we use

in Chapter V. In this case, the only task of the network is to deliver the

PERMIT message sent by car N to car 0. Although, we can even achieve

this by directly synchronizing the “[N].broadcast[PERMIT][N]”

action of car N , which broadcasts the PERMIT message (Listing 28) and the

“[0].receive[PERMIT][N]” action of car 0, which receives the PERMIT

message (Listing 30), we decided to use a simple NETWORK process (Listing 31)

to keep things more realistic and uniform among chapters.

6.6 Modeling the Intersection

At this point, we have all the component processes to model the behavior at

the intersection when a convoy is in transit after a follow list has been broadcast.

It is just a matter of composing the processes and making network connections to

enable communication (Listing 32).

109

Listing 32 The situation at the intersection after a follow list has been broadcast �
1 || INTERSECTION =
2 (
3 CONVOY
4 || car:CAR_0(CRASH_SEG)
5 || NETWORK
6)
7 / {
8 car[N]. broadcast[PERMIT][N]
9 / accept_message [PERMIT][N],

10 car[0]. receive [PERMIT][N]
11 / deliver_message[PERMIT][N]
12 }.

13 fluent IN_SEG_CAR_0 = <
14 car[0].enter[CRASH_SEG],
15 car[0].exit [CRASH_SEG]
16 >

17 fluent IN_SEG_CAR_[c: 1..N] =
18 <
19 car[c].enter[CRASH_SEG],
20 { car[c].enter[CRASH_SEG + 1], car[c].exit }
21 >

22 assert CRASH = []! (
23 exists[c: 1..N]
24 (
25 IN_SEG_CAR_0 &&
26 IN_SEG_CAR_[c]
27)
28)

110

The global constant CRASH_SEG (Listing 27) defines the segment we are

focusing on to investigate the possibility of a crash. We can set it to 0, 1, 2 and 3

in turn to check the crash situation at each segment.

In addition to the composition, we include the necessary fluents and asserts

to check for possible crashes. The fluent IN_SEG_CAR_0 (lines 13 - 16) is true when

car 0 is within the segment CRASH_SEG. The fluent IN_SEG_CAR_[c: 1..N]

(lines 17 - 21) is defined for all the cars in the convoy. It is true for the car of the

convoy that is in the segment CRASH_SEG.

Lines 23 - 27, which belong to the assert, check whether any car in the

convoy and car 0 are in the segment CRASH_SEG at the same time. The assert

dictates that at all times ([]) it should not (!) be the case that car 0 and any car of

the convoy are together in the segment CRASH_SEG, which is a crash.

6.7 Possible Crashes

We test the composition for possible crashes between the vehicles composing

the convoy and vehicles coming in from all the lanes that conflict with the convoy

by varying the global constant CRASH_SEG. The system does not suffer from

deadlocks at all. Also, when the car at the tail of the convoy is made to go straight

(by setting i == 0 in line 21 of Listing 29 that describes the CONVOY process),

there is no issue of crashes at all.

When CRASH_SEG = 0, system does not suffer from the danger of a

crash even when the last car of the convoy makes a right turn. This is intuitive

because the last car broadcasts a PERMIT message only after taking the right turn

and exiting segment 0, which results it to exit the intersection. Since the last car of

the convoy has now cleared the segment 0, no other car of the convoy is or will be

111

in segment 0 to encounter with car 0, avoiding any possibility of a crash between

the convoy and car 0.

In other 3 cases (CRASH_SEG = 1, 2, 3), LTSA reveals action traces

to crashes between cars of the convoy and car 0 when car 3 (the last car of the

convoy) makes a right turn. While CRASH_SEG = 1 gives rise to a crash

between car 2 and car 0 (Figure 21), on the two other segments the crash is

between car 1 and car 0 (Figure 22).

As an illustration, consider the situation in Figure 19. First, the green car

enters segment 0 and as it moves to segment 1, the yellow car enters segment 0.

When the green car and the yellow car advance to segments 2 and 1 respectively,

the orange car enters segment 0. Now, irrespective of the locations of the green

and yellow cars, the orange car takes a right turn, exits the core of the intersection

and broadcasts a PERMIT message notifying everybody else that the convoy has

passed through the core of the intersection. Relying on this message, the red car

enters segment 3. At this moment, either of the green car or the yellow car could

still be in segment 3 creating a crash.

The action traces LTSA reveals for crashes vary the speeds of vehicles

through the intersection. For example, according to the action trace in Figure 22,

car 1 quickly goes all the way till segment 3 and slows down. Until then, car 2 does

not enter the segment 0. Although in our heads a convoy of cars is pictured as a

queue of cars all moving at similar speeds, that should not be the case all the time.

Thus, the danger of crashes LTSA reveals is not hypothetical.

When describing the problem and the models, as an example, we use a

convoy coming from lane 6 (Figure 19) to aid the reader easily visualize and relate

to the problem. However, none of our models are specific to lane 6. Therefore, our

112

Trace to property violation in CRASH:

car.1.enter.0

car.1.enter.1 IN_SEG_CAR_.1

car.1.enter.2

car.2.enter.0

car.2.enter.1 IN_SEG_CAR_.2

car.3.enter.0 IN_SEG_CAR_.2

car.3.right_turn IN_SEG_CAR_.2

car.3.exit IN_SEG_CAR_.2

car.3.broadcast.300.3 IN_SEG_CAR_.2

car.0.receive.300.3 IN_SEG_CAR_.2

car.0.enter.1 IN_SEG_CAR_0 && IN_SEG_CAR_.2

Figure 21. Action trace leading to a crash in the composition of Listing 32 when
CRASH_SEG = 1.

models are generalized to any convoy coming in from any of the lanes 0, 2, 4, and 6,

and any other car coming in from a lane that conflicts with the convoy. Hence, our

results can be generalized to all these situations.

6.8 A Suggested Solution

The problems of the distributed mutual exclusion algorithm for intersection

traffic control (Algorithm 2) discussed in this chapter can easily be resolved without

prohibiting vehicles making right turns at the intersection. We need to modify the

follow list related logic a bit.

113

Trace to property violation in CRASH:

car.1.enter.0

car.1.enter.1

car.1.enter.2

car.1.enter.3 IN_SEG_CAR_.1

car.2.enter.0 IN_SEG_CAR_.1

car.2.enter.1 IN_SEG_CAR_.1

car.3.enter.0 IN_SEG_CAR_.1

car.3.right_turn IN_SEG_CAR_.1

car.3.exit IN_SEG_CAR_.1

car.3.broadcast.300.3 IN_SEG_CAR_.1

car.0.receive.300.3 IN_SEG_CAR_.1

car.0.enter.3 IN_SEG_CAR_0 && IN_SEG_CAR_.1

Figure 22. Action trace leading to a crash in the composition of Listing 32 when
CRASH_SEG = 3.

Instead of just making the last vehicle of the follow list broadcast a

PERMIT message to notify others that the convoy has cleared the intersection, we

should make the last vehicle of the convoy and the last vehicle of the convoy that is

going straight both broadcast PERMIT messages. In the case of the last vehicle

of the convoy is not making a right turn, both these vehicles refer to the same

vehicle. In other cases, there will be two distinct vehicles. All the other vehicles

that are waiting till the convoy is through the intersection must wait till they

114

receive both the PERMIT messages (and any other relevant PERMIT messages

they are waiting for) before attempting to enter the core area of the intersection.

To implement this modification, we have to enrich the REQUEST message

to carry the intention of a vehicle to go straight or turn right. This is just like

blinking a turning signal on human operated vehicles. With this information

available to all the vehicles waiting at the intersection, the vehicle that is compiling

the follow list can include this right turn information into follow list. Vehicles

receiving the follow list could then easily determine the two vehicles responsible

for notifying that the convoy resulted due to the follow list has completely exited

the core of the intersection.

115

CHAPTER VII

CORRECT MODEL — INCORRECT IMPLEMENTATION

In this chapter, we move out from our specific discussion on the algorithm

and its pitfalls to the general realm of implementing distributed algorithms.

Designing a new algorithm or a protocol is a challenging task. We must

make sure that it always produces the correct output within a reasonable amount

of (short) time utilizing reasonable amount of (as little as) resources (memory,

communication).

When it comes to designing a distributed algorithm, the task becomes

even more challenging due to the necessity of proper coordination of multiple

components. In such algorithms, we must make sure that the additional properties

such as Liveliness, Fairness and Safety hold.

Manually checking whether a distributed algorithm adheres to the

aforementioned qualities is only feasible if the algorithm at hand has few visible

states. When the state space grows, comprehending all the possible states that the

complete distributed system can reach and/or should avoid becomes a daunting

task. That is where formal modeling tools such as Labelled Transition System

Analyser (LTSA) (Magee et al., 2013) come to our rescue.

Using LTSA, we can model, test and debug a distributed algorithm and

make sure that it does not suffer from the anomalies like deadlocks and critical

section violations. A model is extremely useful in identifying issues and rectifying

them early . However, a model, no matter how pristine, is unable to perform actual

work the system being modeled is supposed to carry out.

After the modeling stage, the model is usually used as a communication

tool that provides a formal specification of the system to be implemented. In the

116

implementation stage, a programmer interprets the model and translates it to a

program written in some computer language. This translation stage is prone to

human error. What if the programmer misinterprets some portion of the model? Or

what if the programmer implements some details erroneously?

If such errors seep into to the implementation, all the time and effort

invested in modeling, testing and validating an algorithm, and coming up with a

clean model go in vain.

Since we already have a model that we have faith in, we ask the question:

Can we employ the model as a higher authority to validate the implementation?

This chapter presents our investigation to answer this self-imposed question.

7.1 Manulator - The Distributed System Simulator

Implementing, testing, and debugging a distributed system with multiple

physical components (e.g. nodes) is a cumbersome and time consuming endeavor.

Different parts of the system need to be coded and uploaded to respective nodes.

Then all the nodes of the system should be executed and the execution of the

nodes should be monitored. If necessary, execution logs should be downloaded

from a dispersed set of nodes and analyzed. This cycle must be repeated until the

implementation adheres to the model.

To simplify the implementation cycle of code–test–debug, we implement

a distributed system simulator, Manulator 1, in python. Our goal is to provide

a proof of concept but not to come up with a multi-purpose industry strength

implementation of a simulator. Thus, Manulator can only handle implementations

of a distributed system coded in python. It is very light weight and simple. The

Manulator is comprised of three components:

1Manujinda’s Simulator = Manulator

117

Listing 33 Node class that extends the Communications class. This is where the
code for a node in a distributed system is implemented �

1 import time
2 from Communications import Communications

3 class Node(Communications):

4 def initialize_node(self , argc , argv):
5 # argv[0] is the module name
6 # argv[1] is the node id
7 self.me = argv[1]

8 def main(self):
9 print ’Execution of the node starts here’

10 def on_msg(self , sender , msg):
11 print ’Process {} received {} from {}’
12 .format(self.me, msg , sender)

Communications : The class that provides a communication interface to the nodes.

Node: A class that extends the Communications class (Listing 33),

which provides a skeleton to implement a single node in the

distributed system that is being simulated.

manulator : The python script that choreographs all the pieces of a

distributed system and handles the simulation.

7.1.1 Communications Class. The Communications class provides a

network interface to a node. The interface includes 3 network calls, two methods to

initialize and start execution of a node and a helper method to write comments to a

log file to help debugging:

118

send(msg, to): Send the message msg to the node with id to. When

extending the Communications class, this method

should not be overridden.

broadcast(msg): Broadcast the message msg to all the nodes. When

extending the Communications class, this method

should not be overridden.

on_msg(sender, msg): Any message received from the node with id sender

is available in this method. When extending the

Communications class, a node can override this

method to extract the message msg and its sender

within this method and operate on it accordingly.

initialize_node(argc, argv): The manulator passes the command line arguments

for a node through this method. The node

initialization (e.g. assigning a node id) should be

done by overriding this method when extending the

Communications class.

main(): This is where a node starts its execution. When

extending Communications class, a node must

override this method to start its process.

log(entry): Used to add any log entry to a per node log file that

is automatically created by the manulator, which

logs the messaging behavior of a node. By using

log method, additional messages can be added to

119

augment the default log file created. When extending

the Communications class, this method should not be

overridden.

7.1.2 Node Class. The Node class (Listing 33) extends the

Communications class as described in Section 7.1.1 and is used to implement the

logic of a single node. As per the necessity, additional methods can be added to the

Node class to make the code of a node more modular.

To keep the Manulator simple, we have restricted the name of this class to

be Node. If the system being simulated requires different nodes to have different

implementations, they can be coded in separate python modules each having a class

named Node that extends the Communications class.

A node receives command line arguments in the overridden method

initialize_node(argc, argv). The parameters, argc is the argument count

and argv is a list of strings, where each string represents a command line argument.

Again, to keep the Manulator simple, argv[0] always carries the module name and

argv[1] always carries the node id. Any other arguments that are passed to a node

follow these two.

A node starts its execution beginning at the first line of the overridden

method main().

Whenever a node receives a message from some other node, Manulator

makes it available to the node in the method on_message(sender, msg). By

overriding this method, a node can process incoming messages as required by the

logic of the implementation.

The Manulator automatically logs all the messages sent and received by a

node in a per node log file with the name +_2_log_<node id>.txt. A “+” sign is

120

prefixed to the name so that in a directory listing all the log files appear together

close to the top of the listing. The “2” is to make all the log files appear below the

Manulator global log file, which has the name +_1_log_main.txt.

A node can use the inherited log(entry) method to augment its personal

log file with additional comments that are interleaved with message passing log

entries to make it easier to decipher the automatically generated messaging log.

7.1.3 manulator. manulator is the script that brings the simulation

to life. By default, manulator searches for a comma-separated configuration file

named nodes.csv, which describes the nodes and the command-line arguments to be

passed into each node. Each line of the configuration file describes one node and its

command-line arguments:

<module name>, <node id>, <arg1>, <arg2>, . . .

The module name is the module (name of the file) that holds the code for

the Node class that extends the Communications class. Node id is the id for the

node described by this line. It can be any valid python variable name or integer

that suits the implementation of the node. arg1, arg2, . . . are other command-line

arguments that are passed into this node. Since we use comma (,) to separate files,

module name, node id or any of the arguments cannot contain commas.

After the lines specifying nodes, the configuration file can contain an

optional line to specify a timeout duration:

Timeout, <timeout duration in seconds>

The Manulator uses this to watch for periods longer than the timeout

duration without any message being exchanged and notify the user. If this line

is omitted, a default timeout period of 1 second is used. Further, lines starting

with “#” signs are considered comments. Moreover, to enable keeping several

121

configurations commented in the same configuration file, we make manulator ignore

all the lines from and below a line that starts with a hyphen (“-”).

To make it possible to keep several configuration files to easily switch and

test different compositions of a distributed system, manulator accepts an optional

configuration file name as its first argument. If such a file name is provided,

manulator searches the current directory for a configuration file with that name

instead of the default (nodes.csv).

After reading and parsing the configuration file, the Manulator starts

playing the role of a plumber. It creates a network of pipes (16.6. multiprocessing

- Process-based “threading” interface, 2017), which is used to achieve inter-process-

communication (ipc) to make the communication among different nodes and the

Manulator possible (Figure 23).

Each node in the simulation is spawned as a separate process. Manulator

maintains a per node monitoring thread. There is a sending pipe between each

node process and the monitoring thread that is used by the node process to send

messages. Further, each node process has receiving pipe shared among all the

node monitoring threads that is used to receive messages from other nodes. The

monitoring thread, upon receiving a message from the node it monitors, routes that

message to the relevant receiver via the receiving pipe belonging to the designated

receiver node.

In addition to the per node monitoring threads, the Manulator maintains

another main monitor thread that talks to all the node monitoring threads and

manages the whole simulation. This thread shares a pipe among all the

122

Figure 23. Manulator architecture. This diagram is of a simulation of a distributed system with 3 nodes. Pipes with
black outline are the sending pipes, which each node process uses to send messages to its respective node monitoring
thread. The pipe with the outline color that matches the outline color of the node process box is the receiving pipe of
each process. The pipe with the brown outline is between the node monitoring threads and the main monitor thread.

123

node monitoring threads. Via this pipe, the main monitor thread receives

all the messages passed in the simulation, which it logs to the main log file

(+_1_log_main.txt). Further, the main monitor thread uses the receiving pipe

of each node process to route control messages (e.g. termination message) to each

node process.

After all the plumbing are in place, Manulator starts the main monitor

thread. Then, it pairwise starts the node monitor thread and the respective node

process that node monitor thread monitors. This kicks off the simulation. At any

time, hitting return in the console where the simulation is running terminates the

simulation.

7.2 Message Queue Telemetry Transport (MQTT)

We use python and java versions of the paho implementation (Craggs,

Sutton, & Pagliughi, 2017) of the MQTT protocol (Stanford-Clark & Nipper, 2014)

in our implementations to enable communication among distributed components.

MQTT is a very lightweight publish/subscribe messaging protocol built on top of

the TCP/IP protocol. With MQTT in place, we can quickly implement both point-

to-point and broadcast message passing among nodes taking part in a distributed

algorithm implementation without spending a lot of time on designing elaborate

message formats or coding socket connections. This enables us easily prototype and

experiment with our ideas and keep our attention more on the interesting problems

we are going after for solutions.

In MQTT, the communication happens via a broker. Any process that

wishes to send some message publishes it to the broker under some topic. Any

process that is interested in receiving messages published on a topic can subscribe

to that topic at the broker.

124

In our implementations, nodes share a common topic stem, say manu, and

each node with id n subscribes to the topic manu/n. This serves as an ip address

for that node. Any node wanting to send a message to node n, publishes that

message to topic manu/n. By making all the nodes subscribe to another common

topic, we can easily achieve broadcasts. Whatever published to this common topic

is received by all the nodes. This approach uses topics just as ip addresses and

everything that is needed to be communicated is encoded in the MQTT message.

Using a unique topic for each piece of information that needs to be

communicated and a dummy MQTT message is the other extreme where

everything is encoded in the topic. Another middle-ground approach is to encode

what needs to be communicated in both the topic and the MQTT message. For

example, each topic can signal a message type and actual message can be encoded

in the MQTT message portion.

In addition to these, MQTT allows each node setup a last will. By nodes

subscribing to a common will topic, whenever a node crashes, MQTT broker

automatically delivers the will message of the crashed node to everybody else in

the system. This comes handy when making an implementation respond or resilient

to node failures.

7.3 The Model Meets the Implementation

The authors of the LTSA tool (Magee et al., 2013) were very generous

to share their code-base (in java) with us, which enabled us to quickly test our

ideas. Otherwise, the portion of work we present hereafter could have been nearly

impossible or taken quite a long time.

We extend the LTSA tool to eavesdrop on the messages passed among

nodes of an execution of an implementation and validate whether the sequence

125

of messages passed adheres to the language of messages generated by the LTSA

model of the system, which is a finite state process. We call our extended version of

LTSA the “Labelled Transition System Analyser & Observer ” (LTSA-O). When the

LTSA-O sees an out of sequence message, it notifies that to the user.

This work goes along the lines of the BISIMULATOR (Bergamini,

Descoubes, Joubert, & Mateescu, 2005; Mateescu & Bergamini, 2017; Mateescu

& Oudot, 2008), a tool that verifies whether two Linear Temporal Systems (LTSs)

are equivalent. First LTS is built implicitly by following a system description while

the second LTS explicitly describes a system. This way BISIMULATOR verifies

whether the explicit description of the system matches the specification. In the case

of a mismatch, it produces a counter example.

LTSA-O differs from BISIMULATOR since it verifies the execution of an

implementation of a system against its finite state process model. BISIMULATOR

checks the equivalence between two models.

Nodes of a MQTT based implementation of a distributed system publish

messages to some broker to communicate with each other. LTSA-O subscribes to

all the topics the nodes of the implementation use at the same broker used by the

implementation. This way the LTSA-O can eavesdrop on each message exchanged

in the implementation.

But, how does LTSA-O know which topics to subscribe to? LTSA-O gets

to know this and some other information via a comma-separated configuration

file. Once a model is composed, we can ask LTSA-O to spit out a skeleton for the

configuration file. This is done by first selecting the menu items: Check > Run >

Validate (Figure 24). This opens the “Observer & Validator ” dialog (Figure 25).

126

On that dialog, clicking Save Config button gives the option to save the skeleton

configuration file.

Figure 24. LTSA-O main window. The trail of menu selections to get the “Observer
& Validator ” dialog open.

Figure 25. “Observer & Validator ” dialog when a configuration file is not
yet loaded. Use the Save Config button to get a skeleton of the appropriate
configuration file. Use Open Config button to load a completed configuration file.
When a configuration file is loaded, the Validate button enables. After clicking the
Validate button, LTSA-O starts listening to topics specified in the configuration
file published at the MQTT broker designated in the configuration file. After a
validation run, the Replay button enables, where the last run of the implementation
can be replayed.

As the first line of the configuration file, we must provide the MQTT broker

and port where LTSA-O should subscribe for topics:
127

Broker, <MQTT Broker URL>:<Port>

The 2nd line specifies a MQTT topic used by LTSA-O to notify about

misbehaving nodes (should not delete it). We discuss about this field later.

Bnode_Topic, <Topic to be used to report bad nodes>

The 3rd line is just a row of column headings to guide the user (should not

delete it):

Index, Action, Topic, Message

First two columns of the configuration file skeleton are filled by LTSA-O for

the user. They must not be changed. 2nd column of the configuration file lists all

the actions of the LTSA model. The user’s responsibility is to fill the remaining 2

columns with the specific MQTT topics and messages used in the implementation

being validated. Once filled, each such row provides a mapping between an action

of the LTSA model with the corresponding message in the implementation and the

topic the implementation uses to publish that message to the MQTT broker. Any

of the actions, topics or messages should not contain commas (,) within them.

One caveat though is that the LTSA-O can eavesdrop only on the message

passing layer of the implementation. Therefore, LTSA-O is unable to sense the

internal node actions. However, during the modeling process, we do have to model

them into the LTSA models and hence the skeleton configuration file lists such

actions as well. We have to explicitly inform LTSA-O that such actions are local to

a node and it will never hear nodes pass a message corresponding to such actions.

For lines corresponding to internal node actions, mention “ local ” as the topic and

some placeholder text (suggestion - a comment about the internal action) as the

message. This adds one minor limitation to the selection of publish topics in the

128

implementation. Since LTSA-O has a special meaning attached to the topic local,

none of the publish topics in the implementation should be local.

Figure A.27 in Appendix A provides a complete configuration file.

After populating the configuration file, it should be loaded into LTSA-O

by clicking the Open Config button on the Observer & Validator dialog (Figure

25). At this point LTSA-O knows how to decrypt the communication among nodes

of the implementation. Stating the validation process is just a matter of clicking

the Validate button on the Observer & Validator dialog. Now, LTSA-O is busy

listening to each message exchanged in the implementation.

After setting up the LTSA-O, it is time to execute the MQTT based

implementation of the model. Once the implementation starts execution, for each

message exchanged in the actual execution, the LTSA-O prints the corresponding

action in the LTSA model in its Observer & Validator dialog window. If an out of

order message is being passed in the actual execution, LTSA-O notifies that in the

same window.

Moving on to the Draw tab of the LTSA-O main window and selecting a

node of the model opens the graph of the finite state process driving that node.

Selecting such a node while the validation process is in action lets you see the

graph being animated by the messages passed in the actual implementation.

While all these actions are happening, LTSA-O remembers the most recent

action trace resulted by the execution of the implementation. To aid debugging,

that action trace can be replayed and relived as if it is driven by the execution of

the implementation by clicking the Replay button on the Observer & Validator

dialog (Figure 25).

129

7.4 Manulator Meets LTSA-O

The whole discussion about LTSA-O in Section 7.3 discusses at length

how LTSA-O listens to communication taking place among nodes in an actual

implementation of a model using MQTT as the underlying communication

protocol. This requires someone to not only implement the system specified in

the LTSA model but also have working knowledge in MQTT. This is somewhat

counterintuitive, as in the prologue to this chapter, we expressed how daunting it is

to actually implement a distributed system. Therefore, if somebody has to embark

on a fully-fledged implementation of the system to get the assistance of LTSA-O, it

is a rather long shot.

Luckily, that is not the case. We made Manulator capable of talking to

LTSA-O via a MQTT broker. The main monitoring thread of the Manulator

publishes all the messages exchanged in the simulation to a designated MQTT

broker. By default, it uses the topic stem manu to publish these messages. Using

this topic stem, a message destined to the node with id n is published to the topic

manu/n. With this, LTSA-O can listen to the messages passed among nodes in the

simulation the same way it does with an actual implementation and act as if it is

listening to a real implementation (LTSA-O will not know the difference).

To enable all this, we just enhanced the Manulator configuration file to have

two more fields.

Broker, <MQTT Broker URL>:<Port>

Topic, <Manulator publish topic root>

The first optional field, Broker, describes the MQTT broker address and its

port where the Manulator should subscribe to and publish the messages exchanged

in the simulation. This must be the same broker where LTSA-O is listening to,

130

so that it can eavesdrop on the communication and animate the respective model

accordingly.

We add the second optional field, Topic, to make our system usable in a

setting such as a class where multiple groups of students using the Manulator and

the same MQTT broker simultaneously to debug their distributed implementations.

If several instances of Manulator are in action simultaneously publishing with the

same topic stem to the same broker and several LTSA-O instances are listening

to communication happening within their respective simulations by subscribing

to the same broker, there is high possibility that a particular LTSA-O instance

ending up listing to communication happening within other simulations, which it

is not interested of. To alleviate this, the optional field Topic can be set to define

a simulation specific topic stem. Please note that topics are not allowed to contain

commas (,) within them.

Figures A.26, A.29 and A.31 in Appendix A provide examples of complete

Manulator configuration files.

7.5 Conductor & Launcher

Our choice of platform to implement a distributed system on an actual

distributed hardware setting for testing is Raspberry Pi (Raspberry Pi - Teach,

Learn, and Make with Raspberry Pi , n.d.). Being low cost, small in size and easy to

attach sensors via GrovePi kit (GrovePi Internet of Things Robot Kit , 2017) are the

main reasons behind our choice.

When testing our prototype programs, we had to move among different

shells connected to each Raspberry Pi module and manually execute those nodes

within a certain time bound, which is a bit bothersome when we have to do it

multiple times during debugging.

131

Our Conductor and Launcher duo solves this problem for a distributed

implementation done on the MQTT protocol. Once again, when making our design

decisions, we were conscious of a class setup where multiple groups of students are

developing distributed systems sharing the same MQTT broker instance.

7.5.1 Conductor. Conductor, as the name suggests, conducts the

whole operation. It relies on a configuration file to start its operation. By default,

it looks for the comma separated configuration file named groups.csv, which can be

overridden with another file name provided as an optional command line argument

at startup. The configuration file has the format:

Broker, <MQTT Broker URL>:<Port>

<group 1 name>, <number of nodes>

<group 2 name>, <number of nodes>

. . . , . . .

The format is very similar to other configuration files. First line specifies

the MQTT broker to subscribe for. Then there can be any number of lines each

specifying a group name and the number of nodes required to be up for the

implementation in that group to kick off its operation. None of the group names

can contain commas (,). Lines starting with “#” are treated as comments.

Prior to using the launcher, the conductor must be booted up with an

appropriate configuration file.

7.5.2 Launcher. Launcher too reads a comma separated configuration

file launcher.csv to collect the information about the MQTT broker to connect

to and the name of the group. This file contains only two lines, and any other

comments designated by a starting “#”:

Broker, <MQTT Broker URL>:<Port>

132

<group name>, <number of nodes>

With the configuration file in place, to get the service of the conductor to

start the execution of a program, instead of just typing:

$ python <module name> [command line parameters]

to start the program, it is executed through the launcher:

$ python launcher <module name> [command line parameters]

Then, the program does not start its execution immediately. It waits till the

number of nodes submitted to conductor-launcher for execution for a group reaches

the number of nodes specified in the conductor configuration file for that group.

When the last node for a particular group is submitted, all the nodes automatically

start execution in almost the same time.

133

CHAPTER VIII

CONCLUSION

The paper where the distributed mutual exclusion algorithm for intersection

traffic control (Algorithm 2) is published claims that,

The correctness proof is presented in Section S2 of the supplementary

file, available online (Wu et al., 2015a, p. 69).

However, when we try to locate such a supplementary on-line at the address

provided, there was no such document. With some effort, we managed to contact

the first author of the paper and managed to get a copy of the supplement through

him (Wu, Zhang, Luo, & Cao, 2015b).

The supplement proves that the algorithm satisfies safety, liveliness and

fairness properties by mathematical plus verbal arguments. While such arguments

are necessary to come up with a new algorithm ground up, they sometime fail

to completely capture nuances that can go wrong due to some specific message

ordering or timing.

With our work, we have demonstrated that relying only on a mathematical

and/or verbal proof is not sufficient to provide a seal of correctness when an

algorithm comes to life as a program. In Chapters V and VI, through formal

modeling of the algorithm, we show several pitfalls of the algorithm that occur

when certain conditions are met:

1. If the timeout duration (TO) is less than the time to complete

communication (TTCC) among cars at an intersection, there is the danger

of a crash.

134

2. When TO ≥ TTCC,

(a) if nothing is used to prioritize cars, as per Algorithm 2, cars could end

up in a deadlock.

(b) if only arrival time is used to prioritize cars,

i. if a car that arrived later is considered having low priority, the

algorithm bears the danger of a crash when cars arrive at the same

time.

ii. if a car that arrived at the same time or later is considered having

low priority, there is the possibility of a deadlock when cars arrive at

the same time.

(c) if arrival time and a tie-breaker are used (e.g. vehicle id), the algorithm

works fine when two cars or less are at the intersection. However, the

choice of tie-breaker governs how fair the algorithm is.

(d) if right turns are allowed at the intersection, the “Follow List” logic of

the algorithm leads to crashes.

In addition to these, we further showed that setting timeout duration

unnecessarily larger than time to complete communication (TTCC) reduces the

throughput at an intersection.

We claim that in addition to mathematical and verbal argument based

proofs, formal modeling can be used to formally verify an algorithm to gain better

insight into the dynamics of an algorithm in action. Thus, formal modeling can

lead to better algorithm development.

Although we focused on a single algorithm to pick on, our motivation is not

just to talk about this one algorithm. We use our exercise of formally analyzing
135

this algorithm as a medium to start a much broader discussion and urge the smart

transportation research community (and in general anybody who is in the business

of developing new distributed algorithms), to incorporate formal modeling tools,

like LTSA, to verify the new algorithms prior to those algorithms being used in the

field. Prevention is always better than cure.

In formally modeling a distributed algorithm, we have to make a decision

regarding how detailed the model is going to be. We should pick the middle path

where the model is neither too complex (close to implementing the algorithm for

real) nor too simple (does not sufficiently capture the nature of the algorithm). The

discussion of the modeling process we go through highlights the design decisions

we make and how we choose bite sized pieces of the problem to model that shed

light into the pieces of the system in such a way we can generalize to the complex

system.

With the distributed mutual exclusion algorithm for intersection traffic

control (Algorithm 2), the total design space spans from an empty intersection to

an intersection where both the queue and core areas of the intersection (Figure 1)

are fully packed with cars to the maximum possible. Although this number is not

infinite, it is quite large and we are unable to exhaustively model everything within

a reasonable amount of time or resources. When different arrival times for cars are

considered, the number of combinations become even larger.

If a sub system has issues, any super system too has issues. This is one

guiding principle we used to make the problem simpler for analysis while allowing

us to say something about the larger system. With the intersection mutual

exclusion problem, if an intersection with two cars has problems, an intersection

with more than two cars too has problems (Chapter V).

136

Another technique we use to simplify the problem is to model a fast-

forwarded state of the system and analyze the algorithm from that point onwards.

This way, we do not have to model the whole system and simulate it from start to

the fast-forwarded state. However, with this approach, we are unable to comment

anything regarding the system’s behavior between the start and the fast-forwarded

state. We can only comment something like given the system reaches the fast-

forwarded state that has been modeled, such and such issues can arise (Chapter

VI).

Besides providing formal modeling related insights, along the way, we

develop some nifty tools to aid distributed algorithm implementation, validation

and testing. Chapter VII presents an overview of all these tools.

8.1 Major Contributions

1. Uncovered specific issues with the distributed mutual exclusion algorithm

for intersection traffic control (Algorithm 2) (Wu et al., 2015a). We further

provided suggestions to rectify those issues (Chapters V and VI).

2. Demonstrated how to meaningfully break a larger modeling problem into

smaller representative problems, which are feasible to model, and gain insight

about the bigger problem (Chapters V and VI).

3. Developed a distributed system simulator — Manulator (Chapter VII).

4. Extended LTSA tool to come up with LTSA-O, which can listen to messages

exchanged in an implementation (using MQTT as the messaging protocol) or

a simulation of a model in Manulator, animate the model and flag when out

of order messages are being passed in the implementation (Chapter VII).

137

5. Developed Conductor -Launcher duo that can be used to automatically start

the execution of a distributed system once the desired number of nodes in a

system are ready (Chapter VII).

8.2 Distributed VMEI Algorithm - Updated

We amalgamate all the ideas discussed in the thesis and all the insights

gained through our models and verifications in to Algorithm 2 to come up with

an updated version of the algorithm. To make the listing of the algorithm more

modular, we define and use 3 routines in our updated algorithm.

Algorithm 3 is used to determine the priority of a vehicle to pass through

the intersection. At the moment, we are using the method we suggested in Chapter

V - Section 5.10.1 to determine the priority. Incorporating another priority scheme

is just a matter of changing the implementation of this function.

Algorithm 4 determines the set of (1 or 2) vehicles that are responsible for

notifying others that a convoy has cleared the core area of the intersection. This

algorithm implements the solution we describe to avoid a crash situation created

by the “Follow List” logic of the original algorithm (Chapter VI - Sections 6.7 and

6.8).

Algorithm 5 checks whether the “High List” of a vehicle is empty and if so,

generates the “Follow List” and broadcasts it as necessary, and makes the vehicle

start passing through the core area of the intersection.

We update the message formats to carry additional information required

to perform the updated processing. The “High List” (HLi) is made to be a list

of triples: (x, xLidin, preempted). x is the vehicle id and xLidin is the lane that

vehicle is approaching the intersection. preempted is a Boolean that keeps track

whether this vehicle got in the high list by preemption or not. This parameter is

138

Algorithm 4 Compute the representative vehicles for a convoy
. flt — A follow list

. Returns the set of vehicles responsible for notifying others
. that the convoy has passed through the core area of the intersection

1: function ConvoyAmbassadors(flt)

2: ambas← {}
3: ambas← ambas ∪ last entry of flt

. Add the last vehicle of the convoy that is going straight
4: ambas← ambas ∪ { (v, vLidin, vLidout) | (v, vLidin, vLidout) ∈ flt ∧

it is the last entry of flt such that vLidin = vLidout }
5: return ambas

6: end function

Algorithm 5 Check whether the caller can start passing through
. HL — High List

. NP — Maximum number of vehicles that can join a convoy

. Checks whether nobody objects to the calling vehicle passing through
. the core area of the intersection and if so start passing through.

1: function TryToPassThrough(HL)

2: if (HL = {}) then
3: sti ← PASSING

. Construct the follow list
4: flt← { (v, vLidin, vLidout) | (v, vLidin, vLidout) ∈ LLi ∧ vLidin = iLidin

∧ flt′s length < NP }
5: if (flt 6= {}) then
6: broadcast FOLLOW(i, flt)
7: if ((i, iLidin, iLidout) /∈ ConvoyAmbassadors(flt)) then
8: LLi ← {} . I am not responsible for notifying others
9: end if
10: end if
11: end if
12: move and pass through the core area

13: end function

139

used when deciding to revoke a preemption (line 19 of Algorithm 6). At places

where the algorithm ignores whether this parameter is true or false, we signal that

by “???”. We have further made the “Low List” (LLi) a list of triples: (x, xLidin,

xLidout), as required by the algorithm.

Finally, Algorithm 6 joins all these pieces and provides our updated

distributed mutual exclusion algorithm for intersection traffic control. Although, we

have an extensive discussion about preemptions in Chapter II - Sections 2.4.2.5 and

2.5, since we do not formally model and validate the preemption related logic of the

original algorithm, we retain the same preemption logic in the updated algorithm as

well.

Although, the updated algorithm addresses and patches some issues that

were revealed through our study, as described in Chapter IX - Section 9.1, it needs

much more modeling, validation and testing to be used in the field.

140

Algorithm 6 The distributed VMEI algorithm - updated
. xT — Arrival time of the vehicle x

. xLidin — Lane vehicle x is approaching from
. xLidout — Lane vehicle x is exiting to

. Hix — High list of the vehicle x
. Lox — Low list of the vehicle x

. flt — Follow list
. TH — Maximum number of preemptions allowed

CoBegin //for a vehicle i

On entering the monitoring area:
1: sti ← WAITING_FOR_REJECT
2: broadcast REQUEST(i, iT , iLidin, iLidout)
3: start timer and wait for REJECT from others

On receiving REQUEST(u, uT , uLidin, uLidout) from u:
4: if (iHiPriority(iT , uT , iLidin, iLidout, uLidin, uLidout)) then
5: if ((sti = WAITING_FOR_REJECT | WAITING_FOR_PERMIT | PASSING) and

(iLidin = uLidin ∨ iLidin ∝ uLidin)) then
6: if ((∃k, (k, kLidin, ???) ∈ HLi ∧ uLidin ∼= kLidin) and CntPmt < TH) then
7: HLi ← HLi ∪ { (u, uLidin, true) } . Preempt and let u go first
8: CmtPmt++
9: else
10: LLi ← LLi ∪ { (u, uLidin, uLidout) }
11: broadcast REJECT(i, iLidin, u)
12: end if
13: end if
14: end if

. Continued on the following page

141

. Continued from the previous page

On receiving REJECT(u, uLidin, k) from u:
15: if (sti = WAITING_FOR_REJECT | WAITING_FOR_PERMIT) then
16: if (i = k) then
17: HLi ← HLi ∪ { (u, uLidin, false) }
18: end if
19: if (i 6= k and ((k, kLidin, true) ∈ HLi) and

((uLidin ∝ iLidin ∧ (u, uLidin, ???) /∈ HLi) ∨ uLidin ∼= iLidin)) then
20: delete (k, kLidin, true) from HLi . Revoke a preemption
21: broadcast REJECT(i, iLidin, k)
22: end if
23: end if

On receiving PERMIT(u) from u:
24: delete (u, uLidin, ???) from HLi

25: if (sti = WAITING_FOR_PERMIT) then
26: TryToPassThrough(HLi)
27: end if

On Timeout:
28: sti ← WAITING_FOR_PERMIT
29: TryToPassThrough(HLi)

. Continued on the following page

142

. Continued from the previous page

On receiving FOLLOW(u, flt) from u:
30: if ((i, iLidin, iLidout) ∈ flt) then
31: sti ← PASSING
32: if ((i, iLidin, iLidout) /∈ ConvoyAmbassadors(flt)) then
33: LLi ← {} . I am not responsible for notifying others that the convoy has cleared the core area
34: end if
35: move and pass the core area
36: else if (iLidin ∝ uLidin) then
37: delete (u, uLidin, ???) from HLi

38: delete vehicles in flt from HLi or LLi

39: HLi = HLi ∪ ConvoyAmbassadors(flt) . Remember the representatives of the convoy
40: end if

On exiting the intersection:
41: if (LLi 6= {}) then
42: broadcast PERMIT(i)
43: end if

CoEnd

143

CHAPTER IX

FUTURE WORK

9.1 Modeling and Validating the Algorithm

Making the distributed mutual exclusion algorithm for intersection traffic

control (Algorithm 2) work without glitches for an intersection with two cars is just

the first step. It does not guarantee that the algorithm works well when there are

more than 2 cars.

9.1.1 Bigger Models. We need to research more on how to build

bigger models of the system. This requires including more cars in the model.

Consequently, it requires us to model broadcasts instead of point-to-point

communication we have in the current models. Further, with more cars, we must

model preemption and follow list related logic. We suggest growing the model

slowly and trying a model with 3 cars at the intersection. This would give more

insight to build even larger models.

9.1.2 Modeling and Validating Suggested Solutions. During our

investigations of the algorithm, we suggested solutions to rectify two problems we

discovered.

First, for the algorithm to work smoothly, there should be a prioritization

scheme to decide the order of vehicles passing through the core area of the

intersection. We suggested using arrival time, whether arriving in the main road

or not and whether going straight or turning, in that order to decide the priority

(Chapter V - Section 5.10.1).

Second, we demonstrated that the algorithm is prone to crashes if vehicles

could take right turns at the intersection. Our suggestion to rectify this issue is to

modify the “Follow List” related logic of the algorithm. We delegate the last vehicle

144

and the last vehicle that is going straight on the convoy to notify others when a

convoy has exited the core area of the intersection (Chapter VI - Section 6.8).

We are confident that these solutions would solve the problems we found.

However, for safety critical systems, relying solely on confidence is not wise. Those

suggestions must be formally modeled and verified. By the time we devised those

solutions, we ran out of time alloted for this thesis and hence we did not get a

chance to formally model them and present our results.

To model the first solution, we have to incorporate the incoming lane and

the outgoing lane for each vehicle in the CAR_P_TIME model (Chapter V -

Listing 24). Since there are 8 lanes (Figure 1), if we add two state variables to

the model, it would have a 64 fold increase in the state space, which is too much.

Instead, since the incoming and outgoing lanes for a car are constants, we can

augment the model by introducing two additional model parameters. Further, since

our current models only deal with two cars, the upper bound for the number of

lanes that could involve in one model is 4. This way, at the time of composing the

system at the intersection, we can specify the lanes each car is traveling in. We

hope, limiting the model by these means would make the size of the model more

manageable.

In addition to introducing new model parameters, the REQUEST

message should be enhanced to carry the incoming and outgoing lanes of a car.

Further, we have to model how a car acts on a received REQUEST message by

incorporating the priority scheme (Chapter V - Algorithm 3) into the model of the

CAR_P_TIME.

145

With the enhanced REQUEST message, the network process

VMEI_NETWORK_FIFO (Chapter IV - Listing 9) should be enriched to handle

the new message format.

When modeling the second solution, we should make the CAR_0 - trouble

maker car - (Chapter VI - Listing 30) wait for two PERMIT messages instead of

one and make both the last car and the last car that is turning right on the convoy

broadcast PERMIT messages.

9.1.3 Experimenting with Preemptions. In the Chapter II,

under Sections 2.4.2.5 and 2.5, we discuss some issues that could arise from the

logic of the Algorithm 2 related to preemptions (lines 5 - 7 and lines 17 - 19). We

manually build our arguments on handcrafted example scenarios. However, the

better approach is to employ formal modeling in such investigations. Within the

time frame of this thesis, we did not get the opportunity to build formal models of

these situations in LTSA to verify and gain clear insights of the algorithm.

We propose to commence this investigation by modeling the example

scenarios depicted in Figures 4, 5 and 6. These require bigger models involving

at least 3 or 4 cars.

9.1.4 Reliable Communication Channel. The algorithm relies on

the assumption that there is no packet loss and the communication channel is 100%

reliable (Chapter II - Section 2.2) (Wu et al., 2015a, p. 67). However, this is far

from reality.

Therefore, it is a worthwhile effort to gain insight about the behavior of the

algorithm in the presence of message loss. One idea to proceed on this direction is

to extend the model of the network (LTSA process VMEI_NETWORK_FIFO in

Listing 9) to drop messages then and there. But with this, we should also extend

146

the CAR_P_TIME model (Listing 25) with a tie-breaker and mechanisms to work

with an unreliable channel.

9.1.5 Clock Synchronization. Although the paper where the

distributed mutual exclusion algorithm for intersection traffic control is published

(Wu et al., 2015a) talks about using arrival time of the vehicles to assign priorities

to vehicles to decide the order they pass through the intersection (Chapter II -

Section 2.3.2), it never mentions how to measure or record arrival time. With a

distributed setting, such as vehicles collaborating to determine the order of passing

through the intersection, we lose the notion of a global clock. Instead, each vehicle

has its own local clock.

Multiple local clocks tend to run out of synchronization. Using such clocks

in a time sensitive system gives rise to the problem of clock synchronization.

The paper never acknowledges this problem and how their algorithm (Algorithm

2) performs when clocks are out of synchrony. Although there are many clock

synchronization algorithms (Cristian, 1989; Gusella & Zatti, 1989; Mills, 1991),

none of them achieves 100% synchronized clocks. They only guarantee that the

difference of times indicated by pairs of clocks would be under some upper bound.

Clocks not being synchronized can have negative effects on the operation

of the algorithm. For example, algorithm relies on the fact that for two vehicles

approaching the intersection on the same lane, the first car must have an earlier

arrival time than the second car. This makes the first car have a higher priority,

which prevents the second car from entering the intersection before the first car.

However, if this order is swapped due to local clocks of these two cars being out

of sync, it could lead to a deadlock: The first car waits till the second car passes

through the intersection but the second car cannot proceed since the first car is

147

blocking its way (or if the second car advances without considering the first car in

front of it, that could lead to a tail end collision).

Let tfirst and tsecond be the arrival times of the first and second cars

respectively according to a global clock. Let tgap seconds be the shortest time

gap between two cars entering the queue area of the intersection on the same lane.

Thus, if the clocks are perfectly synchronized, we have:

tsecond ≥ tfirst + tgap

tfirst ≤ tsecond − tgap

(9.1)

Now suppose, due to a clock error, the clock of the second car runs terror

seconds slower. Therefore, when the second car enters the queue area of the

intersection, it records tsecond − terror as its arrival time instead of tsecond. The

aforementioned problems arise if:

tsecond − terror < tfirst (9.2)

Combining inequalities (9.1) and (9.2), we get,

tsecond − terror < tsecond − tgap

tgap < terror

(9.3)

As per inequality (9.3), if the clocks go out of sync more than the shortest

time gap between two cars entering the queue area of the intersection on the same

lane, it would be problematic for the correct operation of the algorithm. Therefore,

prior to implementing this algorithm for real world use, a careful investigation on

such timing issues needs to be performed.

9.2 Manulator

Although, the simulation code written for the Manulator is closer to an

implementation than the LTSA model, it still needs to be modified to run directly

on hardware without the Manulator. This transformation too could introduce

148

errors in the implementation that were not present in the simulation. To eliminate

such errors, we are in the process of enhancing and extending Manulator to enable

the simulation code (possibly with minimal modifications) to be directly executed

on actual hardware.

9.3 Enhancing the LTSA-O

LTSA tool animates the finite state graphs of component processes of a

system. Although, it produces a finite state graph for the composition, it is not

animated. Since the graph of the composition is the graph representative of the

final system, we believe animating that graph is very important.

9.4 Game Tolerant Systems

Homo sapiens are a very clever group of species. They are so clever that

they find loopholes in everything so that things can be turned into their advantage.

With respect to the distributed mutual exclusion algorithm for intersection

traffic control, we asked the question, can a human user who takes the service of an

autonomous vehicle that operates a “perfect” and “error free” implementation of the

algorithm, game the system to take an unfair advantage? For example, even today,

systems that boast unbreakable get hacked.

The algorithm relies on arrival time (and a tie-breaker) to prioritize and

decide which car passes through an intersection first. In the fast-paced world, the

owners and passengers of these autonomous vehicles are motivated to reach their

destination as quickly as possible. Therefore, there is good reason to believe that

at least some humans could try to customize their vehicles so that they could get

an unfair higher priority to make their commute shorter. For example, what if

somebody can just tamper with the local clock of the car to run a little slower

and make their car broadcast a lesser time-stamp than others having the correct

149

time. This way a perfect algorithm (according to our current notion of being

perfect) gives an advantage to such a person and he or she can game the system.

Another example could be somebody wanting to make social havoc making a

vehicle broadcast erroneous information to cause a crash at an intersection.

Even without any human intervention, electronic components could

malfunction and start sending erroneous information. Further, a virus attack can

lead to much more wide-spread and long lasting disruptions.

Thinking along these problems, we raised the question, even after

deployment, can we utilize the model with our LTSA-O tool to keep an eye on

the behavior of the system and alert anomalies in real-time to some monitoring

authority that can take necessary action in a timely manner?

With the speed of today’s computers and communication systems, reaction

time of a human to such an alert could be very slow. By the time some resolution

is in place, there could already be a lot of damage taken place. Therefore, we

thought one more step ahead and asked the question, in addition to making the

LTSA-O alert a human, can we make it directly alert the nodes of the distributed

system and can we make the distributed system sufficiently game tolerant so that

it can automatically take necessary actions to isolate the malfunctioning node and

continue its regular operation?

We have already conducted some preliminary experiments in this line and

gained some success. However, the results are not mature enough to present as an

individual chapter of the thesis. Hence, we briefly mention our efforts here.

We experimented with the Chang-Roberts leader election algorithm for a

ring topology (Chang & Roberts, 1979). According to the algorithm, the nodes run

an election by sharing their node ids with others in the ring and the node with the

150

highest node id gets elected as the leader of the ring (Appendix A.1, A.2, A.3 and

A.4).

The first question we asked is, can a node with a lesser id game the

algorithm by tricking all the other nodes to believe that it is the leader? We came

up with the answer as “Yes” by creating a bad node in the ring that can always

become the leader of the ring irrespective of its id (Appendix A.6).

The second question was, can LTSA-O alert a human about the bad node?

This was an easy question since LTSA-O already followed the execution of the

implementation and matched it with the model. Thus, just the moment the bad

node is about to game the system LTSA-O senses it immediately (Appendix A.7).

This leads to the subsequent question, can we make LTSA-O alert the

system in execution about the bad node in real-time. At the time we were asking

this question, LTSA-O was just a passive observer. It did not interfere with the

conversation the nodes were having in the implementation.

We made the main thread of the Manulator in a simulation or each node in

an implementation subscribe to a special topic bnode_topic at the MQTT broker.

Then, whenever LTSA-O sees a bad node it publishes the identity of the bad node

to the same topic at the same broker. We added the additional field:

bnode_topic, <Topic to reveal bad nodes>

to all the relevant configuration files so that all the parties share a common topic to

discuss about bad nodes.

In a simulation, the main monitor thread gets the information about a bad

node, which it then broadcasts to all the node processes in the simulation. In an

implementation, each node gets the information directly from the broker.

151

Next we asked, can we enhance the algorithm to act on a bad node message,

ostracize the bad node, recreate the ring without the bad node and elect the node

that deserves the leadership. We are successful in this level as well (Appendix A.8).

This is where we have stopped at the moment. The moment the system in

execution carves out the bad node and re-creates a new ring, the topology of the

ring in the system in execution diverges from that of the static model LTSA-O has.

With the current system, after catching the first bad node, the model with LTSA-O

becomes outdated and hence is unable to properly synchronize with the new state

of the system in action. If we can make LTSA-O more dynamic and re-compose a

model eliminating the bad node, we might be able to make the model keep up with

the changing topology of the system in execution. These are research questions not

yet answered.

Moreover, showing that our ideas work with Chang-Roberts leader election

does not generalize them to other algorithms. Can we make any distributed

algorithm achieve this new sense of game tolerance? Can we build some theory or

guideline so that anybody can follow and make any or many distributed algorithms

robust at this level? These are more higher level questions that need more time and

experiments to find solutions.

152

APPENDIX

MANULATOR AND LTSA-O - AN EXAMPLE

Here, we are providing a complete example of the Manulator and LTSA-O

in operation. Along with the example, a commentary about what is happening is

provided. We model and simulate the Chang-Roberts leader election algorithm for

a ring topology (Chang & Roberts, 1979) in this example.

A.1 LTSA Model of a Chang-Roberts Node

We present a LTSA model of a node that executes the Chang-Roberts

leader election algorithm. Listing 34 provides constants, ranges and sets used

in the model. In this listing, changing the constant NODES creates rings with

different number of nodes. Listing 35 for CHANG_NODE models the Chang-

Roberts algorithm for a single node. In our models, we use the convention of

prefixing internal node actions, which are not captured by the messaging layer, with

a long tail of underscores (____________). LTSA-O is unable to sense these

actions. Composing 4 CHANG_NODE s into a ring topology is described in Listing

36. It creates a ring with 4 nodes with node ids 0, 1, 2, 3 : 0 → 1 → 2 → 3 → 0.

Finally, Listing 37 provides asserts to validate whether the model works per

the definition of the algorithm. It further defines what progress means in our

composition.

A.2 Implementing Chang-Roberts in Manulator

After having a validated model, it is time to implement it in the Manulator.

To make it easy for the reader to map the connection between the model (Listing

35) and the implementation (Listing 38), we try to keep the implementation as

close as possible to the model (same names for states, functions and variables,

153

Listing 34 Constants, sets and ranges used in Chang-Roberts LTSA models. �
1 const False = 0
2 const True = 1
3 range Bool = False ..True

4 // Node IDs
5 const NODES = 4 // Changes the number of nodes
6 range IDS = 0.. NODES - 1

7 // Message types
8 const ID = 100
9 const LEADER = 200

10 set MESSAGES = { [ID], [LEADER] }

and a similar structure). Suppose that this code is stored in the python module

chang_node.py (this is the file name where the code is stored).

A.3 Simulating Chang-Roberts in Manulator

The only thing that is missing to observe how our implementation behaves

when executed is the Manulator configuration file (Figure A.26). The two

command line parameters for each chang_node are: <node id> <downstream

node id>. Please note that we have included the optional fields: Timeout, Broker,

Topic and Bnode_Topic to provide a complete picture of the configuration file.

Timeout defines the length of the maximum period without any message being

passed. Manulator uses this to notify of such periods to the user. Other optional

parameters are used to connect the simulation running in Manulator with LTSA-O.

Also, assume that the configuration file is stored in a file named nodes.csv. If this is

stored in a file with another name, the name of that file should be provided as the

first command line argument to Manulator.

154

Listing 35 Model of a node that performs Chang-Roberts leader election �
1 CHANG_NODE(NODE_ID = 1) = ACTIVE[False],

2 ACTIVE[s: Bool] =
3 (
4 when(s == False)
5 send [ID][NODE_ID]
6 -> ACTIVE[True]

7 | receive[ID][nid: IDS]
8 -> DECIDE[nid][s]

9 | when(s == True)
10 receive[LEADER][nid:IDS]
11 -> send [LEADER][nid]
12 -> WORKING[nid]
13),

14 DECIDE[nid: IDS][s: Bool] =
15 (
16 when(nid < NODE_ID)
17 ____________drop[ID][nid]
18 -> ACTIVE[s]

19 | when(nid > NODE_ID)
20 send [ID][nid]
21 -> PASSIVE

22 | when(nid == NODE_ID)
23 ____________i_am_leader
24 -> ANNOUNCE
25),

155

�
26 PASSIVE =
27 (
28 receive[ID][nid: IDS]
29 -> send [ID][nid]
30 -> PASSIVE

31 | receive[LEADER][nid: IDS]
32 -> send [LEADER][nid]
33 -> WORKING[nid]
34),

35 ANNOUNCE =
36 (
37 send [LEADER][NODE_ID]
38 -> WAITFORROUNDTRIP
39),

40 WAITFORROUNDTRIP =
41 (
42 receive[LEADER][NODE_ID]
43 -> WORKING[NODE_ID]
44),

45 WORKING[nid: IDS] =
46 (
47 ____________working_for[nid]
48 -> WORKING[nid]
49).

Listing 36 Composing the ring of CHANG_NODE s �
1 || RING =
2 (
3 node[n: IDS]: CHANG_NODE(n)
4)
5 /
6 {
7 node[n:IDS].send / node[(n+1)%NODES]. receive
8 }.

156

Listing 37 Making sure the model of Chang-Roberts composition work properly �
1 // Check whether the node with the largest node id
2 // eventually becomes the leader
3 assert Largest_is_leader =
4 <> (node[NODES -1]. ____________i_am_leader)

5 // Check whether no other node becomes the leader
6 // along with the node with the largest id
7 assert Only_one_leader =
8 []! (
9 exists[i: 0..NODES -2]

10 (node[i]. ____________i_am_leader &&
11 node[NODES -1]. ____________i_am_leader
12)
13)

14 // Check whether all nodes eventually work for the
15 // leader elect - the node with the highest id
16 assert Everyone_works =
17 forall[i: IDS]
18 <> (
19 node[i]. ____________working_for[NODES -1]
20)

21 // Check whether the nodes always do not have to
22 // send their id for the algorithm to work
23 // This assert must be violated
24 assert Always_send_my_id =
25 forall[i: IDS]
26 <> (node[i].send[ID][i])

27 // In this system , progress means everybody ends up
28 // in the cycle of working for the leader.
29 progress ALL_WORKING =
30 {
31 node[IDS]. ____________working_for [NODES -1]
32 }

157

Listing 38 Implementation of a CHANG_NODE (Listing 35) as a Node for
Manulator. Suppose that this code is stored in the python module chang_node.py �

1 import time
2 from Communications import Communications
3 from multiprocessing import Lock

4 class Node(Communications):

5 def initialize_node(self , argc , argv):
6 # argv[0] is the module name
7 # argv[1] is the node id
8 self.me = argv[1]
9 self.next = argv[2]

10 self.state = ’NOT ACTIVE ’
11 self.lock = Lock()

12 def main(self):

13 time.sleep(1)

14 with self.lock:

15 self.log(’[Node {}]\t{}’.
16 format(self.me , self.state))

17 if (self.state == ’NOT ACTIVE ’):
18 self.log((’[Node {}]\ tSending my id’
19 ’to {} for the 1st time’).
20 format(self.me , self.next))

21 self.send(’ID {}’.
22 format(self.me), self.next)

23 self.state = ’ACTIVE ’

158

�
24 def on_msg(self , sender , msg):
25 msg_parts = msg.split()

26 time.sleep(1)

27 with self.lock:
28 self.log(’[Node {}]\t{}’.
29 format(self.me , self.state))

30 if (self.state == ’WAITFORROUNDTRIP ’):
31 if (msg_parts[0] == ’LEADER ’
32 and msg_parts[1] == self.me):
33 self.log((’[Node {}]\ tEverybody ’
34 ’knows I am the boss’).
35 format(self.me))

36 self.state = ’WORKING ’

37 elif (self.state != ’WORKING ’):
38 if (self.state == ’PASSIVE ’):
39 self.PASSIVE(msg)

40 elif (msg_parts[0] == ’ID’):
41 self.DECIDE(msg)

42 # msg_parts[0] == ’LEADER ’
43 # and I am not the leader
44 elif (self.state == ’ACTIVE ’):
45 self.send(msg , self.next)
46 self.state = ’WORKING ’
47 self.log(’[Node {}]\t{}’.
48 format(self.me , self.state))

159

�
49 # Decide whether I am the leader or not
50 def DECIDE(self , msg):
51 msg_parts = msg.split()
52 nid = msg_parts[1]

53 if (int(nid) > int(self.me)):
54 # I am not the leader
55 self.send(msg , self.next)
56 self.state = ’PASSIVE ’

57 elif (nid == self.me):
58 # I am the leader
59 self.ANNOUNCE ()

60 # I know that I am not the leader
61 # corporate with the election
62 def PASSIVE(self , msg):
63 msg_parts = msg.split()
64 msg_type = msg_parts[0]

65 self.send(msg , self.next)

66 if (msg_type == ’LEADER ’):
67 # I have a new leader it is not me
68 self.state = ’WORKING ’
69 self.log(’[Node {}]\t{}’.
70 format(self.me , self.state))

71 # Let everybody know that I am the boss
72 def ANNOUNCE(self):
73 self.log(’[Node {}]\tI am the leader ’.
74 format(self.me))

75 self.send(’LEADER {}’.
76 format(self.me), self.next)

77 self.state = ’WAITFORROUNDTRIP ’

160

Nodes in the simulation

chang_node, 0, 1

chang_node, 1, 2

chang_node, 2, 3

chang_node, 3, 0

Timeout, 3

Broker to subscribe for

Broker, iot.eclipse.org:1883

Topic Manulator publishes messages
so that LTSA-O can eavesdrop

Topic, demo

Topic LTSA-O notifies about nodes
sending out of sequence messages

Bnode_Topic, bad_node

- - - Anything below this line is ignored
Manulator ignores anything below a line starting with a -

Figure A.26. An example Manulator configuration file to simulate a ring of 4 nodes
that run the Chang-Robert leader election algorithm

With the Manulator configuration file in place, running the simulation is just

a matter of executing the command:

$ python manulator

With this, Manulator reads the configuration file, creates the required

amount of node processes and runs the simulation. While the simulation is running,

anything logged using the self.log() command can be seen on the console in

addition to being stored in the per node log file. At any time during the simulation,

if the return key is pressed on the simulation console, the simulation terminates.

161

At the end of the simulation, per node log files and the Manulator log file can be

inspected to see what happened in each node and in the simulation. These become

vital when it comes to debugging.

A.4 Bringing LTSA-O to the Scene

Making LTSA-O eavesdrop on the messages exchanged in the simulation

running in the Manulator is just a matter of completing the LTSA-O configuration

file (Figure A.27) and commanding LTSA-O to validate the incoming stream of

messages. As described in Chapter VII - Section 7.3, we can get the skeleton of

the configuration file and then populate the missing information according to the

specifics of the implementation. Note that this configuration file uses the same

broker as in the Manulator configuration file (Figure A.26).

After populating the configuration file, we should load the configuration

file to LTSA-O by using the “Open Config” button on the “Observer & Validator ”

dialog (Figure 25). Then by clicking the “Validate” button on the same dialog,

LTSA-O starts listening to the message stream published by the Manulator to

the broker. When messages start streaming in, LTSA-O animates the model

accordingly. Whenever it sees an out of order message, it notifies that to the user

and also publishes the message and topic where LTSA-O received the out of order

message to the “Bnode_Topic” specified in the configuration file. LTSA-O uses the

message format: <Topic where the out of order message has been published to>,

<Payload of the out of order message> to publish this information to the broker.

Via this channel, Manulator gets to know about the bad node and it passes this

information to all the node processes.

162

Broker, iot.eclipse.org:1883

Bnode_Topic, bad_node

Index, Action, Topic, Message

1, node.0.send.100.0, demo/1, ID 0

2, node.3.send.100.0, demo/0, ID 0

3, node.3.send.100.1, demo/0, ID 1

4, node.3.send.100.2, demo/0, ID 2

5, node.3.send.100.3, demo/0, ID 3

6, node.3.send.200.0, demo/0, LEADER 0

7, node.0.send.200.0, demo/1, LEADER 0

8, node.3.send.200.1, demo/0, LEADER 1

9, node.0.send.200.1, demo/1, LEADER 1

10, node.3.send.200.2, demo/0, LEADER 2

11, node.0.send.200.2, demo/1, LEADER 2

12, node.3.send.200.3, demo/0, LEADER 3

13, node.0.send.200.3, demo/1, LEADER 3

Figure A.27. An example LTSA-O configuration file to make LTSA-O listen to communication taking place in the
simulation of Chang-Roberts leader election algorithm with 4 nodes. The contents of the file span 4 pages.

163

14, node.0.____________i_am_leader, local, Node 0 is the leader

15, node.0.send.100.1, demo/1, ID 1

16, node.0.send.100.2, demo/1, ID 2

17, node.0.send.100.3, demo/1, ID 3

18, node.0.____________working_for.0, local, Node 0 working for 0

19, node.0.____________working_for.1, local, Node 0 working for 1

20, node.0.____________working_for.2, local, Node 0 working for 2

21, node.0.____________working_for.3, local, Node 0 working for 3

22, node.1.send.100.1, demo/2, ID 1

23, node.1.send.200.0, demo/2, LEADER 0

24, node.1.send.200.1, demo/2, LEADER 1

25, node.1.send.200.2, demo/2, LEADER 2

26, node.1.send.200.3, demo/2, LEADER 3

27, node.1.____________drop.100.0, local, Node 1 drop ID 0

28, node.1.____________i_am_leader, local, Node 1 is the leader

164

29, node.1.send.100.2, demo/2, ID 2

30, node.1.send.100.3, demo/2, ID 3

31, node.1.send.100.0, demo/2, ID 0

32, node.1.____________working_for.0, local, Node 1 working for 0

33, node.1.____________working_for.1, local, Node 1 working for 1

34, node.1.____________working_for.2, local, Node 1 working for 2

35, node.1.____________working_for.3, local, Node 1 working for 3

36, node.2.send.100.2, demo/3, ID 2

37, node.2.send.200.0, demo/3, LEADER 0

38, node.2.send.200.1, demo/3, LEADER 1

39, node.2.send.200.2, demo/3, LEADER 2

40, node.2.send.200.3, demo/3, LEADER 3

41, node.2.____________drop.100.0, local, Node 2 drop ID 0

42, node.2.____________drop.100.1, local, Node 2 drop ID 1

43, node.2.____________i_am_leader, local, Node 2 is the leader

165

44, node.2.send.100.3, demo/3, ID 3

45, node.2.send.100.0, demo/3, ID 0

46, node.2.send.100.1, demo/3, ID 1

47, node.2.____________working_for.0, local, Node 2 working for 0

48, node.2.____________working_for.1, local, Node 2 working for 1

49, node.2.____________working_for.2, local, Node 2 working for 2

50, node.2.____________working_for.3, local, Node 2 working for 3

51, node.3.____________drop.100.0, local, Node 3 drop ID 0

52, node.3.____________drop.100.1, local, Node 3 drop ID 1

53, node.3.____________drop.100.2, local, Node 3 drop ID 2

54, node.3.____________i_am_leader, local, Node 3 is the leader

55, node.3.____________working_for.0, local, Node 3 working for 0

56, node.3.____________working_for.1, local, Node 3 working for 1

57, node.3.____________working_for.2, local, Node 3 working for 2

58, node.3.____________working_for.3, local, Node 3 working for 3

166

Since nodes CHANG_NODE adhere to the Chang-Roberts protocol,

LTSA-O shows a perfect action trace without any errors (Figure A.28). By clicking

the Replay button on the Observer & Validator dialog, the last run recorded by

LTSA-O can be replayed. This comes handy for debugging.

Figure A.28. LTSA-O action trace for a well behaved Chang-Roberts system

A.5 Summery of Steps to Run and Validate a Simulation

1. In LTSA-O, model the components of the system, compose the system and

validate the model.

2. After the model is satisfactory, implement it in Manulator.

167

3. Create the Manulator configuration file nodes.csv (default name - or use any

other name) to configure the simulation.

4. Compose the model in LTSA-O and generate the LTSA-O configuration file

(Observer & Validator - Save Config).

5. Populate the LTSA-O configuration file according to the implementation.

6. Load the LTSA-O configuration file to LTSA-O (Observer & Validator - Open

Config).

7. Make LTSA-O listen to the messages exchanged in the simulation (Observer

& Validator - Validate).

8. Run the simulation in the Manulator ($ python manulator).

9. Observe the model in LTSA-O being animated according to the messages

exchanged in the simulation in execution.

10. To debug the implementation

(a) Replay the message sequence in LTSA-O and see what happened

(Observer & Validator - Replay).

(b) Examine the per node and manulator log files.

A.6 Meglomaniac Node

Since CHANG_NODE is well behaved, LTSA-O does not complain

about the simulation governed by the Manulator configuration in Figure A.26.

To demonstrate how LTSA-O behaves on an out of order message, we create a

meglomaniac node that abuses the Chang-Roberts protocol and always becomes

the leader of the ring irrespective of its node id.
168

In the LTSA model for the well behaved node, CHANG_NODE, (Listing

35), we should only change lines 14 - 18 from: �
14 DECIDE[nid: IDS][s: Bool] =
15 (
16 when(nid < NODE_ID)
17 ____________drop[ID][nid]
18 -> ACTIVE[s]

19 | when(nid > NODE_ID)
20 send [ID][nid]
21 -> PASSIVE

22 | when(nid == NODE_ID)
23 ____________i_am_leader
24 -> ANNOUNCE
25),

to: �
DECIDE[nid: IDS][s: Bool] =

(
____________i_am_leader -> ANNOUNCE

),

to come up with a power hungry node, which we call the “BAD_NODE ”.

By composing a BAD_NODE with 3 other CHANG_NODE s (Listing 35),

we create a “BAD_RING” (Listing 39). In this composition, the node with id 0

abuses and games the protocol to always become the leader.

We can validate that node 0 always becomes the leader and no other node

becomes the leader with the aid of asserts (Listing 40).

Implementing the bad node for Manulator is just a matter of changing the

def DECIDE(self, msg) method (lines 47 - 56) of Listing 38 as:

169

Listing 39 Composing a ring with a BAD_NODE and 3 other CHANG_NODE s �
1 || BAD_RING =
2 (
3 node[0]: BAD_NODE (0)
4 || node[n: 1..3]: CHANG_NODE(n)
5)
6 /
7 {
8 node[n:IDS].send / node[(n+1)%NODES]. receive
9 }.

�
1 def DECIDE(self , msg):
2 # I am the leader
3 self.ANNOUNCE ()

Assume that the code for the bad node is stored in the python module

bad_node.py (this is the file name where the code is stored). Therefore, we can

update the Manulator configuration file (Figure A.26) to simulate the BAD_RING

composition (Listing 39) as in Figure A.29. Note that the only change is to the 2nd

line of the earlier configuration file. This is how easy it is to simulate systems in

Manulator.

A.7 Catching the BAD_NODE Red-handed

When LTSA-O with the model for the ring with 4 CHANG_NODE s

(model should be the correct ring without the bad node) (Listing 36)

listens to the communication taking place in the simulation of the BAD_RING,

just the moment the bad node sends the message i_am_leader, LTSA-O notifies

that to the user (Figure A.30). After the first out of order message, the sequence

of messages exchanged in the simulation with the bad node does not align with

the sequence of messages anticipated by the correct model (Listing 36). Therefore,

170

Listing 40 Making sure the BAD_NODE always becomes the leader �
1 // Check whether the node with id 0
2 // eventually becomes the leader
3 assert Zero_is_leader =
4 <> (node[0]. ____________i_am_leader)

5 // Check whether no other node becomes the leader
6 // along with the node with id 0
7 assert Zero_is_the_only_leader =
8 []! (
9 exists[i: 1.. NODES]

10 (node[0]. ____________i_am_leader &&
11 node[i]. ____________i_am_leader
12)
13)

14 // Check whether all nodes eventually work for the
15 // leader elect - the node with id 0
16 assert All_work_for_Zero =
17 forall[i: IDS]
18 <> (
19 node[i]. ____________working_for[0]
20)

21 // Check that node 3 never becomes the leader
22 // This assert must be violated
23 assert Three_never_become_leader =
24 []! (node[3].send[LEADER][0])

25 // In this system , progress means everybody ends up
26 // in the cycle of working for the leader.
27 progress ALL_WORKING =
28 {
29 node[IDS]. ____________working_for [NODES -1]
30 }

171

Nodes in the simulation

bad_node, 0, 1

chang_node, 1, 2

chang_node, 2, 3

chang_node, 3, 0

Timeout, 3

Broker to subscribe for

Broker, iot.eclipse.org:1883

Topic Manulator publishes messages
so that LTSA-O can eavesdrop

Topic, demo

Topic LTSA-O notifies about nodes
sending out of sequence messages

Bnode_Topic, bad_node

- - - Anything below this line is ignored
Manulator ignores anything below a line starting with a -

Figure A.29. Manulator configuration file to simulate the BAD_RING (Listing 39).

LTSA-O does not respond to any further messages it receives after the first out of

order message.

A.8 Making the CHANG_NODE Game Tolerant

We did some initial experiments to try to make the node game tolerant

by acting upon the bad node notification received from LTSA-O. As described

in Chapter IX - Section 9.4, we were successful in acting on the first bad node

message and repairing the ring by eliminating the bad node.

We updated the implementation of the def initialize_node(self,

argc, argv) and def on_msg(self, sender, msg) methods (lines 5 - 11 and

172

Figure A.30. LTSA-O notifying an out of order message (Observer & Validator
dialog)

24 - 48) of the implementation of the CHANG_NODE (Listing 38) with the logic

of the updated protocol that dynamically creates a new ring without the bad node

(Listings 41 and 42). Suppose that the coding for the updated node is stored in

python module chang_node_gt.py.

For our updated protocol to work, a node not only needs to know

the id of its downstream node but also its upstream node. This is taken

care of by the updated def initialize_node(self, argc, argv).

def on_msg(self, sender, msg) is updated to process the additional messages

involved in reconfiguring the ring. Further, the updated node remembers the ids of

all the reported bad nodes so that it can ignore further messages received from such

nodes.

173

Listing 41 Updated initialize_node method of Listing 38 that makes the node game
tolerant. Suppose that the coding for the updated node is stored in python module
chang_node_gt.py �

1 def initialize_node(self , argc , argv):
2 # argv[0] is the module name
3 # argv[1] is the node id
4 self.me = argv[1]
5 self.prev = argv[2]
6 self.next = argv[3]
7 self.state = ’NOT ACTIVE ’
8 self.lock = Lock()

9 # List of known bad nodes
10 self.bad_nodes = set()

The Manulator configuration file to simulate a ring of 3 game tolerant

Chang-Roberts nodes along with a bad node is given in Figure A.31. The command

line parameters to the chang_node_gt are: <node id>, <upstream node id>

<down stream node id>.

Although our updated node is robust enough to handle any number of bad

nodes by shrinking the ring appropriately all the way till there is only one node is

left in the ring, LTSA-O is unable to dynamically update the model to reflect the

eliminated bad nodes. Therefore, after reporting the first bad node, LTSA-O does

not provide any meaningful responses.

Since we are still using the composition in Listing 36 that builds a ring of

CHANG_NODES, it does not know the behavior of the updated game tolerant

node. Therefore, LTSA-O considers all the messages related to ring update process

and the elections afterwards as out of order messages and report them as bad nodes

(Figure A.32). If all such messages are delivered to node processes, the ring ends

174

Listing 42 Updated on_msg method of Listing 38 that makes the node game
tolerant. Suppose that the coding for the updated node is stored in python module
chang_node_gt.py �

1 msg_parts = msg.split()

2 if (sender == ’-1’):
3 # This is a bad node message from the Manulator
4 with self.lock:
5 # Stop all other work
6 self.state = ’GAME_TOLERENCE ’

7 # Decode the message
8 # 1. Bad node message := <receiver > <message >
9 # 2. <message > := <message type > <sender id>

10 # 1 = Format Manulator reports bad nodes
11 # 2 = Message format used by the Node
12 # Add this node to the set of bad nodes
13 self.bad_nodes.add(msg_parts[2])

14 if (msg_parts[2] == self.prev):
15 # My upstream node is the bad node
16 if (msg_parts[2] == self.next):
17 # I am the only good node left
18 self.log(’{} > I am the only good node left’.
19 format(self.me))
20 else:
21 # Notify the node who is sending messages to
22 # this bad node to re-route them to me
23 self.log(’My upstream node {} is bad’.
24 format(self.prev))
25 # Send a reconnect message
26 self.send(’R {} {}’.
27 format(self.me , self.prev),
28 self.next)
29 return

175

�
41 # Process only the messages from good nodes
42 if not (msg_parts[1] in self.bad_nodes):

43 time.sleep(1)

44 if (msg_parts[0] == ’R’):
45 if (self.next == msg_parts[2]):
46 # My downstream node is bad
47 # Update my downstream node
48 self.next = msg_parts[1]

49 # Notify all about the updated ring
50 self.send(’NR {} {}’.
51 format(self.me , self.next),
52 self.next)
53 else:
54 self.send(msg , self.next)

55 elif (msg_parts[0] == ’NR’):
56 if (self.me == msg_parts[2]):
57 # I have a new upstream node
58 self.prev = msg_parts[1]

59 # Forward the message
60 self.send(msg , self.next)

61 elif (self.me == msg_parts[1]):
62 # Everybody knows about the updated ring.
63 # Start another election
64 self.send(’ID {}’.
65 format(self.me), self.next)
66 else:
67 self.send(msg , self.next)

68 with self.lock:
69 # Get ready for new election
70 self.state = ’ACTIVE ’
71 else:
72 # Copy lines 27 - 28 of Listing 38 (chang_node.py)

176

Nodes in the simulation

bad_node, 0, 1

chang_node_gt, 1, 0, 2

chang_node_gt, 2, 1, 3

chang_node_gt, 3, 2, 0

Timeout, 3

Broker to subscribe for

Broker, iot.eclipse.org:1883

Topic Manulator publishes messages
so that LTSA-O can eavesdrop

Topic, demo

Topic LTSA-O notifies about nodes
sending out of sequence messages

Bnode_Topic, bad_node

Figure A.31. An example Manulator configuration file to simulate a ring of 4 nodes
that runs the Chang-Roberts leader election algorithm

up degenerating to just a single node. Hence, we instrumented Manulator to report

only the first bad node message to the node processes. However, the action trace

in Figure A.32 shows that the efforts node 0 took toward gaming the system and

becoming the leader have become fruitless, and the rightful leader, node 3, has

issued a i_am_leader message. The log of the Manulator clearly shows that node 3

becomes the leader of the new ring.

One idea to try is to model our game tolerant node, compose a ring out of

them and see how that responds to the ring being updated. However, we have yet

to get our hands dirty with this modeling process.

177

Figure A.32. LTSA-O notifying an out of order message and responding to ring
update process (Observer & Validator dialog)

178

REFERENCES CITED

16.6. multiprocessing - process-based “threading” interface. (2017).
https://docs.python.org/2/library/multiprocessing.html. The
Python Software Foundation.

Al-Sultan, S., Al-Doori, M. M., Al-Bayatti, A. H., & Zedan, H. (2014). A
comprehensive survey on vehicular ad hoc network. Journal of Network and
Computer Applications , 37 , 380 - 392. Retrieved from http://
www.sciencedirect.com/science/article/pii/S108480451300074X doi:
http://doi.org/10.1016/j.jnca.2013.02.036

Bergamini, D., Descoubes, N., Joubert, C., & Mateescu, R. (2005). Bisimulator: A
modular tool for on-the-fly equivalence checking. In N. Halbwachs &
L. D. Zuck (Eds.), Tools and algorithms for the construction and analysis of
systems: 11th international conference, tacas 2005, held as part of the joint
european conferences on theory and practice of software, etaps 2005,
edinburgh, uk, april 4-8, 2005. proceedings (pp. 581–585). Berlin, Heidelberg:
Springer Berlin Heidelberg. Retrieved from
http://dx.doi.org/10.1007/978-3-540-31980-1_42 doi:
10.1007/978-3-540-31980-1_42

Chang, E., & Roberts, R. (1979, May). An improved algorithm for decentralized
extrema-finding in circular configurations of processes. Commun. ACM ,
22 (5), 281–283. Retrieved from
http://doi.acm.org/10.1145/359104.359108 doi:
10.1145/359104.359108

Craggs, I., Sutton, J., & Pagliughi, F. (2017). paho. https://eclipse.org/paho/.

Cristian, F. (1989). Probabilistic clock synchronization. Distributed Computing ,
3 (3), 146–158. Retrieved from http://dx.doi.org/10.1007/BF01784024
doi: 10.1007/BF01784024

Grovepi internet of things robot kit. (2017).
https://www.dexterindustries.com/grovepi/. Dexter Industries.

Gusella, R., & Zatti, S. (1989, Jul). The accuracy of the clock synchronization
achieved by tempo in berkeley unix 4.3bsd. IEEE Transactions on Software
Engineering , 15 (7), 847-853. doi: 10.1109/32.29484

179

https://docs.python.org/2/library/multiprocessing.html
http://www.sciencedirect.com/science/article/pii/S108480451300074X
http://www.sciencedirect.com/science/article/pii/S108480451300074X
http://dx.doi.org/10.1007/978-3-540-31980-1_42
http://doi.acm.org/10.1145/359104.359108
https://eclipse.org/paho/
http://dx.doi.org/10.1007/BF01784024
https://www.dexterindustries.com/grovepi/

Harding, J., Powell, G. R., Yoon, R., Fikentscher, J., Doyle, C., Sade, D., . . .
Wang, J. (2014, August). Vehicle-to-vehicle communications: Readiness of
V2V technology for application (Report No. DOT HS 812 014). Washington,
DC: U.S. Department of Transportation, National Highway Traffic Safety
Administration. https://www.nhtsa.gov/staticfiles/rulemaking/pdf/
V2V/Readiness-of-V2V-Technology-for-Application-812014.pdf.

Hoare, C. A. R. (1978, Aug). Communicating sequential processes. Commun.
ACM , 21 (8), 666–677. Retrieved from
http://doi.acm.org/10.1145/359576.359585 doi:
10.1145/359576.359585

Hoare, C. A. R. (2015). Communicating sequential processes. Upper Saddle River,
NJ, USA: Prentice-Hall, Inc. Retrieved 2017-04-26, from
http://www.usingcsp.com/

Knight, J. C. (2002). Safety critical systems: Challenges and directions. In
Proceedings of the 24th international conference on software engineering (pp.
547–550). New York, NY, USA: ACM. Retrieved from
http://doi.acm.org/10.1145/581339.581406 doi:
10.1145/581339.581406

Magee, J., & Kramer, J. (2006). Concurrency: State models & java programs (2nd
ed.). Wiley Publishing. Retrieved 2017-04-26, from
https://www.doc.ic.ac.uk/~jnm/book/

Magee, J., & Kramer, J. (2012). FSP notation.
https://www.doc.ic.ac.uk/~jnm/LTSdocumention/FSP-notation.html.
Imperial College London.

Magee, J., & Kramer, J. (2015). Concurrency: State models & java programs.
https://www.doc.ic.ac.uk/~jnm/book/.

Magee, J., Kramer, J., Chatley, R., Uchitel, S., & Foster, H. (2007). FSP reference.
https://www.doc.ic.ac.uk/ltsa/eclipse/help/
index.html?appendix_b___fsp_language_spec.htm. Imperial College
London.

Magee, J., Kramer, J., Chatley, R., Uchitel, S., & Foster, H. (2013). LTSA -
labelled transition system analyser. https://www.doc.ic.ac.uk/ltsa/.

Mateescu, R., & Bergamini, D. (2017). BISIMULATOR manual page.
http://cadp.inria.fr/man/bisimulator.html. INRIA - Institut National
de Recherche en Informatique et en Automatique (French Institute for
Research in Computer Science and Automation).

180

https://www.nhtsa.gov/staticfiles/rulemaking/pdf/V2V/Readiness-of-V2V-Technology-for-Application-812014.pdf
https://www.nhtsa.gov/staticfiles/rulemaking/pdf/V2V/Readiness-of-V2V-Technology-for-Application-812014.pdf
http://doi.acm.org/10.1145/359576.359585
http://www.usingcsp.com/
http://doi.acm.org/10.1145/581339.581406
https://www.doc.ic.ac.uk/~jnm/book/
https://www.doc.ic.ac.uk/~jnm/LTSdocumention/FSP-notation.html
https://www.doc.ic.ac.uk/~jnm/book/
https://www.doc.ic.ac.uk/ltsa/eclipse/help/index.html?appendix_b___fsp_language_spec.htm
https://www.doc.ic.ac.uk/ltsa/eclipse/help/index.html?appendix_b___fsp_language_spec.htm
https://www.doc.ic.ac.uk/ltsa/
http://cadp.inria.fr/man/bisimulator.html

Mateescu, R., & Oudot, E. (2008, June). Bisimulator 2.0: An on-the-fly
equivalence checker based on boolean equation systems. In 2008 6th
acm/ieee international conference on formal methods and models for
co-design (p. 73-74). doi: 10.1109/MEMCOD.2008.4547690

Mills, D. L. (1991, Oct). Internet time synchronization: the network time protocol.
IEEE Transactions on Communications , 39 (10), 1482-1493. doi:
10.1109/26.103043

Milner, R. (1982). A calculus of communicating systems. Secaucus, NJ, USA:
Springer-Verlag New York, Inc.

Raspberry pi - teach, learn, and make with raspberry pi. (n.d.).
https://www.raspberrypi.org/. Raspberry Pi Foundation.

Stanford-Clark, A., & Nipper, A. (2014). MQTT. http://mqtt.org/.

Vanderbilt, T. (2012). Autonomous cars through the ages.
https://www.wired.com/2012/02/autonomous-vehicle-history/.

Weber, M. (2014). Where to? a history of autonomous vehicles.
http://www.computerhistory.org/atchm/
where-to-a-history-of-autonomous-vehicles/.

Wu, W., Zhang, J., Luo, A., & Cao, J. (2015a, January). Distributed mutual
exclusion algorithms for intersection traffic control. IEEE Transactions on
Parallel and Distributed Systems , 26 (1), 65-74. Retrieved from http://
ieeexplore.ieee.org/document/6747396/?tp=&arnumber=6747396 doi:
10.1109/TPDS.2013.2297097

Wu, W., Zhang, J., Luo, A., & Cao, J. (2015b, January). Distributed mutual
exclusion algorithms for intersection traffic control (supplementary). IEEE
Transactions on Parallel and Distributed Systems , 26 (1), 1-5. doi:
10.1109/TPDS.2013.2297097

181

https://www.raspberrypi.org/
http://mqtt.org/
https://www.wired.com/2012/02/autonomous-vehicle-history/
http://www.computerhistory.org/atchm/where-to-a-history-of-autonomous-vehicles/
http://www.computerhistory.org/atchm/where-to-a-history-of-autonomous-vehicles/
http://ieeexplore.ieee.org/document/6747396/?tp=&arnumber=6747396
http://ieeexplore.ieee.org/document/6747396/?tp=&arnumber=6747396

	 Introduction
	Autonomous Vehicles
	Vehicle-to-Vehicle Communication
	Self-Driving Cars, Are they Safe?
	Labelled Transition System Analyser (LTSA)

	 The Distributed Algorithm that We Model
	The Intersection
	Relationships Between Lanes

	Assumptions
	Vehicle Mutual Exclusion for Intersections (VMEI) Problem
	Correctness Properties of VEMI Problem
	Priority Assignment

	Distributed Algorithm for VMEI
	High-Level View of the Algorithm
	Algorithm in Detail
	Vehicle Labeling Convention
	States
	Variables and Data-Structures
	Messages Passed
	Optimizations
	Algorithm Pseudo-Code

	Concurrent Vs. Strong Concurrent

	 Modeling - An Introduction
	State Space
	Modeling
	Making the State Space Manageable

	 Modeling - V2V Communication
	Modeling Synchronous Communication
	Making the Communication Asynchronous
	Message Ordering
	Reducing the State Space of the Network Process

	 Modeling - Vehicle
	Extended State Diagram
	Handling PERMIT Messages
	Exiting the Core Area
	A Walk-through of the Extended State Transition Diagram
	Modeling the Car Begins
	Modeling the CAR Without a Sense of Priority
	Testing the Model

	Modeling Time
	Testing the Model
	Ideal Duration for the Timeout

	Global Clock vs. Local Clock
	Using Arrival Time to Determine Priority
	Breaking the Tie
	A Better Tie-Breaker - A Suggestion

	A Final Remark

	 Convoy Crash
	Fine-Grained Conceptual Model of the Intersection
	Modeling a CAR in the Convoy
	Modeling the Convoy
	The Trouble Maker
	The Network
	Modeling the Intersection
	Possible Crashes
	A Suggested Solution

	 Correct Model — Incorrect Implementation
	Manulator - The Distributed System Simulator
	Communications Class
	Node Class
	manulator

	Message Queue Telemetry Transport (MQTT)
	The Model Meets the Implementation
	Manulator Meets LTSA-O
	Conductor & Launcher
	Conductor
	Launcher

	 Conclusion
	Major Contributions
	Distributed VMEI Algorithm - Updated

	 Future Work
	Modeling and Validating the Algorithm
	Bigger Models
	Modeling and Validating Suggested Solutions
	Experimenting with Preemptions
	Reliable Communication Channel
	Clock Synchronization

	Manulator
	Enhancing the LTSA-O
	Game Tolerant Systems

	APPENDIX: Manulator and LTSA-O - An Example
	LTSA Model of a Chang-Roberts Node
	Implementing Chang-Roberts in Manulator
	Simulating Chang-Roberts in Manulator
	Bringing LTSA-O to the Scene
	Summery of Steps to Run and Validate a Simulation
	Meglomaniac Node
	Catching the BAD_NODE Red-handed
	Making the CHANG_NODE Game Tolerant

	REFERENCES CITED

