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The dynamic scripting reinforcement learning algorithm can be extended to 

improve the speed, effectiveness, and accessibility of learning in modern computer 

games without sacrificing computational efficiency. This dissertation describes three 

specific enhancements to the dynamic scripting algorithm that improve learning behavior 

and flexibility while imposing a minimal computational cost: (1) a flexible, stand alone 

version of dynamic scripting that allows for hierarchical dynamic scripting, (2) a method 

of using automatic state abstraction to increase the context sensitivity of the algorithm, 

and (3) an integration of this algorithm with an existing hierarchical behavior modeling 

architecture. The extended dynamic scripting algorithm is then examined in the three 

different contexts. The first results reflect a preliminary investigation based on two 

abstract real-time strategy games. The second set of results comes from a number of 

abstract tactical decision games, designed to demonstrate the strengths and 

weaknesses of extended dynamic scripting. The third set of results is generated by a 

series of experiments in the context of the commercial computer role-playing game 

Neverwinter Nights demonstrating the capabilities of the algorithm in an actual game. To 

conclude, a number of future research directions for investigating the effectiveness of 

extended dynamic scripting are described. 
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CHAPTER I 
INTRODUCTION 

The desire to create computer programs that can play games has been a driving force in 

artificial intelligence research, starting with Samuel’s groundbreaking work in developing 

a computer program to play checkers in the early 1950’s (Russell & Norvig, 1995). A 

recent special issue of Machine Learning demonstrates the continuing significance of 

game-based artificial intelligence (AI) research (Bowling, Fürnkranz, Graepel, & Musick, 

2006).  

While there has been a significant amount of research on classic two-player turn-

based games like checkers, chess, and backgammon (Russell & Norvig, 1995) and on 

multi-player card games such as poker (e.g., see poker.cs.ualberta.ca), this dissertation 

focuses on the modern interactive computer games advocated by Laird and van Lent 

(2001) for the study of human-level AI. These include common commercial computer 

games such as first person shooters (FPS), real-time strategy (RTS), and role-playing 

(RPG) games. Examples of these game types used in computer science research are 

Unreal Tournament, Warcraft, and NeverWinter Nights. 

The main difference between creating agents (computer programs) that play 

classical games such as checkers or poker and modern computer games is that the 

latter requires a much broader behavior model (J.E. Laird & van Lent, 2001). For 

example, an agent that plays chess is expected to examine the current board positions 

and recommend a move given the current difficulty setting. In a role-playing game a 

computer controlled character is expected to act more like a human – carrying on limited 

conversations with the human player and advancing the story arc in addition to 

intelligently assisting in combat. In classical games, the problem being solved by the 

agent can often be framed as a search problem, where there exist some standard, 

reasonable, solutions (e.g., expectimax (Russell & Norvig, 1995)). In modern computer 

games, the challenge is to create a broad, complex, behavior model that is often difficult 

to represent directly as a search problem.  
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The increasing complexity of desired agent behavior has resulted in a number 

of behavior modeling architectures that are designed to support the creation of agent 

behavior (behavior models) for modern computer games. While in many cases 

architectures are written specifically for a single game, there are a number of general 

purpose behavior modeling architectures. These are referred to as AI-middleware in the 

game industry (Flemming, 2008) and share much in common with the integrated 

development environments common in software engineering. The goal of a behavior 

modeling architecture is to make it easier to specify complex agent behavior. 

After agent behavior has been specified in a behavior modeling architecture, 

machine learning techniques can be used to adapt agent behavior online – i.e. while the 

human player is playing the game on their own computer. Reinforcement learning (RL) 

(Sutton & Barto, 1998) is a broad class of machine learning algorithms commonly used 

to perform online adaptation in games. RL algorithms learn to take actions that result in 

the greatest reward based on feedback from the game. For example, an agent in a first 

person shooter could use a RL algorithm to learn whether to act aggressively or 

defensively based on how well the selected behavior performs against a particular 

human player. Dynamic scripting is an instance of a RL algorithm designed specifically 

for modern computer games (Spronck, Ponsen, Sprinkhuizen-Kuyper, & Postma, 2006). 

While the dynamic scripting algorithm has shown significant promise in 

controlling agent behavior in modern computer games, there are a number of 

deficiencies that need to be addressed. First, there is currently no dynamic scripting 

implementation that has been integrated with a behavior modeling environment. This 

means that in order to use dynamic scripting, a modeler must implement the dynamic 

scripting algorithm from scratch. Additionally, most behavior modeling environments are 

hierarchal in nature, so the modeler would need to extend the basic dynamic scripting 

algorithm so that modular techniques such as task decomposition could be used. 

Second, there is a need to improve the ability of dynamic scripting to take advantage of 

state information. While algorithms such as Q-learning can take into account all of the 

state information available in a game and learn what actions to perform in specific game 

states, dynamic scripting has previously been used in cases where either only a single 

game state, or a limited set of game states, are considered. What is needed is to 

address these shortcomings is a flexible, dynamic scripting-based behavior modeling 
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tool that is able to support task decomposition and to take into account game state 

information.  

Our thesis is that dynamic scripting can be extended to improve the learning 

performance, applicability, and flexibility of dynamic scripting-based learning in modern 

computer games with reasonable computational cost. This dissertation proposes three 

specific extensions to the dynamic scripting algorithm that improve learning behavior and 

flexibility while imposing a minimal cost:  (1) developing a flexible, stand alone, version 

of dynamic scripting that allows for hierarchical dynamic scripting; (2) extending the 

context sensitivity of hierarchical dynamic scripting through automatic abstract state 

construction; and (3) performing an architecture integration where this algorithm is 

integrated with an existing hierarchical behavior modeling architecture. The result of this 

research will be to create a useful framework for game developers, where they can 

easily define adaptive behaviors that utilize dynamic scripting-based learning 

techniques.   

In order to verify the claims of performance, applicability, flexibility, and 

computational cost, results generated by the extended algorithm are compared to results 

from the standard dynamic scripting algorithm. Learning performance will be measured 

in terms of the relative score achieved by the agent and how fast the agent was able to 

achieve this score, given a set number of learning opportunities. Applicability is 

evaluated by examining whether or not the learning algorithm can be used to play a 

particular game. Flexibility is demonstrated by the ability of the author to express 

different types of domain knowledge in the authoring of agent behaviors. Computational 

cost is the amount of CPU time it takes the algorithm to select an action in the game and 

to learn from its experience.  

 Chapter II is devoted to providing the background knowledge necessary to 

understand this thesis statement. First, it gives an introduction on the use of artificial 

intelligence in modern computer games. Following this is a narrower, but deeper, 

examination of the use of online machine learning in games focusing on reinforcement 

learning. Finally, the last section in this chapter describes the dynamic scripting 

algorithm in detail, contrasting this algorithm with more commonly used reinforcement 

learning algorithms. 
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 Chapter III is an in-depth examination of the extensions to the dynamic scripting 

algorithm (EDS). This research builds on extensions that have worked well in the context 

of standard reinforcement learning algorithms and recasts them to work in the context of 

dynamic scripting and complex computer games. Related work is described in this 

chapter as well and includes summaries of related research on the dynamic scripting 

algorithm, on tree-based state abstraction and on the use of reinforcement learning 

algorithms in behavior modeling architectures. The specific contribution of this 

dissertation with respect to previous research is clearly outlined in this section. This 

chapter concludes with an illustrative example of EDS in action. This illustration is 

performed in the context of two simple real-time strategy sub-games and illustrates the 

main features of EDS. 

Chapter IV presents an abstract game description language that supports the 

construction of abstract tactical games. Four distinct games are created in this 

framework, ranging from entire simple prediction games to elements of more complex 

real-time strategy and role playing games. These four games are used experimentally to 

evaluate the performance of EDS in a variety of different gaming environments. 

In Chapter V, EDS is demonstrated in a modern computer game. Using the game 

Neverwinter Nights, the performance of the extended algorithm is directly compared to 

the performance of the dynamic scripting algorithm and to Q-learning variants. This 

comparison is a series of experiments that demonstrate the impact of each extension 

separately.  

Chapter VI concludes this dissertation, beginning with a summary of the 

presented research, results, and contributions. This chapter goes on to discuss the types 

of learning problems where the extended dynamic scripting algorithm is expected to 

excel. The final section of the chapter is devoted to discussing future research based on 

extended dynamic scripting. 
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CHAPTER II 
BACKGROUND 

The goal of this chapter is to provide the relevant background information for EDS. First, 

it gives a broad introduction on the use of artificial intelligence in modern computer 

games. Following this is a narrower, but deeper, examination of online learning in 

games. The next section covers a particular type of online learning, reinforcement 

learning, in the context of modern computer games. Finally, the last section in this 

chapter describes the dynamic scripting algorithm in detail. 

Artificial Intelligence in Modern Computer Games 
A primary application of artificial intelligence (AI) algorithms in modern games is control 

of the behavior of simulated entities (agents) within a game. For example, a computer 

controlled opponent in a first person shooter is expected to aim their weapon and fire 

upon the human player when the agent perceives the human player. Agent behaviors 

such as this are developed using a diverse set of behavior modeling architectures, 

where a behavior modeling architecture is a specialized programming environment 

designed to make it easier to author, modify, debug, and run agent behavior. A behavior 

author programs behavior for an agent in a specific architecture, resulting in a behavior 

model that can be used to control the agent at runtime. 

 A behavior modeling architecture is defined in a large part by the type of model 

representation it depends upon. Different modeling representations can define behavior 

in C++/Java code, scripts (Spronck et al., 2006) or finite state machines (Fu & Houlette, 

2003b); on the fly by a planning system (Orkin, 2004); from hybrid architectures that plan 

within or over hierarchal task networks (Hoang, Lee-Urban, & Muñoz-Avila, 2005); or 

with production rule based systems such as ACT-R (Best, Lebiere, & Scarpinatto, 2002) 

and Soar (Wray, Laird, Nuxoll, Stokes, & Kerfoot, 2005). Although there have been 

efforts to automate this process (e.g. Ponsen, Spronck, Muñoz-Avila, & Aha, 2006), 



 

 

6 

agent behaviors are generally created by a computer programmer (behavior author) in 

an integrated development environment (Ludwig & Houlette, 2006).  

Below are two behavior model examples where each model makes use of a 

different behavior architecture. The first is an example of a hierarchical state machine for 

the first-person-shooter game Counterstrike. The second example uses a cognitive 

architecture to control an agent in a simple tank game. 

Hierarchical Task Network Example 
This example uses a graphical canvas to describe reactive agent behavior in the first-

person-shooter game Counterstrike. A screen shot from the game, where the player is 

wearing night vision goggles, is shown in Figure 1. 

 

Figure 1 Image from the game CounterStrike ("CS: Source beta," 2004).  

  A task network that moves the agent to a destination is shown in Figure 2. In this 

diagram, rectangles represent actions that the character takes in the game and ovals 

represent observations the agent makes about the game state. Bold rectangles, such as 

Attack, indicate that the action is another task network, while non-bold rectangles 

indicate a primitive action. Ordered and directed arrows show the flow of control from 

one action to another. Behavior starts at the initial node (top left) and transfers control to 
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the FollowPath action. If the observation AtDestination is true, then control transfers to 

the final node (bottom left) and the behavior exits. This type of diagram, from the 

SimBionic modeling tool, appears throughout this document (see APPENDIX A 

SIMBIONIC GLOSSARY for a glossary).  

 

Figure 2 Move to destination behavior for Counterstrike (Ludwig & Houlette, 2006).  

 There are two other transitions out of the FollowPath action. The first checks to 

see if an enemy is seen while following the given path, and the second checks for 

hearing an enemy. If one of these observations is true the Attack sub-task is started as 

shown in Figure 3. 

The Attack behavior attempts to shoot at the enemy and then takes one of four 

transitions. The first transition checks to see if the enemy is dead, the second if the 

agent is out of ammo, and the third checks to make sure that the agent can still see the 

enemy. If none of these are true, the fourth transition will be taken and the behavior will 

exit. This will return control to the parent behavior, which resumes the FollowPath task. 
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Figure 3 Attack sub-behavior for Counter Strike (Ludwig & Houlette, 2006). 

 Behavior modeling techniques based on state-machines are very popular in the 

gaming industry because they are easy to implement, computationally efficient, an 

intuitive representation of behavior, accessible to subject matter experts in addition to 

programmers, relatively easy to maintain, and can be developed in a number of 

commercial integrated development environments (Fu & Houlette, 2003b). The 

downside to state-machine approaches is that by focusing on simplicity of representation 

and computational efficiency they often do not include advanced capabilities such as 

learning and planning / problem solving. The lack of an ability to perform problem solving 

or learn from experience can result in a brittle system where the agent behavior can’t 

cope with unforeseen situations or learn from its mistakes.  

As an example of a problem related to lack of planning capabilities, Orkin (2006) 

discusses an agent that is in a room when it sees its human opponent outside. One way 

of writing the adversary in a state-machine would cause it to open the door and move 

into the same room as its opponent. However, the human opponent could decide to 

stand in front of the door to block it from being opened. If the FSM does not include any 

contingency behaviors, the agent is stuck in the room. Orkin contrasts this to a planning-

based system capable of re-planning to accomplish the agent’s goals (moving to the 

same room as the opponent) with other actions. These new plans could include trying to 



 

 

9 

kick the door down or exiting through a window. While the same set of actions could be 

performed in either architecture, the FSM requires that all plans be constructed ahead of 

time by the behavior author rather than in real-time by the planning system.  

The following section provides a detailed example of a plan-based approach 

using the Soar cognitive architecture. 

Cognitive Architecture Example 
This example, from the Soar tutorial (J.E. Laird & Congden, 2005), illustrates a number 

of the features of the Soar cognitive architecture. It focuses on the ability of the 

architecture to create plans to control agent behavior in the TanksSoar game, as 

opposed to running through a pre-created state machine. These plans are represented 

as a series of IF-THEN rules, known as production rules, that link together in a very 

specific way. 

Each tank in the game is controlled by a separate instance of a Soar behavior 

model. In controlling a tank the model is responsible for moving, turning, firing missiles, 

listening for sounds, using the radar, etc., while conserving limited resources such as 

energy, missiles, and health. Figure 4 shows an example game with four tanks, each 

represented by a diamond. Health and energy for each tank are shown on the left. The 

tutorial includes a default model for controlling the tanks, which is described in detail 

below.  

The Soar production rules, combined with game state information, control the 

actions taken by each tank at each decision point. There are a number of different 

production rule types that are considered by Soar in order, each time a decision is made 

for a tank: elaborations, propose, prefer, and apply. First elaborations augment the 

current game by creating new attribute-value pairs that become a temporary part of the 

game state information. Second the propose rules enumerate the possible actions 

(known in Soar as operators) that the tank can take in the current state. Third the prefer 

rules order the possible actions. Finally, apply rules are used to inform the tank of the 

single action that it should perform. The behavior author is responsible for creating the 

production rules that are used in these fours steps. Each of these steps is described 

below, including example production rules in Soar syntax. 
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Figure 4 Screen image from the TankSoar game. 

Elaborations 

Elaborations are used to augment the observed game state with additional information. 

The following two rules are both used to elaborate the observed state with the value 

missiles-energy low. The first rule does this if the number of missiles is low and the 

second if the energy is low. 

sp {elaborate*state*missiles*low 

   (state <s> ^name tanksoar 

           ^io.input-link.missiles 0) 

--> 

   (<s> ^missiles-energy low) 

} 

 

sp {elaborate*state*energy*low 

   (state <s> ^name tanksoar 

              ^io.input-link.energy <= 200) 
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--> 

   (<s> ^missiles-energy low) 

} 

These elaborations become part of the game state and can be used to activate other 

production rules.  

Propose  

Soar models are based on the idea of proposing and selecting actions using all available 

knowledge. The following three rules propose to move forward, turn to the left or right, or 

to turn around. In some instances, these three rules will propose a number of operators 

simultaneously. All three of these rules are only applicable when the agent’s current goal 

is wander. When a different goal is active then different action proposal rules would 

come into play. 

 

The first rule proposes a forward move, if the way forward is not blocked. 

sp {propose*move 

   (state <s> ^name wander 

              ^io.input-link.blocked.forward no) 

--> 

   (<s> ^operator <o> +) 

   (<o> ^name move 

        ^actions.move.direction forward)} 

 

The second rule states that if the way forward is blocked, and left or right is not blocked, 

then propose to turn left or right and turn on the radar. Note that this production rule will 

fire twice if both the left and right directions are not blocked. 

sp {propose*turn 

   (state <s> ^name wander 

              ^io.input-link.blocked <b>) 

   (<b> ^forward yes 

        ^ { << left right >> <direction> } no) 

--> 

   (<s> ^operator <o> + =) 
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   (<o> ^name turn 

        ^actions <a>) 

   (<a> ^rotate.direction <direction> 

        ^radar.switch on 

        ^radar-power.setting 13) 

 

The third rule states that if the forward, left, and right directions are all blocked then the 

agent should turn to the left. This initiates a complete turn based on the actions of later 

agent decisions.  

sp {propose*turn*backward 

   (state <s> ^name wander  

              ^io.input-link.blocked <b>) 

   (<b> ^forward yes ^left yes ^right yes) 

--> 

   (<s> ^operator <o> +) 

   (<o> ^name turn 

        ^actions.rotate.direction left) 

} 

Prefer  

When more than one operator is proposed for a single decision, a selection process 

makes use of preference rules to decide which operator to choose. For example, the 

following rule prefers the radar-off operator to a turn or move operator. 

sp {select*radar-off*move 

 (state <s> ^name wander 

 ^operator <o1> + 

 ^operator <o2> +) 

 (<o1> ^name radar-off) 

 (<o2> ^name << turn move >>) 

--> 

 (<s> ^operator <o1> > <o2>) 

} 
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The Soar architecture has a built in mechanism for selecting a single action from all of 

the proposed actions. This mechanism takes into account the user-defined preference 

rules. Once the decision is made, apply rules tell the agent what action to take. 

Apply  

Finally, separate rules apply the selected operator by telling the agent to perform the 

specified action. In this particular rule, the agent is told to move in the given direction. 

sp {apply*move 

   (state <s> ^operator <o> 

              ^io.output-link <out>) 

   (<o> ^direction <direction> 

        ^name move) 

--> 

   (<out> ^move.direction <direction>) 

} 

Summary 
The advantage of production systems such as Soar is that they support aspects of 

intelligent behavior, such as problem solving and learning, not supported by other types 

of architectures. For example, if the current goal is wander and the way forward is clear 

the agent will continue to select the production rule for going forward. When the agent 

runs into a wall with the same goal, it will re-plan by proposing two different actions and 

then use preference operators to decide between the two possibilities. If the agent can 

not decide between the two, an impasse is reached and a new subgoal is created. Soar 

attempts to resolve the subgoal by searching for the best solution. If resolved, Soar’s 

learning mechanism (called chunking) creates a new production rule to remember what 

to do if the same problem arises again. When the goal changes from wander to 

rechargeEnergy then a different set of production rules will become active which help the 

agent find an energy source. The drawback to production systems, as seen in the simple 

model above, is that developing agent behavior that is less brittle comes with a price - it 

can be difficult to author, modify, and debug complicated sets of production rules. 
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Online Learning 
Once created, agent behavior can be altered by applying machine learning techniques. 

This section discusses two different ways of applying machine learning to games, off-line 

and online learning, and then focuses on the online learning issues relevant to EDS.  

There are two broad categories of techniques: offline and online learning. Offline 

learning techniques are those performed before the game AI is distributed. For example, 

in the car-racing game ReVolt a genetic algorithm was used to determine the best racing 

paths for the computer controlled drivers (J. E. Laird & van Lent, 2005).  As players use 

the game, the pre-determined driving paths do not change. Another example of offline 

learning is found in the game Battlecuriser: 3000 AD. In this game, neural networks were 

trained in advance to perform route finding, threat identification, and decision making 

tasks for repairs and combat (Smart).Offline learning is used to create or adapt agent 

behavior that will behave appropriately right out of the box, and is the form of machine 

learning most commonly found in games (Millington, 2006). 

 In contrast, online learning creates or adapts agent behavior while the user is 

playing the game (Yannakakis & Hallam, 2005). In games equipped with online learning, 

the behavior of game controlled characters will change as the human player becomes 

more proficient or learns new tactics. There are two related goals for which online 

learning is used. The first is to alter behaviors (known as “performance optimizing”) such 

that the computer can outplay the human, creating the highest-performing behavior 

(Aha, Molineaux, & Ponsen, 2005). The second is performance balancing, to adapt the 

behavior of an agent or team of agents to the level of play of the human. Performance 

balancing provides a level of play that is a challenge to players but still gives them a 

chance to win (Andrade, Ramalho, Santana, & Corruble, 2005). 

Given that the set of actions and perceptions available to an agent are fixed by 

the game itself, online adaptation of agent behavior is performed by controlling the state 

or order in which actions are selected.  Laird and van Lent (2005) describe three specific 

types of online adaptation: learning by observation, learning by instruction, and learning 

from experience. In learning by observation, an agent learns to mimic the movements or 

tactics of the human player. The LiveCombat software (http://www.ailive.net/) provides 

an excellent illustration of this concept, where computer controlled agents learn to mimic 

complex combat maneuvers demonstrated by the human player in a matter of minutes. 
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This is done by developing a statistical model of what the human does in any given 

context and using this model to select actions. While this example builds the entire agent 

model from scratch, a more common approach  (Manslow, 2002) is to create behavior 

that includes parameters and then to learn to adjust these parameters while the game is 

played. The goal is to create behavior where learning a small number of parameters can 

have a relatively large effect on the produced behavior. An example of learning a 

parameter by instruction is found in the game Black & White (Lionhead Studios). In this 

game, the behavior of an in-game avatar depends on a decision tree, where the decision 

tree itself is a complex parameter that is re-learned based on feedback from the human 

player (Fu & Houlette, 2003a). Finally, an example of learning a parameter from 

experience is provided by Andrade et al. (2005). The authors use feedback on how well 

the agent is performing in a real-time boxing game, relative to the human player, to 

adjust the type of actions used by the agent to make the game more or less difficult for 

the human player. Dynamic scripting, discussed in detail later in this dissertation, is 

another example of learning parameters from experience, where the parameter being 

learned is the relative value of each of the actions available to the agent (Spronck et al., 

2006). 

With the idea of creating or adapting behavior, online learning has elements of 

risk not present in offline learning since the game is often beyond the control of the 

developer when learning occurs (Yannakakis & Hallam, 2005). Specifically, when using 

online learning the behavior of entities will change on each individual “game machine” 

(e.g., computer) as the game is played. This is quite different from using offline learning 

to create or tweak behavior and then sending out the same static behavior to all of the 

instances of the game. Taking this into account, Spronck et al. (2006) list a number of 

computational requirements that should be present in online learning algorithms to help 

ensure quality game play in the face of these risks (speed, effectiveness, robustness to 

the randomness inherent in games, and efficiency of learning) as well as four functional 

requirements (clarity, variety, consistency, and scaling to player ability level). The 

definitions given by the author are below: 

 

“Speed: Adaptive game AI must be computationally fast, since learning 

takes place during game-play. 
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Effectiveness: Adaptive game AI must be effective during the whole learning 

process, to avoid it becoming inferior to manually-designed game AI. 

Robustness: Adaptive game AI has to be robust with respect to the 

randomness in inherent in most games. 

Efficiency: Adaptive game AI must be efficient with respect to the 

number of learning opportunities needed to be successful, since in a 

single game, a player experiences only a limited number of encounters 

with similar situations. 

Clarity: Adaptive game AI must produce easily interpretable results, 

because game developers distrust learning techniques of which the 

results are hard to understand. 

Variety: Adaptive game AI must produce a variety of different behaviors, 

because agents that exhibit predictable behavior are less entertaining 

than agents that exhibit unpredictable behavior. 

Consistency: The average number of learning opportunities needed for 

adaptive game AI to produce successful results should have a high 

consistency, i.e., a low variance, to ensure that their achievement is 

independent both from the behavior of the human player, and from 

random fluctuations in the learning process. 

Scalability: Adaptive game AI must be able to scale the difficulty level of 

its results to the skill level of the human player.”  

 

There are numerous current research efforts aimed at providing or improving online 

learning for adaptive game AI. Much of this work makes use of reinforcement learning 

(RL) and hierarchical reinforcement learning (HRL) algorithms. These are reviewed in 

the following section. 

Reinforcement Learning in Games 
This section on reinforcement learning (RL) discusses three main points. Beginning with 

a general definition of reinforcement learning, it next discusses how a RL approach 

differs from familiar search-based artificial intelligence algorithms for agent control and 

why RL is a good candidate for use in modern computer games. Finally, several 
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examples of reinforcement learning in research on modern computer games are 

presented. 

Reinforcement Learning 
Sutton and Barto  (1998)  define reinforcement learning as “learning what to do (how to 

map situations into actions) so as to maximize a numerical reward signal.” This broad 

definition allows for a diverse array of reinforcement algorithms, generally sharing the 

same features. First, an agent has perceptions that place it in state s, where the state s 

is defined by the features of the current game or simulation state. While in state s, the 

agent must choose and perform an action a from the set of all actions available in this 

state As. The policy, p , is the mapping between states and actions. The policy describes 

the current behavior of the agent by describing what actions it will take in a given state, 

where p(s, a) gives the probability of choosing action a in state s. A reward function, 

R(s,a) is provides feedback for performing action a in state s, based on the desirability of 

the outcome. The reward function encapsulates the goal of the learner, e.g. escaping the 

maze as quickly as possible. 

Q-Learning 

The class of reinforcement learning algorithms called Q-learners use the reward function 

to learn the expected values of actions. Specifically, the value function Q is used to 

predict the immediate and future expected reward of taking action a in state s, Q(s, a)  

(Tadepalli, Givan, & Driessens, 2004). The value function provides a long-term 

prediction for selecting a given action in the current state and following the policy p  

thereafter. That is, Q-learners learn action values, not a policy. A standard value update 

function for Q-learning is 

[ ]),()','(max),(),(
'
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−++= γα  

where α is the learning rate and γ the discount rate  (Sutton & Barto, 1998). Another 

popular Q-learning update function is Sarsa 
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which makes use of the value of the decision actually taken in the next step rather 

than the maximum value available in the next step (Sutton & Barto, 1998). 

Table 1 Example Q-table. 

 a1 a2 

s1 10 1 

s2 7 8 

 

 Table 1 provides an example of a Q-table, where the two states are s1 and s2 

and the two actions are a1 and a2. Let a1 by the action selected in s1, with a resulting 

state of s2 and a reward of -3. The resulting update is: 

[ ])1,1()2,2(3)1,1()1,1( asQasasQasQ −+−+= γα   

Using the Q-table values from the table, and with α  = 0.1 and  γ = 0.8, we have the 

following: 

[ ]10)8(8.031.010)1,1( −+−+=asQ   

where the new estimate of Q(s1,a1) is set to be 9.34. 

As defined previously, a policy p describes the current behavior of the agent, 

where p(s, a) gives the probability of choosing action a in state s. Q-learning and Sarsa 

are both value function approaches that make use of a fixed policy combined with 

learned action values. In these algorithms, the policy p (s, a) is generated from the action 

value estimates. For example, the Q-value is an estimate of the long-term expected 

value of action a in state s and is learned from experience. The policy p (s, a) is 

calculated by a fixed algorithm (such as softmax) from the Q-values. That is, the fixed 

policy of an agent using Q-learning is to use the estimated values of actions to select 

(proportionately) the action with the highest value in the state where the decision is 

required.  

Policy approaches differ from value function approaches in that the policy of the 

agent is learned directly. The agent searches through the state space of policies, rather 

than through the state of estimated values, for one that maximizes the received reward 
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(Sutton, McAllester, Singh, & Mansour, 2000). The example given by the authors is a 

policy represented as a neural network. The input to the neural network is the current 

game state and the output of the network is the policy p (s, a). What are learned in this 

example are the connection weights within the neural network. These weights are a set 

of parameters that are turned directly by a reinforcement learning algorithm based on 

feedback received from the game.  

Hierarchical Reinforcement Learning 

Hierarchal reinforcement learning (HRL) is a form of reinforcement learning where the 

set of available actions, As, is extended to include actions that can invoke other actions  

(Barto & Mahadevan, 2003). Different types of algorithms have different methods of 

specifying tasks but they share much in common conceptually. HRL methods divide a 

single learning problem into a number of sub-problems, where each sub-problem has its 

own policy. In the cases where this policy is learned, each sub-problem can be 

considered a distinct Q-learning task that may contain a separate reward function and a 

separate set of action values. An example in a robotic control domain is the open-the-

door subtask, which is reinforced by a reward function that provides feedback on how 

the open-the-door task is proceeding. This sub-problem is only concerned with opening 

the door and is invoked by a parent learning problem that is attempting to navigate from 

one room to another. The parent problem has a separate reward function and set of 

action values.  

Learning to complete a subtask can hinder the ability to complete the overall task 

(Dietterich, 2000). For example, the robot might be able to open the door slowly while 

conserving power or open the door quickly while expending a lot of power. If the reward 

function only focuses on opening the door quickly, the latter will be chosen. This 

expenditure of power may make it more difficult for the robot to complete the overall 

navigation task. To avoid the problem of local optimality in learning how to perform 

subtasks, reward policies must be carefully designed (Dietterich, 2000). 

HRL algorithms also require some additional specification of the set of states 

used by the learning algorithm. Some approaches take into account both the local 

(subtask) and global (game) state when learning subtask action values (Barto & 

Mahadevan, 2003). In this case, the Q-values take the form of Q([s,m],a) where s 
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represents the global state and m represents the local state. For example, the open-

the-door subtask might contain a local variable for number of attempts to grasp the 

doorknob. A different approach, taken by the MAXQ hierarchical reinforcement learning 

algorithm, considers only the state information relative to a subtask (Dietterich, 2000). 

This form of state abstraction reduces the size of S for each subtask, which improves the 

performance of the reinforcement learning algorithm for each subtask as there are fewer 

states for which Q-values must be learned. 

Comparing Q-Learning to Search-based Solutions 
The minmax family of algorithms are familiar heuristic search algorithms for controlling 

the behavior of entities in more traditional games, such as tic-tac-toe or backgammon 

(Russell & Norvig, 1995). The minmax algorithm selects an action to perform from a 

given state by searching for an action with the highest utility value (max). The utility 

value is determined by looking at the resulting state of an action and determine 

ing the best move the opponent can make in that state (min). This search can be carried 

out to an arbitrary depth, alternating max and min decisions, as shown in Figure 5. 

The expectimax algorithm (Russell & Norvig, 1995) adds a chance node to the 

minmax algorithm, so that games with a random element (such as dice rolls), can be 

supported. Both algorithms have the same requirements. First, there must be a utility 

function that can judge the values of the resulting states. Second, there must be a 

domain model that allows the agent to predict the state that would result after performing 

an action (which may be a state distribution in the expectimax algorithm).  

There are some similarities between Q-learning and search-based solutions. Q-

learning has the same goal as the epectimax algorithm – to select the best action given 

the current game state. Additionally, after an action is selected, a reward (utility) function 

provides feedback on the value of the new state. However, there are also some striking 

differences. First, rather than searching for the best utility, the Q-learning algorithm 

makes use of cached action utility estimates which are constantly updated. This is an 

important consideration in modern computer games, as the complexity of expectimax is 

O(bdnd), where b is the branching factor (number of actions available), n is the number of 

possibilities from a chance node, and d is the depth of the search tree. 
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Figure 5  Graphical depiction of the minmax algorithm.  The circle at the top is the current 

state of the player making the decision. This player chooses the action (line) that 

maximizes utility.  The squares represent the predicted action of the opposing player, 

which will minimize utility. The upward arrows indicate the action selected by the 

minimizing or maximizing player. The single downward arrow shows the action actually 

selected by the deciding player (Nogueira, 2006). 

Second, reinforcement learning does not require a domain model. This is especially 

important in modern computer games where the underlying model may be inaccessible 

or incapable of hypothesizing all of the resulting states quickly enough to support a 

search algorithm.  Third, as pointed out by Sutton and Barto (1998), reinforcement 

learning techniques learn to play against an actual opponent instead of against a 

theoretical opponent as found in expectimax. It is these three differences – action utility 

estimates, lack of domain model, and learning via an actual opponent – that make 

reinforcement learning techniques especially appealing in modern games and 

simulations. 



 

 

22 

Examples of RL in Modern Computer Games 
A survey of the 2005 workshop on Reasoning, Representation, and Learning in 

Computer Games reveals a research community that is very interested in reinforcement 

learning algorithms in interactive computer games. Andrade et al. use reinforcement 

learning techniques to provide game balancing in a real-time boxing game (2005): offline 

RL algorithms are used to learn optimal strategies for the computer fighter and an online 

selection mechanism is used to choose actions at runtime in order to balance the game. 

Bakkes et al., (2005) describe an online learning mechanism called TEAM2 (Team-

oriented Exploitative Adaptability Mechanism 2) designed to learn team-oriented 

behavior based on a best-response RL algorithm. TEAM2 selects the best team 

configuration for the state of the game; each player is assigned to be offensive, 

defensive, or roaming. Values are assigned to team configurations on state transitions 

(i.e., the current team configuration resulted in better / worse performance). Maclin et al., 

(2005) use the Knowedge-Based Kernel Regression (KBKR) technique to increase the 

performance of RL in a RoboCup soccer simulator. Their algorithm uses advice given by 

a behavior author (programmer) in the form of IF-THEN rules to set the Q-value for an 

action in a particular state (or set of states) to be high or low relative to the average Q-

value. Marthi et al, (2005) employ a hierarchical RL algorithm to solve a particular 

scenario in a RTS game, discussed in more detail (below). Ulam et al. (2005) use 

model-based reflection to determine in which states learning should occur. This is done 

by dividing agent behavior learning into a number of smaller, distinct learning problems 

using a form of hierarchical RL. Model based reflection is used to determine which task 

is ultimately failing and then RL-based learning is performed only for that task. This is a 

knowledge-intensive mechanism as the model-based mechanism requires significant 

descriptions of how each task can fail. 

Dynamic Scripting 
Dynamic scripting (DS) is one example of an online reinforcement learning algorithm 

developed specifically for games (Spronck et al., 2006). The Rapid Online Learning for 

Entertaining Computing (ROLEC; http://rolec.unimaas.nl/) project has made significant 

contributions regarding RL in Game AI. One product of their research is dynamic 

scripting, a reinforcement learning algorithm designed for game AI. ROLEC tested their 
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software in both role playing games (RPG), such as Neverwinter Nights, and real-time 

strategy games (RTS) such as Stratagus. They also examined hierarchical 

reinforcement learning in games using a dynamic scripting reward function (not the 

dynamic scripting algorithm) (Ponsen, Spronck, & Tuyls, 2006) and extended dynamic 

scripting to work with case-based selection (Aha et al., 2005). Dynamic scripting has 

also been extended to add a goal-directed component by a separate research group 

(Dahlbom & Niklasson, 2006). 

At a high level, agents controlled by the dynamic scripting algorithm have much 

in common with the other behavior models discussed previously: finite state machines, 

cognitive architectures, Q-learning, and epectimax. In each case, the agent is 

responsible for selecting an action to perform in the current game state.  However, 

dynamic scripting is most similar to Q-learning in that the goal is to learn the relative 

values of the available actions. 

Before diving into the details of dynamic scripting, it is useful to point out a 

primary difference between dynamic scripting and standard Q-learning algorithms. In Q-

learning algorithms, the number of states in a game increases exponentially as the 

number of features in a game increases. The result is that in a modern computer game 

with a complex environment, the number of game states is generally too large to 

efficiently learn adaptive agent behavior. There are a number of ways to reduce this 

problem and the dynamic scripting algorithm does so by selecting actions without regard 

to any features of the current game state. That is, only a single abstract game state is 

considered. Thus while a Q-learning algorithm learns the value of an action in a 

particular state, dynamic scripting learns the value of an action.  

 There are four main components to the dynamic scripting algorithm: a set of 

actions, script selection, action policy, and action value updating (Spronck et al., 2006).  

The first component is a set of actions that the algorithm can choose from. Each action 

may optionally contain an IF clause that limits its applicability based on the current game 

state, much like a production rule. For example, IF health < 50% THEN 

useHealingPotion could be one action and useHealingPotion with no IF clause 

another action. In the case of dynamic scripting, it is assumed that the person authoring 

the game behavior is responsible for creating the set of actions, though previous work 
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has focused on automatically creating these types of actions / rules (e.g. Khardon, 

1999). Each individual action in the set of actions has a single value associated with it. 

 The second component of the algorithm is script selection. Before each episode 

the agent creates a subset of the available actions to use in the episode – this is known 

as a script. A free parameter n determines the size of the script. The script selection 

component uses a form of fitness proportionate selection to select n actions (without 

replacement) from the complete set of actions based on their assigned value. Action a is 

selected for inclusion in the script with probability p given by the softmax algorithm: 
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,where V(a) is the current value of action a and τ is a temperature parameter (Sutton & 

Barto, 1998). The temperature parameter adjusts the exploitation / exploration character 

of action selection, where a higher temperature leads to more exploration by giving less 

weight to differences in action values and a lower temperature leads to more exploitation 

by giving more weight to differences in action values. Script selection is the primary use 

of action values in the dynamic scripting algorithm. This contrasts with Q-learning 

algorithms, which would select an action from the full set of actions for each decision. 

 The third component is the action policy, which determines how actions are 

selected within an episode. This component walks through the script in order and 

performs the first action that is applicable to the current game state. For example, an 

action may require that a character’s health be below 50%. If this is not the case then 

the action does not apply. Actions are ordered by their priority. This is generally 

assigned by the behavior author, though there is some research on learning action 

priorities in dynamic scripting (Timuri, Spronck, & van den Herik, 2007) and in production 

rule scripts in general (e.g. Khardon, 1999). In the event of a priority tie, actions are 

selected based on the highest action value. This is the secondary use of action values in 

the dynamic scripting algorithm. 

 Action value updating is the fourth component of dynamic scripting. The behavior 

author creates a reward function that provides feedback on the utility of the script as a 

whole.  High rewards indicate strong performance and low rewards indicate low 

performance. At the end of the episode, this reward function is used to create a single 
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numeric reward for the agent’s behavior. The full reward is given to each action in the 

script that was successfully performed during the encounter. A half reward is given to 

each action in the script that was not selected, which can happen because the rule was 

never applicable or because the rule had a relatively low priority. Compensation is 

applied to all actions that are not part of the script.  Through the compensation 

mechanism, the action value updating component is responsible for distributing the 

action value “points” among the available actions. For example, if there are 10 actions 

with an initial value of 100, there are 1000 action points that can be distributed across all 

actions. Given a list of completed actions, completed, a list of actions in the script that 

were not completed, incomplete, and a list of actions not in the script, notInScript, the 

function for compensation is: 
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where the payout for an action might be r, r/2, or compensation, the actual value 

updating algorithm is the same in all cases: 

payoutaVaV += )()(  

Two additional free parameters are applied to all action values: minimum and maximum. 

The minimum value (e.g. 0) is the lowest action value that an action can have, while the 

maximum value (e.g. 1000) is the highest allowed value for an action. A remainder 

distribution method is used to ensure that the sum of the action values remains constant 

by redistributing the over / underflow caused by value adjustments.  

Within the framework of reinforcement learning, the dynamic scripting 

architecture is closely related to the actor-critic architecture defined by Sutton and Barto 

(1998). The general model is shown in Figure 6.  In dynamic scripting, the script 

performs the role of the actor and the critic is composed of the action values and the 

value update function (Spronck et al., 2006). The two architectures differ in that dynamic 

scripting uses a script as a policy rather than updating a policy directly based on the 

feedback. That is, dynamic scripting learns a policy directly rather than learning values 

for actions in particular states. By updating the parameters that affect script generation 

the agent is searching through the space of available scripts, where each script is a 



 

 

26 

policy. This is seen in the right-hand figure where policy and value updates are 

separated, instead of joined as in the left-hand figure.  

 

Figure 6 Actor-critic architecture (left) (Sutton & Barto, 1998) compared to dynamic 

scripting (right) (Spronck et al., 2006). 

The following side by side comparison of the algorithms for Q-learning and for 

dynamic scripting summarizes their differences: 
Dynamic Scripting 

• Actions have a value V(s, a), where the 

set of states, S, contains only a single 

abstract state. 

• Action values are used to create a script 

prior to an episode. 

• Actions are selected in priority order 

first, action value second, from the 

script. 

• At the end of episode, action values are 

updated using dynamic scripting 

updated function. 

Q-Learning 

• Actions have a value Q(s,a), where the 

set of states, S, can contain actual or 

abstract game states. 

• Actions are selected during an episode 

with value proportionate selection, 

based on their Q-values. 

• After each action is performed, Q-values 

are updated using the Q-learning update 

function. 

 

 

 

Dynamic scripting was designed specifically for modern computer games where 

significant domain knowledge exists that can be embedded in the behavior model 

through the construction of actions and priority assignment.  Specifically, there should 
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exist some actions that intuitively can be assigned a high priority and that contain a 

more specialized IF clause. That is, there should be some rules that the behavior author 

can identify as important in limited situations, e.g. using a heal action when a character 

is low on health. Second, there also needs to be some actions given lower priority which 

are more generally applicable. Dynamic scripting depends on these two sources of 

domain knowledge to overcome its limited reliance on the current game state. 

Additionally, dynamic scripting is not designed for games or decisions where the correct 

action depends heavily on the current game state. An example of this is simple path 

planning, where the agent determines how to move through a grid-world to reach a pre-

determined goal. That is, in any given game state the agent chooses to move North, 

East, West, or South. While Q-learning will perform well on this type of problem, dynamic 

scripting will be unable to create a script capable of solving the navigation with only 

these four actions. 
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CHAPTER III 
EXTENDED DYNAMIC SCRIPTING 

This dissertation proposes three specific extensions to the dynamic scripting algorithm 

that aim to improve learning behavior and flexibility while imposing a minimal cost. The 

extensions are: (1) developing a flexible, stand alone, version of dynamic scripting that 

allows for hierarchical dynamic scripting, (2) extending the context sensitivity of 

hierarchical dynamic scripting through abstract state construction, and (3) performing an 

architecture integration where this algorithm is integrated with an existing hierarchical 

behavior modeling architecture. The result of these changes will be referred to as 

Extended Dynamic Scripting (EDS). This research begins with extensions that have 

worked well in the context of standard Q-learning algorithms and recasts them to work in 

the context of dynamic scripting and complex computer games. The motivation behind 

each of these extensions and their implementation details are discussed (below). The 

following list previews the extensions to the dynamic scripting algorithm, where the 

changes are noted by sub-bullets. 

EDS 

• Actions have a value Q(s, a), where the set of states, S, contains only a single 

abstract state. 

Ø Hierarchical DS: Choice points are added to the library so support task 

decomposition, dividing the learning problem into a hierarchy of sub-

problems. 

Ø Context Sensitivity: The set of states, S, is expanded through both manual 

and automatic state abstraction. The value of an action, V(s,a), now includes 

a state component that represents the branch taken in the manually or 

automatically constructed hierarchy. 

• Action values are used to create scripts prior to an episode. 

Ø Hierarchical DS: Reward points allow for varying episode lengths, where 

episodes can contain 1…n actions, for each individual choice point. 
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• Actions are selected in priority order first, action value second, from the script. 

Ø Architecture Integration: This is altered to work in the context of a behavior 

modeling architecture. 

• At the end of each episode, actions are updated using dynamic scripting value 

update function. 

Ø Hierarchical DS: The value update function is changed to support a wider 

variety of reward configurations. 

Ø Architecture Integration: Game specific reward objects are created by the 

behavior author that plug-in to the EDS algorithm. 

Hierarchical Dynamic Scripting 
The first enhancement is to design a dynamic scripting-based architecture capable of 

representing multiple decision points in a hierarchical fashion. This involves three 

specific design extensions: (1) choice points, (2) reward points, and (3) scaled value 

updating.  

Choice Points 
A choice point defines a distinct learning problem, where the agent makes a decision by 

choosing a single action to perform from some number of available actions using the 

dynamic scripting algorithm.  The value of choice points is that an agent can use them to 

break a larger learning problem down into a number of sub-problems in a hierarchical 

fashion and then learn separately how to accomplish each subtask (Dahlbom & 

Niklasson, 2006). Choice points for task decomposition, as described in this section, are 

similar to the choice points found in the Hierarchy of Abstract Machines and ALisp 

architectures (Andre & Russell, 2002) and goals in the GoHDS algorithm (Dahlbom & 

Niklasson, 2006). 

 As an example, an agent may be capable of carrying out four attack actions: 

knockdown, melee, ranged, and sneak. A choice point can be used to learn the best 

script for completing the attack action. A graphical description of this choice point is 

shown in the behavior Figure 7. The choice point is indicated by the choose(…) action, 

where the possible choices are the directed connectors leading out of the choose node 
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to the rectangles (actions).  The oval (predicate) canKnockdown preceding the 

knockdown action represents the IF clause of the knockdown action. 

 

Figure 7 AttackChoice choice point. This choice point chooses between on of the four 

available actions at each decision point. 

This choice point is a distinct instance of the dynamic scripting algorithm. To support 

this, the choice point also contains the data shown in Table 2 . The information for each 

possible selection includes the value of the action, its priority, and whether it is in the 

current dynamically generated script (indicated by the *).  

Table 2 Data for the AttackChoice choice point. 

Action Value Priority Script 

1 (knockdown) 112 High * 

2 (melee) 88 Low * 

3 (ranged) 50 Low  

4 (sneak) 117 Med  
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The dynamically generated script in this case based on the action priorities and the 

action values is: 

1. IF canKnockdown(opponent) THEN knockdown 

2. ELSE melee 

Choice points can be combined in a hierarchical fashion in order to decompose 

complex tasks. An example of this is shown in Figure 8, where the top-level choice point, 

ResponseChoice, is used to choose a subtask at the top level of the hierarchy. In this 

case, the choice point learns whether AttackChoice or DefendChoice is more likely to 

generate a higher reward. The agent learns the utility of attacking vs. defending 

separately from how to carry out either of these. The lower level choice point 

AttackChoice learns which of the four primitive attacks are likely to generate a higher 

reward. Likewise, the subtask DefendChoice learns which of the primitive defenses are 

likely to generate a higher reward. These two subtasks are actually responsible for 

learning how to carry out an attack or defense.  

Within Figure 8, the flow of control starts in the top, right-hand, shaded node. The 

directed connector is followed to the choose action, which transfers control to either the 

Attack or Defend sub-behaviors. Once the sub-behavior is finished, control transfers 

back to the parent behavior and a transition is made to the empty action node. From 

here, the transition labeled “1” is tried first. If the episodeOver predicate returns true, 

then a transition occurs to the reward action and then back to the choose action. If the 

predicate is false, the transition labeled “2” is taken, which goes directly to the choose 

action. 
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Figure 8 ResponseChoice with AttackChoice as a subtask. 

Reward Points 
There are situations in agent behavior in modern computer games where immediate 

learning can have a significant impact. For example, an EDS agent is creating an attack 

script that contains two of four primitive attack actions. After performing an action, 

feedback on its success can be immediately taken from the game state and used to 

adjust the likelihood of choosing the same attack type in the next step in the same 

episode. A flexible behavior modeling tool needs to support immediate rewards in 

addition to the episodic rewards supported by dynamic scripting. 

To support rewards at arbitrary points in the behavior, each choice point also has 

a corresponding reward point that updates the values of its actions. Examining the 

previous example, the AttackChoice point can be updated immediately, based on the 

amount of damage caused by executing one of the attacks. The top level choice point 
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ResponseChoice that chooses between the Attack and Defend subtasks might only 

be updated at the end of the episode.  In either case, after some number of action 

selections by a choice point its reward point is reached. The reward point then updates 

the values of all of the actions in the corresponding choice point, based on the dynamic 

scripting value update function. These reward points are included in the graphical 

behavior descriptions, Figure 7 and Figure 8 (above). The choice points are represented 

by the choose actions and the reward point by the reward actions. Figure 7 illustrates an 

immediate reward for AttackChoice, which creates a script, selects a primitive action, 

and then immediately transitions to a reward action. Figure 8 illustrates an episodic 

reward for ResponseChoice, which chooses from either Attack or Defend subtaks. The 

corresponding reward point is activated whenever the predicate episodeOver (oval) 

returns true. This is an example of an episodic reward.  

Scaled Value Updates 
In the existing value updating mechanism, each action receives the same reward no 

matter how often it is used. For long episodes with a small number of actions, it is likely 

that all the actions will be selected in the episode. If episodic learning is used in this 

case, the resulting reward will then change all of the action values in the same way and 

learning will only occur very slowly. This is an example of a credit-assignment problem 

(Minsky, 1961), where a reward must be appropriately divided among an extended 

sequence of actions for optimal learning. Sutton and Barto (1998) note that 

reinforcement learning algorithms are “in a sense, directed toward solving this problem.”  

To address this particular credit-assignment problem, a new method of scaling 

the value updates was developed. We calculate the total amount of reward “points” to be 

given for all the different actions and then divide this by the number of times an action 

was performed to determine an action specific reward. For example, assume the reward 

is equal to 50. Under the non-scaling value update, if action A was completed 9 times 

and action B completed 1 time they would each receive the same value update of 50. 

However, with value scaling A would receive 90 and B would receive 10. 

 In both update algorithms, all actions in the script that have been completed at 

least once form the completed set. All actions in the script that are not completed are 

part of the incomplete set. All actions that were not part of the script are in the 
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notInScript set. In the original value update algorithm, actions received a full reward, r, 

a half reward, r/2, or compensation, c, based on membership in one of the three sets. 

The algorithm for the new update mechanism is: 

1. (Sum reward.) Set rewardSum ← r × |completed| + (r/2) × |incomplete| 

2. (Sum actions). Set actionSum ← incompleteaetedtimesCompl
n

j j +∑ =
))((

1
 

3. (Set reward per completion.) Set slice ← rewardSum / actionSum 

4.  (Reward completed actions.)  For each a in completed 

a. Set completionsa ← timesCompleted(a) 

b.  Set rewarda ← completionsa  × slice 

5. (Reward incomplete actions.)  For each a in incomplete, set rewarda ← slice 

Following the assignment of rewards to actions, the value update mechanism is carried 

out normally. This includes applying compensation to the actions in the notInScript set 

as well as performing remainder distribution for under / over flow based on the minimum 

and maximum action values. 

Context Sensitivity 
The second enhancement to dynamic scripting to be considered improves the ability of 

the algorithm to take the game context into account when making decisions. Following 

background information on the problem of state abstraction this section describes two 

methods of creating abstract states, the first performed manually by behavior authors 

and the second performed automatically by learning algorithms. The third part of this 

section covers the implementation details of the automatic method of state abstraction. 

Background 
Reinforcement learning algorithms, such as Q-learning, are a valuable tool for adapting 

agent behavior in computer games. However, the number of states in a game increases 

exponentially as the number features in a game increases. The result is that in a modern 

computer game with a complex environment the number of game states is generally too 

large to efficiently learn to adapt agent behavior with standard Q-learning. To address 

this problem, it is important to determine which game features can be ignored in order to 

reduce the number of game states. The dynamic scripting algorithm addresses this 
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problem by selecting actions without regard to any features of the current game state. 

That is, only a single abstract game state is considered. This algorithm results in very 

efficient learning consistent with online learning requirements, but misses the opportunity 

to improve performance by taking into account some aspects of the game state. The 

research described in this section is aimed at specifying additional abstract states which 

grow an abstract state tree, either manually or automatically, from the single state 

currently considered in dynamic scripting towards the full set of leaf nodes considered by 

standard Q-learning algorithms.  

The second extension to dynamic scripting improves the ability of the algorithm 

to take game context into account when making decisions. The motivation behind this 

extension is that the context (i.e. game state) in which an action is performed can have 

an effect on its outcome. For example, in the role playing game NeverWinter Nights 

encounters with enemies are generally designed around the level of the player. The 

player might encounter one enemy of equal strength, a few enemies that are slightly 

weaker, or a large number of significantly weaker enemies. Area effect spells are much 

more effective on groups of weaker creatures, so rules that select area-based spells 

should be more likely to be selected when facing the latter.  On the other hand, 

individual effect spells tend to be more effective when applied to a single, more powerful, 

enemy. 

State Specialization  
There are two different approaches that identify the important features of the game, i.e. 

identify abstract game states, for a choice point. The first makes use of author provided 

information and the second learns to make state distinctions based on the performance 

of the learning algorithm.  

The first method of state abstraction makes use of knowledge supplied by the 

behavior author, either directly as part of the behavior specification or indirectly as a 

supplied model. For example, a rule states that the size of the opposing party is an 

important feature and a new action value set (another state space) should be generated 

for that case. This is similar to what Marthi et al. (2005) does by giving feature set 

descriptions of the important features for the choice points in the Stratagus playing AI. 

This is also what Ponsen & Spronck (2004) do, where they create abstract states based 
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on the available buildings in Stratagus. In either case, information is supplied by the 

programmer that can be used to determine when a new abstract game state would be 

useful for a particular learning task.  

An example of an author defined abstract state is shown in Figure 9. This 

behavior utilizes a predicate (getNumberEnemies() == 1) to divide the problem of 

learning which type of spell to cast into two distinct sub-problems – one for when there is 

only a single enemy and another for when there are multiple enemies. In this behavior 

there are two separate choice points, OneEnemySpell and MultEnemySpell, where each 

choice point has its own set of choice point data as shown in Table 3 and Table 4. 

 

Figure 9 An author defined state abstraction, where the learning problem is divided into 

two choice points: single enemies and multiple enemies.  

Table 3 Choice point data for ONE_ENEMY_SPELL. 

Action Value Priority Script 

1 (area) 88 Med  

2 (individual) 112 Med * 
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Table 4 Choice point data for MULT_ENEMY_SPELL. 

Action Value Priority Script 

1 (area) 150 High * 

2 (individual) 50 Low  

 

The same abstract state distinction could also be automatically learned for a 

choice point by a meta-level system without requiring any additional information from the 

user. This meta-level system could employ a machine learning algorithm to automatically 

learn when a distinct set of action values is called for based on the behavior of the 

learning algorithm. In our case, a meta-system would look for patterns in the past 

performance of the reinforcement learning algorithm using knowledge discovery / data 

mining methods. These patterns are used to create abstract game states, where each 

abstract state contains its own set of action values and its own dynamic script. 

An example of an automatically defined abstract state is shown in Figure 10 and 

Table 5. This behavior, and the associated choice point data, illustrate how the meta-

level system can be used to create multiple sets of action values, each with its own 

dynamically generated script, for a single choice point. In this particular instance, the 

meta-level system creates two distinct sets of action values for a single choice point – 

one for when there is only a single enemy and another for when there are multiple 

enemies. That is, if the choice point is facing a single opponent and selects an action, it 

should be selected from the script derived from the Enemies = 1 action value set (and 

not the Enemies > 1 action value set). 

 

Figure 10 A choice point that makes use of automatic state abstraction. 
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Table 5 An automatically learned state abstraction, where the learning problem 

addressed by a single choice point is divided into two learning problems, single enemies 

and multiple enemies, by making use of different dynamic scripting data for the same 

choice point. 

Enemies = 1    Enemies > 1    

Action Value Priority Script Action Value Priority Script 

1 (area) 88 Med  1 (area) 150 Med * 

2 (individual) 112 Med * 2 (individual) 50 Med  

 

Both of these methods of state abstraction are supported in EDS. The first form 

of game state abstraction can be performed by behavior authors as they construct 

hierarchal behaviors with choice points in the modeling architecture. EDS also extends 

the hierarchical dynamic scripting algorithm to support the automatic construction of 

abstract game states as described below. 

Automatic State Specialization  
EDS extends the hierarchical dynamic scripting algorithm to support the automatic 

construction of game state abstraction, building on the success of decision-tree based 

algorithms that have been successfully applied to Q-learning problems (see Chapman & 

Kaelbling, 1991; McCallum, 1996). Below is a discussion of the process of creating and 

using abstract state trees.  

Creating Abstract State Trees 

Our mechanism for automatic state specialization involves three steps: (1) collecting a 

series of training instances, (2) building a classification tree with the given reward as the 

target attribute, and (3) using the training instances to develop action values for each 

leaf node. We build upon the Weka (Witten & Frank, 2005) data mining architecture to 

complete each of the steps. The algorithm for this is: 

1. (Compile decisions.)  

a. Set Instances ← empty set  

b. For each choice point decision  

i. Set instance ← game state information at time of decision 
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ii. Set Instances ← Instances  + instance 

2. (Build classifier.)  

a. (Clean data.) Set Instances ← cleanData(Instances)  

b. (Automatically divide the real-valued reward attribute into 5 bins using 

Weka methods if necessary)  

Set Instances ← binData(Instances, 5)  

c. (Create a Weka classifier with the reward attribute as the target.)  

Set classifier ← buildClassifier(Instances, “Reward”) 

3.  (Update action values.)  

a. For each distinct episodeIndex ∈ Instances  

i. (Get all of the episodes that were rewarded in a single episode.)  

Set EpisodeInstances ← getInstances(Instances, episodeIndex) 

ii. For each instance ∈ EpisodeInstances  

1. (Classify the instance according to the newly created tree.) 

Set index ← classifier.classify(instance) 

2. (Place the instance in a list with other instances from the 

same episode.) 

Set LeafInstances[index] ← LeafInstances[index] + 

instance 

iii. For each index ∈ LeafInstances 

1. (Choose the largest absolute reward of all of the matching 

instances.) 

Set reward ←  

getLargestReward (LeafInstances[index]) 

2. (Get the action values for this leaf node.)  

Set ActionValues ← getActionValueSet(index) 

3. (Apply the reward from all of the instances that match a 

particular episode and leaf node AS IF they had been in a 

single script.)  

Set ActionValues ← applyReward(ActionValues, 

LeafInstances[index], reward) 
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 For step two, building a classifier, we rely on two specific algorithms for 

building tree-based classifiers: Decision Stump and J48. Both of these algorithms are 

described by Witten and Frank (2005) in the Weka documentation. A decision stump is a 

limited tree that makes a binary classification, resulting in three leaves – two for the 

binary classification of the attribute and one in case the value is missing. The decision 

stump works with numeric target attributes, such as action rewards, so no additional 

processing is needed. The J48 algorithm builds an arbitrary decision tree, but has a 

limitation in that this algorithm requires that the target attribute (reward) be non-numeric 

(e.g. categorical). J48 requires the optional binning step as described in the pseudo-

code.  

In step three, updating the action values, the algorithm results are an 

approximation of what the action values would look like had the classifier been in use the 

entire time. This is because each leaf node contains its own script and we don’t know 

what the script would have been if the classifier had been in use the entire time. As an 

approximation, it is expected that learning performance might temporarily decrease after 

a classifier is first created. 

Using Abstract State Trees 

Once a classification tree is created, the process of generating scripts and selecting 

actions are both modified slightly. First, where previously the choice point would 

generate a single script, now a script will be created for each leaf node in the tree. This 

takes advantage of the different action value sets contained in each leaf node. Second, 

when an action is to be selected the current state information is gathered into an 

instance. Based on the trees mapping of an instance to a leaf node, the action is 

selected from the appropriate leaf node script. 

Architecture Integration 
Extended dynamic scripting as described can readily be integrated with a hierarchical 

task network agent architecture. Task networks are a standard and straightforward way 

of representing agent behavior in games (Fu & Houlette, 2003b). Task networks 

generally consist of actions, conditions, and connectors that describe agent behavior. 

These conditions, actions, and connectors encompass the traditional representation 

elements of finite state machines (a set of states, S, a set of inputs, I, and a transition 
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function from one state to another, T(s,i)) where the states represent the state of the 

behavior, not the state of the game.   A directed graph of actions, conditions, and 

connectors is known as a behavior. Within a behavior, the actions and conditions can 

reference other behaviors to form hierarchical task networks. 

Task networks may also support additional features such as local and global 

variables, ordered transitions, blackboard communication, debugging, exception 

handling, and others, but they tend not to support more deliberative functions such as 

planning and learning (Ludwig & Houlette, 2006). Some exceptions to this are the 

MicroSaint task network environment, which has been augmented to support case-

based learning (Warwick & Santamaria, 2006) and the previously mentioned ALisp that 

supports hierarchal reinforcement learning (Marthi et al., 2005). 

As part of this dissertation, an existing commercial task network architecture is 

extended to include extended dynamic scripting nodes. The SimBionic hierarchical task 

network programming environment (Fu & Houlette, 2002; Fu, Houlette, & Ludwig, 2007) 

was selected as the commercial AI middleware to integrate with hierarchical dynamic 

scripting. This decision was made based on the similarity of feature sets in this 

application to other solutions and on the availability of and familiarity with the SimBionic 

implementation. The core of SimBionic is a visual authoring tool that allows users to 

draw flow chart-like diagrams that specify sequences of conditions and actions. 

The integration was accomplished by adding dynamic scripting choice points and 

reward points to the graphical task network programming language. A dynamic scripting 

choice point action is added when the behavior can choose between two or more 

actions, indicated by the choose keyword. The choose keyword will also contain the 

name of the behavior state, which is used to retrieve the appropriate set of action values. 

The softmax algorithm, a kind of fitness proportionate selection mechanism, uses the 

action values to dynamically select the script for the choice point. The behavior is then 

executed until a reward point is reached, at which time the action values for the given 

choice point are updated and a new script generated. 

Related Work 
There is a significant amount of existing research related to dynamic scripting and its 

extensions in addition to the previous discussion on reinforcement learning in games. 
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This includes research on dynamic scripting as well as research from the 

reinforcement learning literature on decision tree state abstraction and behavior 

modeling architectures. Each of these topics is covered below. 

Dynamic Scripting  
While the work described in this dissertation builds primarily on the dynamic scripting 

algorithm as presented by Spronck et al. (2006), there are a number of other related 

papers based on dynamic scripting. 

Hierarchical Reinforcement Learning 
The dynamic scripting value update function has been used in research on hierarchical 

reinforcement learning (Ponsen, Spronck, & Tuyls, 2006). In this work, the authors 

compared the performance of the Q-learning value update function 

 [ ]),()','(max),(),(
'
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−++→ γα  

to a dynamic scripting based value update function, rasQasQ +→ ),(),( . In the case of 

the dynamic scripting function, the minimum and maximum action values, and value 

redistribution, are applied as described in the dynamic scripting section. For a real-time 

strategy game subtask, similar to the Worker Control game in the preliminary evaluation 

(Figure 17), they found that using the dynamic scripting-based updating resulted in faster 

learning than using the standard Q-learning update function. The success of the 

dynamic scripting update algorithm provides evidence for the utility of using the entire 

dynamic scripting algorithm as part of a hierarchical behavior modeling system.  Our 

work differs from their approach in that we create a hierarchical version of dynamic 

scripting rather than using part of dynamic scripting in the context of Q-learning. 

Hierarchical Dynamic Scripting 

There are two related papers that include work on hierarchical dynamic scripting. In both 

cases, EDS is an extension and generalization of the existing work. 

The first example of hierarchical dynamic scripting related to this dissertation 

involves using dynamic scripting to play “Wargus”, a real-time strategy game (Ponsen & 

Spronck, 2004). In their work, Ponsen and Spronck divide the overall learning problem of 
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playing Wargus into a number of sub-problems depending upon the available 

buildings. In Wargus, the available buildings determine the actions available to the 

player. In each sub-problem, dynamic scripting was applied independently to learn the 

value of available actions. That is, they expand the abstract set of states, S, from one 

state to twenty states, where each state s represents all game states with a particular 

building configuration.  

The work described in this dissertation differs from their work in two main ways. 

First, choice points and reward points, by being embedded in a behavior modeling 

architecture, provide a general learning solution that provides significant representation 

power beyond the manual state abstraction implemented by Ponsen and Spronck – task 

decomposition being the foremost example. Second, the work outlined in this 

dissertation includes methods for automatic state abstraction in addition to manual state 

abstraction. 

The second example of hierarchal dynamic scripting, also in the context of real-

time strategy games, focuses on learning in multiple goals rather than in multiple states 

(Dahlbom & Niklasson, 2006). That is, rather than learning to create an action script 

(rules in their terminology) for a particular game state, the agent learns to create an 

action script for a particular goal in the game. This is illustrated in Figure 11, where each 

goal creates a separate script and selects action from a subset of the complete set of 

action. This captures the notion that some actions only apply to particular goals. Each 

goal also has a distinct set of action values (weights) to determine which actions, from its 

subset, will be included in the dynamically generated script. 

 

Figure 11 Illustration of the goal-rule layout (Dahlbom & Niklasson, 2006). 
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While their evaluation is limited to two distinct goals with non-overlapping action 

subsets in a single abstract game, they develop the idea of creating a goal hierarchy 

where actions can refer to other goals that need to be completed as part of the action. 

An example of the goal hierarchy is shown in Figure 12. 

 

Figure 12 Illustration of a goal-action hierarchy (Dahlbom, 2006). 

For example, in the figure the current goal is Launch Single Assault. This goal uses 

dynamic scripting to choose from the available actions that satisfy this goal, selecting the 

Launch Heavy Unit Assault action shown in Figure 13. This action, in turn, can request 

other goals that must be satisfied as a precondition of the action. 

 While EDS as described in this dissertation bears much in common with the 

dynamic scripting based goal node system (GoHDS), there are several significant 

differences. First, dynamic scripting-based choice points in EDS and dynamic scripting-

based goals in GoHDS are designed to be embedded in different types of architectures: 

goal nodes would be used as part of a goal oriented action planner while choice points 

are used as part of hierarchical finite state machine. 
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Figure 13 Example action in GoHDS (Dahlbom, 2006). 

These two different architectures have significantly different representation 

requirements, as can be seen by comparing an EDS graphical behavior (e.g. Figure 7) 

to the rule given in Figure 13. Second, EDS introduces several concepts not found in 

GoHDS: reward nodes, adjustments to the underlying dynamic scripting value update 

algorithm to support the use of dynamic scripting in more situations, and automatic state 

abstraction. Finally, as implemented GoHDS is a stand-alone library for specifying 

dynamic scripting-based goals as shown in Figure 11 (Dahlbom & Niklasson, 2006). 

From reading their paper, it does not appear that GoHDS was integrated with a goal 

action planner capable of developing a structure like that shown in Figure 12. EDS, on 

the other hand, is part of a complete behavior modeling package capable of representing 

a hierarchical state machine version of the given hierarchy. Taken together, these three 

differences demonstrate that EDS is a significant generalization and extension of the 

research performed by Dahlbom and Niklasson (2006). 

Decision Tree State Abstraction in Reinforcement Learning 
This section describes reinforcement learning research that makes use of decision trees 

to reduce the state space of a game by creating abstract states that represent a number 

of different game states. These algorithms all start with a single abstract state as found 

in dynamic scripting, which is the root node of the tree. The algorithms then add leaves 

to the tree nodes based on features of the game state, where each leaf node represents 

a collection of similar game states. A splitting criterion determines when such a split 
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occurs. Using this tree, reinforcement learning algorithms learn the value of actions for 

each node in the tree rather than for each state in the game.  

 The G-Algorithm  (Chapman & Kaelbling, 1991) is an early example of creating 

abstract game states using a tree structure in a Q-learning framework. This algorithm 

constructs a tree based on the bit values (features) of the game state. An example tree 

is shown in Figure 14. 

 

Figure 14 Example G tree (Chapman & Kaelbling, 1991).  

In the example G tree, Bit 69 and Bit 23 of the game state are used to choose between 

three different abstract states. Each abstract state has its own Q-table for tracking the 

values of actions in this state. The question of when to split a node, the splitting criterion, 

is answered by using the t test to determine the effect of a particular input bit being on or 

off, on the distribution of rewards (both immediate rewards and discounted future 

rewards) given to actions. When a node split occurs under the G-Algorithm, the Q-table 

for the two new nodes is zeroed out, losing all of the learning that occurred prior to the 

split. 

Parti-game (Moore & Atkeson, 1995) is an algorithm that bears some 

resemblance to a decision-tree based state abstraction algorithm. Parti-game is 

designed to plan a path from an initial state to a goal state in a continuous environment. 

It partitions the state space by placing a grid over it, where each grid cell is considered 

an abstract state. Any individual cell can be divided into further cells, thus allowing for 

variable resolution as shown in Figure 15. 
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Figure 15 Variable resolution in the Parti-game algorithm, where the entire lower-right 

hand corner is a single abstract state while the rest of the state space is divided into 

smaller abstract states (Moore & Atkeson, 1995). 

The splitting criterion for this algorithm is the failure of a local greedy controller in a 

current abstract state (cell).   

 The U-Tree algorithm  (McCallum, 1996) is another extension of the G-Algorithm. 

Unlike G-Algorithm, U-Tree is instance based. The algorithm keeps a sequential (with 

respect to time) list of instances, where each instance contains the action taken, the 

observed state, a value defined by the immediate and discounted future reward. Every k 

steps, the algorithm examines leaf nodes and tests if a split based on a feature or 

previous action will improve the predication of the reward. The splitting criterion is the 

Kolmogrorov-Smirnov (KS) test (instead of the t test as in he G-algorithm), where the 

test compares the distribution of instance values across the two nodes. If a node is split, 

the instances that match each new node are then used to initialize its Q-table; a 

significant improvement over G-Algorithm which loses all learning after a split.  
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 There have been a number of papers that extend the basic U-Tree algorithm. 

Continuous U-Tree (Uther & Veloso, 1998) builds on U-Tree by adding the capability to 

work with continuous features in the game state. The authors also experiment with two 

different splitting tests: the KS test as used in the G-Algorithm and a test based on the 

sum-squared error. Further, they examine testing the distribution of rewards for each 

action individually and combining the results in addition to testing the distribution of 

instance values. Au and Maire (2004) perform experiments comparing the KS splitting 

criterion to Information gain ratio, determining the latter performs better in the three test 

domains. Asadpour et al. (2006) present the SANDS algorithm as the basis for two 

alternative splitting criteria designed for hierarchical reinforcement learning, which take 

the magnitude of the instance values into account along with their distribution. 

 The U-Tree has also been applied to hierarchical reinforcement learning tasks. 

Jonnsson and Barto (2000) apply a separate instance of the U-Tree algorithm to each 

subtask in a hierarchical reinforcement learning problem. Each option (subtask) has its 

own list of history instances, which results in separate state abstractions.  However, the 

action values learned in one option can be transferred to other options that contain the 

same action. 

 Our work differs from previous work in that we are applying decision tree-based 

state abstraction to the dynamic scripting algorithm rather than the standard Q-learning 

algorithm. Additionally, we make use of a boosting algorithm, Decision Stump, in 

addition to a more standard decision tree algorithm, in the hopes of improving 

performance in the context of dynamic scripting and modern computer games. A final 

difference is that our classifier is completely rebuilt every k runs rather than splitting 

existing nodes of a decision tree. The result is a dynamic abstraction that determines the 

features that are currently relevant to learning. 

Hierarchical Reinforcement Learning in Behavior Modeling 
Architectures 
Integrating a dynamic scripting algorithm into a hierarchical behavior modeling system is 

a primary goal of this dissertation. This section reviews related research by discussing 

existing game behavior architectures that include hierarchical reinforcement learning. 

Hierarchical reinforcement learning (Barto & Mahadevan, 2003; Dietterich, 2000) has 
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been previously applied to the problem of online learning for agent behavior in a 

number different architectures. This section discusses three related architectures that 

include HRL: ALisp, Icarus, and Soar.  

The main difference between the HRL implemented in these three modeling 

architectures and the work undertaken in this dissertation is the type of reinforcement 

learning being used. ALisp is based on the standard Q-learning algorithm and both Soar 

and Icarus use Sarsa derivatives, while the work described in this dissertation is based 

on the dynamic scripting algorithm. A second difference is that Soar and Icarus makes 

use of author defined features to create a set of abstract states, while EDS allows for 

both manual and automatic state abstraction. ALisp does include automatic state 

abstraction via linear function approximation and also has hooks to allow the user to 

insert his or her own function approximation algorithm (e.g. decision trees) as desired 

(Marthi). Finally, there are also significant differences in the agent architectures 

themselves outside of the learning algorithms, but these differences can safely be 

ignored. 

ALisp 

ALisp is a language for specifying partial policies that incorporates features from the 

MAXQ, options, and hierarchy of abstract machine reinforcement learning algorithms 

(Andre & Russell, 2002). Partial policies are specified by creating Lisp programs that 

contain three ALisp methods: call, action, and choice. The call method starts a new 

subroutine, while the action method starts a primitive action. The choice method 

chooses a primitive action or subroutine from the list of possibilities given to it, matching 

up with the choice points outlined in the hierarchies of abstract machines algorithm. A 

combination of call, action, and choose methods are used to create a partially specified 

hierarchy of behaviors, where the policies for the choose methods are learned at 

runtime. 

The work of Marthi, Russell, and Latham (2005) creates ALisp behaviors for the 

real-time strategy game Stratagus (a clone of the commercial Warcraft game). The 

character must learn how to gather resources, build buildings, train more workers, and 

train enough soldiers to kill the opposing team (an ogre) as quickly as possible. They 

make use of a concurrent version of ALisp where there are multiple lisp threads running 
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simultaneously. For example, there could be a separate thread for each peasant 

(resource gatherer) in the game.  

Threads can contain choices, as described above, at which the lisp program 

chooses what to do next. For example, the peasant control thread can choose to have 

the peasant gather resources or construct a building. When the peasant is told what to 

do a new thread will be spawned to control the peasant. The top level behavior spawns 

several concurrent behaviors: allocate workers, train workers, allocate gold, train 

soldiers, and tactical decision. The lower level threads, of which peasant control is one, 

get to make choices such as whether enough soldiers have been trained to attack the 

ogre. Each choice point represents a distinct learning problem, where the choice point 

relies on a form of the standard Q-learning algorithm for updating the value of an action 

with respect to a particular game state: 

[ ]),()','(max),(),(
'

uwQuwQruwQuwQ
u

−++= γα  

where the state s has been replaced by the joint space w and the action a has been 

replaced by a set of actions u. The joint space is defined as w = ( s, θ ), where θ  is the 

current state of the partial program and includes the program counter, call stack, and 

global memory. The set of actions, u, defines the actions that should be taken at each 

choice point  currently active in the partial program. 

The size of the learning space is reduced in most choice points as they depend 

only upon a subset of the joint state space variables, as defined by the behavior author. 

This author-defined feature vector contains both local (behavior) and global 

(game/environment) features for each action at each choice point. The number of 

features at a choice point determines the size of the state space for the Q-learning 

algorithm. The Q-learning update function used by ALisp contains additional parameters 

that allow it to take into account only the state features relevant to a given choice point. 

Soar 

The Soar cognitive architecture has been used to create agent behavior in a number of 

modern games and simulations (e.g. Jones et al., 1999; Wray et al., 2005).  
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The basic component of the Soar architecture is the problem space (J.E. Laird 

& Congden, 2005). An example problem space is shown in Figure 16. To achieve goals, 

Soar uses operators to move through a problem space represented by states that 

consist of attributes with values and contain a goal and possibly parent and/or child 

states. The states, with parents and children, form a goal hierarchy. Long term memory 

(LTM) is made up of productions, which are rules of the form IF x THEN y. LTM 

represents general knowledge such as object types as available actions. Working 

memory (WM) contains the current state, such as knowledge about a particular object, 

as well as the state hierarchy.  

 

Figure 16 Soar problem space. 

The decision cycle applies LTM to the current state. There are three stages in the 

decision cycle: propose operators, select operator, and apply operator. In the propose 

operator phase, all elaborations, operator propositions, and operator comparisons are 

fired in parallel.1 This phase continues until no more productions apply (quiescence). 

Then, from the proposed operators, one is selected. Proposed operators can be given 

preferences to direct the operator selection mechanism by operator comparison rules. 

These preferences include: acceptable, reject, better, worse, best, worst, indifferent, 

numeric-indifferent (biased indifference), require, and prohibit. 

Finally, if an operator cannot be selected an impasse is reached. To resolve this 

impasse, a new substate is created in which Soar attempts to resolve the impasse. This 

new state is a copy of the current state, but with a goal of resolving the impasse. If 

resolved, Soar’s chunking mechanism creates a new LTM production to remember what 
                                                 
1 Newell (1990) describes perfect intelligence as bringing all relevant knowledge to bear, which is what 
happens during the decision cycle. 
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to do if this impasse arises again. This new production contains the relevant features 

of the state prior to the impasse with the relevant action (e.g., operator comparison; 

operator proposal). One problem with this is that once productions are created they will 

continue to be used even if they result in undesirable behavior (Newell, 1990). 

Nason and Laird (2004) address this shortcoming by adding reinforcement 

learning operators to Soar, which learn numeric operator preferences in addition to the 

author determined symbolic (better, worse, etc.) preferences. The IF portion of a 

production rule defines an abstract state, s, where the value of an action, a, is Q(s,a). If 

more than one RL operator matches the current state, then the value Q(s,a) is summed 

across the matching rules as shown in the example below. Actions are selected based 

on their values using softmax selection. The immediate reward for performing an action 

is brought into Soar as part of the environmental input. Finally, Soar-RL uses a 

specialized variant of the SARSA algorithm to update the Q-values: 

[ ]),()','(),(),( asQasQrasQasQ −++= γα  

where α is the learning rate and γ is the future discount rate. The value update algorithm 

determines the amount to change the value of Q(s,a) based on the reward and divides 

this amount among all of the rules that gave an operator preferences in state s. 

A simplified example, based on the authors’ example, has two rules: (1) IF there 

is a monster to the east and a proposed action is move east THEN adjust that operator’s 

value by -5, and (2) IF the proposed operator is to move east THEN adjust that 

operator’s value by -.82. If both of these rules match the current state, s, then Q(s, east) 

= -5.82. If the agent chooses the east move and receives a reward of -1, the reward is 

divided between the two rules (-0.5 each). This means that the new preference 

adjustment for rule (1) would be -5.5 and the new adjustment for rule (2) -1.32. However 

if only rule (1) matched, then the value of Q(s, east) = -5 and the reward of -1 would 

cause the preference of rule (1) to change to -6. By using operator preference rules, 

Soar can have a mix of general abstract states and specific abstract states, depending 

on how the behavior author defines the operator preference rules. The usefulness of this 

feature was further demonstrated by Wang and Laird (2007). 
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Icarus 

Langley and Choi (2006) describe the Icarus cognitive architecture, which has much in 

common with the Soar architecture described previously. For example, an action (skill) 

can either be a primitive action or a subgoal that requires additional actions to fulfill. The 

hierarchical reinforcement learning in Icarus (Shapiro, Langley, & Shachter, 2001) 

shares much in common with both ALisp and Soar. First, Icarus makes use of choice 

points in its formulation of hierarchical reinforcement learning. Icarus is a planning based 

language, where each plan contains a set of requirements, the objectives it achieves, 

and the methods to accomplish the plan. Hierarchies are formed by allowing plans to 

point to actions. Each plan can choose between its methods (actions) to complete the 

objective – this is where the choice points are. The second similarity is that each choice 

point in Icarus can perform state abstraction by making use of a limited number of 

features from the environment/game state. 

Icarus makes use of the SHARSHA algorithm to perform value updates. 

SHARSHA is derived from the Q-learning Sarsa algorithm but takes into account the 

current execution stack. The same underlying algorithm is used, 

[ ])','(),(),( asQrasQasQ γα ++= , but it is applied to all of the methods in the 

current call stack. An example given by Shapiro, Langley, & Shachter (2001) is a 

hierarchical call stack in state s that contains three methods: Drive, GetToTarget, and 

Accelerate, where Drive calls GetToTarget which calls Accelerate. When a reward is 

received, Q(s, Drive), Q(s, GetToTarget), and Q(s, Accelerate) are all updated. 

Contribution 
In the light of this related work, the specific contributions of this dissertation are: 

1. To extend and generalize previous research on the dynamic scripting and 

hierarchical dynamic scripting algorithms through the addition of choice points, 

reward points, scaled value updating, and architecture integration. 

2. To apply previous work in decision tree state abstraction for Q-learning in a 

dynamic scripting context and to extend this previous work by evaluating the 

effectiveness of the simple Decision Stump algorithm. 

3. To extend previous research on hierarchical reinforcement learning in behavior 

modeling architectures by introducing arbitrary reward nodes. 
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4. To integrate a fast and efficient reinforcement learning algorithm with a 

graphical task network architecture with the goal of making machine learning in 

games more accessible to behavior modelers. 

Illustrative Example 
Two simples games, based on a real-time strategy sub-problem, are used to illustrate 

the dynamic scripting extensions. These experiments are based on a preliminary version 

of the extensions and were presented in June of 2007 (Ludwig & Farley, 2007). The first 

game examines the ability to create hierarchical learners that make use of automatic 

state construction. The goal of these agents is to perform the task as well as possible. 

The second game builds on the first by creating a meta-level behavior that performs 

game balancing in a more complex environment. 

Using EDS to Control a Worker 
The Worker game attempts to capture the essential elements of a behavior learning 

problem by reproducing a game used by Ponsen, Sponck, & Tuyls (2006). While they 

used this game to compare dynamic scripting and Q-learning algorithms in standard and 

hierarchical forms, this work uses extended dynamic scripting to make higher level 

decisions. 

This simple game, as shown in Figure 17, involves three entities: a soldier (blue 

agent on the right), a worker (yellow agent on the upper left), and a goal (red flag on the 

lower left). The soldier randomly patrols the map while the worker tries to move to the 

goal. All agents can move to an adjacent cell in the 32 by 32 grid each turn. A point is 

scored when the worker reaches the goal; the game ends when the enemy gets within 

eight units of the worker. If either the worker reaches the goal, or the game ends, then 

the goal, soldier, and worker are placed in random locations.  
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Figure 17 Worker control game. 

The flat behavior of the worker uses a choice point to decide between moving a) 

directly towards the goal or b) directly away from the enemy. Each move is immediately 

rewarded, with +10 for scoring a point, -10 for ending the game, and a combination of 

the amount towards the goal and away from the enemy (1 * distance towards goal + 0.5 

* distance away from enemy). This differs from previous work that used dynamic 

scripting only to learn how to perform a) and b) not decide between the two. That is, this 

choice point is learning to make a tactical decision—not how to carry out the decision. 
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Figure 18 Basic worker behavior in the worker control game. 

The behavior for this worker is shown in Figure 18. In this case, the primitive 

action MoveTowards selects the move that gets the worker closest to the goal and the 

primitive action MoveFrom selects the move that gets the worker as far away from the 

enemy as possible. For the MOVE choice point, and all other choice points in these two 

sample games, the actions all have the same priority and the script size is equal to the 

number of available actions. The reward point updates the action value associated with 

each action using the EDS value update mechanism. Based on the choice point settings, 

script ordering is determined solely by the value associated with each action. 

The hierarchical version of the worker behavior, H_Worker, replaces the primitive 

action MoveTowards with a sub-behavior and introduces the PURSUE choice point in 

the new MoveTowards sub-behavior as seen in Figure 19. This version of the behavior 

allows the agent to choose between moving directly to the goal and selecting the move 

that moves towards the goal while maintaining the greatest possible distance from the 

enemy. The reward function for this choice point is the same as that for the MOVE 

choice, and the action values updated using the EDS mechanism whenever the reward 

action is reached in the sub-behavior. 
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Figure 19 Hierarchical version of the worker behavior. 

The Worker and H_Worker behaviors were each used to control the worker 

agent in 200 games with the given choice points, where all of the agents were positioned 

randomly at the start of each game and the values for all actions were set to 5. A game 

ends when the soldier catches the worker, so the worker can score more than one point 

during a game by reaching the flag multiple times. The dynamic scripting learning 

parameters were fixed using the reward function described previously, a maximum 

action value of 30, and a minimum action value of 1. Compensation and value 

redistribution were not enabled in this preliminary work. 

The Worker scored an average of 2.2 goals over the 200 games, and this result 

functions as a base level of performance. The learned policy generally hovered around 

[30 (to goal), 1 (from enemy)] for the MOVE choice point, which essentially causes the 

agent to always move directly towards the goal. In certain random instances the worker 

might lose more than once in a row, reversing the policy to favor moving away from the 

soldier. This would cause the agent to move to the farthest edge until it eventually 

moves back towards the policy that directs the agent to the goal ([30, 1]). Note that for 
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this work, the value distribution mechanism involving compensation and redistribution 

was not used so the action value sums do not remain constant. 

With the goal of improving behavior, automatic state construction was used to 

classify the game state so that one of two policies would be used. A feature vector was 

generated for each choice point selection that included only the features previously 

identified (Ponsen, Spronck, & Tuyls, 2006): relative distance to goal, direction to goal, 

distance to enemy, direction to enemy, and the received reward (see Table 6).  

Table 6 Feature vector in the worker control game. 

Goal Distance Goal Direction Enemy Distance Enemy Direction Reward 

6 S 9 SE 1 

5 S 7 SE -10 

 

In this initial work, automatic state specialization was only performed with the 

Decision Stump algorithm. In this case, automatic state specialization was performed 

after 1, 2, 5, 10, 20, and 100 games to partition the game state with varying amounts of 

data. The algorithm for creating the classification tree and training the resulting leaf 

nodes is described in the section titled Automatic State Specialization. After creating the 

classification tree and update the action values for the leaf nodes, each leaf node 

contains its own set of action values and a distinct dynamically generated action script. 

When the choice point makes a decision, it classifies the current game state using the 

generated classifier to determine which script should currently be used to select an 

action.  

After 1 game the created classifier divided the game state into one of two policies 

based on Distance_Goal <= 1.5, which had no significant effect on agent behavior.  In all 

other cases, the generated classifier was Distance_Enemy <= 8.5. The DS algorithm 

with this classifier improved significantly (p < .01), scoring an average of 2.9 goals over 

the 200 runs. Visually, the worker could be seen sometimes skirting around the enemy 

instead of charging into its path when it was nearly within the soldiers range. 

The H_Worker, without state construction, performed significantly better than 

either version of the Worker behavior, with an average score of 4.2 (p < .01) over the 

200 runs. Similar to the Worker behavior, the MOVE choice point generally hovered 
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around [30 (to goal), 1 (from enemy)]. For the PURSUE choice point, the values 

generally favored moving towards the goal but away from the enemy rather than moving 

directly to the goal [1 (direct), 30 (to goal from enemy)]. Visually the H_Worker will 

generally spiral to the goal, which allows for moving toward the goal while maintaining 

the greatest possible distance from the enemy. Applying the Decision Stump classifier 

after 1, 2, 5, 10, 20, and 100 games always resulted in creating the Distance_Goal <= 

1.5 classifier which had no significant effect on the average score. 

Using EDS for Game Balance 
The second experiment builds on the Worker and H_Worker behaviors by 

creating a behavior that learns how to balance the expanded version of the Worker 

game shown in Figure 20. These two behaviors were chosen as the low and high 

performers of the previous experiment.  For both workers, automatic state construction is 

turned off. 

 

 

Figure 20 A screen shot of Worker 2, the expanded version of the worker game. 
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In Worker 2, one random goal is replaced with two fixed goals. There is still 

one soldier that randomly patrols the board. The starting location of the agents is also 

fixed to be the top of the square barracks in the figure.  

At the beginning of each game, the soldier starts out in the same location and 

performs the same random patrol of the game board to allow for easy comparison 

across different runs. During its patrol, the soldier will sometimes hover around one of 

the goals, in the middle of the goals, at the worker creation point, or somewhere on the 

outskirts of the game board. The random path of the soldier serves as the dynamic 

function that the game balancing behavior must react to and demonstrate different levels 

of human player competency for (or attention to) a subtask within a game. 

Workers are created dynamically throughout the game and multiple workers can 

exist at any time. All workers share the same choice points. That is, all instances of 

Worker and H_Worker share the same set of values for the MOVE choice point and all 

H_Worker instances share a single set of values for the PURSUE choice point. So, for 

example, if one worker is caught all of the remaining workers will be more likely to move 

away from the enemy. In this game, every time a worker makes it to the goal the workers 

score one point. Every time the soldier captures a worker, the controller scores one 

point. At the end of each episode the score decays by one point, with the idea that it isn’t 

very interesting when nothing happens and the decay will eventually cause workers to 

be created. 

The Worker and H_Worker behaviors were modified to work in the context of this 

new game. First, the MOVE choice point in both the Worker and H_Worker is used to 

decide among moving towards goal 1, towards goal 2, or away from the enemy as 

shown in Figure 21. 
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Figure 21 Basic worker behavior in the Worker 2 game. 

Figure 22 shows the modification of the H_Worker MoveTowards sub-behavior. 

Now this behavior chooses from moving directly to the goal, moving towards the goal 

and maximizing the distance from the enemy, or moving towards the desired goal and 

minimizing the distance between the worker and the other goal. 

The behaviors of the modified Worker and H_Worker agents are very similar to 

the behaviors of the version described previously. The reward function and learning 

parameters were not changed for these behaviors, so the system is attempting to learn 

the best possible actions for these agents. At the MOVE choice point, the main 

difference is that workers will all go to one goal until the soldier starts to capture workers 

heading to that goal. At this point, the workers quickly switch to moving towards the 

second goal.  This works very well if the soldier is patrolling on top of one of the goals. At 

the H_Worker PURSUE choice point, moving towards the goal but away from the enemy 

was generally preferred over the other two possible actions. 
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Figure 22 Sub-behavior used by the hierarchical worker in the Worker 2 game. 

The game balancing behavior shown in Figure 23 attempts to keep the score as 

close to zero as possible by performing a number of possible actions each episode (30 

game ticks). The available actions are creating a Worker, creating an H_Worker, doing 

nothing, speeding up (performing more actions each episode) and slowing down 

(performing fewer actions each episode). This meta-level behavior was created using 

the same choice point infrastructure used in the agent behaviors. 

 

Figure 23 Game balancing behavior. 
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The learning parameters for this choice point were different than the 

parameters for the worker agents. First, the minimum action value was set to 1 and the 

maximum action value was 10. The temperature of the SoftMax selection algorithm 

remained at 5. The reward function was defined as:  

recurrentScoorepreviousSc −  

This rewards actions that bring the score closer to zero. For example, if the score 

changes from -5 to -10, a reward of -5 is given while if the score changes from -5 to 2 a 

reward of 3 is given. Unlike the worker agents which are rewarded immediately, the 

game balancing behavior only receives a reward at the end of an episode. Similar to the 

original Worker game, the distributeRemainder function was not used in this preliminary 

investigation so the action value sum does not remain constant (the complete algorithm 

is evaluated in Chapter 0). 

The game balancing behavior was allowed to run for 100 episodes (3,000 

actions) to form a single game. In each game, the soldier starts at the same position and 

makes the exact same movements. That is, there is a single randomly generated path 

that the soldier follows in each game. For comparison, two other reward functions were 

also tested. The first doubles the reward, making the system adjust values in bigger 

increments. The second halves the reward so the system adjusts values in smaller 

increments. To provide an upper level bound on behavior, a fourth algorithm was 

created where the GAME choice point was replaced by a random decision. 
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Figure 24 Game balance results. 

The average score after each episode for the four different cases is presented 

visually in Figure 24. Remember, the ideal performance on this task is to always keep 

the score at zero, which would be a flat line x-axis at zero. This graph indirectly indicates 

the position of the soldier at various times during the game (100 episodes) as it follows 

its fixed path. Initially the soldier starts near the goals. In the middle portion of the game 

the soldier is located so it tends to capture all of the workers as soon as they are 

created, driving the score down. Towards the end of the game the soldier wanders 

around the periphery and scores tend to go up.  

To capture a quantitative measurement of the difference between the actual 

scores and desired score of zero, the mean absolute error was also computed across 

the eight games for each type and is shown in Table 7. The mean absolute error is 

defined as: 

∑ =

n

i
ie

n 1

1
 

where ei is the mean of the absolute scores (across the eight runs) at time i for a single 

learner. The standard, double, and half reward cases are all statistically significant 

improvements (p < .01) over the random agent. 
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Table 7 Mean absolute error of the four different learners.   The closer the value to zero, 
the better the relative performance. 

Random Standard Reward Double Reward Half Reward 

12.0 8.3 9.8 6.9 

 

The game choice behavior did perform as expected in some games. For example, 

it could be seen that if the score was positive and the workers were being captured then 

it would ratchet the speed to maximum and create standard workers (thus raising the 

score by having more get captured). On the other hand, if the score was negative and 

the workers were being captured, the speed would be slowed to the minimum and only 

H_Workers created as they were less likely to be caught. While promising, these two 

games are only an initial test of a preliminary version of the extended dynamic scripting 

algorithm. Later chapters evaluate the performance of EDS in the context of several 

abstract tactical games and demonstrate its capabilities in the published computer game 

NeverWinter Nights. 
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 CHAPTER IV 
EVALUATION 

In order to better evaluate the performance of EDS, we created an abstract game 

framework based on high-level (tactical) decisions in games and simulations. This 

framework is designed to allow for the construction and playing of abstract games, which 

can be used to test the efficacy of different game playing agents equipped with learning 

algorithms. The first section in this chapter is devoted to describing the abstract 

framework, while the second section evaluates EDS on four different abstract games. 

Tactical Abstract Game Framework 
The Tactical Abstract Game (TAG) framework is derived from simple decision 

simulations such as the n-armed bandit problems, where each of n actions has a 

different reward associated with its completion (Sutton & Barto, 1998). We extend this 

type of simulation to include decision aspects commonly encountered in games and 

simulations: applicability of actions, priority of actions, and a limited influence of game 

state. With these additions the TAG framework can be used to model some instances of 

the class of decision problems referred to as Markov Decision Process (MDP). 

 An MDP is a sequential decision problem. A sequential decision problem is one 

in which the agent interacts with the environment, the state of the environment changes 

as a result of the interaction, the agent interacts with the environment, etc., until some 

termination state is reached. An MDP is a particular class of decision problem where “… 

the transition probabilities from any given state depend only on the [current] state and 

not on the previous history” (Russell & Norvig, 1995). More formally, an MDP is defined 

by the tuple <S, A, T, R> (Kaelbling, Littman, & Cassandra, 1998), where: 

• S is a set of states in the environment 

• A is the set of actions 

• T is the state transition function, where T(s, a, s’) defines the probability of 

ending up in state s’ when action a is performs in state s 
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• R is the reward function, where R(s, a) is the expected immediate for 

performing action a in state s. 

 While there are a number of existing languages in which to describe MDP-based 

games, such as the Game Description Language (Genesereth & Love, 2005), the TAG 

framework is designed to capture the essential characteristics and considerable role of 

randomness found in modern computer games while at the same time minimizing the 

amount of the game that must be specified. To this end, TAG can only represent some 

MDPs as the language has limited representational capabilities with respect to the set of 

games state, the transition function, and the reward function.  

Below we define the two main components of the TAG framework, game and 

player, and the major attributes of these components. Following this, we illustrate how to 

run a TAG experiment with these two components. 

TAG Game 
A game in the TAG framework is made up of a number of components: a game 

feature set that corresponds to the agent observations, F, a set of actions, A, and a set 

of state transition rules for the observation features, R. The tuple <F, A, R> defines a 

game with a particular set of observations and actions available to the agent. 

 The observation feature set of a game, F, contains the game features observable 

to a player when it selects an action and defines the set of game observation states, O. 

Each observation state is defined as a distinct set of feature values. This is a significant 

departure from MDPs, which contain the actual set of game features, Fs, and the 

corresponding set of game states, S, in addition to the set of observation features, F, 

and observation states, O. The TAG framework simplifies the process of game 

construction by relying on the significant amount of randomness seen in modern 

computer games instead of an underlying game state model.  

 Each feature, f, is either defined as a Boolean or integer feature. In the case of 

Boolean, the value of the feature is either TRUE or FALSE. For a numeric feature a 

range is given (e.g. 0 to 64) and the value of the feature will always be in this range. For 

example, let f1 and f2 be the two features of a game, both of which are Boolean. This 

leads to four game observation states in the set S: s1 = (true, true), s2 = (true, false), s3 

= (false, false), and s4 = (false, false). Note that the feature sets only describe the 
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features available to a player when it selects an action, not all of the features available 

in the game. Optionally, a feature can be assigned an initial value; otherwise it will be 

determined randomly. 

 The second basic component of a game definition is the set of actions, A. Each 

action is defined by a set of parameter values that vary depending on the current game 

state. For a given set of game observation states, O, based on the observation feature 

set, F, a parameter tuple is defined as < O, p, r-, r+, g>. 

• O: a set of observation states where this action is available 

• p: a positive reward likelihood, which defines the probability of receiving a reward 

in the positive range rather than the negative range 

• r+: a positive reward range, where the given reward is selected randomly from 

within the given range (inclusive) when a positive reward is given 

• r-: a negative reward range, where the given reward is selected rangomly from 

within the given range (inclusive) when a negative reward is given 

• g: the probability that the action can be applied in the current state, given that it is 

available according to O. 

An action, a, is composed of multiple tuples: a = {< O1, p1, r-1, r+1, g1 >, < O2, p2, r-2, r+2, 

g2>, < O3, p3, p-3, p+3, g3 > …}. Across the attributes sets that define an action, the 

observation state sets (O1, O2, etc.) are distinct. All other attributes may be the same or 

different in each attribute set.  

Positive reward, p, is a value between 0 and 1 that captures the likelihood of a 

“good” reward if the action is selected. Zero indicates that only negative rewards will be 

generated and one indicates only positive rewards will be generated. The actual amount 

of reward is determined randomly between a minimum and maximum for each of the two 

cases, to capture the inherent stochastic nature of modern computer games and 

simulations and to simulate the effect of the opponent’s actions. r+ defines the range of 

positive reward (e.g. 0 to 100) and r- defines the range of negative rewards (e.g. 0 to -

70). That is TAG is only capable of producing a reward function, R(s,a), that generates a 

random reward distribution within the given bounds. 

The applicability, g, of an action lies between 0 and 1 and describes how often an 

action is available to be applied. Zero indicates that an action is never available while 
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one indicates that the action is always available. In a MDP, the current game state s 

would be used to determine whether or not an action is available.  While this type of 

applicability can be defined within the TAG framework by limiting the observation state o 

and assigning g = 1.0, the framework also supports a second method by adjusting the 

applicability value. The applicability value is a significant simplification that instead 

determines the availability of an action randomly without the need for information on the 

actual or observed game state. For example, g could be used to specify that an action is 

applicable 10% of the time, irrespective of the current game observation state o. 

The set of state transition rules, R, move the agent through the observation state 

based on the completed actions. Each rule, r ∈ R, contains both an action a and a 

feature f. By default, when action a is selected while running a game, the observation 

feature f is randomly changed to create a new observation state. Alternate rule types 

exist to change the observation state in a more principled way, such as setting a feature 

to a particular value or (in the case of integers) adjusting the existing value up or down. 

Additionally, no-op actions are defined by not including any transition rules for a given 

action.  

TAG Player 
 A TAG Player is responsible for making decisions in a TAG Game, where each 

player can implement a different action selection method. There are three different 

player implementations examined in this dissertation: Random, Q, and EDS. 

The Random player randomly selects an action at each decision point. This 

player is used to define a (hopefully) lower bound on performance, with which the other 

learners can be compared. 

The Q player illustrates the performance of a standard reinforcement learning 

algorithm on the same problem. It is based on the Q-learning algorithm as described by 

Sutton and Barto (1998).  The Q player selects actions in a fitness proportionate 

manner, using soft-max selection, whenever an action is requested. The Q player 

updates the action values using the Q-learning update function, where r is the reward 

received, Q(s,a) is the value of action a in state s, and s’ is the resulting state when 

action a is selected in state s:  
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The parameters were set to the following values based on Sutton and Barto (1998): α = 

0.1 and γ = 0.8.  The Q-player provides a second type of baseline – the performance of a 

standard reinforcement learning algorithm on the same problem. This is meant to be 

representative of the dominant paradigm but not necessarily complete. There are a 

number of ways the basic Q-learning algorithm could be extended to improve 

performance that are not investigated in this dissertation. 

For EDS, the extended dynamic scripting player, a number of parameters 

determine how the player’s learning algorithm works. The EDS player parameters take 

the form of a tuple <I, V, m+, m-, n, e> where I is a set of priorities (one value for each 

action), V is a set of action values (one for each action), m+ is the maximum action 

value, m- is the minimum action value, n is the size of the script for this choice point, and 

e is the number of actions taken in each episode. The priority, i, is an integer where 0 

has the greatest priority (to avoid confusion, we use English terms such as High, 

Medium, and Low to describe priority). The assignment of priority represents subject 

matter knowledge from the behavior author, in both determining the number of priorities 

and in assigning them. An action value, v, is used by the dynamic scripting algorithm to 

determine if the action is included in the agents behavior script. The m+ and m- 

parameters constrain the possible values of v.  The script size, n, is the number of 

actions that are selected to be part of the dynamic generated script at the beginning of 

each episode. Episode length, e, is the number of actions selected before learning 

occurs – the EDS player tracks the number of action selections. For example, if e = 10, 

after ten actions the action values will be updated and a new script is generated. 

TAG Experiment 
 Running a TAG experiment to generate empirical results involves both a TAG 

game and player. The primary measure when performing an experiment is the reward 

received after each action selection. The player selects an applicable action, a, from A 

based on the current settings of the player, the current observation state o and the 

applicability threshold g. The information in a is used to supply a numeric reward to the 
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player for the selected action. After the reward is given, the game play rules, R, are 

used to change the game observation state o.  

 
Figure 25 An interaction diagram that describes the relationship between a TAG game and 

player, where o is the game state, g the applicability threshold, and a the action selected 

by the player 

As shown in Figure 25, the game asks the player to select an action while providing it 

information on the current state o. The player then returns the selected action a, which 

has an applicability value >= g, or null if no action is applicable based on the value of g. 

Following this, the game sends the player a message with a reward generated based on 

the settings of action a, or null in the case that no action was selected. 

Evaluation of EDS in Four Abstract Games 
We define four distinct games in the TAG framework, with a number of different players 

for each game: Weather, Anwn, Get the Ogre!, and Resource Gathering. The first is 

adapted from a weather prediction game, previously used to study both human and 

machine learning (Santamaria & Warwick, 2008). The second is an abstract role-playing 

game, based in part on the NeverWinter Nights  computer game (Bioware, 2002). The 

third game, Get the Ogre!, is derived from a real-time strategy game subtask, previously 

explored with Concurrent ALisp (Marthi et al., 2005). The Resource Gathering game 

builds on another real-time strategy subtask studied by (Mehta, Ray, Tadepalli, & 

Dietterich, 2008). 
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These four games represent wide range of game types. The weather prediction 

game, Weather, is extremely context dependent, in a small state space. Q-learning 

should perform much better than extended dynamic scripting in this type of game. In the 

abstract role playing game, Anwn, the current observable state plays little role in the 

expected utility of the high-level decisions made in the game. In this type of game, 

extended dynamic scripting should perform very well. In the third game, Get the Ogre, 

actions must be performed in a sequence in order to solve the problem. While action 

priority in EDS can capture some elements of sequence, it is expected that context 

sensitive learners (such as table-based Q-learning or EDS with automatic state 

abstraction) will perform better than learners without context information (EDS with only 

a single abstract state). The fourth game, Resource Gathering, also requires a sequence 

of actions to complete. However, the expected sequence is much more constrained than 

that found in the previous game. As predicted in Get the Ogre!, EDS will perform very 

poorly on the Resource Gathering game unless additional domain knowledge is 

included. 

For each of these games, we first present a description of the game and players. 

This is followed by a set of results and discussion of their significance. Additionally, for 

the Anwn game performance results are given that summarize the computational cost of 

EDS relative to the Random and Q players. Anwn was selected as it represents the most 

complex game with respect to the number of available actions and the size of the 

observation state space.  

Weather Prediction 
The Weather Predication game is adapted from a simple game previously used to study 

both human and machine learning (Santamaria & Warwick, 2008). A participant in this 

game is presented with one or more of four possible cards. Based on the visible cards, 

the player predicts one of two outcomes: Fine or Rainy weather. The actual weather 

outcome is determined as described in Table 8. Based on the random element included 

in determining the actual outcome, the upper bound on the prediction accuracy of the 

participant is roughly 83%. 
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Table 8 The 14 possible card patterns and the probability with which they predicted fine 

weather. 

Pattern Cues (cards present) Probability of fine weather 

1 1 2  3 0.895 

2 1 2   4 0.778 

3 1 2 0.923 

4 1  3 4 0.222 

5 1  3 0.833 

6 1   4 0.500 

7 1 0.895 

8  2 3 4 0.105 

9  2 3 0.500 

10  2  4 0.167 

11  2 0.556 

12   3 4 0.077 

13   3 0.444 

14    4 0.105 

 

This table can be summarized as: Card 1 strongly indicates Fine, Card 2 weakly 

indicates Fine, Card 3 weekly indicates Rainy and Card 4 strongly indicates Rainy. 

Game Definition 

The definition for the Weather game includes F, A, and R.  The game contains four 

boolean observation features corresponding to the four cards.  There are two actions 

available to the player, predicting Fine or Rainy weather, with context specific rewards 

that correspond to the probabilities given in Table 8.  

 

• F = { Card1 :Boolean, Card2 :Boolean, Card3 :Boolean, Card4 :Boolean } 

• A = {Fine, Rainy} where both actions have 14 different parameter sets < O, p, r-, 

r+, g > 

o Fine = { 

§ <{1, 2, 3}, 0.895 , 50 to 50,  -50 to -50,  1.0>, 
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§ <{1, 2, 4}, 0.778 , 50 to 50,  -50 to -50,  1.0>, 

§ … 

§ <{4}, 0.105 , 50 to 50,  -50 to -50,  1.0>} 

o Rainy = { 

§ <{1, 2, 3}, 0.105 , 50 to 50,  -50 to -50,  1.0>, 

§ <{1, 2, 4}, 0.222 , 50 to 50,  -50 to -50,  1.0>, 

§ … 

§ <{4}, 0.895 , 50 to 50,  -50 to -50,  1.0>} 

• R =  

o Randomly change all four features. 

o If no action is applicable, i.e. all cards are present or no cards are 

present, then a new game state is randomly generated. 

Player Definition 

We define a number of different players for this game: (1) Random, (2) EDS, and (3) Q. 

The random player selects an applicable action each time a decision is required. This 

player is used to provide a lower bound on the prediction accuracy, contrasted by the 

upper performance bound of 83% accuracy. 

 The EDS player makes use of a fixed set of algorithm parameters in a number of 

different learning configurations. The fixed parameters are the priority, where both Rainy 

and Fine have the same priority, the set of initial action values, V = {1000, …, 1000} , the 

maximum action value, m+ = 1500, and the minimum action value, m- = 500. The size of 

the script was fixed at 2, which would always include all of the available actions. The 

episode length was restricted to 1. The only parameter varied across runs for the EDS 

learner is the type of state abstraction.  State abstraction for EDS in this game takes one 

of three forms: single, manual, and automatic. By default, only a single abstract game 

state is considered. This is illustrated in the Simbionic behavior shown in Figure 26. 
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Figure 26 EDS in Weather with a single abstract state. 

In the manual configuration, the behavior author uses predicate nodes in SimBionic to 

select one of three different choice points for the same decision. This is shown in Figure 

27, which makes use of Card 1 and Card 4 – the two strong state predictors. One choice 

point includes the case where Card 1 is present and Card 4 is not, another where Card 4 

is present and Card 1 is not, and a final choice point that includes all other states. This 

abstract state configuration is meant to make use of some, but not all, of the knowledge 

about how the game works. Based on this set of abstract states, the maximum expected 

prediction accuracy is roughly 70%. 
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Figure 27 EDS in Weather with manual abstract state. 

The behavior of the third state configuration, automatic state abstraction, closely 

resembles that of manual except that the single set of action values has been replaced 

by a classification tree that contains a number of action value sets. With automatic state 

abstraction, building a classification tree was tested at three different points (after 5, 20, 

and 50 episodes) and with two different tree algorithms (J48 and Decision Stump). The 

maximum expected performance of Decision Stump is 70% (the same as the manual 

abstract state). J48 could theoretically be used to achieve the maximum accuracy of 

83%.

 The Q player makes use of the Q-learning algorithm, where the initial value of 

each action is set to 100. The Q player has a single configuration parameter that varies 

the state abstraction across game runs. The state abstraction parameter can be one of 

two values: none, or abstract. When state abstraction is set to none, the Q player makes 

use of a standard Q-learning table, where a separate set of action values exist for each 

game state. In the abstract configuration, the Q-learner learns the value of all action in a 

single abstract state, similar to EDS. The manual version of state abstraction was not 

tested in this Q-learner, for reasons discussed in the results section. 
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Results and Discussion 

This section contains the results generated by running the different learners in the 

context of the Weather game. The x-axis contains the number of decisions that have 

been made in the game, from 1 to 100. The y-axis is the mean score of the player over 

the last 10 runs (i.e. size 10 window). The goal of the learner in all cases is to maximize 

the score received from playing the Weather game as quickly as possible. The score 

represents the percentage of correct predictions made by the learner. The maximum 

attainable score in this game is 83%, with a lower maximum score of 70% if only two or 

three game states are considered. 

 In all cases, the learners played the Weather game 20,000 times, with 100 decisions 

made each run. 

The Q player results are primarily presented in Figure 28. This figure shows that 

the version of Q using a single abstract state (Q Abstract) performs the same as 

randomly selecting an action over the course of 100 decisions. This is primarily due to 

the large state-dependent nature of the two available actions. The standard table-based 

Q player (Q) shows significantly better learning performance, which is expected given 

the small size of the state space (n=14). 
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Figure 28 Q-Learner results.  
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The next graph, Figure 29, shows the results generated by EDS players on the 

same problem. All of the players have a dynamically generated script that contains five 

actions and are rewarded immediately after each decision.  The two players tied for the 

lowest score are extended dynamic scripting and extended dynamic scripting with no 

learning, performing the same as the random player. This is improved upon by a version 

of extended dynamic scripting that learns based on a manual state abstraction created 

by a behavior author. The EDS Manual learner quickly achieves the maximum possible 

score given the three manually constructed abstract states. 
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Figure 29 EDS with a script size of 5 and an episode length of 1 in three different 

configurations:  manual state abstraction, no state abstraction, and with learning disabled. 

The next four figures show the effect of automatic state abstraction. In all cases, 

a decision tree algorithm is used to build a classification tree based on the rewards 

received for actions in previous game states. Each leaf node in the classification tree 

represents a distinct abstract state, where each leaf node has its own set of action 

values. For example, a simple tree could be used to separate the game states where the 

current action values result in a positive reward from the games states where the current 

action values result in a negative reward. Two different types of decision tree algorithms 

are tested: Decision Stump and J48. Both of these decision tree algorithms are tested 
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under the following two conditions. In the first, the classification tree is created once 

after 5, 20, or 50 decisions and then this tree is used to make rest of the decisions. In 

the second, a new tree and its corresponding leaf nodes are created every 5 or every 20 

decisions.  

In Figure 30, the extended dynamic scripting learner makes use of the Decision 

Stump algorithm to create a classification tree at three specific points. These results 

demonstrate that a larger history of decisions generates a better set of abstract states. 

That is, in Weather the Stump created after 50 decisions performs better than that 

created after 20 decisions, which in turn outperforms the Stump created after 5 

decisions. As the amount of historic performance data increases, it becomes more likely 

that a Decision Stump can be created to partition the state space in a useful way. 
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Figure 30 EDS with stump-based automatic state abstraction, where the tree is built once.  

 In Figure 31 a new classification tree (Decision Stump) is generated after every 5 

or 20 episodes, the learner performs the same as if only a single tree was created after 5 

or 20 episodes. The additional historic performance information does not greatly improve 

the capabilities of the learners with automatic state abstraction. If Decision Stump is 

made based on Card1 or Card4, the expected maximum performance is around 70%, 

and if based on Card2 or Card3 the maximum expected performance is around 55%.  
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Figure 31 EDS with stump-based automatic state abstraction, rebuilding every n decisions.   

Figure 32 presents the results generated by the same learners utilizing the J48 

decision tree algorithm. The tree produced after 50 decisions, with the most historic 

performance information, performs better overall than the tree formed after 20 decisions 

and better than the tree formed after only 5 decisions. Figure 33 compares these results 

with those generated by constructing J48 trees after every 5 or 20 decisions. As found 

with Decision Stump, generating a single tree after 20 episodes and generating a tree 

every 20 episodes produces the same results. However, the learner that creates a new 

tree every 5 episodes does seem to be able to bootstrap. EDSTreeEvery5 performs 

quite a bit better than EDSTree@5. 
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Figure 32 EDS with tree-based automatic state abstraction.  
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Figure 33 EDS with tree-based automatic state abstraction, rebuilding every n decisions.  

The final graph provides an overall comparison of the different learners, with 

upper and lower bounds by which to measure their capabilities. Figure 34 presents the 

table-based Q player and multiple EDS players (EDS Manual, Stump@50, 



 

 

82 

StumpEvery5, and EDS). The clear winner in this graph is Q, which does not perform 

as well as EDS Manual but does not require the behavior author to manually identify a 

state abstraction. That is, Q is learning the appropriate action to take in each of the 14 

states. It is interesting to note that EDS Manual does perform quite well, relative to Q, 

with its abstract state space. Neither of the automatic state abstraction learners performs 

better than Q over the entire decision space. StumpEvery5 does initially scores higher 

than Q, but then lags behind for the last 60 decisions. Stump@50 does rise to the same 

performance level as Q, but only after 55 decisions.  
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Figure 34 Overall comparison of weather results.  

The primary conclusion drawn from the Weather domain is that in games where 

the effects of actions are primarily context-dependent, and the state space is relatively 

small, the standard table-based Q-learning algorithm would be expected to outperform 

extended dynamic scripting, unless additional knowledge is encoded in the form of 

abstract states. Without this knowledge, and without action priorities and large number of 

actions to choose from, extended dynamic scripting was still able to perform 

competitively with automatic state abstraction. Without manual or automatic state 

abstraction, EDS was unable to learn on this problem at all.  These results generally 

match our expectations, though we were surprised to the degree by which a little bit of 
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knowledge in the form of manually defined abstract states can improve the 

performance EDS. The combined results validate the extended dynamic scripting 

algorithm despite the fact that EDS was not the highest performer.  

A secondary conclusion developed from working on this particular game is the 

importance of negative rewards for dynamic scripting when the script size is greater than 

or equal to the number of available actions. For example, let there be two actions, a and 

b, each with a value of 100 and the same priority. The two possible rewards are 10 and 

0. The dynamically generated script, in order, will be either {a,b} or {b,a}. Now, assuming 

the former, if a reward of 10 is given to action a, we have a=105 and b=95 (due to the 

weight update algorithm). The next dynamically generated script will always be {a,b}, 

since the two actions have the same priority. At this point, the value of action a can only 

increase, because a reward of 0 will not change either action value and a reward of 10 

will always increase the value of a more than b is increased. Since the value of action a 

is always greater than b, every script generated from this point on will always be {a,b}. 

No exploration is possible, because the size of the script is 2, so both rules will always 

be selected. The two solutions to this problem are to either provide negative rewards or 

to ensure that the script size is always less than the number of available actions. 

Anwn  
Anwn is an abstract role-playing game, based in part on the NeverWinter Nights  

computer game (Bioware, 2002). In Anwn, the player chooses from a wide array of 

possible actions, of which only a subset are applicable in the current game state. This 

represents the spells, special abilities, and combat tactics used by a player to attack the 

opposing forces in a role playing game like NeverWinter Nights, where the availability 

and effectiveness of actions are limited both by the players current state and the state 

(which may not be known) of the opposing agents. 

Game Definition 

The definition for the abstract version of a role-playing game starts with the sets F, A, 

and R.  The game contains ten observation features, two of which are integers and the 

rest boolean.  There are forty actions available to the player. The first ten can be roughly 

grouped as good (lower applicability, higher reward), the middle twenty as medium 

(higher applicability, lower reward), and the last ten as poor (greatest applicability, lowest 
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reward). Generally, the actions have little dependence on the observation state, 

except for five state-dependent rules. 

 

• F = {Health: Integer 0-60, Enemies: Integer 1-4, F3 :Boolean, F4 :Boolean, F5 

:Boolean, F6 :Boolean, F7 :Boolean, F8 :Boolean, F9 :Boolean, F10 :Boolean} 

• A = {a1 … a 40} where a = {< O, p, r-, r+, g >, < O’, p’, r-‘, r+’, g’>, < O’’, p’’, p-‘’, 

p+’’, g’’ > …} 

o a1 = {<O’,  0.1, 0 to -50,  0 to 100,  0.4>, <O’’,  0.99, 0 to -50,  0 to 100,  

0.4> } 

§ O’ = O – O’’ 

§ O’’ = F3 = true  

o a2 = {<O’,  0.1, 0 to -50,  0 to 100,  0.4>, <O’’,  0.99, 0 to -50,  0 to 100,  

0.4> } 

§ O’ = O – O’’ 

§ O’’ = F3 = false  

o a3 – a4 {<O,  0.7, 0 to -50,  0 to 100,  0.1> } 

o a5 – a10 = {<O,  0.4, 0 to -50,  0 to 100,  0.1> } 

o a11 = {<O’,  0.2, 0 to -50,  0 to 100,  0.4>, <O’’,  0.8, 0 to -50,  0 to 100,  

0.4> } 

§ O’ = O – O’’ 

§ O’’ = F3 = true  

o a12 = {<O’,  0.2, 0 to -50,  0 to 100,  0.4>, <O’’,  0.8, 0 to -50,  0 to 100,  

0.4> } 

§ O’ = O – O’’ 

§ O’’ = F3 = false  

o a13 – a20 = {<O,  0.5, 0 to -50,  0 to 100,  0.4> } 

o a20 – a30 = {<O,  0.3, 0 to -50,  0 to 100,  0.4> } 

o a31 =   { <O’’,  0.6, 0 to -50,  0 to 100,  0.6>, <O’’’,  0.1, 0 to -50,  0 to 100,  

0.6>  } 

§ O’’ = F3 = true 

§ O’’’ = F3 = false  

o a32 – a40 = {<O,  0.4, 0 to -50,  0 to 100,  0.6> } 
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• R =  

o For actions a1 and a2, the Health and F3 state attributes are randomly 

updated 

o For all other actions: two state attributes are selected at random and 

randomly updated 

Player Definition 

We define a number of different players for this game: (1) Random, (2) EDS and, and (3) 

Q. The Random player selects an applicable action each time a decision is required. 

This player is used to provide a lower bound on the results expected from the other two 

players. 

 The EDS player makes use of a fixed set of algorithm parameters in a number of 

different learning configurations. The fixed parameters are the priority, I = {High: a1-a10, 

Medium: a11-a30, Low: a31-a40}, the set of initial action values, V = {100, …, 100} , the 

maximum action value, m+ = 2000, and the minimum action value, m- = 0. The EDS 

learner also contained a number of parameters that varied across game runs. These 

included the script size, n = 5 or 10, the length of episodes, e = 1 or 10, and the type of 

state abstraction. State abstraction in EDS takes one of three forms: single, manual, and 

automatic. By default, only a single abstract game state is considered. This is illustrated 

in the Simbionic behavior shown in Figure 35. 
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Figure 35 EDS in Anwn with a single abstract state. 

In the manual configuration, the behavior author uses predicate nodes in SimBionic to 

select one of two different choice points for the same decision. This is shown in Figure 

36. The behavior of the third state configuration, automatic state abstraction, closely 

resembles that of manual except that the single set of action values has been replaced 

by a classification tree that contains a number of action value sets. With automatic state 

abstraction, building a classification tree was tested at three different points (after 5, 20, 

and 50 episodes) and with two different tree algorithms (J48 and Decision Stump). 

 The Q player makes use of the Q-learning reinforcement learning algorithm as 

described previously. The Q player also has a number of configuration parameters that 

vary across game runs. The first parameter is whether the initial action values are 

uniform or biased. Biasing initial action values is one way that a behavior author can 

enhance initial learning performance in reinforcement learning, and was added as an 

analog to the priorities assigned in EDS. When uniform, all actions have the same initial 

value. When biased, initial action values are adjusted slightly based on the priority 

assigned to an action by the extended dynamic scripting algorithm. The first 10 actions 

are given a slightly higher initial value, the middle twenty remain the same, and the last 

10 receive a slightly lower initial value.
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Figure 36 EDS in Anwn with manual abstract state. 

The Q player also has a state abstraction parameter that can be one of three values: 

none, abstract, or manual. When state abstraction is set to none, the player makes use 

of a standard Q-learning table, where a separate set of action values exist for each 

game state. In the abstract configuration, the Q player learns the value of all action in a 

single abstract state, similar to EDS. In the manual configuration, the player learns the 

value of actions using a manually created state abstraction based on the value of the 

observable feature “F3”. This represents domain knowledge that could be encoded by 

the behavior author as shown in Figure 36. 

Results and Discussion 

This section contains the results generated by running the different learners in the 

context of the Anwn game. The x-axis contains the number of decisions that have been 

made in the game, from 1 to 100. The y-axis is the mean score of the player over the 

last 10 runs (i.e. size 10 window). The goal of the learner in all cases is to maximize the 

score received from playing the Anwn game as quickly as possible. While the score has 

no intrinsic meaning, it is a valuable measure in comparing the relative performance of 

the different learners. In all cases, the learners played the Anwn game at least 10,000 

times, with 100 decisions made each run. 
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The Q results are primarily presented in figures Figure 37 and Figure 38. In the 

first figure (Figure 37), we can see that standard, table-based Q player performs the 

same as randomly selecting an action over the course of 100 decisions. This is primarily 

due to the large state space (n = ~60,000) – it is unlikely that the same state will be 

visited multiple times in such a short number of decisions so no learning occurs. Both Q 

Abstract (a single game state) and Q Manual (two game states) show significantly better 

learning performance, with Q Manual performing the best overall. 
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Figure 37 Unbiased Q-Learner results. 

 The second graph (Figure 38) presents the same learners, but this time all of the 

initial action values were biased according to the priority assigned by the dynamic 

scripting algorithm. This means that “good” actions would be more likely to be selected, 

“medium” less likely, and “poor” least likely. The priority-based bias improves the learner 

performance immediately, and is most noticeable for the table-based Q player. Initial 

performance is also improved for Q Abstract and Q Manual, where it takes nearly 35 

decisions for the unbiased learners to catch up with the biased learners. However, the 

initial bias is unlearned over time and appears to have little effect on learning after this 

initial period. 
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Figure 38 Biased Q-Learner results. 

The next two graphs, Figure 39 and Figure 40, show the results generated by the 

EDS players on the same problem. In Figure 39, all of the players have a dynamically 

generated script that contains 5 actions.  The lowest scoring EDS version has value 

learning turned off. This is improved upon by two versions of EDS that learn in a single 

abstract state. The two best learners in this figure are EDS with manually created 

abstract states, with the single episode learner performing best of all. 

For the two versions of EDS in a single abstract state, the player with the episode 

length of one performs significantly better than the player with an episode length of ten. 

This is due to the problem of credit assignment, and this pattern will be repeated 

numerous times in the EDS results. Supplying an immediate reward for a single action 

selected with a script results in faster learning than supplying a combined reward 

generated from selecting 10 actions with the same script. For example, if action a1 is 

selected with a reward of 50, each action in the set of completed actions (which consists 

only of a1) will receive a reward of 50. If the episode length is two, with actions a1 and 

a2 selected and corresponding rewards of 50 and -30, the picture is quite different. Now 

the set of completed actions contains a1 and a2, and each action receives a reward of 

20. 
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Figure 39 EDS with script size of 5 and varying episode length. The bottom series (EDS 

NL) has learning disabled. 

Figure 40 presents results form the same learners, except this time size of the 

dynamically generated script has been doubled to contain ten actions. That is, the script 

now includes ten of the available actions (IF/THEN rules) rather than 5. The initial scores 

generated by the single state learners are nearly the same as the final scores generated 

by the learners with the smaller script size. In general, the trends seen in the previous 

graph are also seen in the graph: manual state abstraction performs better than learning 

in a single abstract state and immediate learning performs better than episodic learning. 

From looking at the greatly improved results, the extended dynamic scripting algorithm 

appears to be very sensitive to the script size. 
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Figure 40 EDS with script size of 10 and varying episode length. The bottom series (EDS 

NL) has learning disabled. 

Building from the best standard EDS configuration, the next four figures show the 

effect of automatic state abstraction. In all cases, a decision tree algorithm is used to 

build a set of abstract states for the single choice point. Each state is represented in a 

classification tree as a leaf node, where each leaf node has its own set of action values. 

Two different types of state abstraction are tested: Decision Stump and J48. Both of 

these decision tree algorithms are tested under the following two conditions. In the first, 

abstract states are created once after 5, 20, or 50 decisions and then this tree is used to 

make rest of the decisions. In the second, a new tree and its corresponding leaf nodes 

are created every 5 or every 20 decisions.  
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Figure 41 EDS with stump-based automatic state abstraction.  

In Figure 41, the EDS player makes use of the Decision Stump algorithm to 

create a classification tree.  Here is one example of a decision stump, which divides the 

state space into three abstract states depending on the value of the observation feature 

F3: 

F3 = false : 25.833333333333332 

F3 != false : 2.1875 

F3 is missing : 10.7 

The results in this graph demonstrate that a larger historic data set generates a better 

set of abstract states, where the historic data is a sequence of tuples of the form 

<<game state>, reward received>. This finding is validated in Figure 42, where the 

learner that rebuilds the decision tree every five decisions, EDSStumpEvery5, is shown 

to outperform the other EDS learners with automatic state abstraction.  
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Figure 42 EDS with stump-based automatic state abstraction, rebuilding every n episodes. 

Figure 43 presents the results generated by the same learners utilizing the J48 

decision tree algorithm. Here is an example of an automatically generated tree, which 

creates abstract states based four different features: 

F6 = true 

|   F5 = true 

|   |   Enemies <= 2 

|   |   |   F3 = true: '(67.6-inf)' (4.0/2.0)[0] 

|   |   |   F3 = false: '(-17.6-10.8]' (8.0/3.0)[1] 

|   |   Enemies > 2: '(-inf--17.6]' (3.0/1.0)[2] 

|   F5 = false: '(10.8-39.2]' (3.0/1.0)[3] 

F6 = false: '(10.8-39.2]' (2.0)[4] 

The learner that creates a tree after 20 decisions (EDSTree@20) outperforms the other 

EDS learners with J48 state abstraction, with a higher score for most of the decisions 

and an end score similar to that of creating a tree after 50 decisions. In this case, the 

simpler tree produced after 20 decisions, with fewer instances, performs better overall 

than the tree formed after 50 decisions. Unlike what was seen with the Decision Stump 

algorithm, more training instances did not result in better abstract trees. The likely cause 

for this is that in the Anwn game, the performance of actions primarily depends upon the 



 

 

94 

value of the F3 attribute. While both the Decision Stump and J48 algorithms usually 

identify this attribute, the trees created by J48 generally make use of a number of 

additional attributes. With only this relatively small amount of historic data, the J48 

algorithm is not able to determine that the only interesting attribute is F3. 
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Figure 43 EDS with tree-based automatic state abstraction.  

Figure 44 shows that building and training a new decision tree from the historic 

data every 5 or 20 decisions does not improve performance above what was found when 

creating a tree one time after 20 decisions. These results are contrary to the results 

generated by the Decision Stump, where performance improves over time. One 

explanation is that in the case of the Decision Stump, creating and training a new state 

abstraction tree resulted in a tree very similar to the previous one in the case where F3 

had been identified, or a tree where F3 was more likely to be identified when it 

previously was not. This would account for improved performance over time. This does 

not seem to be the case for the J48 derived trees, where more historic data does not 

result in the creation of more accurate trees. Additionally, as can be seen for 

EDSTreeEvery20, creating and training a new state abstraction tree generally results in 

an immediate, small, performance drop due to the approximate nature of the training 

algorithm. 
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Figure 44 EDS with tree-based Automatic state abstraction, rebuilding every n episodes.  

In general, the Decision Stump algorithm outperforms J48 in every configuration. 

Overall, these four graphs demonstrate the relative utility of the Decision Stump 

algorithm over J48 in the type of environments where dynamic scripting is expected to 

excel. 

The final two graphs compare the performance of the best learners in two 

different situations, providing upper and lower bounds by which to measure the 

capabilities of the automatic state abstraction extension. Figure 45 presents two Q 

players and two EDS. In this graph, it is clear that EDS Manual is able to learn much 

more quickly than either of the Q players with the same state abstraction. The EDS 

player that makes use of automatic state abstraction (StumpEvery5) performs almost as 

well as the EDS Manual, outperforming the Q-learners for almost all of the decisions. 
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Figure 45 Comparison of best manual and automatic state abstraction results. 

In Figure 46, results are presented for the Q and EDS players that use only a 

single abstract state. Their performance is compared to the EDS player that includes 

automatic state abstraction (StumpEvery5).  This figure provides additional evidence for 

the utility of automatic state abstraction, as the StumpEvery5 learner outscores both of 

the other learners with no additional knowledge from a behavior author. 

 The primary conclusion drawn from the Anwn domain is that in highly-stochastic 

games where the effects of actions are primarily context-independent, the extended 

dynamic scripting algorithm should demonstrate higher learning efficiency (i.e. faster 

learning) than would be found with either standard dynamic scripting or Q-based 

algorithms. The results from this game provide evidence for the efficacy of the 

extensions to dynamic scripting undertaken in this dissertation. A secondary conclusion 

from these results is that in addition to being sensitive to the reward function (a common 

issue in reinforcement learning) the extended dynamic scripting algorithm is also 

sensitive to the size of the dynamically generated script (i.e. the number of available 

actions). 
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Figure 46 Comparison of best single state and automatic state abstraction results. 

These results, combined with the Weather results, also demonstrate that the 

effect of automatic state abstraction is heavily dependent on the amount of historic data, 

but provides little guidance on how to determine this a priori. A preliminary conclusion to 

be drawn with respect to automatic state abstraction seems to be that it is better to start 

creating decision trees early in the learning process and to continue to create trees as 

learning progresses if the goal is to achieve maximum performance throughout the 

learning process. These results also demonstrate the Decision Stump trees are a better 

choice for use with EDS than the more complicated trees produced by J48. 

Performance Results 
Of the four abstract games Anwn is the most complex, both in terms of the number of 

actions available and the size of the state space. Computational performance results 

were gathered for this game in order to represent the relative cost of the EDS players 

compared to the other players.  

 Two specific metrics were gathered for the Random, Q, and EDS players. The 

first was the amount of time to select a single action. This was calculated by selecting 

10,000 actions in a row, in order to ensure that enough time passed to be captured in 

milliseconds. The second metric was the amount of time to perform an action selection, 
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update the game state, and then update the action values. This sequence was also 

performed 10,000 times in a row. In both cases, the value was divided by 10,000 to 

determine an average time for a single selection or selection + udate. These metrics 

were gathered on a single computer in order to compare relative times. The absolute 

times are only representative. 

 For the EDS players that incorporate automatic state abstraction, a slightly 

different tactic was used. First, for the action selection metric the player was run for 100 

selection + update sequences to generate a set of abstract states prior to the 10,000 

selections. This ensured that the test results included selecting an action from an 

Decision Stump or J48 tree. Second, for the action selection + update metric, rather than 

running 10,000 selection + update sequences we ran 100 selection + update sequences 

100 times. The reason for this is that as the amount of historic data increases so does 

the update time. In order to capture the relative performance as would be seen in the 

Anwn game, the updated measurement provides the mean performance as the set of 

historic instances as it grows from 5 to 100.  
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Figure 47 Relative performance for five different players when selecting a single action or 

when selecting and performing an action followed by updating the action values.  

 As shown in Figure 47, there is little difference in the time required to select an 

action across the five different learners. The cost of updating the action values does 

differ considerably across the different learners. First, EDS takes approximately 4-5 

times as long to update the action values as does the Q-learning algorithm. As the 

numbers are still quite small, this does not seem a cause for concern. The EDS players 



 

 

99 

equipped with automatic state abstraction pose more of a problem, taking roughly 20 

times longer to perform action value updates. Most of the additional time is actually 

being spent every five episodes, when the tree is rebuilt and trained. This means that, on 

average, the update every fifth episode would take 100 times longer. Earlier updates 

would consume less time and later updates consume more time, as the amount of 

historic data grows. 

 The important result from this is that performance could become a problem if 

automatic state abstraction is used. If the amount of historic data is small, this would 

only become apparent if a large number of players (e.g. 1000) were all required to make 

30 decisions per second. Performance would also become an issue as the size of the 

individual historic instances grows (i.e. feature vector length) or as the number of historic 

instances increase. Future research on algorithms for automatically determining when to 

initiate the creation and training of abstract state trees should take current performance 

metrics into account. Additionally, it would be useful for the creation and training of 

abstract state trees to be performed in a separate, lower priority, thread so that their 

construction does not impact the player’s ability to select an action on demand. 

A secondary issue is that the current, non-optimized, method of importing feature 

vectors into Weka involves writing them out to a comma separated file and then reading 

them in with Weka. As this step could be avoided through a straightforward, but tedious, 

optimization, the time for reading/writing files was not included in the results. However, if 

EDS with automatic state abstraction is used in a production environment, then this 

optimization will need to be carried out. 

Get the Ogre! 
The Get the Ogre (GtO) game is an abstract version of common problem found in real-

time strategy games, previously examined by (Marthi et al., 2005). In GtO, an Ogre 

exists just outside of the base camp and the goal of the player is to build up a group of 

soldiers to dispatch the Ogre. In order to do succeed, the player must create resource 

gathering “peasants”. The gathered resources can then be used to build farms (to 

support the peasants), more peasants (to gather more resources), or soldiers. The 

player must also decide how many soldiers are required to efficiently dispatch the Ogre. 
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With too few soldiers there is a risk that the Ogre wins; too many soldiers are a 

waste of resources.  

Game Definition 

GtO is defined by the sets F, A, and R.  The game contains four integer observation 

features. There are seven actions available to the player. State transitions are not made 

randomly in this game, but instead depend explicitly on the action selected. 

• F =  

o Food: Integer (Initial value = 4) 

o Wood: Integer (Initial value = 100) 

o Gold: Integer (Initial value = 0) 

o Soldiers: Integer (Initial value = 0) 

• A =  

o BuildFarm (must have 100 Wood) 

o CreatePeasantWood (must have 1 Food) 

o CreatePeasantGold (must have 1 Food) 

o CreateSoldier (must have 100 Gold and 50 Wood) 

o AttackOgre3Soldiers (must have 3 Soldiers) 

§ p = 0.4, r- = -100, r+ = 100 

o AttackOgre4Soldiers (must have 4 Soldiers) 

§ p = 0.9, r- = -100, r+ = 100 

o AttackOgre5Soliders (must have 5 Soldiers) 

§ p = 0.9, r- = -100, r+ = 80 

• R =  

o BuildFarm (+4 Food, -100 Wood) 

o CreatePeasantWood (+200 Wood, -1 Food) 

o CreatePeasantGold (+200 Gold, -1 Food) 

o CreateSoldier (-100 Gold, -50 Wood, +1 Soldier) 

 

The GtO game requires that the player choose a number of actions before any 

reward is given. There are three different ways that a player could get a reward. The first 

is that they perform some combination of the actions that ends with one of the 
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AttackOgreXSoldiers actions. The reward provided in this case is based on the 

action as described above. If the player ever gets to a position where it is impossible to 

select another action (for example if Food, Wood, and Gold are all 0), the player 

receives a reward of -110. It is also possible for the player to get into an infinite loop. If 

the player exceeds 50 actions, a reward of -111 is given. An optimal action sequence is:  

CreatePeasantGold (3F 100W 200G 0S),  

CreatePeasantGold (2F 100W 400G 0S),  

CreatePeasantWood (1F 300W 400G 0S), 

CreateSoldier (1F 250W 300G 1S),   

CreateSoldier (1F 200W 200G 2S),   

CreateSoldier (1F 150W 100G 3S),    

CreateSoldier (1F 100W 0G 4S),   

AttackOgre4Soldiers. 

While an optimal sequence is shown, the reward a player receives is based on whether 

or not it can solve the problem, not on how quickly it solves the problem. 

Player Definition 

We define a number of different players for this game: (1) Random, (2) EDS, and (3) Q. 

The Random player selects an applicable action each time a decision is required and 

provides a performance baseline. 

 The EDS player makes use of a fixed set of algorithm parameters in a number of 

different learning configurations. The first fixed parameter is the action priorities: 

o Higher { AttackOgre3Soliders, AttackOgre4Soliders, AttackOgre5Soliders 

} 

o High { CreateSoldier } 

o Medium { CreatePeasantGold } 

o Medium { CreatePeasantWood } 

o Low { BuildFarm } 

The set of initial action values, V = {1000, …, 1000} , the maximum action value, m+ = 

1500, and the minimum action value, m- = 0 are also fixed parameters. The size of the 

script varies in size from 4 to 7 actions. The episode length in this problem is also 

variable, as there are three different ways to end the game and receive a reward. The 
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other parameter varied across runs for the EDS player is the type of state 

abstraction.  State abstraction in EDS takes one of two forms: single and automatic. By 

default, only a single abstract game state is considered.  

In the second state abstraction configuration, automatic, the single set of action values is 

replaced by a classification tree that contains a number of action value sets. With 

automatic state abstraction, building a classification tree was tested at two different 

points (after 5 and after 20 episodes) and with two different tree algorithms (J48 and 

Decision Stump). 

 Q, the third type of player tested in GtO, makes use of the standard Q-learning 

reinforcement learning algorithm, generating results by which the performance of the 

EDS player can be compared. The Q player has a number of configuration parameters 

that vary across game runs. The first parameter is whether the initial action values are 

uniform or biased. Biasing initial action values is one way that a behavior author can 

enhance initial learning performance, and is added as an analog to the priorities 

assigned in EDS. When uniform, all actions have the same initial value of 100. When 

biased, initial action values are adjusted slightly based on the priority assigned to an 

action by the extended dynamic scripting algorithm. The Q player also has a state 

abstraction parameter that can be one of two values: none or abstract. When state 

abstraction is set to none, the player makes use of a standard Q-learning table, where a 

separate set of action values exist for each game state. In the abstract configuration, the 

Q player learns the value of all action in a single abstract state, similar to EDS. 

Results and Discussion 

This section contains the results generated by running the different learners in the 

context of the GtO game. The x-axis contains the number of episodes, from 1 to 50, 

where each episode contains a variable number of decisions. The y-axis is the mean 

score of the player over the last 10 runs (i.e. size 10 window). The goal of the learner in 

all cases is to maximize the score received from playing the game as quickly as 

possible. While the score has no intrinsic meaning, it is a valuable measure in comparing 

the relative performance of the different learners. In all cases, the results are the 

average performance of 1000 learners. 
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 Figure 48 summarizes the results from the different Q players. In this figure, 

the table-based Q-learner with biased initial weights (Q Biased) is the top performer, 

solving the problem roughly ½ of the time. This player is able to learn the proper actions 

in the states where Wood for Food is low, while maintaining a reasonable level of 

performance in less-visited states by use of the biased weights. The biased, single-state, 

Q player (Q Biased Abstract) starts off well, but then quickly drops off as the algorithm 

starts to unlearn the initial values. The unbiased, table-based Q player (Q) performs at 

the same level as the Random player, while the single-state version of Q (Q Abstract) 

performs even worse.  
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Figure 48 Q-Learner performance in Get the Ogre. 

 The performance of the EDS players is summarized in Figure 49. Regardless of 

script size, the EDS learners either do not solve the problem within the maximum 

number of steps (infinite loop) or get into a position where no more actions are possible 

(e.g. running out of Food and Wood at the same time). This is due to the type of scripts 

that can be generated from the given actions. For example, assume that the script 

contains exactly the four actions required to complete the problem: AttackOgre4Soldiers, 

CreateSoldier, CreatePeasantGold, CreatePeasantWood. A dynamically generated 

script, in priority and value order, might look like: 

• AttackOgre4Soldiers (Priority: Higher) 
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• Create Solder (Priority: High) 

• CreatePeasantGold (Priority: Medium; Value: 1100) 

• CreatePeasantWood(Priority: Medium; Value: 900)  

By following the script in order, the EDS player will continue to create gold until all the 

Food has run out. Since the script will never create the wood required, the soldiers 

cannot be built.  If CreatePeasantGold and CreatePeasantWood have different action 

values, then only Wood will be created and never Gold. 
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Figure 49 Performance of EDS with only a single abstract state. 

 The next two figures, demonstrate the utility of EDS with automatic state 

abstraction enabled.  Figure 50 shows the performance of EDS when a decision stump 

is created after five episodes, across a variety of different script sizes. In this case, the 

classification tree is not rebuilt once it is created, though learning does occur in the leaf 

nodes. With the exception of the case where the script size equals seven (i.e. includes 

all of the available actions), the use of automatic state abstraction clearly improves 

performance.  A typical decision stump classification tree looks like: 

Wood <= 200.0 : -110.04347826086956 

Wood > 200.0 : -110.93333333333334 

Wood is missing : -110.48351648351648 



 

 

105 

-120

-100

-80

-60

-40

-20

0

20

40

60

1 5 9 13 17 21 25 29 33 37 41 45 49

Episode

S
co

re
EDS (Script:5)
Stump@5
EDS (Script:4)
Stump@5
EDS (Script:6)
Stump@5
EDS (Script:3)
Stump@5
EDS (Script:7)
Stump@5

 

Figure 50 Performance of EDS when using stump-based automatic state abstraction at 

episode 5, with a variety of script sizes. 

Figure 51 summarizes the best EDS performers utilizing J48 or decision stump-

based state abstractions. In this figure, a classification tree is created one time, after 

either 5 or 20 episodes. In this particular game there is generally little difference in the 

trees created by the two different algorithms, or in the trees created at episode 5 vs. 

episode 20.  The primary variable in determining learner performance is the amount of 

learning that has taken place after the tree has been created.  

The effect of learning once the tree has been created is demonstrated in Figure 

52. Learner performance is initially increasing after the construction of the first state 

abstraction tree. However, when the tree is created every 5 or 20 episodes performance 

quickly levels off, where the creating of trees actually lowers future performance. In the 

Every5 case, for both J48 and decision stump, subsequent trees are seen to perform 

either equivalent to, or less than, previous trees. This result is directly the opposite that 

we seen in the first two games. 
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Figure 51 Best results of EDS with automatic state abstraction with a tree built at episode 

5 or episode 20. 

So, what is happening when the abstract state tree is created after an initial tree? 

Assuming a useful abstract state tree was initially created, all of the leaves are now 

receiving the exact same reward for the selected actions due to the episodic nature of 

the Get the Ogre game. The historic instances will contain the various game states 

identified by the abstract state tree – but all with the same reward. This means that when 

another tree is created it is likely that the abstract states, which are currently performing 

well with separate scripts, will get merged back together into a single leaf node; the 

feature vector consists only of the game state and the classification target is the reward 

received. This is not the case in both the Anwn and Weather games, where the leaves in 

the abstract state tree would be expected to generate distinct reward values such that 

particular abstract states could be maintained as abstract state trees are created. 
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Figure 52 Best results of EDS with automatic state abstraction with trees built every 5 or 

every 20 episodes. 

Figure 53 summarizes the best results for the Get the Ogre game. EDS, without 

state abstraction, is unable to learn on this problem at all. The best Q-learning solution is 

able to make quite a bit of headway, solving the problem a little more than ½ of the time. 

The best performance on this problem is found EDS with automatic state abstraction. 

While it may be that the performance of the Q player could be improved by the use of 

automatic state abstraction or by other techniques such as linear function approximation 

(Sutton & Barto, 1998), this critique does not detract from the main result: EDS can 

adequately solve a problem that could not be handled by the standard dynamic scripting 

algorithm. 

 



 

 

108 

-120

-100

-80

-60

-40

-20

0

20

40

60

1 5 9 13 17 21 25 29 33 37 41 45 49

Episode

S
co

re
EDS (Script:5)
Tree@5
EDS (Script:5)
Stump@5
Q Biased

EDS (Script:5)

 

Figure 53 Overall comparison for Get the Ogre. 

Modified Version of Get the Ogre 

One common technique used when developing behavior models is to create new actions 

by adding constraints to existing actions. For example, a player can use the heal action 

at any time. However, this action is only really useful when a player is hurt. A behavior 

author can add domain knowledge by creating a new action healWhenInjured that is only 

available when the player is below 50% health. In a modified version of the GtO game, 

this is done by adding two new “emergency” actions: 

• EBuildFarm (+4 Food, -100 Wood) 

o If the amount of food is low and there is only enough wood to build a 

farm, then build a farm to create more food. 

• ECreatePeasantWood (+200 Wood, -1 Food) 

o If the amount of wood is low, then create a wood peasant to increase 

the amount of wood. 

With the addition of these two actions, a player is less likely to get into a position where it 

gets stuck – if the food is getting low then a farm is created and if wood is getting low 

(which is required to build a farm) then wood is created. In the EDS learner, these two 

actions are given the Highest priority.  
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The addition of these two actions dramatically changes the results as shown 

in Figure 54. Now, EDS without state abstraction performs very well, with higher scores 

than either table-based Q-learners with biased initial values (Q Biased) or the single-

state Q-learner (Q Abstract). This result demonstrates that EDS works better with 

scriptable actions, where actions are encoded in the form of IF-THEN rules, than when 

all actions are generally applicable. The IF portion of an action is way to intuitively add 

context information to actions. Generally, higher priority actions should have the most 

restrictive IF clauses while lower priority actions may have no IF clause at all. 
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Figure 54 Overall results on the Get the Ogre game when additional actions are included. 

Resource Gathering 
The Resource Gathering game is an abstract version of another problem found in real-

time strategy games, where the goal is to harvest in-game resources, such as Gold or 

Wood, and return them to the Town Hall. This game was previously examined by Mehta 

et al., (2008), where they focused on the automatic construction of task hierarchies. In 

this game, the goal is to move to a location with a line of sight to a gold mine or forest, 

mine gold or chop wood, and then return the resources to the town hall. The goal is to 

acquire 100 wood and 100 gold as quickly as possible – one trip to the forest and one 

trip to the gold mine. 
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Game Definition 

The Resource Gathering game is defined by the sets F, A, and R.  The game contains 

five visible observation features and five hidden state variables. There are thirteen 

actions available to the player, some of which depend upon the hidden state variables. 

State transitions are not made randomly in this game, but instead depend explicitly on 

the action selected. 

• F = 

o Gold: Integer (Initial value = 0) 

o Wood: Integer (Initial value = 0) 

o Location: Integer (Initial value = 5) 

o HoldingGold: Boolean (Initial value = false) 

o HoldingWood: Boolean (Initial value = false) 

o GoldMine1: Integer (Initial value = 1) [Hidden] 

o GoldMine2: Integer (Initial value = 2) [Hidden] 

o Forest1: Integer (Initial value = 2) [Hidden] 

o Forest2: Integer (Initial value = 3) [Hidden] 

o TownHall: Integer (Initial value = 5) [Hidden] 

• A =  

o MoveTo1 

o MoveTo2 

o MoveTo3 

o MoveTo4 

o MoveTo5 

o MoveTo6 

o MoveTo7 

o MoveTo8 

o MoveTo9 

o MineGold (Location = GoldMine1 || GoldMine2) 

o ChopWood (Location = Forest1 || Forest2) 

o DropOffWood (Location = TownHall; HoldingWood = true) 

o DropOffGold (Location = TownHall; HoldingGold = true) 
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• R = 

o MoveToX (Location = X) 

o MineGold (HoldingGold = true; HoldingWood = false) 

o ChopWood (HoldingWood = true; HoldingGold = false) 

o DropOffWood  (HoldingWood = false; +100 Wood) 

o DropOffGold (HoldingGold = false; +100 Gold) 

 

An episode is over when 100 Wood and 100 Gold have been gathered.  The rewards 

in the original version of this problem were -1 for every completed action, given at the 

end of the episode. The learner is rewarded for solving problem as quickly as possible.  

So, one optimal solution is with a reward of -8 is: 

1. MoveTo1 

2. MineGold 

3. MoveTo5 

4. DropOffGold 

5. MoveTo3 

6. ChopWood 

7. MoveTo5 

8. DropOffWood 

 
Two changes were made to the reward function for the abstract game. First, an 

immediate reward is supplied instead of an episodic one. This reward function is: –1 * 

number of actions completed. Additionally, the maximum number of action attempts 

allowed in an episode is 100.  

Player Definition 
Similar to the previous games, three different players are used to solve the game: EDS, 

Q, and Random. Based on the similarities of this game to the GtO game, we focus 

mainly on describing the EDS player. 

 First, for the same reason that EDS failed to learn an effective script in GtO, it will 

also fail here if episodic rewards are used. Using the following priority assignment, a 
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minimal script would need to contain MoveTo2, MoveTo5, MineGold, ChopWood, 

DropOffGold, and DropOffWood. 

• High {DropOffGold, DropOffWood} 

• Medium {ChopWood, MineGold} 

• Low {MoveTo1, MoveTo2, …, MoveTo9} 

With episodic learning, EDS will be unable to effectively choose between actions in the 

script of the same priority such as MoveTo2/MoveTo5 and ChopWood/MineGold. This is 

because for the duration of the entire episode, the highest-valued action for a given 

priority would always be selected. Even if the action script contained only these actions, 

the agent would be able to move to location 2, never location 5 (or vice versa). This is a 

limitation of the dynamic scripting approach. 

Results and Discussion 

This section contains the results generated by running the three playrs in the context of 

the Resource Gathering game. The x-axis contains the episode number, from 1 to 100. 

The y-axis is the number of actions required by the learner in order to complete the 

problem. Fewer actions indicate a more efficient solution, so a lower number is better. In 

all cases, the results are the average of 100 learners. 
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Figure 55 Performance on the Resource Gathering problem. The goal is to minimize the 

number of actions required to complete the problem. 
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 The results in Figure 55 capture two main results. First, the standard table-

based Q player does quite well on this problem, starting out with performance equal to 

that of the random player but ending up in the range of 12 actions – very close the 

optimal solution of 8 actions.  

Second, the EDS player does much better than the random player, despite the 

fact that no learning occurs throughout the 100 episodes. EDS performs better than 

Random because of the combination of immediate rewards and priorities. The negative 

immediate rewards make it less likely that EDS will repeat the same action twice in a 

row. This results in a near random search through the action space, except that if the 

higher priority actions are available, they will be chosen before a lower priority action. 

While the negative rewards encourage the random selection of actions, the embedded 

priority information ensures better performance than found with the random player. 

Additional evidence for this hypothesis is the fact that script size has relatively little effect 

on player performance.  

Modified Version of Resource Gathering 

As seen previously, additional domain information can be authored in a number of forms:  

preconditions for the actions (IF statements), automatic and manual state abstractions, 

and immediate rewards to alter the script ordering in real time. In this section we 

introduce a fourth method of including domain knowledge through the creation of task 

hierarchies. A manually created task hierarchy seems a reasonable approach to this 

problem as it mirrors automatically created task hierarchies that have been found to 

perform well on this problem (Mehta et al., 2008).  Figure 56 to Figure 61 shows the 

manually constructed task hierarchy used by the EDS player. First, the top level Main 

behavior is shown in Figure 56. It contains a single choice point that is expected to learn 

how to balance resource gathering tasks in order to achieve a specified quota. 
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Figure 56 Top-level Main behavior. 

Figure 57 and Figure 58 show the intermediate level behaviors for GatherWood and 

GatherGold. Both of these behaviors make use of a combination of sub-behaviors 

(FindForest) and primitive actions (ChopWood). No learning occurs in these behaviors, 

as the transitions have been completed specified as part of the behavior authoring 

process. 

 

Figure 57 GatherWood sub-behavior called by Main behavior. 
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Figure 58 GatherGold sub-behavior called by Main behavior. 

The next three figures all show behaviors with a single choice point. In each case, the 

behavior is attempting to learn a script which will allow it to find a hidden resource 

location: a forest, a gold mine, or the town hall. 

 

 

Figure 59 FindForest sub-behavior called by GatherWood. 
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Figure 60 FindGold sub-behavior called by GatherGold. 

 

Figure 61 FindTownHall sub-behavior called by GatherGold and GatherWood. 
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The end result is that there are four sub-problems that the learner must solve: 

(1) balancing the gathering of wood vs. gold, (2) finding a hidden forest location, (3) 

finding a hidden gold location, and (4) finding the hidden town hall location. A significant 

amount of knowledge about how to complete the task has been encoded in the task 

hierarchy, such as that when gathering wood the character should ChopWood 

immediately after finding a forest.  

Each action in a choice point has an initial value of 100, a maximum value of 150 

and a minimum value of 50. The top level GATHER choice point always receives an 

immediate reward of -40. For the three FIND_ choice points, a reward of -40 is 

immediately provided for each incorrect selection and a reward of +40 for each correct 

selection.  
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Figure 62 Number of actions per episode. EDS (Task Hierarchy) indicates the EDS 

algorithm with the manually constructed task hierarchy.  
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The manual task hierarchy greatly improves the performance of the EDS 

algorithm as shown in Figure 62, quickly learning to perform as well as the table-based 

Q player that does not make use of the task hierarchy2. This result demonstrates that 

EDS can learn to solve a problem that could not be addressed very well with standard 

dynamic scripting, while at the same time arriving at a maximum performance level 

similar to Q player. 

 

                                                 
2 Of course, if the Q player made use of the task hierarchy it would be expected to more quickly reach 
maximum performance as well. The comparison made here is that they both arrived at nearly the same 
level of maximum performance given a fixed temperature in the soft-max selection algorithm, not the speed 
at which it is reached. 
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CHAPTER V 
DEMONSTRATION 

The game Neverwinter Nights (NWN) is used to demonstrate EDS in a commercial 

computer game, allowing comparisons in performance between the original and 

extended dynamic scripting algorithms. This chapter begins by describing the 

Neverwiner Nights computer game. Included in this initial section are details related to 

the integration of the NWN game and the extended dynamic scripting implementation. 

The following section discusses a wrapper application that is used to perform multiple 

experiments by varying the learning parameters. The methods section describes the 

common procedures used in all of these experiments and a list of the results to be 

gathered is found in the following section on learning performance measures. The final 

section of this chapter details the learning parameters used for each experiment and 

presents the generated results. 

NeverWinter Nights 
Neverwinter Nights (Bioware, 2002) is a role-playing game where a player controls one 

or more characters in a fantasy medieval setting. The characters are generally of two 

basic types: characters that use physical attacks such as swords and bows (fighters) 

and those that cast helpful spells at their friends and harmful spells at their enemies 

(magic users). These characters encounter and sometimes battle other parties, where a 

party consists of some number of characters and/or monsters. Figure 63 shows a NWN 

screenshot with a human party (controlled by a person) and a spider party (controlled by 

the computer). This particular game was selected to facilitate direct comparisons 

between the extended and standard dynamic scripting algorithms, as Neverwinter Nights 

was also a testbed for the dynamic scripting algorithm. 
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Figure 63 NWN screen shot of a human party and a spider party (www.bioware.com). 

The NWN game performs well as a testbed for research into game AI as it has 

both a powerful toolset and a strong user base. The toolset allows programmers to 

create their own NWN worlds and contains a scripting language that can be used to 

change the behavior of objects and characters. The syntax of this scripting language is 

similar to the C computer programming language. The advantage of a strong user base 

is that there are online question and answer forums on how to use the scripting 

language – a valuable resource when programming in a non-mainstream language such 

as NWN Script. 

Communicating with NWN 
In order to test the dynamic scripting algorithm in NWN, Spronck et al. (2006) directly 

implemented their algorithm in the NWN Script language. This implementation was 

included in a NWN Arena module that provided an infrastructure for parties to battle 

each another in an arena-like setting. Each battle is called an encounter that ends when 

one team defeats all members of the opposing team. The module and scripting code are 

available for download at www.cs.unimaas.nl/p.spronck/NWN.htm. Figure 64 is a 

screenshot of two identical teams (one in white outfits, the other in black outfits) battling 
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in the arena. The learning team (white uniform) is controlled by the DS algorithm 

while the static team (black uniform) is controlled by the standard NWN character 

scripts. The badger and skeleton, in the center of the arena, are creatures summoned by 

the white and black teams. 

 

Figure 64 The NWN module for testing dynamic scripting (Spronck). 

The goal for this dissertation is to demonstrate the performance of a general 

implementation of the extended dynamic scripting algorithm, so re-implementing EDS in 

NWN Script is not an option. Instead, the original arena scripts from Spronck et al. 

(2006) were modified to write out the character state to a MySQL database at particular 

points in the script and to read the action to be performed by a character from the 

MySQL database. A database conduit was used, rather than a normal socket 

connection, because NWN Script does not support any external connections. The 

MySQL functionality was provided by the free third-party tool Neverwinter Nights 
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Extender (www.nwnx.org), which is an NWN server for running persistent multi-

player worlds. 

State information is written whenever particular events happen to a character: 

• When it is created 

• On a its heartbeat (every six seconds) 

• At the end of a combat round  

• Damage is taken by it 

• On its death 

• An action is read from the database for it 

Character state is written as a single XML string that is written to the database (see 0 for 

an example). The character state information contains the actions that are currently 

available to the character as well as some basic perceptions about the opposing team. 

For example <BUFF_SELF>1</BUFF_SELF> indicates that the BUFF_SELF action is 

currently available to this character and <NEAREST_FIGHTER /> indicates that there is 

an opposing fighter nearby. Numerous modifications were made to the NWN Arena 

scripts to support writing out the state information at all of these points.  

 A character reads in an action from the database when it currently has no action 

to perform and an enemy is perceived. This functionality required a smaller change to 

the NWN Arena script, replacing the large code base that implements dynamic scripting 

with a function that reads a string representation of the action to be performed from the 

MySQL database. For example the following strings indicate that the highest possible 

summon spell should be cast at the nearest enemy: 

 “SPELL_HIGH_SUMMON” “NEAREST” 

While the script is processing an action, a notification string of PENDING is written to the 

database. After an action has been completed, this is changed to COMPLETED if the 

action was completed successfully or FAILED if the action failed for some reason. Note 

that if an action fails, the character will instead perform an action selected by the 

standard NWN character scripts (the same scripts controlling the non-learning team). 

A separate Java application is used to connect the extended dynamic scripting 

implementation with NWN, using the database as a conduit. The wrapper is driven by a 

main loop which reads the current state information from the database, requests a 
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decision from the extended dynamic scripting library, and then writes out the current 

action to be performed once every second. The wrapper also checks the database for 

information on the status of the current encounter, for notification of events such as an 

encounter ending. 

Experiment Setup 
A number of factors remain constant across the different experiments: the use of the 

NWN Arena module, the reward function, and the some of the learning algorithms 

settings. Each is covered below. 

 The NWN Arena module created by Spronck et al. (2006), shown in Figure 64, is 

used for all of the experiments described below. The learning team (white uniforms) is 

controlled by the extended dynamic scripting algorithm through the wrapper application. 

The static team (black uniforms) is controlled by the standard NWN character scripts that 

ship with the NWN game. The Arena dialog infrastructure is used to setup a series of 

encounters between two identical mid-level parties, where both parties consist of a 

Fighter, Rogue, Mage, and Priest. The dialog sequence is shown in Figure 65. 

 The result of this sequence is that a learning team and a static team are created. 

The two parties then battle in the Arena until all of the members of one team are killed. 

At this point, the encounter is over and all remaining characters and summoned 

creatures are removed from the Arena. Two new parties are then created to start a new 

encounter. This continues until a turning point is reached, a measurement encoded in 

the NWN arena scripts, which indicates that the learning team is consistently 

outperforming the static team. This measure is defined in detail in the next section. 
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Figure 65 Dialogs used in the NWN Arena module to initiate a combat session that runs 

until the learning team reaches the turning point. 

 The episodic reward function created by Spronck (2006) and defined in the 

original NWN Arena scripts, remains constant across the different experiments. The 

reward function analyzes the fitness value of the character and returns a value between 

-50 and 100. The reward function is defined as: 

1. (Initialize values.)  

a. Set breakEven ← 0.3 

b. Set mxPenalty ← 50 

c. Set mxRward ← 100 

2. (Get the fitness for this character.) Set fitness ← getFitness() 
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3. (Determine the reward.) If fitness < breakeven 

a. Then reward = mxPenalty
breakEven

fitnessbreakEven
*

−
−  

b. Else reward = mxRward
breakEven

breakEvenfitness
*

0.1 −
−

 

Fitness is defined as a character, and its teammates, being alive and healthy at the 

end of the encounter. The team component of the fitness function takes into account the 

number of group members remaining and the ratio of their current health to their 

maximum health. 

1. (Initial value.) Set groupFitness ← 0.2 

2. (Factor in remaining team members.) Set groupFitness ← groupFitness  + 

4.0*
4
eamMembersremainingT

 

3. (Factor in remaining team health.) Set groupFitness ← groupFitness  + 

4.0*
thmxTeamHeal

eamHealthremainingT
 

The individual portion of the function combines the group fitness measure with the 

remaining health of the individual character if they are still alive. If this character is not 

alive, then its fitness is the same as the group fitness. 

1. (Initial value.) Set individualFitness ← 0.5 * groupFitness + 0.3 

2. (Factor in remaining health.) Set individualFitness ← 2.0*
mxHealth

ealthremainingH
 

Finally, the learning algorithm requires that values be set for a number of free 

parameters. These remain constant throughout all of the experiments. The temperature 

used in the soft-max selection algorithm is set to 5. The minimum action value is set at 0 

and the maximum action value is set at 2000. For all actions, the initial action value is 

set at 100.  

Learning Performance Measures 
There are a number of measurements that can be compared across experiments to 

demonstrate the effects of different learning parameters. The measurements this paper 

is concerned with are learning efficiency and action variety. 
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Learning Efficiency 

An important measurement for online learning algorithms is learning efficiency. The 

computer is expected to learn how to beat the human opponent given a relatively small 

number of encounters to learn from. Learning efficiency is measured by determining the 

average number of episodes required to beat a particular adversary, known as the 

turning point. Spronck et al. (2006) defined the  turning point in NWN as:  

“The dynamic team is said to ‘outperform’ the static [controlled by 

standard NWN scripts] team at an encounter, if the average fitness over 

the last ten encounters is higher for the dynamic team [controlled by EDS] 

than for the static team. The turning point is the number of the first 

encounter after which the dynamic team outperforms the static team for at 

least ten consecutive encounters.” 

As implemented in the original NWN Arena scripts, the minimum number of encounters 

required to reach a turning point is 19. We make use of the same definition in our 

duplication of their experiment. 

 A secondary measurement of learning efficiency introduced is provided by 

examining the average fitness of the two teams in size 10 windows. This provides 

information on the speed at which a learning algorithm is progressing to the turning 

point.  

Variety 

The second measure of experiment performance is action variety, based on the idea that 

characters in a game are more entertaining (for the human player) if they exhibit a 

variety of behaviors rather than performing the same actions over and over again. 

Spronck et al. (2006) write that requirement of variety is met by the script aspect of the 

dynamic scripting algorithm: “Dynamic scripting generates a new script for every agent, 

and thus provides variety in behaviour.” To allow us to analyze action variety 

quantitatively in this demonstration, we developed three diversity measures: possible 

diversity, selection diversity, and repeat diversity.  

The first measure, possible diversity, captures the number of actions that a 

character has a reasonable possibility of including in a dynamically generated script. 

This measure examines the action values when the turning point is reached and counts 
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the number of actions that have a reasonable chance of selection, where reasonable 

is defined as having an action value > 50. The idea is to count all actions with non-zero 

action values, where the threshold is set at half of the starting value. In the case where 

the actions are hierarchical, a combined action list is created that contains the maximum 

value for an action across the different characters. This means that if the same action is 

available to two characters, and the value reaches the threshold for both characters, it 

still only counts as a single action with respect to variety. 

The second measure, selection diversity, examines the number of different 

actions that were actually used by each character during an encounter. During an 

episode, each character select some number of actions. At the end of the encounter, this 

measure counts the number of distinct actions that were selected across the four 

different characters, s, and then divides by the number of actions selected by all the 

characters, n. For example, the fighter selects action a twice and the mage selects a 

once, b once, and c twice. The action selections are (a, 3), (b, 1) and (c, 2), where (x, y) 

indicates action x was selected y times. The number of distinct selected actions is 3 ( |a, 

b, c| ) and the number of selected actions, n, is 6 (3 + 1 + 2). We now have: 

Selection diversity = s / n = 3 / 6 = .5 

This measure captures the ratio of distinct to repeated actions in a single episode, with a 

maximum of 1 indicating that no actions were repeated and a minimum of 1/n indicating 

the same action was selected every time. Longer sequences of actions create a lower 

minimum bound. If s = 1 and n = 2, the measure is .5 while if s = 1 and n = 10 the 

measure is .1. That is, performing the same action every time during a short encounter is 

better than performing the same action every time during a long encounter. 

One difficulty with selection diversity is that it does not distinguish between the 

following two action selection sets: {(a,9), (b, 1)}, {(a,5), (b,5)}. In both cases, the 

selection diversity is 2/10, while from a player’s standpoint the second set of action 

values has more variety.  

The third measure, repeat diversity, describes the distribution of the repeated 

actions in order to capture variety of the repeated actions and address the shortcoming 

in the selection diversity measure. Repeat diversity is defined as the mean squared error 

(MSE) of the action distribution relative to a mean action distribution. MSE provides a 
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quantitative measurement of the difference between the actual action distribution 

and the ideal (mean) action distribution. MSE is defined as: ( )∑
=

−
n

j
jn 1

21
θθ , where θj is 

the number of times an action was used and θ is the number of selected actions / 

number of distinct actions. Looking at the problematic action selection sets, the repeat 

diversity of (a,9), (b, 1) is 16 while the repeat diversity of (a,5), (b,5) is 0. The second 

action set has greater repeat diversity relative to the first action set. 

Note that if a small number of actions are much more effective than the rest of 

the actions, then variety is at odds with learning efficiency. This is a tradeoff that the 

behavior designer has some control over by adjusting the parameters of the EDS 

algorithm. However, for the experiments detailed below, all parameters are fixed. This 

means that while we measure diversity for comparison purposes, we to not actively seek 

to maximize diversity. 

Extended Dynamic Scripting Learning Parameters 
In addition to supporting the sense/act loop, the wrapper application is used to set 

values for a number of extended dynamic scripting learning parameters: script, selection, 

hierarchy, and reward modes. By varying the learning parameters, different experiments 

can be carried out that demonstrate the effects of the extensions to the dynamic 

scripting algorithm. The algorithms behind each of the learning parameters are 

discussed in the following sections. 

Script Mode 
There are two script modes available, SCRIPT and ALL. The script mode affects the 

script generation before an episode and how they are updated after an episode. 

 SCRIPT mode matches the standard dynamic scripting algorithm, where an 

action script is created before an episode. This uses a free-parameter, which determines 

the size of the script. The script sizes remain unchanged from the original dynamic 

scripting work, where the size of the script is 10 for magic users and 5 for fighters. 

Scripts are created by selecting actions, without replacement, from the set of all actions 

available to the character. Actions are chosen via the soft-max selection algorithm 

described previously. The SCRIPT mode also affects how rewards are applied to 
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actions. In this mode, the full reward is given to each action in the script that was 

successfully completed during the encounter. A half reward is given to each action in the 

script that was either not selected or failed to complete successfully. Compensation is 

applied to all actions that are not part of the script.  

In the ALL mode, action selection is much simpler – all actions available to a 

character class become part of its action script. In the case of value updating, the 

algorithm is the same for both ALL and SCRIPT mode. The main difference in this mode 

is the contents of the three lists. In the ALL mode, the completedList contains all of the 

successfully completed actions and the notInScriptList contains all of the actions that 

either were never completed successfully or never selected. 

Selection Mode 
Action selection during the episode is controlled by one of two selection modes: 

PRIORITY and VALUE. In both modes, only actions applicable to the current context are 

considered. This means both that the character can perform the action and that a valid 

target is available. For example, in order to carry out a ranged attack a character must 

have a ranged weapon (such as bow and arrows) and a target (such as nearest fighter). 

It is possible that the character has no applicable actions to perform. In this case, the 

DEFAULT action is written to the database and the character falls back on the standard 

NWN character scripts. 

 The difference between the two selection modes is in how they select an action 

when an agent is required to make a decision. The PRIORITY selection mode makes 

use of the author-assigned priority of an action: HIGHEST, HIGH, MEDIUM, LOW, or 

LOWEST. In PRIORITY mode, actions are sorted first on whether or not an action has 

already failed in this encounter, second on action priority, and third by action value. 

While this selection mode is mostly consistent with the definition of the dynamic scripting 

algorithm, sorting on action failure was not part of the original dynamic scripting 

implementation. This addition was required by the NWN communication implementation. 

Having an action fail generally means it is no longer available to the character (e.g. the 

last healing potion was used), so sorting on action failure keeps the agent from choosing 

the same high priority, but failing, action multiple times in the same encounter.  
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 For the VALUE selection mode, the values assigned to the actions are used 

to select the action rather than its priority. VALUE selection makes use of the same soft-

max algorithm used to select the action script in dynamic scripting. This fitness 

proportionate selection algorithm is a typical selection method for reinforcement learning 

implementations. 

Hierarchy Mode 
The hierarchy mode has two different settings, FLAT and CLASS, In the FLAT mode, all 

character classes (Fighter, Rogue, Mage, Priest) share the same global set of action 

values, in keeping with the original implementation (Spronck et al., 2006). That is, if a 

Fighter rewards the action HEAL_SELF and increases the action value, the action value 

will also increase for a Mage. Each character does have its own dynamically generated 

script. 

In the CLASS mode, each character makes use of separate set of global action 

values in addition to its own script. This corresponds to separate choice point for each 

character class. In this mode, if the Fighter rewards the HEAL_SELF action, the action 

value will be unchanged for the Mage (and vice versa). The CLASS mode makes use of 

choice and reward points to realize manual state abstraction.  

Reward Mode 
The reward mode allows the wrapper to switch between the standard EPISODIC 

dynamic scripting reward function and the new SCALED version of the reward function. 

In both cases, actions are rewarded at the end of every encounter using the algorithms 

outlined in Chapter 0. The reward function itself is described in the Experiment  section 

of the current chapter. 

Automatic State Abstraction 
There are two possible selections for this parameter: NONE, and STUMP. When this 

parameter is set to NONE, only a single abstract state is used by the learning algorithm. 

In the other case, the learning algorithm utilizes decision tree methods to automatically 

add new abstract states. In STUMP mode the Decision Stump algorithm is used. The 

J48 decision tree state abstraction algorithm was not tested in NeverWinter Nights 
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based on its performance in the abstract version of NWN. Both of these algorithms 

are described in Chapter 0. 

Methods 
This section describes the different experiments carried out in the NeverWinter Nights 

domain. For each experiment, the motivation behind the experiment and the supporting 

learning parameters are discussed. 

Experiment 1: Dynamic Scripting  
The first experiment is designed to generate results using the standard dynamic scripting 

algorithm. These results form a baseline to which the various dynamic scripting 

enhancements can be compared.  The learning parameter settings for this experiment 

are:  

• ScriptMode.SCRIPT 

• SelectionMode.PRIORITY 

• HierarchyMode.FLAT 

• RewardMode.EPISODIC 

• AbstractionMode.NONE 

As with the original dynamic scripting algorithm, action scripts are dynamically created 

for each episode, applicable actions are chosen in priority order from the script, action 

values are shared across all characters, and rewards are applied at the end of an 

encounter. 

Experiment 2: Q Variant 
This experiment examines the difference affect of replacing the dynamic scripting 

algorithm with something akin to standard Q-learning. The learning parameter settings 

for this experiment are:  

• ScriptMode.ALL 

• SelectionMode.VALUE 

• HierarchyMode.FLAT 

• RewardMode.EPISODIC 

• AbstractionMode.NONE 
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There are two main differences from the baseline experiment. First, all actions are 

available to the character during an encounter rather than only those in the script. 

Second, actions are selected based on their value and not their priority. No hierarchy is 

used in this experiment and the reward function remains the same as in the original 

experiment. The resulting algorithm is a type of Q variant that makes use of the dynamic 

scripting value update function rather than a more standard update function such as Q-

learning. We expect that this algorithm will have lower scores on both learning efficiency 

and action variety than dynamic scripting. 

Experiment 3: Extended Dynamic Scripting 
The third experiment examines the affect of hierarchy on the NWN character behaviors. 

The learning parameter settings for this experiment are:  

• ScriptMode.SCRIPT 

• SelectionMode.PRIORITY 

• HierarchyMode.CLASS 

• RewardMode.EPISODIC 

• AbstractionMode.NONE 

The only difference from Experiment 1 is the change in the hierarchy mode. We expect 

that this algorithm will have better scores on both learning efficiency and action variety 

than dynamic scripting. 

Experiment 4: Hierarchical Q Variant 
This experiment extends Experiment 2 by replacing the single abstract state with the 

hierarchy used in Experiment 3. Experiment 4 investigates the importance of script 

selection and action priority when using the hierarchal version of the behavior. The 

learning parameter settings for this experiment are:  

• ScriptMode.ALL 

• SelectionMode.VALUE 

• HierarchyMode.CLASS 

• RewardMode.EPISODIC 

• AbstractionMode.NONE  
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We expect that this algorithm will have lower scores on both learning efficiency and 

action variety than dynamic scripting but better scores in both measures than the flat Q 

variant. 

Experiment 5: Reward Scaling 
This experiment demonstrates the effect of reward scaling by extending the basic 

dynamic scripting setup (Experiment 1).  The learning parameter settings for this 

experiment are:  

• ScriptMode.SCRIPT 

• SelectionMode.PRIORITY 

• HierarchyMode.FLAT 

• RewardMode.SCALED  

• AbstractionMode.NONE 

We expect that reward scaling will have no effect on either measure in the NWN 

environment. 

Experiment 6: Automatic State Specialization 
This experiment demonstrates the affect of automatic state specialization, utilizing the 

Decision Stump classifier, on the performance of the standard dynamic scripting 

algorithm.   

• ScriptMode.SCRIPT 

• SelectionMode.PRIORITY 

• HierarchyMode.FLAT 

• RewardMode.SCALED  

• AbstractionMode.STUMP 

We expect that this algorithm will have better scores on both learning efficiency and 

action variety than dynamic scripting. 

Results 
The results are grouped to form a number of distinct sections. The first section covers 

experiments 1-4. This section compares Extended Dynamic Scripting, Q-Learning, and 

Hierarchical Q-Learning to the basic Dynamic Scripting algorithm. The second section 
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demonstrates the effect of the scaled update algorithm in experiment 5. Finally, the 

third section provides results for experiment 6 on automatic state specialization. Within 

each section, the results are divided into two parts: learning efficiency and variety. In all 

cases, statistical significance is given using the KS Test. 

Experiments 1-4 
This section describes the results generated from experiments 1-4, where the different 

learning conditions are: DS, Q, EDS, and HQ. Experiment 1, DS, is designed to 

generate results using the standard dynamic scripting algorithm with the EDS wrapper. 

These results form a baseline to which the various dynamic scripting enhancements can 

be compared. This experiment makes use of a single choice point, where all the 

characters share a single set of action values. Each character has its own script. The 

second experiment, Q, examines the effect of replacing the dynamic scripting algorithm 

with something akin to standard Q-learning. There are two main differences from the 

baseline experiment. First, all actions are available to the character during an encounter 

rather than just a script. Second, actions are selected based on their value and not their 

priority. For comparison purposes, the resulting algorithm is a type of Q variant that 

makes use of the dynamic scripting weight update function rather than the standard Q-

learning update function. As in the previous experiments, all four characters share the 

same set of action values. Experiment three, EDS makes use of the flexible nature of 

extended dynamic scripting, replacing the single choice point with four separate choice 

points, one for each character class. This is a manually constructed form of state 

abstraction. This experiment is designed to demonstrate the usefulness of choice and 

reward points that can be placed arbitrarily in a behavior. Experiment 4, HQ, adds the 

manually constructed hierarchy to the original Q-learning experiment.  

Learning Efficiency 

The mean turning point for the different experiments, as defined previously, is shown in 

Table 9. The statistical significance of each difference is given on the right hand side of 

table, where p < .05 indicates a statistically significant difference and an X represents no 

measurable difference. 
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Table 9 Mean turning point for experiments 1 to 4 

 

Mean 

Turning 

Point n= Q EDS HQ 

DS 24.8 30 p< .05 p< .05 X 

Q 39.65 20  p< .05 X 

EDS 20.9 30   p< .05 

HQ 30.8 30    

 

The graph in Figure 66 compares the fitness of the four learning algorithms during the 

first 25 episodes. Each data point on this graph represents the average fitness of the 

learning team members, for the last ten rounds. 
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Figure 66 Mean 10-window fitness for experiments 1 to 4. Higher fitness indicates better 

performance. 

Variety 
The three different variety measures were gathered for each of these experiments. In all 

of the tables below, the mean is generated by taking the average value during a run that 
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lasts until the turning point is reached. These values are then averaged across n 

runs. Table 10 compares the mean possible diversity; Table 11 compares the selected 

diversity; and Table 12 the mean squared error of the selected actions. 

 

 

Table 10 Mean possible diversity for experiments 1-4. 

Higher values equal greater diversity. 

 Mean Possible Diversity (n = 10) 
DS 31 
Q 32 
EDS 49 
HQ 50 

 

Both EDS and HQ are significantly different than DS and Q (p < .05). 

Table 11 Mean selection diversity for experiments 1-4. 

Higher values equal greater diversity. 

 Mean Selection Diversity (n=10) 
DS 0.39 
Q 0.33 
EDS 0.43 
HQ 0.51 

 

The differences between HQ and DS, Q, EDS are significant as well as the difference 

between EDS and Q (p < .05). 

Table 12 Mean repeat diversity of selected actions for experiments 1-4. 

Lower values equal greater diversity. 

 Mean Repeat Diversity (n = 10) 
DS 6.44 
Q 21.46 
EDS 4.37 
HQ 3.17 

 

EDS, HQ, DS are significantly different than Q; the difference between HQ and EDS, DS 

is also significant (p < .05).  
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Experiment 5 
This section presents the results for experiment 5, which examines the effect of reward 

scaling. These results are compared to the basic dynamic scripting results. DS refers to 

the learning team that makes use of regular dynamic scripting, while Scaled refers to the 

learning team that makes use of dynamic scripting with the scaled update algorithm. As 

expected, scaling has no significant effect on the performance of dynamic scripting in 

NeverWinter Nights. 

 

Learning Efficiency 

Table 13 Mean turning point for experiment 5. 

 Mean Turning Point  DS Scaled 
DS 24.8 (n = 30)  X 
Scaled 27.6 (n = 20)   
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Figure 67 Mean 10-window fitness for experiment 5. 
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Variety 

Table 14 Mean possible diversity for experiment 5. 

 Mean Possible Diversity (n = 10) 
DS 31 
Scaled 28 

 

None of these differences are significant at the p < .05 level. 

Table 15 Mean selection diversity for experiment 5. 

 Mean Selection Diversity (n=10) 
DS 0.39 
Scaled 0.35 

 

None of these differences are significant at the p < .05 level. 

Table 16 Mean repeat diversity of selected actions for experiment 5. 

 Mean Repeat Diversity (n = 10) 
DS 6.44 
Scaled 7.37 

 

None of these differences are significant at the p < .05 level. 

Experiment 6 
This section presents the results for experiment 6, which examines the effect of 

automatic state construction using the decision stump algorithm. The results from three 

different tests of the decision stump algorithm are compared to the basic dynamic 

scripting results. DS refers to the learning team that makes use of regular dynamic 

scripting. Stump@X refers to a learning team that makes use of the decision stump 

algorithm to create abstract states one time, after X episodes. StumpEveryX refers to a 

learning team that makes use of the Decision Stump algorithm to create states after 

every X episodes. 
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Learning Efficiency 

Table 17 Mean turning point for experiment 6. 

 Mean Turning Point  DS 
DS 24.8 (n = 30)  
StumpEvery5 29.4 (n = 20) X 
StumpEvery10 27.8 (n = 20) X 
Stump@5 23.0 (n = 20) p < .08 
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Figure 68 Mean 10-Windows fitness for experiment 6. 

Variety 

Table 18 Mean possible diversity for experiment 6. 

 Mean Possible Diversity (n = 10) 
DS 31 
StumpEvery5 48 
StumpEvery10 43 
Stump@5 52 

 

All three stump varieties are significantly different than DS at the p < .05 level. 
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Table 19 Mean selection diversity for experiment 6. 

 Mean Selection Diversity (n=10) 
DS 0.39 
StumpEvery5 0.38 
StumpEvery10 0.37 
Stump@5 0.37 

 

None of these differences are significant at the p < .05 level. 

Table 20 Mean repeat diversity of selected actions for experiment 6. 

 Mean Repeat Diversity (n = 10) 
DS 6.44 
StumpEvery5 6.85 
StumpEvery10 6.78 
Stump@5 6.59 

 

None of these differences are significant at the p < .05 level. 

Discussion 
The results presented above validate the performance of the extended dynamic scripting 

algorithm. Each set of results will be discussed individually. 

The first result set demonstrates the efficacy of the hierarchal extension of 

dynamic scripting. For both measures of learning efficiency, the general ordering from 

best to worst performance is: EDS > DS > HQ > Q. This met our expectations, 

demonstrating the superiority of the extended dynamic scripting algorithm in terms on 

learning efficiency. 

With respect to the measures of diversity in the first set of results, the HQ and 

EDS algorithms had very similar results in the number of actions likely to be available for 

script selection (possible diversity). However, the HQ algorithm selected a significantly 

larger number of distinct actions in each episode and was more likely to choose evenly 

among the selected actions. Based on the combination of these results, the ordering 

from best to worst performance is: HQ > EDS > DS > Q, though HQ and EDS are very 

close. These results did not exactly match our expectations. Specifically, we predicted 

that action variety for HQ should be less than DS but found that HQ had the best action 

variety overall. The reason for this difference is likely due to the reduced number of 
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learning opportunities encountered by the hierarchical learners, where the single 

learning problem was divided into four sub-problems (and therefore each sub-problem 

made only ¼ of the decision found in the overall problem).  

The second set of results, Experiment 5, demonstrates that the value update 

scaling mechanism does not adversely affect the learning performance. That is, the 

scaling mechanism was designed to assist learning when there are few actions to 

choose from. This is not the case in NWN, so we did not expect the scaling mechanism 

to affect results in either direction. This was validated by the results. 

The automatic state abstraction results in Experiment 6 were somewhat of a 

disappointment. While in one case, Stump@5, learning efficiency was significantly 

improved from standard dynamic scripting, the results where otherwise underwhelming. 

Similarly, possible diversity was significantly improved by automatic state abstraction, 

but the two measures of diversity in action usage did not show any significant 

differences. However, these results do suggest that the use of automatic state 

abstraction does not have a detrimental effect on either the learning efficiency or on the 

action variety. 

Overall, the results from demonstrating the extended dynamic scripting in a 

commercial computer game suggest that by integrating extended dynamic scripting with 

SimBionic, we should expect greater learning efficiency than with the other tested 

learning algorithms and that the learning SimBionic architecture will also still perform 

well with respect to action variety. Additionally, the addition of a scaling mechanism to 

the value update mechanism should not adversely affect performance in the case where 

there are many actions to choose from. Finally, the results on automatic state 

abstraction are ambiguous. It is unclear whether the predicted slight improvement in 

performance would be worth the computational costs associated with this feature. 
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    CHAPTER VI 
CONCLUSION    

A primary goal of the research in this dissertation has been to create a useful framework 

for game developers, where they can easily define adaptive behaviors that utilize 

machine learning techniques.  This goal has been achieved, as described in this 

dissertation, by building on the dynamic scripting algorithm and embedding the result 

within a graphical behavior modeling environment. The first section in this chapter is 

devoted to summarizing the performance results found in this dissertation and 

discussing their importance in demonstrating the utility of this research. The second 

section of this chapter describes future work, aimed at improving the performance of 

EDS, further demonstrating its utility, and improving accessibility to the SimBionic 

behavior modeling environment and EDS. 

Discussion 
Dynamic scripting was designed specifically for modern computer games like 

Neverwinter Nights, where the set of available actions in a choice point meet the 

following requirements. First, there should exist some actions that intuitively can be 

assigned a high priority and that contain a more specialized IF clause. That is, there 

should be some rules that the behavior author can identify as important in particular 

situations, e.g. using a heal action when a character is low on health. Second, there also 

should be a number of actions, given lower priority, which are applicable in most 

situations. The standard dynamic scripting algorithm performed better than the standard 

Q-learning reinforcement learning algorithm in the two abstract games that met these 

conditions, Anwn and the modified version of Get the Ogre, as well as in the actual 

game Neverwinter Nights. These three games demonstrate the utility provided by the 

standard dynamic scripting algorithm, which allows the behavior author to apply domain 

knowledge in the form of priorities and specialized IF-clauses for actions. 
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 Extended Dynamic Scripting implements two additional methods by which 

behavior authors can utilize domain knowledge to improve learning performance: 

manual state abstraction and task decomposition.  The Weather and Anwn abstract 

games both provide evidence for the utility of manual state abstraction. In the Weather 

game, standard dynamic scripting is unable to perform better than randomly due to the 

following action constraints: there are only a small number of actions, there are no 

priorities to distinguish between the actions, and there are no specializing IF clauses. 

However, a small amount of domain knowledge in the form of manual state abstraction 

is used to quickly boost prediction performance from random (50%) to 70% correct. This 

game demonstrates a type of learning problem where, due to the nature of the available 

actions, EDS is applicable but standard dynamic scripting is not. Even in the Anwn 

game, where standard dynamic scripting outperforms Q-learning, the version of EDS 

that includes manual state abstraction greatly outperforms standard dynamic scripting. 

Additional evidence for this was provided by the Neverwinter Nights demonstration, 

where manual state abstraction resulted in better performance for EDS than standard 

dynamic scripting. 

The Resource Gathering game demonstrates the usefulness of task 

decomposition, the second method for introducing domain knowledge in EDS. In this 

game, the standard dynamic scripting algorithm was unable to solve the problem with 

episodic rewards. While knowledge of action priorities could be successfully used in this 

domain to solve the problem much faster than the Random player when immediate 

rewards were introduced, the algorithm was still unable to demonstrate effective learning 

because the actions lacked specialized IF clauses that could be used to choose between 

actions of similar priority included in the same script. The EDS player that makes use of 

a task hierarchy, without action priorities or IF clauses, was quickly able to learn to 

complete the problem in fewer steps (on average) than the Q-learning player.  

Additionally, the graphical modeling language provided an intuitive representation of the 

task decomposition. 

 Extended Dynamic Scripting also introduces a way in which learning efficiency 

can be improved by learning about the domain through the automatic construction of 

abstract state trees, rather than entering domain knowledge manually.  In all three 

games where automatic state abstraction was applied, the EDS algorithm outperformed 
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the standard dynamic scripting algorithm. In both Weather and Get the Ogre, 

standard dynamic scripting was unable to learn to solve the problem, performing at the 

random level in Weather and worse than random in Get the Ogre. In both cases EDS 

was able to solve the problem utilizing automatic state abstraction, overcoming problems 

that could not be solved with the standard algorithm due to the nature of the available 

actions. In comparison with the standard Q-learning reinforcement learning algorithm, 

EDS performs slightly worse than Q-learning in the Weather game and better than Q-

learning in Get the Ogre. EDS with automatic state abstraction even performs 

significantly better than the original dynamic scripting algorithm in the Anwn domain, 

where dynamic scripting alone does reasonably well.  

 Taken together, the results from the four abstract games and one commercial 

game clearly demonstrate that the dynamic scripting extensions described in this 

dissertation improve upon the basic algorithm in the following ways: 

• Increased learning performance: This is shown through faster learning and 

improved scores for EDS in all four games. This was especially apparent in the 

ability of EDS to quickly take advantage of its early experience to improve 

performance in just a few trials. 

• Increased applicability and flexibility: By allowing additional means for 

including domain knowledge in the form of manual state abstractions and task 

hierarchies and through automatic state abstraction in cases where domain 

knowledge does not exist, EDS can solve types of problem than dynamic 

scripting alone could not. 

• Acceptable computational cost: The state abstraction feature of EDS has 

significant computational cost, but this cost was acceptable for the abstract and 

commercial games used in this research. Given the typical number of agents, 

how quickly they need to make decisions, the size of the state space, the number 

of historical decision instances, and the known optimizations, we expect that this 

cost will be acceptable for most commercial computer games. 

Future Work 
There are three particular areas of interest for future work on EDS, the first two of which 

are discussed at length below. The first is aimed at improving the performance automatic 
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state specialization in EDS. The second area of future work involves demonstrating 

the utility of EDS in a simulation-based training environment. The third area involves 

improving accessibility to the EDS environment by investigating the possibility of 

changing SimBionic from a commercial product into an open-source project (in 

progress).  

Improving the Performance of Automatic State Specialization 
One issue to consider in the future is how to determine when to build the initial abstract 

state tree. A classification tree is constructed with the idea of maximizing the prediction 

of the reward, which does not necessarily mean that the dynamically generated scripts 

will differ among the leaf nodes once the state tree is created and retrained. That is, we 

can create a tree at any time but it may not be effective in producing the desired 

outcome where the scripts differ among the leaf nodes. We need a relative measure for 

testing the effectiveness of a classification tree in the context of the dynamic scripting 

algorithm. This should allow us to compare the existing action values (when no abstract 

state tree exists) to a newly created tree to determine if the new tree is likely to produce 

distinct action scripts. This algorithm could then be used to automatically determine 

when to create the initial abstract state true. 

 Another issue to consider is the re-creation of abstract state trees. In Weather 

and Anwn, creating the trees every n episodes resulted in better performance than 

creating a tree at a particular location. However, as seen in Get the Ogre, creating the 

tree when rewards are the exact same across leaf nodes is detrimental to performance. 

It would be interesting to compare the re-creation of trees as performed in this 

dissertation to the continuous improvement of trees as implemented in the U-Tree 

algorithm (McCallum, 1996). Given the utility of the Decision Stump algorithm in these 

games, one simple way to implement this would be to “stack” Decision Stumps. The 

research question here is: would extending existing trees match the performance of 

creating trees in Anwn and Weather while at the same time improving performance in 

the Get the Ogre game?  

 Finally, as demonstrated in the Anwn abstract games, there are situations were 

the construction of abstract state trees (and possibly extending them) could be 

detrimental to the agent in terms of computational performance. An algorithm that 
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determines when to build (or extend) trees should also consider the computational 

costs, weighed against the predicted performance boost. For example, one simple way 

of limiting the computation time spent on creating and training trees would be to consider 

only a limited amount of the historic knowledge (e.g. 100 instances). While a tuneable 

parameter like this may be acceptable, it would be more useful for the behavior author to 

specify the amount of time available to spend on state abstraction (e.g. 10ms / update) 

and then for the state abstraction algorithm to automatically tune the parameter to meet 

this requirement. 

Simulation-Based Training Domain 
We have begun to explore the use of EDS to create adaptive adversaries as part of a 

simulation-based training system (Jensen, Ludwig, Proctor, Patrick, & Wong, 2008). In 

this work, SimBionic would be used to control the behavior of avatars in a massively 

multi-player online game (MMOG), where the overall training objective is to realistically 

challenge and surprise the human trainees in a quick and efficient manner. Extended 

dynamic scripting would be used to create behaviors that adaptively determine the best 

training scenario configuration to challenge the team of human players. The possible 

training scenarios would be defined as a hierarchical set of choice points, where the 

objective is to learn to select the scenario configurations most likely to succeed against 

the current tream. The following describes the design of the SimBionic behaviors for this 

training problem.  

An abstracted version of the top level tactical behavior is shown in Figure 69, 

giving example behavior structure without the domain-specific content developed during 

this research project. The ATTACK choice point chooses the A1 adversarial tactic, as 

shown by the bold highlighting.  The choice point selection is highlighted, where the A1 

tactic is selected. 
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Figure 69 Main adaptive behavior. 

After the main behavior chooses the A1 attack type, control is transferred to the 

A1 sub-behavior, seen in Figure 70. The choice point for the A1 tactic must choose 

between a number of different ways to carry out the A1 tactic. In this instance, A1_2 is 

chosen and control transfers to the A1_2 sub-behavior. 

 

 

Figure 70 A1 sub-behavior. 



 

 

148 

The behavior in Figure 70 chooses the specific elements of the A1 tactic.  

The A1_2 behavior (Figure 71) is responsible for choosing the specific location of the 

A1_2 tactic in the simulated world from a number of pre-determined locations. A 

primitive action, selectA1_2ActiveFile, is then called to load all of the selections into the 

MMOG. 

 

Figure 71 A1_2 sub-behavior. 

The behavior in Figure 71 determines the location of the tactic elements in the 

simulation.  After the A1_2 sub-behavior is executed, the simulation is ready for the team 

of trainees to begin using the simulation. 

Once the simulation has ended, the results from the scenario are used to update 

the values associated with the actions in the choice points. This is performed with the 

help of a number of reward functions that supply a quantitative value that represents the 

success of the adversary’s tactics in the scenario Reward points, encoded as part of the 

behavior model, use one or more of these reward functions to update a choice point’s 

action values. They may also be integrated with specific incremental or decremental 

reward factors that take into account considerations such as unpredictability.   

 This research group was able to extract realistic domain knowledge, design the 

adaptive behaviors, and perform a number of demonstrations of the adaptive tactics (via 

role-players) against a group of six human players under a grant from the Office of Naval 
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Research. Funding options to complete this project by implementing the adaptive 

adversary design are currently under investigation. 

Coda 
To summarize, this dissertation has described three specific extensions to the dynamic 

scripting algorithm that improved learning behavior and flexibility while imposing minimal 

computational cost: developing a flexible, stand alone, version of dynamic scripting that 

allows for hierarchical dynamic scripting; extending the context sensitivity of hierarchical 

dynamic scripting through automatic state construction; and performing an architectural 

integration where this algorithm was incorporated into an existing hierarchical behavior 

modeling architecture. To evaluate the effectiveness of this new dynamic scripting 

architecture, a tactical abstract game framework was created that allows efficient 

experimentation with abstract versions of modern computer games. Four different 

abstract games were used to measure the performance of the dynamic scripting 

extensions with respect to learning efficiency and computational cost. These 

experiments confirmed the value of our extensions to dynamic scripting and pointed out 

avenues for future improvements.  In closing, we provided a demonstration of our 

dynamic scripting extensions applied to a commercially available, modern computer 

game. 
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 APPENDIX A 
SIMBIONIC GLOSSARY 

The core of SimBionic is a visual authoring tool that allows users to draw flow chart-like 

diagrams that specify sequences of predicates, actions, connectors, and behaviors. 

Action nodes represent an action that the agent can perform in the simulation and are 

represented by rectangular nodes. Predicates are represented by ovals; these nodes are 

true or false based on the agent’s perception or its internal variables. Control flows from 

one action to another by directed connectors. Behaviors are compositions of conditions, 

actions, connectors, and behaviors. 

 

• Rectangles 

o choose( xxx ): A unique adaptive choice point 

o Thin Rectangle: Primitive action 

§ Something the agent does in the game 

o Bold Rectangle: Behavior 

o Green: Starting state 

o Red: Ending state 

§ Once an ending state is reached, the behavior is terminated and 

control flows back up the behavior stack 

o Variable Bindings 
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§ Indicated by [], e.g. [attackType] binds a particular value to the 

variable attack type 

§ A variable may also be bound by passing it into a Behavior, e.g. 

Attack(location) can bind a particular value to the variable location 

• Ovals 

o Predicate (also referred to as Conditions): Transition only occurs when a 

predicate is true 

§ Something the agent senses in the game 

§ Can be used to limit the choices available to a choose node 

• Connectors 

o Arrows that direct the state transitions through the behaviors 

§ In most rectangles/ovals, transitions are attempted in order (1…n) 

§ In choose( xxx ) nodes, transition order is ignored 
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    APPENDIX B 
EDS API 

This appendix contains some illustrative implementation details from the EDS Library. 

Utility Methods 

There are a number of utility methods that allow access to the library or perform basic 

functions: 

 /**  @return the EDS singleton */ 
static public EDSWrapper getInstance() 
 
/** Set the logger to use for detailed DS information. If null,  
logging will not be performed.  */ 
public void setLogger(Logger logger) 
 
/** Log the given msg. */ 
public void log(Level level, String msg) 
public void log(Exception ex) 

Choice Point Methods 

A number of methods exist that allow the user to create, load, store, and access the 

choice points. 

/** Load the choice point from an XML file. */ 
public void load(String fileName) 
 
/** Save the DS choice point database to an XML file. */ 
public void save(String filename) 
 
/** Add a choice point with an initial set of actions */ 
public void addChoicePoint(String choice point,  

ArrayList<Action> actions) 
 
/** @return the Actions associated with this choice point*/ 
public ArrayList<Action> getChoicePoint(String choicePoint) 

 

Action Selection 

The following method is used to order the actions by their assigned value.  This is done 

by using the softMaxSelection method to choose the first action, a, from the set A of all 
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available actions. Then the second action is chosen, again using the 

softMaxSelection method, from the set A’ = A – a. This continues until all of the actions 

are ordered. 

/** 
* Lookup the values in the choice point table and return the  
* order in which to try the given transitions. 
* @return the indexes to try, in order 
*/ 
public int[] orderActions(String choice point)  

 

This method uses a soft max (Boltzmann) method to choose one action from the 

list of actions based on its associated value, a form of fitness proportionate selection. 

This algorithm includes a temperature variable that can be adjusted. As the temperature 

increases the probability of selecting an action with a lower value increases. As the 

temperature decreases, it is more likely that the action with the highest value is selected.  

/** 
 * Select a value from the list using a soft max distribution. 
 * @return the selected index, null if no decision is made 
 */ 
protected Action softMaxSelection(ArrayList<Action>  actions) 
 

The next method is used by a client to indicate that it selected one of the actions 

ordered by the orderActions method.  

/** Called when an ordered action is selected */ 
public void actionSelected(String choicePoint, int index) 
 

The EDS library uses this to create a list of selection objects that have occurred 

in each choice point. Each selection contains the choice point for which the selection 

was made, the action chosen, and a property map that contains the relevant game state 

for the selection. The property map is created by calling the getSelectionState method 

on the I_EDSAdjustor object created by the user for a particular game. 

I_EDSAdjustor 

In order to adjust the values associated with each action, a game specific component 

must gather the game state at appropriate times, supply a reward when the value 

adjustment is initiated for a choice point, and provide information on the min/max values 
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associated with a choice point. This minimum amount of functionality is provided to 

the DS library by developing a Java class that implements this interface. 

/** 
 * When selection occurs in a choice point, get any state  
 * information that would be needed for the reward function. 
 *  
 * @return a serialzable Map of state information 
 */ 
public Map getGameStateInformationOnSelect(String choicePoint); 
 
/** 
 * When a reward is requested, this method returns the reward  
 * @param actionSelection a list of the action selections that  
 * have occurred 
 * @return the reward for the given choicePoint 
 */ 
public double getReward(String choicePoint, ArrayList<Selection>  

actionSelections); 
  
/** @return maximum action value for this choice point */ 
public double getMaxChoicePointValue(String choicePoint); 
  
/** @return minimum action value for this choice point*/ 
public double getMinChoicePointValue(String choicePoint); 

Adjusting Action Values 

The adjustValues method examines the list of actions that have occurred for the given 

choice point. If only one action has occurred, an immediate reward is applied. If more 

than one action has occurred then an episodic award is applied. In either case, the 

reward function is the same. The value of action a in choice point c, V(c,a), must always 

be <= the maximum reward and >= the minimum reward as defined by the 

I_EDSAdjustor for the particular game and choice point. 

/** Use the DS algorithm to adjust the values based on the  
 * actions selected for the current choice point */ 
public void adjustValues(String choicePoint) 
 

For immediate and episodic rewards, the value update function methods is 

similar to  the standard DS update function (Spronck et al., 2006). In the case of an 

action that was selected, the update function is V(c,a)  = V(c,a) + reward.  Actions that 

were not selected in the episode receive a reverse compensation, where compensation 

=  - ( (#selectedActions / #unselectedActions) * reward) and the update function is V(c,a)  
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= V(c,a) + compensation. Below is the pseudo code for the adjusting the value of a 

single action. 

private double adjustValue(Action a, double adjustment, 
double MAX_VALUE, double MIN_VALUE) 

{ 
 double value = a.getValue() + adjustment; 
 double remainder = 0; 
 if(value > MAX_VALUE) 
 { 
  remainder = value - MAX_VALUE; 
  value = MAX_VALUE; 
 } 
 else 
 if(value < MIN_VALUE) 
 { 
  remainder = MIN_VALUE - value; 
  value = MIN_VALUE; 
 } 
 a.setValue( value ); 
 return remainder; 
} 
 

 The following algorithm shows how the reward and compensation is applied to 

the list of actions performed in this choice point (completedList) and the list of action not 

performed (notCompletedList). These two sets of actions are distinct, and their union is 

equal to the set of all action available to the character (characterActions). After updated, 

the list of completed actions is emptied and the list of unused actions is set to equal the 

list of actions available to the character. 

double reward = myDynamicScriptingAdjustor.getReward(choicePoint, 
       selectionList); 
double compensation =  -( completedList.size()*reward )  
    / (notCompletedList.size()); 
for(Action a : completedList) 

remainder += adjustValue(a, reward); 
for(Action a : notCompletedList) 

remainder += adjustValue(a, compensation); 
distributeRemainder(completedList, notCompletedList, remainder); 
completedList.clear(); 
notCompletedList.addAll(characterActions); 

 

The remainder caused by either going below the minimum value of an action or above 

the maximum value in the adjustValue method is redistributed among the other actions 

in the distributeRemainder method. The net result of reward, compensation, and 
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remainder distribution is that the sum of the action values is constant, it is only the 

distribution of values that changes. 
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APPENDIX C 
EXAMPLE NWN CHARACTER STATE 

 
<root> 
  <HEARTBEAT>0</HEARTBEAT> 
  <NEAREST /> 
  <NEAREST_MAGE /> 
  <NEAREST_PRIEST /> 
  <NEAREST_FIGHTER /> 
  <NUMBER_ENEMIES>0</NUMBER_ENEMIES> 
  <NUMBER_MELEE_ENEMIES>0</NUMBER_MELEE_ENEMIES> 
  <MAXHITPOINTS>64</MAXHITPOINTS> 
  <HITPOINTS>64</HITPOINTS> 
  <GOOD_EVIL>1</GOOD_EVIL> 
  <FIGHTER>1</FIGHTER> 
  <ROGUE>0</ROGUE> 
  <MAGE>0</MAGE> 
  <PRIEST>0</PRIEST> 
  <HEAL_SELF>1</HEAL_SELF> 
  <BUFF_SELF>1</BUFF_SELF> 
  <SPELL_DEATH_WARD>0</SPELL_DEATH_WARD> 
  <SPELL_FREEDOM_OF_MOVEMENT>0</SPELL_FREEDOM_OF_MOVEMENT> 
  <SPELL_REGENERATE>0</SPELL_REGENERATE> 
  <SPELL_HASTE>0</SPELL_HASTE> 
  <SPELL_TIME_STOP>0</SPELL_TIME_STOP> 
  <SPELL_HIGH_ABSORPTION>0</SPELL_HIGH_ABSORPTION> 
  <SPELL_HIGH_ANTIINVIS>0</SPELL_HIGH_ANTIINVIS> 
  <SPELL_HIGH_ANTIMIND>0</SPELL_HIGH_ANTIMIND> 
  <SPELL_HIGH_ELEMENTABSORPTION>0</SPELL_HIGH_ELEMENTABSORPTION> 
  <SPELL_HIGH_DAMAGEABSORPTION>0</SPELL_HIGH_DAMAGEABSORPTION> 
  <SPELL_HIGH_DAMAGEAREA__FIGHTER>0</SPELL_HIGH_DAMAGEAREA__FIGHTER> 
  <SPELL_HIGH_DAMAGEAREA__MAGE>0</SPELL_HIGH_DAMAGEAREA__MAGE> 
  <SPELL_HIGH_DAMAGEAREA__PRIEST>0</SPELL_HIGH_DAMAGEAREA__PRIEST> 
  <SPELL_HIGH_DAMAGEAREA__NEAREST>0</SPELL_HIGH_DAMAGEAREA__NEAREST> 
  <SPELL_HIGH_SUMMON__FIGHTER>0</SPELL_HIGH_SUMMON__FIGHTER> 
  <SPELL_HIGH_SUMMON__MAGE>0</SPELL_HIGH_SUMMON__MAGE> 
  <SPELL_HIGH_SUMMON__PRIEST>0</SPELL_HIGH_SUMMON__PRIEST> 
  <SPELL_HIGH_SUMMON__NEAREST>0</SPELL_HIGH_SUMMON__NEAREST> 
  <SPELL_HIGH_CURSEAREA__FIGHTER>0</SPELL_HIGH_CURSEAREA__FIGHTER> 
  <SPELL_HIGH_CURSEAREA__MAGE>0</SPELL_HIGH_CURSEAREA__MAGE> 
  <SPELL_HIGH_CURSEAREA__PRIEST>0</SPELL_HIGH_CURSEAREA__PRIEST> 
  <SPELL_HIGH_CURSEAREA__NEAREST>0</SPELL_HIGH_CURSEAREA__NEAREST> 
  <SPELL_HIGH_CLOUDDAMAGE__FIGHTER>0</SPELL_HIGH_CLOUDDAMAGE__FIGHTER> 
  <SPELL_HIGH_CLOUDDAMAGE__MAGE>0</SPELL_HIGH_CLOUDDAMAGE__MAGE> 
  <SPELL_HIGH_CLOUDDAMAGE__PRIEST>0</SPELL_HIGH_CLOUDDAMAGE__PRIEST> 
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<SPELL_HIGH_CLOUDDAMAGE__NEAREST>0</SPELL_HIGH_CLOUDDAMAGE__NEAREST> 
  <SPELL_HIGH_CLOUDCURSE__FIGHTER>0</SPELL_HIGH_CLOUDCURSE__FIGHTER> 
  <SPELL_HIGH_CLOUDCURSE__MAGE>0</SPELL_HIGH_CLOUDCURSE__MAGE> 
  <SPELL_HIGH_CLOUDCURSE__PRIEST>0</SPELL_HIGH_CLOUDCURSE__PRIEST> 
  <SPELL_HIGH_CLOUDCURSE__NEAREST>0</SPELL_HIGH_CLOUDCURSE__NEAREST> 
  <SPELL_HIGH_BREACH__FIGHTER>0</SPELL_HIGH_BREACH__FIGHTER> 
  <SPELL_HIGH_BREACH__MAGE>0</SPELL_HIGH_BREACH__MAGE> 
  <SPELL_HIGH_BREACH__PRIEST>0</SPELL_HIGH_BREACH__PRIEST> 
  <SPELL_HIGH_BREACH__NEAREST>0</SPELL_HIGH_BREACH__NEAREST> 
  <SPELL_HIGH_CONE__FIGHTER>0</SPELL_HIGH_CONE__FIGHTER> 
  <SPELL_HIGH_CONE__MAGE>0</SPELL_HIGH_CONE__MAGE> 
  <SPELL_HIGH_CONE__PRIEST>0</SPELL_HIGH_CONE__PRIEST> 
  <SPELL_HIGH_CONE__NEAREST>0</SPELL_HIGH_CONE__NEAREST> 
  <SPELL_HIGH_DAMAGE__FIGHTER>0</SPELL_HIGH_DAMAGE__FIGHTER> 
  <SPELL_HIGH_DAMAGE__MAGE>0</SPELL_HIGH_DAMAGE__MAGE> 
  <SPELL_HIGH_DAMAGE__PRIEST>0</SPELL_HIGH_DAMAGE__PRIEST> 
  <SPELL_HIGH_DAMAGE__NEAREST>0</SPELL_HIGH_DAMAGE__NEAREST> 
  <SPELL_HIGH_CURSE__FIGHTER>0</SPELL_HIGH_CURSE__FIGHTER> 
  <SPELL_HIGH_CURSE__MAGE>0</SPELL_HIGH_CURSE__MAGE> 
  <SPELL_HIGH_CURSE__PRIEST>0</SPELL_HIGH_CURSE__PRIEST> 
  <SPELL_HIGH_CURSE__NEAREST>0</SPELL_HIGH_CURSE__NEAREST> 
  <TALENT_HEAL>0</TALENT_HEAL> 
  <TALENT_HEALING_SELF>1</TALENT_HEALING_SELF> 
  <TALENT_ADVANCED_PROTECT_SELF>0</TALENT_ADVANCED_PROTECT_SELF> 
  <TALENT_USE_PROTECTION_SELF>0</TALENT_USE_PROTECTION_SELF> 
  <TALENT_USE_PROTECTION_OTHERS>0</TALENT_USE_PROTECTION_OTHERS> 
  <TALENT_USE_ENHANCEMENT_SELF>0</TALENT_USE_ENHANCEMENT_SELF> 
  <TALENT_ENHANCE_OTHERS>0</TALENT_ENHANCE_OTHERS> 
  <TALENT_MELEE_ATTACKED>0</TALENT_MELEE_ATTACKED> 
  <TALENT_RANGED_ATTACKERS>0</TALENT_RANGED_ATTACKERS> 
  <TALENT_RANGED_ENEMIES>0</TALENT_RANGED_ENEMIES> 
  <TALENT_SUMMON_ALLIES>0</TALENT_SUMMON_ALLIES> 
  <TALENT_SPELL_ATTACK>0</TALENT_SPELL_ATTACK> 
  <TALENT_MELEE_ATTACK>1</TALENT_MELEE_ATTACK> 
  <TALENT_CURE_CONDITION>0</TALENT_CURE_CONDITION> 
  <TALENT_USE_TURNING>0</TALENT_USE_TURNING> 
  <TALENT_SNEAK_ATTACK>0</TALENT_SNEAK_ATTACK> 
</root> 
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 APPENDIX D 
NWN ACTIONS BY CHARACTER CLASS 

This appendix contains a list of actions for each of the four character classes. Actions in 
the list below are sorted first by priority (HIGHEST, HIGH, MEDIUM, LOW, LOWEST) 
and secondarily by action id number (0…n). The FILLER actions are never valid and 
serve only to allow a script to contain empty actions. 

PRIEST ACTIONS 
HEAL_SELF (0)                       
SPELL_DEATH_WARD (2)                
SPELL_FREEDOM_OF_MOVEMENT (3)       
SPELL_REGENERATE (4)                
SPELL_HASTE (5)                     
HEAL_SELF (7)                       
SPELL_HIGH_SUMMON__NEAREST (1)      
SPELL_HIGH_SUMMON__MAGE (2)         
SPELL_HIGH_DAMAGEAREA__NEAREST (3)  
SPELL_HIGH_DAMAGEAREA__MAGE (4)     
SPELL_HIGH_CLOUDDAMAGE__NEAREST (5) 
SPELL_HIGH_CLOUDDAMAGE__MAGE (6)    
SPELL_HIGH_CLOUDCURSE__NEAREST (7)  
SPELL_HIGH_CLOUDCURSE__MAGE (8)     
SPELL_HIGH_CURSEAREA__NEAREST (9)   
SPELL_HIGH_CURSEAREA__MAGE (10)     
SPELL_HIGH_CONE__NEAREST (11)       
SPELL_HIGH_CONE__MAGE (12)          
SPELL_HIGH_DAMAGE__NEAREST (13)     
SPELL_HIGH_DAMAGE__MAGE (14)        
SPELL_HIGH_CURSE__NEAREST (15)      
SPELL_HIGH_CURSE__MAGE (16)         
SPELL_HIGH_ANTIINVIS (17)           
SPELL_HIGH_ANTIMIND (18)            
SPELL_HIGH_ELEMENTABSORPTION (19)   
SPELL_HIGH_DAMAGEABSORPTION (29)    
FILLER (30)                         
TALENT_HEAL (0)                     
TALENT_HEALING_SELF (2)             
TALENT_USE_ENHANCEMENT_SELF (6)     
TALENT_ENHANCE_OTHERS (7)           
TALENT_MELEE_ATTACKED (8)           
TALENT_RANGED_ENEMIES (10)          
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TALENT_SUMMON_ALLIES (11)           
TALENT_SPELL_ATTACK (12)            
TALENT_MELEE_ATTACK (13)            
TALENT_CURE_CONDITION (14)          
TALENT_USE_TURNING (15)             
TALENT_MELEE_ATTACKED (16)          
TALENT_SPELL_ATTACK (24)            
FILLER (30)                         
TALENT_RANGED_ENEMIES (2)           
TALENT_SPELL_ATTACK (3)             
TALENT_MELEE_ATTACK (4)             
TALENT_MELEE_ATTACKED (5)           
FILLER (30)                         
TALENT_MELEE_ATTACK (0)             
FILLER (30)                         

MAGE ACTIONS 
HEAL_SELF (0)                       
SPELL_HASTE (5)                     
SPELL_TIME_STOP (6)                 
HEAL_SELF (7)                       
SPELL_HIGH_ABSORPTION (0)           
SPELL_HIGH_SUMMON__NEAREST (1)      
SPELL_HIGH_SUMMON__MAGE (2)         
SPELL_HIGH_DAMAGEAREA__NEAREST (3)  
SPELL_HIGH_DAMAGEAREA__MAGE (4)     
SPELL_HIGH_CLOUDDAMAGE__NEAREST (5) 
SPELL_HIGH_CLOUDDAMAGE__MAGE (6)    
SPELL_HIGH_CLOUDCURSE__NEAREST (7)  
SPELL_HIGH_CLOUDCURSE__MAGE (8)     
SPELL_HIGH_CURSEAREA__NEAREST (9)   
SPELL_HIGH_CURSEAREA__MAGE (10)     
SPELL_HIGH_CONE__NEAREST (11)       
SPELL_HIGH_CONE__MAGE (12)          
SPELL_HIGH_DAMAGE__NEAREST (13)     
SPELL_HIGH_DAMAGE__MAGE (14)        
SPELL_HIGH_CURSE__NEAREST (15)      
SPELL_HIGH_CURSE__MAGE (16)         
SPELL_HIGH_ANTIINVIS (17)           
SPELL_HIGH_ANTIMIND (18)            
SPELL_HIGH_ELEMENTABSORPTION (19)   
SPELL_HIGH_BREACH__NEAREST (20)     
SPELL_HIGH_BREACH__MAGE (21)        
SPELL_HIGH_DAMAGEABSORPTION (29)    
FILLER (30)                         
TALENT_HEALING_SELF (2)             
TALENT_USE_ENHANCEMENT_SELF (6)     
TALENT_ENHANCE_OTHERS (7)           
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TALENT_MELEE_ATTACKED (8)           
TALENT_RANGED_ENEMIES (10)          
TALENT_SUMMON_ALLIES (11)           
TALENT_SPELL_ATTACK (12)            
TALENT_MELEE_ATTACK (13)            
TALENT_SPELL_ATTACK (24)            
FILLER (30)                         
TALENT_RANGED_ENEMIES (2)           
TALENT_SPELL_ATTACK (3)             
TALENT_MELEE_ATTACK (4)             
FILLER (30)                         
TALENT_MELEE_ATTACK (0)             
FILLER (30)                         

ROGUE ACTIONS 
HEAL_SELF (0)                       
BUFF_SELF (1)                       
HEAL_SELF (7)                       
BUFF_SELF (17)                      
MELEE (22)                          
MELEE (23)                          
RANGED (24)                         
RANGED (25)                         
MELEE (26)                          
RANGED (27)                         
FILLER (30)                         
TALENT_HEALING_SELF (2)             
TALENT_USE_ENHANCEMENT_SELF (6)     
TALENT_MELEE_ATTACK (13)            
TALENT_SNEAK_ATTACK (18)            
TALENT_MELEE_ATTACK (23)            
FILLER (30)                         
TALENT_MELEE_ATTACK (4)             
FILLER (30)                         
TALENT_MELEE_ATTACK (0)             
FILLER (30)                         

FIGHTER ACTIONS 
HEAL_SELF (0)                       
BUFF_SELF (1)                       
HEAL_SELF (7)                       
BUFF_SELF (17)                      
MELEE (22)                          
MELEE (23)                          
RANGED (24)                         
RANGED (25)                         
MELEE (26)                          
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RANGED (27)                         
FILLER (30)                         
TALENT_HEALING_SELF (2)             
TALENT_USE_ENHANCEMENT_SELF (6)     
TALENT_MELEE_ATTACK (13)            
TALENT_SNEAK_ATTACK (18)            
TALENT_MELEE_ATTACK (23)            
FILLER (30)                         
TALENT_MELEE_ATTACK (4)             
FILLER (30)                         
TALENT_MELEE_ATTACK (0)             
FILLER (30)    
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