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Visual search is an important part of human-computer interaction (HCI). The visual 

search processes that people use have a substantial effect on the time expended and 

likelihood of finding the information they seek. This dissertation investigates visual 

search through experiments and computational cognitive modeling. Computational 

cognitive modeling is a powerful methodology that uses computer simulation to capture, 

assert, record, and replay plausible sets of interactions among the many human processes 

at work during visual search. This dissertation aims to provide a cognitive model of 

visual search that can be utilized by predictive interface analysis tools and to do so in a 

manner consistent with a comprehensive theory of human visual processing, namely 

active vision. The model accounts for the four questions of active vision, the answers to 

which are important to both practitioners and researchers in HCI: What can be perceived 
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in a fixation? When do the eyes move? Where do the eyes move? What information is 

integrated between eye movements?

This dissertation presents a principled progression of the development of a 

computational model of active vision. Three experiments were conducted that investigate 

the effects of visual layout properties: density, color, and word meaning. The 

experimental results provide a better understanding of how these factors affect human-

computer visual interaction. Three sets of data, two from the experiments reported here, 

were accurately modeled in the EPIC (Executive Process-Interactive Control) cognitive 

architecture. This work extends the practice of computational cognitive modeling by (a) 

informing the process of developing computational models through the use of eye 

movement data and (b) providing the first detailed instantiation of the theory of active 

vision in a computational framework. This instantiation allows us to better understand (a) 

the effects and interactions of visual search processes and (b) how these visual search 

processes can be used computationally to predict people’s visual search behavior. This 

research ultimately benefits HCI by giving researchers and practitioners a better 

understanding of how users visually interact with computers and provides a foundation 

for tools to predict that interaction.
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CHAPTER I

INTRODUCTION

Visual search is an important part of human-computer interaction (HCI). Users search 

familiar news web sites to locate new stories of interest. Users search the interfaces of 

new, unfamiliar desktop applications to familiarize themselves with those applications. 

Users search the virtual environments of games to locate and identify objects that require 

more scrutiny or action. For sighted users, nearly every action requires some visual 

interaction and many of these actions require visual search, to find familiar or novel 

information.

Visually searching for information is quite often the fastest and most useful way of 

finding information in a variety of user interfaces. Functionality such as web search 

engines or the “Find” command found in many operating systems can be used to find 

items on a computer screen quickly. However, there are many instances in which visual 

search is more useful, such as (a) searching among many similar results where it is 

difficult to specify a search query to locate the desired target, such as examining web 

search engine results, (b) when an application does not include a find command, such as 

in video games, and (c) when the exact target is not known by the user, such as when 

looking for items that match some vague concept or goal. In these cases, if the eyes are 
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used to search instead, fast eye movements can be used rather than slower typing, many 

visual objects can be evaluated by the user simultaneously, and words can be located that 

the user may not have generated spontaneously for textual searches.

The visual search processes that people use in HCI tasks have a substantial effect on 

the time and likelihood of finding the information they seek. Users encounter many 

challenges finding the information they seek when visually searching. Figure 1 shows a 

the home page of a health information web site. In this example layout, if a user is 

searching for drug interaction information, they may search the menu at the top and 

encounter many distracting images before they realize they need to perform a text search 

using the text field below the image of the number two with the orange background. As 

another example using a simpler interface, Figure 2 shows a page from the popular web 

site craigslist. Visual search of this page is affected both by the layout used (grouping, 

color, spacing, text size, etc.) and the strategies used while visually searching the page 

(slow item-by-item, using labels or not, following the columns or not).

Visual search is a particularly fascinating human activity to study because it requires 

a complex and rapid interplay among three major processes: perceptual, cognitive 

(decision), and motor. Perceptual processes affect how information from the environment 

reaches other processes. An example of a perceptual process that affects visual search is 

the retinal availability: The information that can be perceived through the eyes will vary 

as a function of the orientation of the eyes, because visual acuity is higher in the center of 
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Figure 1. A section from the Health.com home page. Users encounter many challenges 
when trying to location information like how two drugs may interact, such as distracting 
advertisements, headings in many different colors and typefaces, and numerous menus 
and visual hierarchies. (Source: http://www.health.com/health/ July 24, 2008)
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Figure 2. A section from a Craigslist web page where people search for products, 
services, and jobs. For example, a user may be looking for a used bicycle. The layout and 
a user’s visual search strategy will largely determine how long it takes the user to locate 
target information. (Source: http://eugene.craigslist.org/ March 6, 2008)



people’s field of vision (i.e. the fovea). Cognitive processes affect how information from 

the environment is used, such as deciding what information in the periphery is most 

relevant and hence where to move the eyes next. Motor processes result in actions in 

relationship to the environment, such as orienting the eyes to a new location or clicking 

on a web page link. It can be difficult to understand and predict the effects and 

interactions these complex processes have on people’s visual search behavior.

Computational cognitive modeling is a very powerful methodology for capturing, 

asserting, recording, and replaying plausible sets of interaction among the processes at 

work during visual search. In this dissertation, computational cognitive models are 

computer simulations of how people perform one or a set of tasks. Cognitive models of 

visual search have been built to simulate perceptual processes, such as proposals for how 

the visual features of objects are detected, where visual features are detected, and when 

visual features are detected. The models simulate cognitive processes such as strategies 

that people use when conducting visual search in various tasks, such as how people 

visually search groups of computer icons and how using various devices while driving 

affects people’s visual scanning of the environment. The models simulate motor 

processes for a range of human motor activities, such as the time it takes to move the eyes 

or a cursor to an object on the screen.

The most important contribution of computational cognitive models to the field of 

HCI is that the models provide the science base that is needed for predictive interface 
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analysis tools. Projects such as CogTool (John & Salvucci, 2005) and CORE/X-PRT 

(Tollinger et al., 2005) are at the forefront of tools that utilize cognitive modeling to 

predict user interaction based on a description of the interface and task. These tools 

provide theoretically-grounded predictions of human performance in a range of tasks 

without requiring that the analyst (the person using cognitive models) be knowledgeable 

in cognitive, perceptual, and motoric theories embedded in the tool. Designers of device 

and application interfaces could use such tools to evaluate their visual layouts, reducing 

the need for more expensive human user testing early in the development cycle. Potential 

usability problems in interfaces such as the web page shown in Figure 1 could be 

identified early, before time consuming human user testing. For example, an automated 

interface analysis tool could help designers discover that the health information web site 

shown in Figure 1 may not do a good job of supporting important tasks, such as finding 

different kinds of drug information. The tool could show likely visual search behavior if a 

user were to pursue such a task. A user might be likely to miss the small menu item 

“Drug Finder” near the upper-right corner. If a user does arrive at the large label “4 Ways 

to Search Conditions, Drugs, and Symptoms” in the middle of the page, that user might 

be likely to terminate their search on the sub-label “1 Browse Conditions” and never use 

the appropriate search box with the label “2 Look Up Drug Information.”

Predicting people’s visual interaction is one facet of user behavior that research with 

interface analysis tools is trying to improve. The most recent version of CogTool (Teo & 

John, 2008) now incorporates modeling work presented in this dissertation (and 

6



published earlier (Halverson & Hornof, 2007)). The research presented here is already 

helping current interface analysis tools to better simulate visual search in HCI tasks. 

However, CogTool does not yet account for the human eyes, where they move, and what 

they do and do not see. That is, automated interface analysis tools do not yet simulate the 

necessary processes to simulate active vision.

Active vision (Findlay & Gilchrist, 2003) is the notion that eye movements are a 

crucial aspect of our visual interaction with the world, and thus critical for visual search. 

When people interact with the environment (e.g. a user interface), they constantly move 

their eyes to sample information using fixations. A fixation is the time when the eyes are 

relatively steady. Accounting for these eye movements will not only allow a better 

understanding of the processes underlying visual search , but also a better understanding 

of how people are using computer interfaces and the like. Any simulation of active vision 

must address four questions, the answers of which are important to designers and those 

interested in HCI. What information in the environment do we process during each 

fixation?  Where do we move our eyes and why? When and why do we move our eyes? 

What information from the environment do we maintain across fixations?

The goal of this dissertation is to build a computational model of visual search in HCI 

that integrates a range of theory consistent with the notion of active vision. This research 

advances the usefulness and applicability of models of visual search based on original 

research of eye movements in visual search, a synthesis of existing literature, and 
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principled methods for iteratively improving models of visual search based on eye 

movement data. The aim of the work presented in this dissertation is to improve the 

overall usability of computer systems by developing fundamental theory and 

understanding of how users visually interact with computers. Tools for the prediction of 

user interaction do not yet have an active vision model that can simulate people’s visual 

search behavior. This research is one step towards that comprehensive, active vision 

model. This dissertation presents a detailed step-by-step principled progression of the 

development of a computational cognitive model of active vision. The models are 

explained and detailed with a variety of eye movements to provide answers to the 

questions put forth by active vision.

This dissertation advances the field of HCI — particularly with respect to computer 

science — as well as the field of cognitive science. This research benefits HCI and 

computer science by providing a theory-based foundation for engineering approaches to 

interface design, such as CogTool (John & Salvucci, 2005), to better predict how 

computer users visually interact with computers.  Additionally, this research advances the 

field of computer science by improving an understanding of end users, specifically a 

computational instantiation of how people use their computers. This research also 

advances cognitive science by providing an instantiation of psychological theory on 

visual search in a computational model that is a testable integration of that theory.

8



The remainder of this dissertation is arranged as follows. Chapter II reviews literature 

on cognitive modeling and visual search that is relevant to a computational cognitive 

model of active vision for HCI. Chapter III presents three experiments, each of which is 

aimed at better understanding how people visually search structured, text-based layouts. 

Chapter IV discusses the development of an integrative computational cognitive model of 

visual search based on experiments discussed in the previous chapter. Chapter V 

summarizes the research, identifies key contributions, and suggests future directions.
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CHAPTER II

LITERATURE REVIEW

In order to create a model of visual search that is useful to HCI, we must first 

consider the general premises of such a model. This section provides an overview of 

relevant literature on visual search and computational cognitive modeling.

This dissertation is concerned with how people visually search displays in everyday, 

natural tasks. Typically, when people use visual search in HCI the eyes are moved and 

independent shifts of attention (i.e. covert attention) are not used (Findlay & Gilchrist, 

1998, 2003). Since different information is available depending on the orientation of the 

eyes (Bertera & Rayner, 2000; Findlay & Gilchrist, 2003), the movements of the eyes (as 

well as head and body movements) are important for models of visual search in HCI. 

This is especially true due to the increasing size of computer displays and the increasing 

ubiquity of computing interfaces. Therefore, this dissertation will focus on the role of eye 

movements in visual search.

2.1 Previous Models of Visual Search in HCI

A variety of models have been developed to predict visual search behavior. Some 

models have been developed specifically to predict and explain performance in a narrow 

domain, such as graph perception. Others have been developed to predict and explain the 
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effects of specific visual features in a broad range of visual search tasks. The following is 

a brief overview of relevant models to provide context for the remainder of the chapter. 

Guided Search (GS ; Wolfe, 1994; Wolfe & Gancarz, 1996) is a computational model 

of how visual features, such as color and orientation, direct visual attention. Guided 

Search predicts that the order in which objects are visually searched is affected by the 

following: the “strength” of objects’ visual features (e.g. their blueness, yellowness, 

steepness, and shallowness), the differences between objects, the spatial distance between 

objects, the similarity to the target, and the distance of objects from the center of gaze 

(i.e. the eccentricity).

The Area Activation Model (AAM ;Pomplun, Reingold & Shen, 2003) is also a 

computational model of how visual features direct visual attention. The AAM shares 

many characteristics with GS, but differs in at least one important way. The AAM 

assumes that all objects near the center of gaze are searched in parallel and GS assumes 

that objects are searched serially.

Barbur, Forsyth, and Wooding (1990) propose a computational model to predict eye 

movements in visual search. The model uses a hierarchical set of rules to predict where 

people’s gaze will be deployed. Like the AAM, Barbur, et al.'s model assumes that all 

objects near the center of gaze are searched in parallel. It differs from the GS and AAM 

in that eccentricity is the only visual feature that determines where the gaze moves next.
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Understanding Cognitive Information Engineering (UCIE) is a computer model of 

human reasoning about graphs and tables (Lohse, 1993). UCIE is based on GOMS 

(Goals, Operators, Methods, and Selection Rules; John & Kieras, 1996), an engineering 

model for predicting task execution time. UCIE extends GOMS with a model of visual 

search. The time to perceive objects, eye movements, and a limited memory for 

information provide constraints for the simulation of how people scan graphs and tables 

to answer questions about the graph or table.

EPIC (Executive Process-Interactive Control) is a framework for building 

computational models of tasks that lends itself well to building models of visual search 

(Kieras & Meyer, 1997). EPIC provides a set of perceptual, motor, and cognitive 

constraints based on a variety of psychological literature. Models of visual search built 

within EPIC tend to explain visual search as the product of cognitive strategies, 

perceptual constraints, and motor constraints.

2.2 Active Vision Theory

Active vision is the notion or collection of theory that asserts eye movements are 

central to visual processes, including visual search (Findlay & Gilchrist, 2003). Active 

vision poses four central questions that would need to be addressed in a model of visual 

search: (a) What can be perceived when the eyes are relatively steady? (b) When and why 

do the eyes move?  (c) Where do the eyes move next? (d) What information is integrated 

between eye movements?
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2.2.1 What Can Be Perceived?

What a user can visually perceive in an interface at any given moment is an important 

question that must be answered by a model of visual search. For example, will the user 

notice the notification that just appeared on their screen? Or, can the user perceive the 

differences between visited and unvisited links on a proposed web page? A model of 

visual search must be able to predict if and when a user can perceive basic and complex 

features of a visual layout. Most of the models previously reviewed make different 

assertions about the information perceived in each fixation and the region from which 

this information can be extracted.

One possible assumption about what can be perceived is that all objects within a fixed 

region can be perceived. Some models of visual search make this assumption. Barbur, et 

al. assume that all information within 1.2 degrees of visual angle of fixation center can be 

perceived (Barbur, Forsyth & Wooding, 1990). UCIE (Lohse, 1993) assumes that all 

items within an unspecified radius are processed, but only the perception of the object of 

interest at the center of fixation is considered. Guided Search (Wolfe & Gancarz, 1996) 

assumes that up to 5 objects near the center of fixation are processed during each fixation.

Another possible assumption about what can be perceived is that the distance between 

the stimuli and the center of fixation influences what can be perceived. The Area 

Activation model (Pomplun, Reingold & Shen, 2003) assumes that all items within a 

“fixation field” are perceived. These fixation fields are two-dimensional normal 

distributions centered on the center of fixation and vary by the properties of the stimuli in 
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the layout. While the authors of the Area Activation model argue that the fixation field 

will vary based on task difficulty, foveal load, experience, density, and heterogeneity, 

their model does not predict a priori exactly how these factors will affect the field. 

Rather, the fixation field is estimated experimentally using the number of fixations 

required to search given stimuli. The problem with this method is that it requires the 

modeler to collect data for each set of stimuli, and it assumes that the fixation field does 

not vary across the visual layout even if the properties of objects vary.

Current models of visual search have not integrated all research findings that may be 

relevant to predicting what is perceived in a fixation during visual search. While some 

models assume that all items within a given region can be perceived in parallel, no 

differentiation is made for vertically or horizontally organized objects. Research has 

shown that the region from which information is used during a fixation may be larger in 

the horizontal dimension (Ojanpää, Näsänen & Kojo, 2002). As another example, Casco 

and Compana (1999) found that search time for objects defined by simple features was 

affected by density and not by spatial perturbation. Contrarily, the search time for objects 

defined by combined features was affected by spatial perturbation and not by density. 

While a predictive model need not address all observed phenomena to be useful, more 

research may be required to determine what can be perceived in a fixation based on the 

stimuli present.
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A straightforward model of visual search for HCI need only assume that a set number 

of objects or a set region is perceived during each fixation. This is what many existing 

models assume (Barbur, Forsyth & Wooding, 1990; Hornof, 2004; Lohse, 1993; Wolfe & 

Gancarz, 1996). This simplifies the model, as only object location is required to 

determine which objects fall within the set region and are consequently perceived.  

Additionally, such a model would require little, if any, additional empirical work. As 

density does not seem to affect the effective field of view (the region from which 

information is used in a fixation) in visual search (Bertera & Rayner, 2000), we may also 

want to restrict our straightforward model to a set region around the center of fixation. A 

reasonable approximation for this region is one degree of visual angle radius, as this 

distance has been used to explain visual search for simple shapes (Barbur, Forsyth & 

Wooding, 1990) and text (Hornof, 2004).

2.2.2 When Do the Eyes Move?

If a model predicts what a user can perceive in an interface within a fixation, the 

model must also account for when the eyes move. For example, will the eyes remain on 

complex icons longer than simple icons? The time between eye movements is called 

saccade latency or fixation duration. 

Four explanations of fixation duration control have been proposed in the literature 

(Hooge & Erkelens, 1996): (a) preprogramming-per-trial, (b) preprogramming-per-

fixation, (c) strict process-monitoring, and (d) mixed-control. The first explanation, 

preprogramming-per-trial, is that the required fixation duration is estimated before the 
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visual search task is initiated and this estimated fixation duration is used throughout the 

visual search task.  This explanation does not preclude preprogramming multiple fixation 

durations based on the stimuli encountered.  The second explanation, preprogramming-

per-fixation, assumes that fixation durations are dynamically estimated throughout a 

visual search task.  If previous fixations were too short to perceive the stimuli before 

initiating a saccade, future fixation durations are lengthened; if previous fixations are 

longer than needed to perceive the stimuli, future fixation durations are shortened.  The 

third explanation, strict process-monitoring, is that fixation durations are not estimated, 

but rather directly determined by the time to perceive the fixated stimuli.  The last 

explanation, mixed-control, assumes that saccades are sometimes initiated by the time to 

perceive the stimuli and at other times by previously estimated durations. Two of these 

four explanations of fixation duration, strict process-monitoring and mixed control, 

require consideration of how long it takes to process objects in order to determine how 

long fixations will be. Therefore, to fully understand these last two explanations, 

additional information on the time to process visual objects is required.

Models vary considerably with respect to the how long it takes to visually process 

objects. Some assume a fixed time per object (Anderson, Matessa & Lebiere, 1997; 

Byrne, 2001; Wolfe, 1994) or strategy (Kieras, Wood & Meyer, 1997).

Models that assume a fixed time to process objects also tend to assume a short 

processing time. Processing an object takes 50 ms in Guided Search (Wolfe, 1994) and 
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the same amount of time in models based on ACT-R’s Visual Interface (Anderson, 

Matessa & Lebiere, 1997; Byrne, 2001). When eye movements are considered in Guided 

Search (Wolfe & Gancarz, 1996), the processing time per fixation is also fairly constant, 

inspecting four to five items in 200 to 250 ms.

Models that propose a varying time for processing objects do so in a variety of ways. 

Eye Movements and Movements of Attention (EMMA; Salvucci, 2001a) utilizes two 

properties of an object to determine the encoding time. The first is the probability of the 

object appearing in a layout (i.e. the normalized frequency). The second is the 

eccentricity of the object relative to the center of fixation. UCIE (Lohse, 1993) predicts 

processing time according to the number, proximity, and similarity of all objects within a 

limited range of fixation center. Models based on EPIC (Kieras & Meyer, 1997) generally 

assume a constant time to perceive each property of an object, but these times are 

determined independently for each feature. So, while the time to perceive each feature is 

generally constant, the time to perceive all properties of the object will vary with the set 

of features an object has.

Object processing time is one of the most non-standard properties across different 

models of visual search. Processing time in most models is a single parameter, with little 

differentiation for perceiving stimuli of different complexities.
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2.2.3 Where Do the Eyes Move?

The order in which items are searched in a layout may have a large impact on 

usability and implications for the visual tasks that a layout will support well. Will a 

visitor to a web page look in the location the designer intends for a task? For example, in 

Figure 1, will users first look at the deep blue and light blue menu bars at the top first or 

will they look at the large image promoting the “Statin Study”?

The path the eyes follow is usually referred to as the scanpath. A great deal of 

research has been conducted to determine the factors that influence the scanpath in visual 

search. Research pertaining to the scanpath attempts to understand what factors guide 

visual attention or the eyes. Understanding the scanpath is seen by many as the core to 

understanding visual search, and is the focus of many models of visual search.

Two influences on scanpaths are (a) guidance by features, or bottom-up guidance, and 

(b) guidance by strategy, or top-down guidance. The intrinsic features (e.g. color, size, 

shape, or text) of objects affect the order in which objects are visually searched. When 

features of the target are known and these features can be perceived in the periphery, this 

information can guide visual search. Most existing models of visual search use intrinsic 

properties to guide search in some way. Guided Search 2 (Wolfe, 1994) builds an 

activation map based on the color and orientation of objects to be searched. Activation 

maps are spatial representations of where in the visual environment information exists. 

Visual search is then guided to the items in the order of greatest to least activation. 

Guided Search 3 (Wolfe & Gancarz, 1996) adds the additional constraint that objects 
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closer to the center of fixation produce more activation. The Area Activation model 

(Pomplun, Reingold & Shen, 2003) is similar to Guided Search 2, except that search is 

guided to regions of greatest activation instead of items.

A great deal of research has been conducted to determine which features can guide 

where the eyes move in visual search (see Wolfe & Horowitz, 2004 for a review). Based 

on the strength of current evidence, Wolfe and Horowitz concluded that there are four 

features that can guide visual search: color, motion, orientation, and size. While other 

attributes may also guide visual search, there is either contradicting evidence or 

insufficient evidence to conclude that other features do guide search. Most of the research 

reviewed by Wolfe and Horowitz has investigated visual search without eye movements. 

That is, the use of covert attention was required of the participants. So, can such results 

be used to inform eye movements in models of visual search? Hopefully, yes. Findlay and 

Gilchrist (2003) argue that shifts of covert attention are associated with eye movements. 

If the two are associated, some or all factors that affect covert attention may also affect 

eye movements. However, even if it is assumed that much of the covert attention 

guidance phenomena can be directly applied to eye movements, it is still unclear to what 

extent or where in the visual field this guidance information is used. The literature lacks a 

clear specification of where in the visual field visual features can be used to guide search.

Intrinsic features are not the only influence on the scan path, especially if (a) the 

peripherally available information cannot guide search or (b) the exact identity of the 
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target is unknown. Strategic decisions, or top-down guidance, also influences the order in 

which objects are searched.

Strategies play a major role in determining saccade destinations. Hierarchical menus 

have been found to motivate fundamentally different strategies than non-hierarchical 

menus (Hornof, 2004). The ordering of menu items, either alphabetically or functionally, 

decreases search time, and therefore may motivate fundamentally different strategies than 

randomly ordered menus (Card, 1982; Perlman, 1984; Somberg, 1987). 

There has been substantial research on factors that influence the destination of the 

eyes in visual search, and a fair amount of this research is applicable to predictive models 

of visual search for HCI. Such models will have to consider both intrinsic features of 

objects in the layout and strategies. Based on past research, models of visual search 

should at least consider how scanpaths are influenced by motion, color, orientation, and 

size. It is not clear how the effects of these properties should be represented in the model. 

A common form of representation in the psychological models is the use of the activation 

map. However, models need not be limited to such representations as long as the models 

account for similar phenomena, such as density, distance from the center of fixation, and 

cumulative effects of multiple features.

2.2.4 What Information Is Integrated Between Eye Movements?

Another important factor to consider in visual search is what information is integrated 

between eye movements. In other words, how does memory affect visual search? 
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Important factors to consider include: (a) What is remembered between fixations? (b) 

How much can be remembered during visual search? (c) When is information forgotten 

that is used during visual search?

Models of visual search for HCI need to account for the ways in which memory may 

affect visual search. For example, when searching for a specific news article, will a user 

remember which headings have already been searched, or will the user repeatedly  and 

unnecessarily revisit some of them? There are at least three types of memory that may 

affect the visual search process: visual working memory, verbal working memory, and 

spatial working memory (Logie, 1995).

Research suggests that neither visual nor verbal working memory have a major 

impact on the fundamental visual search processes. Visual and verbal working memories 

are limited capacity, temporary stores for visual and verbal information. These two 

memories show little overlap in functionality (Baddeley, 1986). Interestingly, research 

has shown that when verbal or visual working memory is occupied, visual search remains 

efficient. When people visually search for a shape while performing a task that is 

presumed to occupy visual working memory, the rate at which people visually searched 

was unaffected (Woodman, Vogel & Luck, 2001). A similar result is found when visually 

searching for a word while verbal working memory is filled (Logan, 1978, 1979). These 

findings do not mean that working memory does not affect visual search tasks at all. In 

general, for each modality, people can recall four things on average (Baddeley, 1986; 
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Luck & Vogel, 1997). If the visual search task requires storing multiple items in memory 

before search is terminated, limitations on working memory could require that the user 

terminate search early or forget items for later use.

However, the use of spatial memory (i.e. memory for locations in space), especially 

for where one has previously fixated, does appear to affect visual search. Research has 

shown that when spatial memory is occupied, visual search efficiency is reduced (Oh & 

Kim, 2004). A memory for previously fixated locations is also suggested by other 

research. A study of the visual search in “Where’s Waldo?” scenes, in which a cartoon 

figure is hidden within complex scenes, found that saccades tend to be directed away 

from the locations of previous fixations (Klein & MacInnes, 1999).

In general, models of visual search do not incorporate limitations of memory. There 

are two major exceptions. The first is that many models of visual search assume a perfect 

memory for objects searched (Anderson, Matessa & Lebiere, 1997; Barbur, Forsyth & 

Wooding, 1990; Byrne, 2001; Hornof, 2004; Kieras & Meyer, 1997; Pomplun, Reingold 

& Shen, 2003; Wolfe, 1994). The details of how this memory is implemented varies by 

model, but in general all the models “tag” each item as it is inspected and then do not re-

inspect the objects unless all items have been searched without locating the target. The 

second exception is that a popular cognitive architecture used to build computational 

cognitive models, ACT-R (Anderson et al., 2004), includes a rich representation of 

memory. In short, ACT-R assumes that memory “chunks” have a likelihood of being 
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recalled based on several factors, including the amount of time that has passed since that 

information was perceived. This limitation has the potential to affect visual search. For 

example, if visual search takes too long, it may be more difficult to retrieve (or recall) 

information gathered earlier in the search.

2.2.5 Summary

Active Vision emphasizes the importance of eye movements. Active vision asserts 

that understanding where and when the eyes move, and how information gathered during 

eye movements is utilized, are critical for understanding vision and, in particular, visual 

search. The literature reviewed suggests that no one model of visual search provides 

answers to all of the questions of active vision. However, every question of active vision 

is addressed by at least one model. The proposed answers for active vision will be used in 

this dissertation, along with input from other literature and experimentation reported in 

this thesis, to help build a candidate active vision model of visual search.

2.3 Specific Visual Search Phenomena

The following three sections discuss research on factors affecting visual search that 

(a) are relevant to the design of user interfaces, (b) lend themselves well to building 

computational models, and (c) affect eye movements in very specific ways. These factors 

are density, color, and semantics.

2.3.1 Density of Visual Objects

One common feature used in interfaces to indicate importance and association is 

relative density of the visual objects (Mullet & Sano, 1995). Figure 3 shows one example 
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Figure 3. A section from a Craigslist web page. The two labeled sections illustrate 
differences in densities. The groups of words are sparse in Region 1 relative to Region 2. 
The black rectangles and labels were added for illustration.
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of a web page that utilizes multiple densities. Most of the users’ tasks in this layout will 

be to locate the appropriate listing category. For example, a user may want to find a boat 

for sale in Vancouver, Canada. In this web page, some of the groups of words (Region 1) 

are sparse and show the categories of listings on Craigslist. Other groups (Region 2) are 

more dense and show geographic regions for which there are listings. This visual layout 

uses density to not only show association, but also importance. 

The density of items in a display is one factor that has been shown to affect visual 

search. Bertera and Rayner (2000) varied the density of randomly placed characters in a 

search task. They found that search time decreased as the density of the characters 

increased. In addition, they estimated that the number of items processed per fixation 

increased as the density of the items increased. Mackworth (1976) showed similar results 

in a study in which participants searched for a square among uniformly distributed circles 

on a scrolling vertical strip. Ojanpää, Näsänen, and Kojo (2002) studied the effect of 

spacing on the visual search of word lists and found that, as the vertical spacing between 

words increased (i.e. as density decreased), search time also increased.

Density has also been shown, to a lesser extent, to affect people’s visual search 

strategies with pictorial stimuli. Studies have found that the eyes tend to move to stimuli 

that are likely to be “more informative.” One definition of “more informative” in pictorial 

stimuli proposed by Mackworth and Morandi (1967) is regions having greater contour. 

For example, with geometric shapes, angles are considered more informative than 
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straight lines. Yet, it is not readily known how to predict a priori which of two stimuli are 

more informative. One plausible factor of “informativeness” is local density. It may be 

that regions with a higher local density are more likely to be searched earlier since they 

contain more information.

2.3.2 Link Colors

Color is another common feature used in interfaces to indicate group association. For 

example, a common Web design technique is to vary hypertext link color. One 

convention is to set unvisited links to blue and visited links to red. Figure 4 shows an 

example of a task that benefits from differentiated link colors. The idea is that the colors 

will help users to focus their search on unvisited links, increasing the efficiency of visual 

search. This convention of differentiating unvisited and visited links has some support 

from observational studies (Nielsen, 2007; Spool, Scanlong, Schroeder, Snyder & 

DeAngelo, 1999), but lacks empirical work showing the effect of text color on people’s 

visual search strategies.

The effects of color on visual search is widely studied (Brawn & Snowden, 1999; 

Christ, 1975; Shen, Reingold & Pomplun, 2003; Shih & Sperling, 1996; Treisman, 1998; 

Zohary & Hochstein, 1989). However, the visual search literature does not directly 

address the application of the above guideline. Specifically, there are few if any previous 

studies of visual search of colored text.
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Knowing the target color reduces the number of items that need to be searched and 

thus reduces the time needed to find the target. Previous research has shown that color is 

available early in the visual system (i.e pre-attentively) and that people can constrain 

visual search to items with the most informative features (Shen, Reingold & Pomplun, 

2000). Therefore, knowing the color of the target of search has the potential to greatly 

decrease search time (Treisman, 1998).
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Figure 4. Visited links (yellow) and unvisited links (blue) for categories of children’s 
book at Powell’s Books.
(Adapted from www.powells.com/ on May 16, 2008.)



2.3.3 Semantically Grouped Displays

In addition to being visually grouped, words in a layout can be grouped based on their 

semantics; that is, words can be grouped based on relationships between the words (e.g. 

synonyms, hypernyms). Categorical grouping, a type of semantic grouping, is found on 

many web sites. For example, as shown in Figure 3, the popular classifieds web site 

craigslist.org connects semantically related items by both proximity and visual cues, such 

as the grid structure, salient labels, and regions associated with meta-groups.

Previous research has shown how group labels, akin to the word “Canada” in Figure 

3, affect the selection of visual search strategies and the execution of the those strategies 

(Hornof, 2004). In Hornof’s research, the participants knew what the exact text of the 

label and target word for which they were searching. This research found that people use 

different visual search strategies based on the presence or absence of labels for groups of 

words. Specifically, when group labels were present, people tended to constrain their 

initial search to the labels. Perhaps more importantly, Hornof found that the execution of 

these strategies were substantially different, with labels motivating a more systematic 

search strategy. 

Other research has shown how the semantic information in menu items affects visual 

search (Brumby & Howes, 2004). Brumby and Howes found that when searching a menu 

for an item described by a goal phrase not containing that word, people tend to search 

fewer items (a) when distractor menu items are less similar to the goal than when when 

the distractors are more similar to the goal and (b) when the target is more similar to the 
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goal than when the target is less similar to the goal. In Brumby and Howes research, the 

words were not hierarchically related, either visually or semantically.

The previous research has investigated the effects of hierarchical organization and the 

effects of semantic similarity separately, but they have not addressed how the two 

phenomena may interact. What happens when the information is hierarchically organized 

into semantically related sets of words whose relationship is indicated with a meaningful 

label? How is visual search guided by the semantic content of group labels, or the 

grouping of the menu items? An experiment presented later in this thesis will investigate 

how a semantic hierarchy and a visual hierarchy affect users’ visual search strategies.

2.4 Computational Cognitive Modeling

Computational cognitive models are computer programs that simulate aspects of 

people’s perceptual, motor, and cognitive processes. Cognitive modeling is used in two 

ways: (a) In a post hoc fashion to help explain the behavior of people performing a task. 

(b) In an a priori fashion to predict how people will perform a task. This thesis reports on 

research that uses cognitive modeling in the former manner, to explain people’s behavior.

Building cognitive models to explain users’ behavior in a post hoc fashion has a rich 

history. In explanatory modeling, human data is collected and models are built to explain 

the observed behavior. Such explanatory cognitive models have been used to understand 

web link navigation behavior (Fu & Pirolli, 2007), driving behavior (Salvucci, 2001b), 

and time interval estimation (Taatgen, Rijn & Anderson, 2007). Explanatory models are 
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useful in their own right, to expand our understanding of user behavior, but are also 

useful for informing a priori predictive models. For example, the explanatory modeling 

of driving behavior (Salvucci, 2001b) was used to inform the development of a predictive 

model of driver behavior while utilizing a cell phone (John, Salvucci, Centgraf, & Prevas, 

2004). The models developed in this dissertation are consistent with other explanatory 

modeling research in that data is collected, the models are built, and lessons learned form 

the modeling are identified.

Cognitive models are often built using cognitive architectures, as is done in this 

research. The cognitive architectures instantiate and integrate psychological theory of 

human perceptual, cognitive, and motor processes in a framework that is used to build 

cognitive models. The architecture constrains the construction of the models by enforcing 

capabilities and constraints hypothesized to be similar to those of a human. Cognitive 

models consist of: (a) a detailed set of if-then statements called production rules that 

describe the strategy used by the simulated human to carryout a task, (b) the instantiated 

theory embodied in the cognitive architecture, and (c) parameters specified that effect the 

behavior of the architecture (e.g. the velocity of a saccadic eye movement). While the 

parameters can be task specific, the majority of the parameters are usually considered 

fixed across a wide variety of models. Simulations using these cognitive models produce 

predictions of how a person may perform the task. The results of such simulations allow 

the testing of the theory instantiated in the models by comparing the performance against 

those observed from humans. 
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There is a special relationship between modeling and the study of eye movements. 

The movements of the eyes provide a rich set of data on which models can be built and 

against which predicted eye movements of the cognitive model can be compared. In this 

way, the data can provide many constraints on the construction of the models. These 

include not only the reaction time, but also the number, extent, and timing of the 

observed eye movements. Therefore, it is beneficial to use a modeling framework that 

provides facilities for making explicit predictions of eye movements.

2.4.1 EPIC

EPIC (Executive Process-Interactive Control) is a cognitive architecture that 

instantiates and integrates theory of perceptual, motor, and cognitive constraints and 

benefits. Figure 5 shows the high-level architecture of EPIC (Kieras & Meyer, 1997). 

EPIC provides facilities for simulating the human and the task separately. In the task 

environment, a visual display, pointing device, keyboard, speakers, and microphone can 

be simulated. Information from the environment enters the simulated human through 

eyes, ears, and hands into corresponding visual, auditory, and tactical perceptual 

processors. Information from the perceptual processors are deposited into working 

memory. In the cognitive processor, information in working memory interacts with the 

the cognitive strategy (instantiated in the production rules) to produce action through the 

ocular, manual, and voice motor processors. The motor processors control the simulated 

eyes, hands, and mouth to interact with the environment. All processors run in parallel.
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The perceptual and motor processors impose many constraints. Perceptual processors 

determine what information in the environment are potentially available “downstream” to 

the cognitive processor. Motor processors determine what information can change in the 

environment that will again become available to the cognitive processor through the 

perceptual processors. Particularly relevant to the research in this dissertation are the 

constraints imposed by the simulated eyes, which are: (a) The retina provides more 

detailed processing of information in foveal (central) vision. (b) The eyes take time to 

move to gather additional information. EPIC specifies retinal availability functions for 

different visual properties to simulate the limitations of the retina. For example, detailed 

32

Task 
Environment 

Cognitive 
Processor

Working
Memory

Production Rule
Interpreter

Vocal Motor
Processor

Visual
Input

Auditory
Input

Long-Term
Memory

Auditory
Processor

Visual
Processor

Production 
Memory

Ocular 
Motor

Processor

Tactile
Processor

Manual 
Motor

Processor

Simulated 
Interaction 
Devices

Figure 5. The high-level architecture of the EPIC cognitive architecture (Kieras & Meyer, 
1997).



information like text is only available within 1 degree of visual angle from the center of 

gaze. Other information, such as color, is available at a greater eccentricity. EPIC also 

simulates the eye movements, called saccades, to gather additional information. The 

cognitive processor can send commands to the ocular-motor processor to initiate eye 

movements which take time to prepare and execute.

The strategies used by people to perform a task are instantiated in the production 

rules. Coordination of the motor processors is a primary responsibility of the strategies. 

One or more tasks may require the use of one or more processors. However, motor 

processors can only be controlled by one production rule at a time. For example, the eyes 

cannot be told to move to two locations at the same time. The timing and coordination of 

motor actions are vital constraints in EPIC.

EPIC permits multiple production rules to fire in parallel and places the serial 

bottleneck at the motor and (to a lesser extent) perceptual processors. Thus, an important 

aspect of modeling with EPIC is instantiating strategies that work with the constraints 

imposed by the peripheral processors (e.g. the eyes).

EPIC is a C++ programming framework for the Macintosh operating system. EPIC 

provides an extensive set of C++ classes that an analyst can use to build a program which 

simulates a user and a computer interface with which the simulated user interacts. The 

framework represent human cognitive, perceptual, and motor capabilities as discrete, but 

interacting, processes encoded in object-oriented classes. The design of the framework 
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lends itself well to identifying where in the simulation predicted behavior is originating 

and thus more easily modify the framework to improve the fidelity of the simulation.

2.4.2 EPIC and Visual Search

EPIC is particularly well-suited as a cognitive architecture for building models of 

visual search. Perhaps most importantly for active vision, EPIC simulates eye 

movements. As shown in Figure 5, the EPIC framework provides an ocular motor 

processor and visual processors. Within the EPIC framework exists theory that constrains 

the simulation of (a) what can be perceived in each fixation, (b) when visual features are 

perceived, and (c) how visual information can be integrated across fixations.

What can be perceived at any given moment is most constrained by EPIC’s retinal 

availability functions. The availability functions simulate the varying resolution of the 

retina, with greater resolution near the center of vision and lower resolution in the 

periphery. The retinal availability functions determine the eccentricity at which visual 

properties can be perceived. For example, text is available within one degree of visual 

angle from the center of fixation, roughly corresponding to foveal vision, whereas color 

is available within seven and a half degrees of visual angle.

When visual features are perceived, relative to the timing of an object’s appearance, is 

constrained by simulated delays in EPIC’s perceptual processors, namely sensory 

transduction time and perceptual recoding time. The encoding of visual objects and their 

properties into visual working memory takes time. If a visual property is available 
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according to the availability function (described above), that information travels through 

the visual sensory processor and the visual perceptual processor, each of which induces a 

delay, before being deposited into visual working memory.

What gets integrated between fixations is a factor of memory decay time and the 

production rules. The perceptual parameters affect how information can be integrated 

between fixations as follows: When the eyes move away from an object, one or more 

visual properties may no longer be available. How far the eyes must move is determined 

by the properties’ retinal availability function. When the retinal availability function 

determine that a feature is no longer available, the visual feature decays from sensory 

memory and then from visual working memory. Production rules can extend the “life” of 

visual features and object identity by creating a “tag” memory item before an object 

decays from visual working memory. However, copying memory items must be explicitly 

programmed into the production rules, usually based on task dependent criteria.

Where the eyes move is determined by the visual search strategies encoded in the 

production rules and the contents of working memory. The production rules explicitly 

state under which circumstances the eyes are moved. When the contents of working 

memory satisfy a production rule that moves the eyes, a motor movement command is 

sent to the ocular motor processor, which then initiates an eye movement to the object 

specified by the production rule.
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All told, EPIC is very well-suited as a framework for simulating active vision in the 

context of HCI tasks. EPIC provides theory of visual-perceptual and ocular-motor 

processing that are useful for guiding the development of models of visual search in tasks 

that motivate eye movements.

2.5 Summary

The goal of this dissertation is to build a computational model of visual search that 

explains a variety of eye movement behavior in HCI tasks. Towards that goal, this 

dissertation draws on visual search literature, specifically literature related to active 

vision and previous models of visual search.

An active vision approach is adopted in this research to investigate people’s visual 

search behaviors. Active vision is the notion that eye movements and the physical 

constraints imposed by the eyes must be considered when investigating visual processes. 

Issues central to the notion of active vision include when and where the eyes move, what 

is perceived, and how the information perceived is used over time. This dissertation will 

explore these issues through cognitive modeling.

Computational cognitive modeling is a useful method for understanding how people 

perform tasks, and EPIC is a cognitive architecture in which models especially well-

suited to an active vision approach can be built. EPIC is a cognitive architecture, a 

software framework for building cognitive models, that instantiates constraints on the 
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availability and timing of visual information through the simulation of human ocular 

motor activity and visual perceptual processes.

Now that the theoretical framework and background is in place, the next chapter will 

present the specific visual search experiments conducted as part of this dissertation work 

to provide the detailed reaction time and eye movement data needed to guide the 

development of the models of active vision.
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CHAPTER III

EXPERIMENTS

Three experiments were conducted to (a) provide insight into how people visually 

search computer interfaces and (b) inform the building of computational cognitive 

models of such tasks. This chapter describes the experiments conducted for this 

dissertation, the analysis of eye movements recorded from these experiments, and the 

implications of these experiments for human-computer interaction.

One focus of this research is to understand how the physical arrangement of visual 

objects affects visual search. Figures 1 and 2 show examples of layouts with physical 

arrangements that will affect search. In these layouts: (a) the majority of the content are 

single words or short phrases, (b) the layouts are organized in a grid-like fashion, and (c) 

the visual properties of the objects that appear in the layout vary. The experiments 

reported in this dissertation are derived from real-world layouts such as those shown in 

Figures 1 and 2, but scaled down to provide more experimental control.

Each experiment investigated how a specific design decision affects users’ visual 

search processes as revealed by reaction time and eye movements. The first experiment, 

mixed density displays, investigated the effects of varying the visual density of elements 

in a structured layout. The second experiment, link colors, investigated how 
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differentiating potential targets from non-targets using color (as is done with web page 

links) affects visual search. The third experiment, semantically grouped displays, 

investigated how both semantic and visual grouping affect people’s active vision.

3.1 Mixed Density Displays

An aim of this research is to ultimately predict how people visually search real-world 

interfaces. The density of content within interfaces, from the world wide web to printed 

brochures, varies substantially. This experiment is designed to explore how issues of 

density, discussed in Chapter I and researched by previous authors, should be 

incorporated into a general purpose, comprehensive, active vision model of visual search 

for HCI.

Density may be measured as either overall density or local density. Overall density is 

the number of items per unit of screen space over an entire layout. Local density is the 

number of items per unit of screen space within a visually distinct group. The first 

experiment was conducted to determine how varying local density in a layout affects 

visual search. Specifically, the effects of mixing of two local densities were investigated. 

Groups of words of two different densities, which will be referred to as sparse groups and 

dense groups, were presented alone or together.

It was hypothesized that search time per word would be greater in sparse layouts and 

that people search dense regions before sparse. As discussed in Chapter II, previous 

research has shown that densely packed shapes are visually searched faster than sparsely 
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packed shapes. The initial assumption is that this will hold for words as well. 

Additionally, if people do visually search dense groups of words faster and they are 

motivated to find the target as quickly as possible while making as few errors as possible, 

then it is assumed that people will search dense regions first since this would result in 

finding the target faster on average. These two hypotheses are tested in the following 

experiment.

3.1.1 Method

This experiment investigated the effect of local density on the visual search of 

structured layouts. The remainder of this section discusses an experiment that investigates 

the effects of local density on users’ visual interaction. The task is described and the 

results of an experiment are discussed.

3.1.1.1 Participants

Twenty-four people, 10 female and 14 male, ranging in age from 18 to 55 years of 

age (M = 24.5, SD = 7.9) from the University of Oregon and surrounding communities 

participated in the experiment. The participants were screened as follows: 18 years of age 

and older; a native English speaker; experienced using a computer; no learning disability; 

normal use of both hands; and normal or corrected-to-normal vision.

The participants’ visual acuity, color vision, and stereo vision were verified. Visual 

acuity was verified using a Runge Near Point Card. The experimenter ensured that the 

participants had 20/20 vision. The print size of letters on the acuity chart which the 
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participants were required to read were substantially smaller than the text they would 

later be required to read during the experiment. Normal color vision was verified using 

the H-R-R Pseudoisochromatic Plates, 3rd Edition. Normal stereo vision was verified 

using the Stereo Butterfly and Random Dot Test. All eye exam materials were acquired 

from Richmond Products in Albuquerque, New Mexico.

Participants were financially motivated to perform with high speed and accuracy. The 

participants were instructed that they should complete each trial quickly while making 

few errors. Participants were paid $10, plus a bonus that ranged from $0 to $4.54 based 

on their performance. Speed and accuracy were motivated as follows: The participant was 

initially given 7¢ to 16¢ for each trial, depending on the complexity of the screen. They 

lost 1¢ for each second after the trial started until they clicked on the target. If the 

participant clicked on something besides the target or if they moved the mouse before 

they found the target, the participant lost all of the money for that trial plus 5¢. The 

rewards and penalties were explained to the participants to motivate speed and accuracy.

3.1.1.2 Apparatus

Visual stimuli were presented on a ViewSonic VE170 LCD display set to 1280 width 

by 1024 height resolution at a distance of 61 cm, which resulted in 40 pixels per degree 

of visual angle. The experimental software ran on a 733 MHz Apple Power Macintosh G4 

running OS X 10.2.6. The mouse was an Apple optical Pro Mouse, and the mouse 

tracking speed was set to the fourth highest in the mouse control panel. The visual stimuli 

were presented with custom software designed using the C++ programming language, 
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Metrowerk’s PowerPlant framework, and Metrowerk’s Codewarrior development 

environment. The software was developed by the author as part of this dissertation work.

3.1.1.3 Eye Tracking

Since we are concerned with understanding visual search processes, the most directly 

observable and measurable events of interest are the eye movements of the experimental 

participants. Therefore, eye movements were recorded using an single-camera LC 

Technologies Eyegaze System, a 60 Hz pupil-center and corneal-reflection eye tracker. A 

chinrest was used to maintain a consistent eye-to-screen distance of 61 cm.

Eye trackers allow us to directly observe and record people’s point of gaze. The 

participants pupil center and corneal reflection (the point on the eye closest to the 

camera) are monitored using infrared cameras and specialized video processing software. 

The vector between the pupil center and the corneal reflection are used to determine 

where the participant is looking.

3.1.1.3.1 Eye Movement Analysis The analysis and interpretation of eye movements 

can be challenging. There is an abundance of data, the data can be difficult to segment, 

and it’s not always clear how to best use the data to answer the research questions. To 

address these issues: (a) Custom software was designed for studying eye data. (b) A well 

defined subset of the data was identified for analysis.

An extensible application, VizFix, was developed by the author to allow custom 

analysis of eye movement data as part of the work for this dissertation. The core of 
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VizFix provides a basic facilities to store, segment, and analyze eye movement data. 

Perhaps more importantly, VizFix is extendable through plugins that can read different 

data formats and provide additional, custom analysis for the identification of fixations 

and the counting, duration, and ordering of those fixations.

The first step in eye movement analysis is to identify meaningful physiological 

phenomena, fixations for this research, from the stream of gaze position samples 

provided by the eye tracker. In all analyses presented in this dissertation, fixations are 

identified using a dispersion-based algorithm (Salvucci & Goldberg, 2000). This 

algorithm was implemented in VizFix. The dispersion-based algorithm identifies 

fixations based on temporal and spatial relations between the gaze position samples 

provided by the eye tracker. In this dissertation, fixations are defined as a series of 

samples with locations within a 0.5° of visual angle radius of each other for a minimum 

of 100 ms. To accommodate noise in the eye tracker, this implementation of the 

dispersion-based algorithm assumes that a fixation continues if one sample occurs outside 

of the 0.5° radius as long the next sample occurs within that threshold.

Another important step early in the analysis process is to consider the best way to 

study the fixation data. Both temporal and spatial segmentation of the fixation data is 

required. Temporal segmentation includes choosing the right subset of fixations to 

analyze. Depending on the questions to be answered, different constraints must be placed 

on the selection of data to be analyzed. The spatial segmentation of fixations includes 
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choosing the correct regions of interest for each analysis. Region of interest is a phrase 

commonly used in eye tracking analysis to denote (a) the locations in the visual display 

that are meaningful for the analysis and (b) the spatial scale at which the analysis will be 

conducted. For example, the regions of interest may be either individual words or groups 

of words (spatial scale) and may or may not include the whitespace surrounding the 

words (meaningful locations). The following are temporal and spatial constraints used in 

VizFix for the analysis of the eye movement data from the experiments presented in this 

research:

• The eye movement data analysis is limited to include gaze position samples 

starting from the first fixation that began after the user had initiated the visual 

search task and ending with the first fixation that stopped before the participant 

moved the mouse to click on the target of visual search. That is, only fixations 

that started after visual search started and fixations that ended before selection 

started are included in analyses. This constraint was imposed because the fixation 

that is ongoing when a layout appears may have been used to (a) process the 

visual stimuli present before the layout appears and (b) guide manual movements 

to initiate the next visual search task.

• When assigning fixations to regions of interest, a region is considered visited if 

one or more contiguous fixations fall within 1 degree of visual angle of the 

region. A region is considered revisited if that region has been previously visited. 
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• Unless otherwise stated, revisits are not included in the analyses because it is 

assumed that the participants’ visual search behavior may differ within groups 

already visited.  That is, if a person has previously fixated a group of items, 

decisions about that group of items may have already been made and may be 

recalled.

• The final region visited during visual search is not included in analyses because it 

is assumed that the participants’ behavior will differ when a target is found. For 

example, the target will be fixated longer or more frequently than other items 

because the cursor must be moved to the target and the target clicked.

3.1.1.3.2 Eye Tracker Calibration Eye trackers need to be calibrated to each user in 

order to record accurate gaze position data. Adjusting for the unique characteristics of 

each users’ eyes requires the user to look at several points on the screen on which the 

stimuli will be presented.

The need for calibrations and recalibrations can be a limiting factor in using an eye 

tracker for data collection. Too many calibrations can interrupt participants’ task 

execution. A solution, implemented for the first time by the authors as part of this 

dissertation work, is the use of the required fixation location (RFL) technique (Hornof & 

Halverson, 2002).
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The RFL technique provides an objective measure of eye tracker accuracy and can 

potentially reduce the number of calibrations required. An RFL is a location that the 

participant must fixate during the execution of the task in order to accomplish the task 

(e.g. clicking on a target). If the measured gaze location deviates too far from the RFL, a 

calibration is automatically initiated at the next appropriate time (e.g. between trials).

Other means of verifying eye tracker accuracy tend to be less reliable or more 

disruptive. The alternatives to using the RFL are: (a) Only a single initial calibration. This 

is problematic because the calibration can deteriorate over time, resulting in less reliable 

data. (b) Use the experimenter’s subjective evaluation. While the experimenter can 

usually monitor the eye movements recorded by an eye tracker, it can be very difficult to 

consistently determine when the eye tracker’s accuracy becomes problematic. Such 

subjective measures can result in unreliable data or unnecessary interruptions to 

recalibrate during the experiment. (c) Regular interruptions to recalibrate. The 

experimenter can interrupt the experiment at regular intervals (e.g. at the end of each 

block of trials) to recalibrate the eye tracker regardless of whether it is truly necessary. Of 

the three alternatives, this is the most desirable. However, this is an uninformed decision 

and can result in too few or too many recalibrations.

3.1.1.3 Stimuli

Figure 6 shows a sample layout from a mixed density display. Layouts always 

contained six groups of left-justified, vertically-listed black words (RGB values of 0, 0, 

0) on a white background (RGB values of 255, 255, 255). Groups were sets of words 
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surrounded by white space that was equal to or greater than the distance between the 

centers of the words in the group. The groups were arranged in three columns and two 

rows. Columns were 7.5 degrees of visual angle from left edge to left edge. Rows were 

separated by 0.65 degrees of visual angle.

There were two types of groups, each with a different local density. Sparse groups 

contained five words of 18 point Helvetica font with 0.65 degrees of vertical angle 

between the centers of adjacent words (0.45° for word height, and 0.2° for blank space). 

Dense groups contained 10 words of 9 point Helvetica font with 0.33 degrees of vertical 

angle between the centers of adjacent words (0.23° for word height, and 0.1° for blank 

space). Both types of groups subtended the same vertical visual angle.

There were three types of layouts: sparse, dense, and mixed-density. Figure 6 shows 

an example of a mixed-density layout. Figure 7 shows examples of sparse and dense 

layouts. Sparse layouts contained six sparse groups. Dense layouts contained six dense 

groups. Mixed-density layouts contained three sparse groups and three dense groups. The 

arrangement of the group densities in the mixed-density layouts was randomly 

determined for each trial. Sparse and dense layouts were identical to the mixed-density 

layout, with the exception of group densities.

One concern with the experimental design may be that font size and word spacing are 

conflated. In other words, how can the effects of density be evaluated when both factors 

are varied? This experiment was designed in part to determine the effect of combining 

48



multiple local densities in a single layout. Local density was purposefully manipulated by 

covarying font size and word spacing.  Text size often covaries with local density in real-

world tasks, as is seen in the example from the Craigslist web page in Figure 3. Varying 

just text size or spacing may have removed the effect of visually distinct groups. The 

number of words per group was varied with local density to keep the height of groups 
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similar so that the visual salience of dense and sparse groups were approximately 

equivalent.

The words used in each trial were randomly selected from a list of 765 nouns 

generated from the MRC Psycholinguistic Database (Wilson, 1988). No word appeared 

more than once per trial. The words from the database were constrained as follows: three 

to eight letters, two to four phonemes, above-average printed familiarity, and above-

average imagability. Five names of colors and thirteen emotionally charged words were 

removed. The words used are shown in Appendix A.

The target word was randomly chosen from the list of words used in each trial. The 

participant was precued with the target word before each layout appeared. The precue 

appeared at the same location every time, directly above the top left word in the layout, in 

uppercase, 14 point Geneva font – a different font than in the layouts to reduce the effects 

of visual priming.

3.1.1.4 Procedure

The procedure was as follows. Each participant signed an informed consent form, filled 

out a demographics questionnaire, received a vision exam, and received instructions for 

the experiment. The participants were told that they would complete many trials and that 

each would proceed as follows: The participant should study the precue; click on the 

precue to make it disappear and the layout appear; find the target word without moving 

the mouse cursor; and then move the cursor to click on the target.
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The participants were financially motivated to not move the mouse cursor until they had 

found the target. This was done to separate the visual search time from the cursor 

pointing and clicking time. The point-completion deadline procedure (Hornof, 2001) 

enforced compliance. Participants practiced meeting the point completion deadline prior 

to the experiment.

At the start of each experiment, the eye tracker was calibrated to the user. The 

calibration procedure required the participant to fixate a series of nine points until the 

average error between the predicted point of gaze and the actual location of the points fell 

below an error threshold (approximately 0.6 degrees of visual angle). Accurate eye 

tracking calibration was maintained using the automated required fixation locations 

(RFL) procedure (Hornof & Halverson, 2002) discussed earlier. If the eye tracker did not 

detect the user’s gaze on the precue before the precue was clicked and yet the participant 

nonetheless selected the correct target, the eye tracker was recalibrated before the 

following trial.

The trials were blocked by layout type. Each block contained 30 trials, preceded by 

five practice trials. The blocks were fully counterbalanced. Trials were marked as errors if 

whitespace or a word besides the target was clicked on, the point completion deadline 

was not met, or the eye tracker was out of calibration for the trial. Only correct trials are 

analyzed.
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3.1.2 Results

Search time began when the participant clicked on the precue and ended when the 

participant started moving the mouse. Eye movement data included in the analyses 

started from the first fixation (that started) after the precue was clicked and ended with 

the first fixation (that ended) before the mouse started moving.

The mean search time and eye movement measures for each of the twenty-four 

participants were analyzed using repeated-measure ANOVAs. An alpha level of .05 was 

used for all statistical tests. The analyses focused on the experimental manipulation of 

layout density.

3.1.2.1 Error Rates

Three types of errors were recorded: (a) The participant did not click on the target; (b) 

the participant moved the mouse before the target was found (i.e. violation of the point 

completion deadline); (c) the eye tracker calibration was off. As shown in Figure 8, the 

participants’ error rates were low, less than 5 percent, in all conditions. More errors 

occurred in the high density layouts. An increase in errors was expected in the dense 

layouts where all of the targets are small. Smaller targets were harder to click on, 

resulting in more occasions in which the participants would likely click on a nearby target 

or require more time to click (thus risking a violation of the point-completion deadline). 

The errors were still relatively low, indicating that the participants were motivated to 

perform accurately. Further, as will be seen in the next section, visual search took longer 
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in the high density conditions. Lower error rates in conditions with faster search times 

suggest that the participants were not trading speed for accuracy.

Figures 8 also shows that the eye tracker calibration had to be corrected infrequently. 

The eye tracker had to be recalibrated a total of 25 times, which is less than one 

calibration per block. This indicates that the participants gaze was reliably detected where 

it was expected and hence the eye tracking data is reliable.
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3.1.2.2 Search Time

As shown in Table 1, participants searched layouts that had fewer dense groups faster 

than layouts that had more dense groups, F(2, 46) = 127.80, p < .01. Since dense groups 

contained more words, the following analyses were conducted after normalizing for the 

number of words per layout. This was accomplished by dividing the search time per trial 

by half of the number of words in the layout. This normalization assumes that 

participants searched half of the words on average. Participants spent less time per word 

in layouts with fewer dense groups, F(2, 46) = 13.94, p < .01. More specifically, the 

participants spent less time per word in sparse layouts compared to mixed layouts, HSD = 

23.68, p < .01; and less time per word in sparse layouts compared to dense layouts, HSD 

= 27.91, p < .01; but there was no meaningful difference between the time spent 

searching per word in the mixed and dense layouts, HSD = 4.24, p = .46.

The search time was also analyzed as a function of layout uniformity (single density 

vs. mixed density) and target group density. Figure 9 shows the results. Locating a target 

in a dense group took longer than in a sparse group, F(1, 23) = 83.87, p < .01. The mean 

search time for all-sparse and all-dense was no different than the mean search time for 

mixed-density layouts, F(1, 23) = 1.03, p = .32. However, there was an interaction 

between layout uniformity and target group density, F(1, 23) = 16.87, p < .01. In other 

words, when the target was in a sparse group, participants found the target faster in all-

sparse layouts than in mixed layouts; when the target was in a dense group, participants 

found the target faster in mixed-density layouts than in all-dense layouts. Furthermore, in 

54



55

Se
ar

ch
 T

im
e 

pe
r T

ria
l (

m
s)

Se
ar

ch
 T

im
e 

pe
r W

or
d 

(m
s)

Fi
xa

tio
ns

 p
er

 W
or

d
Fi

xa
tio

n 
D

ur
at

io
n 

(m
s)

La
yo

ut
M

ea
n

SD
M

ea
n

SD
M

ea
n

SD
M

ea
n

SD

Sp
ar

se
31

25
66

5
10

8
49

0.
7

0.
2

25
0

22

M
ix

ed
57

53
14

93
25

3
62

0.
7

0.
1

30
7

49

D
en

se
79

25
18

91
26

5
55

0.
6

0.
1

37
0

68

n=
24

Ta
bl

e 
1.

 S
ea

rc
h 

tim
e 

pe
r t

ria
l a

nd
 p

er
 w

or
d,

 fi
xa

tio
ns

 p
er

 w
or

d,
 a

nd
 fi

xa
tio

n 
du

ra
tio

n 
fo

r s
pa

rs
e,

 m
ix

ed
-d

en
si

ty
, a

nd
 d

en
se

 
la

yo
ut

s. 
Th

e 
“p

er
 w

or
d”

 m
ea

su
re

s a
re

 n
or

m
al

iz
ed

 b
as

ed
 o

n 
th

e 
nu

m
be

r o
f w

or
ds

 in
 th

e 
la

yo
ut

.



mixed density layouts, participants found the target faster when it was in a sparse group, 

F(1, 23) = 30.36, p < .01.

3.1.2.3 Eye Movements

As shown in Table 1, participants made slightly fewer fixations per word in layouts 

with more dense groups, F(2, 46) = 3.25, p = .05. The participants used fewer fixations 

per word in the dense layouts than in the mixed layouts, F(1, 23) = 8.42, p = .01.

The fixation durations were much longer in layouts with more dense groups, F(2, 46) 

= 61.82, p < .01. The participants made longer fixations in the dense layouts than in the 
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mixed layouts, F(1, 23) = 36.01, p < .01, and longer fixations in mixed layouts than in the 

sparse layouts, F(1, 23) = 38.11, p < .01.

As shown in Figure 10, participants tended to visit sparse groups before dense groups, 

χ2(5, N = 24) = 500.04, p < .01. A group was “visited” if one or more contiguous 

fixations fell within 1 degree of visual angle of the group (group revisits were not 

included). Differences in the number of group visits in the mixed density layouts were 

tested by comparing the percentage of visits to sparse or dense groups for the first 

through sixth group visit.
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Participants revisited more groups per trial in layouts with more dense groups, F(2, 

46) = 10.50, p < .01. Fewer revisits were made in sparse layouts than mixed layouts, F(1, 

23) = 12.82, p < .01. Although there were fewer revisits per trial in mixed layouts than in 

dense layouts, the difference was not significant, F(1, 23) = 2.31, p = .14.

Figure 11 shows the number of fixations per group as a function of density uniformity 

(all groups of the same density or not), density of the group visited, and the order of 

group visit. There were no meaningful difference in the number of fixations per group 

between the uniform-density layouts and mixed-density layouts, F(1, 9) = 2.69, p = .14. 
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Participants used more fixations per group in dense groups than in sparse groups, F(1, 9) 

= 112.30, p < .01. Participants used more fixations per group as search progressed, F(5, 

45) = 8.14, p < .01. All interactions were also significant. All of the interactions can be 

summarized by the three-way interaction of uniformity, target group density, and the 

order of group visit, F(5, 45) = 4.52, p < .01. The number of fixations per group increased 

as search progressed, but much more so for the number of fixations in dense groups in the 

mixed-density layouts. This interaction is illustrated in Figure 11 by the steeper slope of 

the black, dashed line.

Figure 12 shows the fixation durations as function of density uniformity, target group 

density, and the order of group visit. Fixation durations were longer in dense groups than 

in sparse groups, F(1, 9) = 139.36, p < .01. Fixation durations tended to be longer for 

groups visited later than for groups visited earlier, F(5, 45) = 4.89, p < .01. However, 

none of the interactions were statistically significant, even though trends similar to those 

found in the fixations per group analysis can be seen in Figure 12.

3.1.3 Discussion

This study investigates the effects of layout density and variation in density. This 

experiment reveals active vision strategies people use to search layouts with different 

densities, as is common in computer interfaces. These results will be used in the 

following chapter to help guide the development of a computational model of active 

vision for HCI.
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The most interesting results were found in the mixed-density condition. It was shown 

that the targets in sparse groups were found faster than the targets in dense groups, at 

least in part due to sparse groups being searched earlier.

The results suggest that people tend to search sparse groups first and faster (even 

when search times are normalized for word count). The search time data reported here 

demonstrate that people spent less time per word searching sparse layouts. It appears that 

participants were able to adopt a more efficient eye movement strategy that used slightly 

more and shorter fixations.

60

1st 2nd 3rd 4th 5th 6th

Group Visit Order

0

100

200

300

400
M

ea
n

 F
ix

a
ti

o
n

 D
u

ra
ti

o
n

 (
m

s)

GroupLayout

Dense

Mixed

Mixed

Sparse

Dense

Dense

Sparse

Sparse

Figure 12. The mean fixation duration as a function of density uniformity, the density of 
the group visited, and order of the group visit. Error bars indicate ±1 standard error.



The finding that sparse groups are searched faster is contrary to search time results 

from some previous research. This result is contrary to the search time results found by 

Bertera and Rayner (2000) and Ojanpää, et al. (2002) in which the search time per item 

decreased as the density increased. This discrepancy may relate to the way in which 

density is manipulated. In the previous studies, the spacing between items was varied, 

and in the current study, the size of items (i.e. font size) was varied. It may be that 

although various factors affect local density, they do not all affect visual search of those 

densities in the same way.

Targets in sparse groups were found faster in part because sparse groups were 

searched first. People preferred to search sparse groups first. This is not what we 

expected. We expected dense groups to be searched first, as dense groups contained more 

information. Targets were found faster in the sparse group of mixed-density layouts, as 

shown in Figure 9, and the eye movement data also show that the participants tended to 

look at the sparse groups first. As is seen in Figure 10, it was much more likely for 

participants to look at sparse groups than dense groups within the first four groups 

visited. Note that while the first group visited was often a dense group, this is because 

89% of all initial fixations were to the top-left group in the layout, and this group was 

equally likely to be either sparse or dense.

The findings that sparse groups tend to be searched first and faster supports the design 

practice of using sparse groups of text to attract users’ attention to more important 
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information. Information essential for the primary goals should be placed in groups that 

are sparse relative the other information in the layout so that they are more likely to be 

found faster. It is shown that sparse groups of words are searched faster and, when 

presented with dense groups, sparse groups are searched earlier than dense groups. This 

lends support to the practice of following the typographic conventions of displaying 

important information such as headlines with larger, more visually salient text.

A good, comprehensive cognitive model must include strategies, and useful analyses 

will identify these strategies. The data from this experiment provide evidence of such 

strategies. There was evidence of a shift in participants’ search strategy when searching 

the mixed density layouts. This shift can be seen in Figures 11 and 12 in the darker 

dashed line that jumps up between the third and fourth group visit. After half of the 

groups in the layout had been visited, the participants tended to use more and longer 

fixations to search the dense groups. This transition occurred right around the time that it 

became more likely for the participants to search the dense groups. 

This observed strategy shift suggests that care should be taken when combining 

densities in a visual layout. If people regularly adopt strategies that are more optimal for 

sparse text and use these same strategies when searching dense text, this may increase the 

likelihood of information being missed in dense groups. In general, fewer and shorter 

fixations are less likely to find a target. The next study examines another common visual 

characteristic of text in visual interfaces – the color of the text.
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3.2 Link Colors

The second experiment, on link colors, is designed to reveal people’s visual search 

strategies and provide general guidance for building computational cognitive models of 

human-computer visual interaction, specifically for tasks involving colored text. This 

experiment explores how issues of color, discussed in Chapter II and researched by 

previous authors, affect active vision in HCI tasks. The experiment investigates how 

varying the number of items of the same color as the target affects visual search when 

there are items of a different color present or not. In other words, this study investigates 

the visual search of structured layouts where only a subset of text, based on the color of 

text, need be searched. The web design practice of trying to assist visual search by 

differentiating visited and unvisited links based on color is investigated by varying the 

ratio of blue and red words, and by including layouts in which red words were replaced 

by blank space. The target word is always blue. It is hypothesized that search time would 

increase with the number of blue words and search would be faster with the red words 

absent.

3.2.1 Method

3.2.1.1 Participants

Twenty-four people, 11 female and 13 male, ranging in age from 19 to 55 years of age 

(mean = 25.1, SD = 7.9) from the University of Oregon and surrounding communities 

participated in the experiment. Twenty-two of these participants also took part in the 

mixed density experiment described above. The same screening criteria were applied.
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Participants were monetarily motivated to participate in this study, and to perform 

with high speed and accuracy. The participants were instructed that they should complete 

each trial quickly while making few errors. Participants were paid $10, plus a bonus that 

ranged from $2.53 to $9.20 based on their performance. Speed and accuracy were 

motivated as follows: The participant was initially given 4¢ to 7¢ for each trial, 

depending on the complexity of the screen. They lost 1¢ for each second after the trial 

started until they clicked on the target. If the participant clicked on something besides the 

target or if they moved the mouse before they found the target, the participant lost all of 

the money for that trial plus 5¢. The rewards and penalties were explained to the 

participants to motivate speed and accuracy.

3.2.1.2 Apparatus

The same stimuli presentation and eye tracking computers were used as described 

above for the mixed density experiment. The visual stimuli were presented with custom 

software designed using the C++ programming language, Metrowerk’s PowerPlant 

framework, and Metrowerk’s Codewarrior development environment. The software was 

developed by the authors as part of this dissertation work.

3.2.1.3 Stimuli

Figure 13 shows a sample layout. All layouts utilized the same 30 locations for the 

text stimuli. These locations were divided into six groups of left-justified, vertically-listed 

words words. The groups surrounded by white space that was equal to or greater than the 

distance between the centers of the words in the group. The groups were arranged in three 
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columns and two rows. Columns were 7.5 degrees of visual angle from left edge to left 

edge. Rows were separated by 0.65 degrees of visual angle. Each group contained five 

locations for the text stimuli with 0.65 degrees of vertical angle between the centers of 

adjacent locations (0.45° for word height, and 0.2° for blank space).

The text in the layouts was always the same size and font, but the color of the text 

could vary. The text was 18 point Helvetica font. The text could either be blue (RGB 

values of 0, 0, 67) or red (RGB values of 67, 0, 0). The words appeared on a white 

background (RGB values of 0, 0, 0).

There were seven types of layouts: One layout contained thirty blue words, two 

layouts contained twenty blue words, two layouts contained ten blue words, and two 
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Figure 13. A sample layout from the text color experiment with ten target-colored (blue) 
words and twenty non-target-colored (red) words. All angle measurements are in degrees 
of visual angle.



layouts contained one blue word. In each pair of layouts with the same number of blue 

words, non-blue positions were either filled with red words as shown in Figure 13, or left 

blank as shown in Figure 14. The mixed-color layouts were always filled for a total of 30 

words. Because the target was always blue, red words could be distinguished as non-

targets based on their color alone.

The words used in each trial were randomly selected from a list of 765 nouns 

generated from the MRC Psycholinguistic Database (Wilson, 1988). No word appeared 

more than once per trial. The words from the database were constrained as follows: three 

to eight letters, two to four phonemes, above-average printed familiarity, and above-

average imagability. Five names of colors and thirteen emotionally charged words were 

removed. The words used are shown in Appendix A.
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The target word was randomly chosen from the list of words used in each trial. The 

participant was precued with the target word before each layout appeared. The precue 

appeared at the same location every time, directly above the top left word in the layout, in  

black (RGB values of 0, 0, 0), all upper case, 14 point Geneva font – a different font than 

in the layouts to reduce the effects of visual priming.

3.2.1.4 Procedure

The procedure for this experiment was identical to the Local Density experiment 

procedure described in section 3.1.1.4. In short, the precue appeared, the participant 

clicked on the precue, searched the layout and clicked on the precue. For participants that 

took part in this and the mixed density experiment during the same session, the order of 

presentation for the experiments were counterbalanced.

3.2.2 Results

Search time began when the participant clicked on the precue and ended when the 

participant started moving the mouse. Eye movements were recorded from the time 

participants clicked on the precue to when they clicked on the target. The mean search 

time and eye movement measures for each of the twenty-four participants were analyzed 

using repeated-measure ANOVAs. An alpha level of .05 was used for all statistical tests.

3.2.2.1 Error Rates

Three types of errors were recorded: (a) The participant did not click on the target. (b) 

The participant moved the mouse before the target was found (i.e. violation of the point 

completion deadline). (c) The eye tracker calibration was off. As shown in Figures 15 and 
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16, the participants’ error rates were low — less than 4 percent — in all conditions. The 

percentage of point-completion errors tended to increase with the number of blue words 

in the layout. This may be because with more potential targets in the layouts, the 

participants were more likely to mistake another word for the target and start moving the 

cursor towards such a word. However, as will be seen in the next section, visual search 

time also increased as the number of blue words increases. Lower error rates in 

conditions with lower search times demonstrated that the participants were not trading 

speed for accuracy.
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Figures 15 and 16 also show that the eye tracker calibration had to be corrected 

occasionally, in roughly 0.3% of the trials, but this is not inordinately high. This auto-

recalibration was triggered a total of 25 times, on average less than one time per block. 

This suggests that the eye tracking data is reliable; the participants gaze was reliably 

detected where it was expected.

3.2.2.2 Search Time

As can be seen in Figure 17 and Table 2, participants found the target faster in layouts 

with fewer blue words, F(3, 21) = 378.80, p < .01, and when red distractors were absent, 
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F(1, 23) = 32.01, p < .01. There is an interaction between the number of blue distractors 

and the presence of red distractors, F(3, 21) = 23.06, p < .01. In other words, the presence 

of red words slowed search more when more were present.

Since layouts without red distractors contained more words, analyses were also 

performed after normalizing for the number of blue words per layout.  This was 

accomplished by dividing the search time per trial by half of the number of words in the 

layout. This normalization assumes that participants searched half of the words on 

average.
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Figure 17. The mean search time per trial in the Text Color experiment as a function of 
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As shown in Table 2, participants spent less time searching as a function of the 

number of blue words present in layouts with more blue words, F(3, 21) = 187.48, p < .

01, and when the red distractors were absent, F(1, 23) = 68.60, p < .01. Moreover, there is 

an interaction between the number of blue distractors and the presence of red distractors, 

F(3, 21) = 23.06, p < .001. Again, it is seen that the presence of red words slowed the 

search more when there were more red words present, but this time after normalizing for 

the number of blue words.

3.2.2.3 Eye Movements

As shown in Figure 18 and Table 2, all the main effects and interactions found with 

search time also appear in the number of fixation data. Participants made more fixations 

in layouts with more blue words, F(3, 21) = 379, p < .01.  Participants also made more 

fixations when red words were present, F(1, 23) = 33, p < .01.  Further, the effect of red 

words was greater when more red words were present, F(3, 21) = 20, p < .01.

Fixation durations were also analyzed. It was found that, if we account for things like 

the pop-out effect by removing the layouts in which only one blue word appeared, 

fixation durations are equivalent across all layouts (all p > .05).

Saccade distances and destinations were analyzed. All saccades were more likely to 

land on a blue word than a red word. Short saccades were more likely than long saccades 

to land on a blue word rather than a red word. The analysis was done for mixed color 

layouts as follows: Short saccades were defined as those under 7.5 degrees of visual 
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angle (which is the distance between two columns of words). All other saccades were 

classified as long. Most saccades were short, F(1, 23) = 958, p < .01. Most saccades were 

to blue words, F(1, 23) = 538, p < .01. Additionally, an interaction of word color and 

saccade distance shows that the participants were more likely to saccade to a blue word 

when the saccade was short than when the saccade was long, F(1, 23) = 359, p < .01. 

Nonetheless, most long saccades were to blue words, F(1, 23) = 14, p < .01.

73

1 10 20 30

Number of Blue Words

0

2

4

6

8

10
M

ea
n

 N
u

m
b

er
 o

f 
F

ix
a

ti
o

n
s 

p
er

 T
ri

a
l

Red & Blue Words

Blue Words Only

Figure 18. The mean number of fixations per trial in the Text Color experiment as a 
function of the number of blue words and the presence of red (or non-target-colored) 
distractors. Error bars indicate ±1 standard error.



3.2.3 Discussion

This study investigates the degree to which color can be used to guide users’ visual 

search strategies. Participants were presented with visual layouts with a varying number 

of blue words that they needed to search to find the target. Sometimes the remainder of 

the layout was filled with red words and sometimes those locations were empty. If people 

can focus on just the relevant stimuli, based on color, then we would expect equivalent 

behavior with the red distractors or identically-placed blank spaces.

These findings, for the most part, agree with previous work that suggests that people 

can ignore task irrelevant stimuli based on color  (Poisson & Wilkinson, 1992; Shen, 

Reingold & Pomplun, 2003; Zohary & Hochstein, 1989). Additionally, this work extends 

the previous research by using more complex stimuli. Previous research used colored 

shapes and the like, whereas the current research used colored text.

However, it was also found that the task-irrelevant stimuli (the red words) slowed 

visual search, even though irrelevant stimuli can in theory be pre-attentively ignored. 

While not a large effect, the red words did slow visual search. One explanation for more 

fixations when red words are present is that, just by their presence, the red words 

provided more visual objects that could be used as the destination of saccades.  The eye 

movement data support this possible explanation in that the likelihood of fixating a blue 

word rather than a red word decreased for longer saccades. However, the eye movement 

data also demonstrate that distinct link colors are very useful in guiding a search. This is 

true because they assist the programming of eye movements to relevant, unvisited links 

74



even when they are greater than 7.5 degrees of visual angle away from the current 

fixation, despite evidence that color (hue) perception is degraded at and beyond this 

angle. 

The results of this experiment are relevant to design guidelines for differentiating the 

color of web page links based on the whether the linked pages have been visited (Nielsen, 

2007; U.S. Department of Health and Human Services, 2006). For tasks in which web 

users need only search for relevant links to pages that have not been visited, this study 

shows that the visual search can be made very efficient if visited links are clearly 

discernible based on color. As the data show, layouts with thirty blue links – akin to Web 

pages that do not differentiate unvisited and visited links – take longer to search.

However, the finding that the presence of red words slows search time suggests that 

the guideline to differentiate links by text color might be improved. One possible 

improvement that could be made is differentiating visited links by luminescence in 

addition to color. Basic research has shown that color is not easily discernible in the 

periphery, but luminescence is.  As was seen in the eye movement data, link color is 

useful in the periphery of the display for this task, but a difference in luminescence may 

increase the benefit of differentiating visited links.

The results of this experiment extend an understanding of how color affects visual 

search strategies, and informs the development of predictive models of visual search. For 

example, it was found that people (a) tend to somewhat but not entirely ignore non-target-
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colored items, and (b) tend to fixate nearby items in part because the target-identifying 

features are easier to see. Further research may be needed to ensure that these findings 

hold when the text is surrounded by or embedded in additional content, and to validate 

the suggestion to differentiate web link further with differences in luminescence. 

Nonetheless, the strategy components demonstrated in this experiment are excellent 

candidates for inclusion in predictive visual layout analysis tools.

3.3. Semantically Grouped Displays

A third experiment was conducted to determine how people visually search 

semantically organized visual layouts. The experiment investigated effects of (a) 

positioning a target in semantically similar words, (b) giving the groups identifying 

labels, and (c) further subdividing the layouts into meta-groups using graphic design 

techniques. It was hypothesized that (a) the use of semantic grouping would be slightly 

less effective than group labels at facilitating efficient visual search, (b) group labels 

would speed peoples’ visual search, as previous research shows, and (c) subdividing 

groups by common region would constrain people’s visual search patterns.

3.3.1 Method

This experiment investigated the effect of semantic grouping, group labels, and 

common region on visual search of structured layouts of words. The remainder of this 

section discusses an experiment that investigates the effects of visual and semantic 

grouping on users’ visual interaction. The task is described and the results of an 

experiment are discussed.
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3.3.1.1 Participants

Eighteen people, nine male and nine female, ranging in age from 20 to 62 years of 

age (mean = 29.1; SD = 11.3) from the University of Oregon and surrounding community 

participated in the study. The participant screening criteria, including verification of the 

participants’ vision, were identical to those used in the previous experiment.

Participants were financially motivated to participate in this study, and to perform 

with high speed and accuracy. The participants were instructed that they should complete 

each trial quickly while making few errors. Participants were paid $15, plus up to $10 

based on their performance. Speed and accuracy were motivated as follows: The 

participant was initially given 8¢ to 10¢ for each trial, depending on the complexity of the 

screen. They lost 1¢ for each second after the trial started until they clicked on the target. 

If the participant clicked on something besides the target or if they moved the mouse 

before they found the target, the participant lost all of the money for that trial plus 5¢. 

The rewards and penalties were explained to the participants to motivate speed and 

accuracy.

3.3.1.2 Apparatus

Visual search stimuli were presented on an AG Neovo X-174 LCD display at a 

resolution of 1280 width by 1024 height at a distance of 61 cm, which resulted in 39 

pixels per degree of visual angle. The experimental software ran on Dual 2GHz 

PowerMac G5 running OS X 10.4.7. The mouse was a wired Apple Mighty Mouse 

configured for single-button operation, and the mouse tracking speed was set the fourth 
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highest in the mouse control pane. The visual stimuli were presented with custom 

software designed using the Objective-C++ programming language, Apple’s Cocoa 

framework, and Apple’s XCode development environment. The software was developed 

by the authors as part of this dissertation work.

Eye movements were recorded using a dual-camera LC Technologies Eyegaze 

System, a 120 Hz pupil-center and corneal-reflection eye tracker. Details of the eye 

tracker and eye movement analysis are given in section 3.1.1.3.

Participants completed the automated operation span (OSPAN) task (Unsworth, 

Heitz, Schrock & Engle, 2005), which was presented using E-Prime 1.1 running on a 

3GHz Pentium 4 running Windows XP SP2.

3.3.1.3 Stimuli

Figures 19 and 20 show sample layouts. Three variables were manipulated in the 

layouts: the semantic cohesion of groups of words, the presence of group labels, and the 

use of meta-groups. Groups of words were either semantically related (e.g. cashew, 

peanut, almond) or randomly grouped (e.g. elm, eraser, potato). Groups were either 

labeled or not. In some conditions, colored regions divided the groups into four meta-

groups. When the meta-groups were used in a semantically-grouped layout, groups in the 

same colored region were further semantically related (e.g. nuts with candy, and clothing 

with cosmetics). Figure 19 shows a layout with semantically-cohesive groups, group 
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labels, and meta-groups. Figure 20 shows a layout with random-word groups, no group 

labels, and no meta-groups.

The only levels of variables not combined were randomly grouped words and labels. 

Labeled, random groups were not used because the nature of the task would change 

drastically, relative to the task using the other labeled layouts. The labels for the groups 

would be misleading.

The layouts appeared on a white background (RGB values of 255, 255, 255 and an 

alpha of 1.0). Layouts were 29° wide by 17° high, centered on the screen. The remainder 

of the screen was a gray background (RGB values of 128, 128, 128 and an alpha of 1.0). 

When meta-groups were used, the were indicated with a green region (RGB values of 

222, 255, 214 and an alpha of 1.0). When group labels were used, they were placed on a 

white background that was 4.74° wide by 0.62° high and centered at the top of the group.

The groups were placed in a 3 x 5 grid. Groups are always vertically centered in each 

grid cell, which are 4.74° wide of visual angle by 4.44° high. Groups were separated by 

0.51° of horizontal whitespace and 0.41° of vertical whitespace. This resulted in an inter-

group vertical spacing of 1.54° between the baselines of adjacent words for labeled 

groups and 2.31° for unlabeled groups. The distance between the left edges of 

horizontally-adjacent groups was 5.77°. The inter-group horizontal spacing varied with 

the length of the words used in each group.
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Layouts always contained eight groups. Each group contained five lowercase words 

in 18 point Helvetica, black (RGB values 0, 0, 0 and an alpha of 1.0) font with 0.76° of 

visual angle between the baselines of adjacent words. A bullet character appeared to the 

left of every non-label word. When labels appeared, they were in 18 point bold Helvetica 

and appeared above the top word in the group with 0.76 degrees between the baselines.

There were two types of groups: semantically cohesive or random. The words in the 

cohesive groups always came from the same category. The words in the random groups 

were pseudo-randomly selected from all category words. In some layouts, the groups 

were labeled. When the labels were present, the category labels for the words in that 

group were used. In some layouts, 1 to 4 groups were contained within a common region 

defined by color. These categories of these groups of words were semantically related 

(e.g. farm animals, wild animals, and birds).

The words used in each trial were selected from a hierarchical list of words based on 

categories used in a study of word category norms (Yoon et al., 2004). Sixty-two 

categories from Yoon, et al. were used. Words were not used that did not meet the 

following criteria: The entry must not contain non-alphabetic characters or spaces. The 

word must not be in all capitals. If the word is an initialization, it must be pronounceable 

(i.e. it must be an acronym). A word could only appear in one category. Variations of the 

same word could only appear once (e.g. fridge and refrigerator). It must be clear that the 

word is part of the category without additional context, like the category name. 
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Categories were not used if there were fewer than eight words in a category or if there 

was too much similarity with another category, as judged by the author and two 

colleagues. The remaining categories were formed into super-categories.

The categories were further grouped into 14 super-categories. The formation of super-

categories was the result of consensus among the author and two colleagues. Each person 

divided the groups into super-categories and then discussed categorization until a 

consensus was reached.

3.3.1.4 Procedure

The procedure was as follows. Each participant signed an informed consent form, a 

demographics questionnaire was administered, the eye exams were conducted, and the 

participants were given instructions for the experiment. The participants were told that 

they would complete many trials and that each would proceeded as follows: The 

participant was shown and studied a precue of the target. The participant clicked on the 

precue to make the precue disappear and the layout appear. The participant visually 

searched for the target word without moving the mouse cursor. The participant moved the 

cursor to the target word and clicked on it.

The participants were financially motivated to not move the mouse cursor until they 

had found the target using the point-completion deadline, as discussed earlier.

At the start of each experiment, the eye tracker was calibrated to the user. The 

calibration procedure required the participant to fixate a series of nine points until the 
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average error between the predicted point of gaze and the actual location of the points fell 

below an error threshold (approximately 0.6 degrees of visual angle). The automated 

RFL procedure was not used to maintain calibration accuracy as in the previous two 

experiments. An eye tracker was used in this experiment that was more accurate than the 

eye tracker used in the previous two experiments. Specifically, a 120 Hz two-camera 

upgrade to the LC Technologies system used previously. Preliminary trials indicated that 

recalibrations were no longer required over the period of time these experiment would 

take.

The trials were blocked by layout type. Each block contained 40 trials, preceded by 

five practice trials. The blocks were counterbalanced using the balanced Latin square 

technique. Trials were marked as errors if whitespace or a word besides the target was 

clicked on, or if the point completion deadline was not met. Only correct trials are 

analyzed.

The practice trials were identical to the experimental trials with two exceptions: (a) 

Only the unlabeled, randomly-grouped, meta-groups-absent condition was used, and (b) 

the words presented during the practice trials were different from those in the 

experimental trials. These words were the same as those used in the local density and link 

color experiments discussed in previous sections. The participants continued to practice 

until they were comfortable with the task. The number of practice trials varied from 16 to 

170 (M = 51.3, SD = 25.2). Once the practice trials were over, the participants completed 
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the experimental trials. Finally, the experimenter elicited comments from the participants 

about how they completed the tasks.

Following a successful trial, the precue of the next trial was placed at the target 

location of the previous trial. Following a trial in which an error occurred, the precue was 

placed at the center of the display. During the visual search portion of the trial, to prevent 

the mouse cursor from obscuring any layout item appearing at the same location as the 

precue, the cursor appeared only when the mouse was moving.

3.3.2 Results

Search time began when the participant clicked on the precue and ended when the 

participant started moving the mouse. Eye movement data included in the analyses 

started from the first fixation that began after the precue was clicked, and ended with the 

first fixation that stopped before the mouse started moving.

Search time and eye movement data were analyzed using mixed-model ANOVAs. 

The Kenward-Roger correction method was used. An alpha level of .05 was used for all 

statistical tests. Due to non-normal distributions of the data, a log transform was used on 

the search time, number of fixations per trial, and fixation duration analyses. All means 

shown for these data are adjusted means.

The analysis focused on the three experimental factors: the semantic cohesion of 

groups of words, the presence of group labels, and the use of meta-groups. Because these 

factors were not fully crossed, all conditions were treated as a single factor in the 
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ANOVA analysis. The effect of these factors and their interactions were then analyzed 

with contrast analyses. Besides these three manipulations, a number of additional fixed 

factors were included in the analysis. These variables were gender, age, OSPAN score, 

computer experience, the target word, the length of the target word, the target group label, 

the location of the target group, the location of the precue, the distance to the target, and 

carryover effects.

The mixed model for each analysis was extended with random variables. The random 

variables were introduced one at a time and were removed if the Bayesian Information 

Criterion (BIC) did not decrease by 20 or more. The following random factors were 

found to contribute substantially to the models: the participants’ individual differences, 

the participants’ age, block order, the location of the precue, and the group in which the 

target appeared.

The data from 11 trials were excluded due to a bug in the software that recorded the 

reaction time incorrectly for those 11 trials. All 11 trials were from the first three 

participants’ data.

3.3.2.1 Error Rates

As shown in Figures 21, 22 and 23 the participants’ error rates were fairly low, less 

than 7 percent, in all conditions. Slightly more errors occurred when the groups were 

semantically cohesive or when the groups were labeled.  However, all error rates were 

within 2.4% of each other and there are no clear trends as functions of semantic grouping 
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Figure 21. The percentage of errors in the Semantic Grouping experiment as a function of 
semantically cohesive or random word grouping, and error type.
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Figure 22. The percentage of errors in the Semantic Grouping experiment as a function of 
labeled versus unlabeled groups, and error type.



or 

label presence. As will be seen in the next section, visual search was faster when the 

groups were semantically cohesive and when the groups were labeled. However, the 

consistently low error rates suggest that the participants were not trading speed for 

accuracy.

3.3.2.2 Search Time

The type of layout affected search time, F(3, 1497) = 46.39, p < .01, but only the 

effect of semantic grouping was significant, t(1474) = 10.06, p < .01. That is, participants 

tended to take less time to find the targets when the layouts were semantically organized. 

Figure 24 and Table 3 show the mean search times.  The presence of meta-groups did not 
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affect search time, t(1503) = 0.98, p = .33, nor did the presence of the group labels, 

t(1503) = 0.23, p = .82.

Participants found nearby targets faster than distant targets, F(1, 4062) = 305.45, p < .

01. Besides the experimental factors, the only factor that affected search time was the 

distance between the where the participants started searching (at the precue) and where 

they finished searching (at the target).

No other factors affected participant search time. Search time did not vary with:

OSPAN scores, F(1, 12.6) = 0.69, p = .42
Gender, F(1, 12.6) = 0.02, p = 0.89
Age, F(1, 12.7) = 0.17, p = 0.69
Computer experience, F(1, 12.6) = 0.14, p = .72
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Carryover from layouts with semantically cohesive group, labels,
 and no  meta-groups, F(1, 1472) = 1.14, p = .29
Carryover from layouts with semantically cohesive groups, labels,
 and meta-groups, F(1, 1491) = 0.40, p = .53
Carryover from layouts with semantically cohesive groups, no labels,
 and no meta-groups, F(1, 1525) = 0.04, p = .84
Carryover from layouts with semantically cohesive groups, no labels,
 and meta-groups, F(1, 1482) = 1.60, p = .21
Carryover from layouts with random groups, no labels,
 and meta-groups, F(1, 1527) = 0.27, p = .60

3.3.2.3 Eye Movements

The type of layout also affected the number of fixations per trial, F(3, 1496) = 32.77, 

p < .01. Only the effects of semantic grouping was significant. The participants required 

fewer fixations to find the target, t(1474) = 9.06, p < .01, when the groups were 

semantically cohesive. The presence of meta-groups did not affect the number of 

fixations, t(1506) = 1.35, p = .18, nor did the presence of the group labels, t(1494) = 1.26, 

p = .21.

The participants’ fixation duration was also affected by the type of layout, F(3, 621) = 

5.76, p < .01. Only the effects of semantic grouping was significant. Participants tended 

to make shorter fixations, t(443) = 2.36, p = .02, when the layouts were semantically 

organized. The presence of labels, t(443) = 1.65, p = .10, and meta-groups, t(1485) = 

0.15, p = .88, had no effect on the fixation durations.

The mean distance of participants’ saccade was also affected by the type of layout, 

F(3, 1477) = 4.44, p < .01. Only the effects of semantic grouping was significant. 

Participants tended to make longer fixations, t(1457) = 3.30, p < .01, when the layouts 
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were semantically organized. The presence of labels, t(1477) = 0.36, p = .72, and meta-

groups, t(1485) = 0.40, p = .69, had no effect on the saccade distances.

As shown in Figure 25, a qualitative analysis of the number of fixations per group of 

words suggests that people behaved differently when groups were labeled and when the 

groups were semantically cohesive1. The participants tended to use just one fixation per 
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1 A quantitative analysis could not be performed. The data were “truncated counting data” with a 
distribution that could not be corrected to normal, which violated assumptions in all analyses of 
which the author is aware. Any ANOVA analysis performed on the data did not detect the trend 
seen in Figure 25.
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Figure 25. Frequency of the number of fixations per group visit as a function of group 
type (semantically cohesive and/or group label), and the number of fixations in a group. 
Notice how one fixation is often enough for a cohesive group, especially in the labeled 
layouts, whereas two fixations are typically needed for a random group. (Only the data 
from layouts without meta-groups are shown here; the trends with meta-groups present 
are similar.



group when the groups were semantically cohesive and two fixations when randomly 

organized. Within the cohesive groups, participants were more likely to use one fixation 

when labels were present. Participants were also more likely to make four or more 

fixations per group when the groups were labeled.

Besides the experimental factors, only thee factors affected the participants’ eye 

movements. These are (a) the distance between the precue and target, (b) the participant’s 

OSPAN score, and (c) a carryover effect from previous blocks. Fewer, F(1, 4192) = 

345.53, p < .001, and shorter, F(1, 4213) = 167.94, p < .001, saccades were used when 

the target was closer to the precue. Participants with a higher work memory capacity, as 

indexed by the OSPAN task results, used shorter fixations, F(1, 13.6) = 7.06, p = .02. 

Fixations were longer in blocks that were preceded by blocks with semantically cohesive, 

unlabeled layouts, whether with meta-groups present, F(1, 1298) = 3.87, p = .05, or with 

meta-groups absent, F(1, 1077) = 8.89, p < .01. Fixations were also longer in blocks that 

were preceded by blocks with semantically random, unlabeled layouts, with meta-groups 

absent, F(1, 1127) = 12.00, p < .01.

No other factors affected participant’s eye movements. The number of fixations per trial 

did not vary with:

OSPAN scores, F(1 , 12.2) = 0.19, p = .67
Gender, F(1, 12.2) = 0.00, p = .95
Age, F(1, 12.3) = 0.01, p = .94
Computer Experience, F(1, 12,2) = 0.11, p = .75
Carryover from layouts with semantically cohesive group, labels,
 and no  meta-groups, F(1, 1460) = 0.29, p = .59
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Carryover from layouts with semantically cohesive groups, labels,
 and meta-groups, F(1, 1503) = 0.60, p = .44
Carryover from layouts with semantically cohesive groups, no labels,
 and no meta-groups, F(1, 1457) = 0.32, p = .57
Carryover from layouts with semantically cohesive groups, no labels,
 and meta-groups, F(1, 1536) = 1.68, p = .20
Carryover from layouts with random groups, no labels,
 and meta-groups, F(1, 1513) = 0.36, p = .55

Participants’ fixation duration did not vary with:

Target distance, F(1, 4144) = 0.00, p = .95
Gender, F(1, 13.8) = 1.08, p = .32
Age, F(1, 12.9) = 3.48, p = 0.08
Computer experience, F(1, 13.5) = 4.53, p = 0.06
Carryover from layouts with semantically cohesive group, labels,
 and no  meta-groups, F(1, 1289) = 0.08, p = .78
Carryover from layouts with semantically cohesive groups, labels,
 and meta-groups, F(1, 1073) = 1.33, p = .2499

Participants’ saccade distance did not vary with:

OSPAN score, F(1, 13) = 1.77, p = .21
Gender, F(1, 13) = 4.15, p = .06
Age, F(1, 13) = 0.30, p = .59
Computer experience, F(1, 13) = 0.01, p = .93
Carryover from layouts with semantically cohesive group, labels,
 and no  meta-groups, F(1, 1443) = 0.03, p = .87
Carryover from layouts with semantically cohesive groups, no labels,
 and no meta-groups, F(1, 1438) = 0.00, p = 0.99
Carryover from layouts with semantically cohesive groups, no labels,
 and meta-groups, F(1, 1513) = 2.51, p = .11
Carryover from layouts with random groups, no labels,
 and meta-groups, F(1, 1492) = 0.07, p = .79

3.3.3 Discussion

This study investigates the effects of semantic content and visual indicators of 

semantic relations on visual search. The data strongly support the hypothesis that people 

use the structure provided by the semantic content of the words in the layout to guide 
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their search. The unexpected results are what the data suggest about how people use 

visual indicators of semantic relations.

People search layouts faster when the groups are semantically cohesive. This is not 

surprising considering that in the semantically cohesive layouts, the meaning of non-

targets provide strong cues about the target location, and no similar information is 

provided in the random layouts. As seen in Figure 25, people are more likely to make just  

a single fixation to a group in the cohesive layouts. This suggests that people tend to 

judge the semantic relevance of all objects in a group with that one fixation. This allows 

the participants to “explore” more of the layout per fixation and thus reduces the number 

of fixations required to find the target. Conversely, without the semantic content, it is 

more difficult or impossible to discount an entire group of objects with just one fixation. 

Both the fixations per trial and saccade distances also support this conclusion.

While the semantic content seems to provide useful information, a first pass of the 

data suggests that the group labels provided no additional useful information. That is, the 

results suggest that people use labeled and unlabeled layouts similarly when the groups 

are semantically organized. This null result would seem to contradict previous research 

that showed the importance of group labels in users’ visual search strategies (Hornof, 

2004). This previous finding was supported by results from a task in which no useful 

semantic information was involved in the search. So, can we conclude from this study 

that labels are not useful when layouts are semantically cohesive? Almost, but while the 
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labels did not affect the search time or the total number of fixations needed to find a 

target, the real story is in the detail of the eye movements.

Further analysis of the participants’ eye movements supports previous claims of the 

importance of group labels in visual search strategies. Additionally, the results show how 

the utility of group labels is extended to group items in semantically organized layouts. 

Previous research on the eye movements motivated by the presence of group labels found 

that people tended to use just one fixation per group (Hornof & Halverson, 2003). 

Comparable results were found here. As shown in Figure 25, when the groups were 

unlabeled and cohesive, people behave much more like they do when searching labeled 

groups. The participants tended to make just one fixation, presumably evaluating all 

words in the group based on the words processed in that one fixation. One way to 

interpret these results are that people were using any word in unlabeled and cohesive 

groups as the label for that group.

The eye movement data also differentiate the use of labels and non-labels as semantic 

indicators. While the semantic grouping had more of an effect than the labels, if we look 

at the distributions in Figure 25, we can see that people were more likely to use one 

fixation per group in the semantically organized layouts when the groups were labeled. 

People were also more likely to make four or more fixations per group when the groups 

were labeled. It appears as if people had more “trust” in the group labels. That is, people 

were more likely to discount the contents of groups based on the group label, thus more 
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one-fixation group visits, and more committed to searching a group when they believed 

the target to be in a group based on the label, thus more four-or-greater fixation group 

visits.

The results of this experiment extend our understanding of how semantics and group 

labels affect users’ visual search strategies. While previous research has shown the utility 

of labels or the effects of semantic differences between words in a menu, this research 

looks at the combined effects of both labels and semantic differences. Unexpected results 

were found, such as the how the semantic cohesion of words in a group can substitute, to 

some extent, for labels of those groups.

3.4 Summary

A series of experiments were conducted to better understand how people visually 

search computer screens and motivate the development of an active vision computational 

models of visual search. The effects of density, text color, and the semantic cohesion of 

groups of words were studied. These studied extend previous psychological research. 

More importantly, the experiments presented in this thesis identify ways in which these 

factors affect people’s human-computer visual interaction.

The local density of groups of words not only affects the speed with which people 

search words, but also the order in which the groups are searched. It was found that 

sparse groups are searched first and faster than dense groups. Additionally, in mixed-

density layouts when dense groups were searched early, they are searched in a sub-
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optimal manner relative to all-dense layouts. This suggests that interface designers should 

not only use sparse groups to draw users’ attention to important information, but that 

caution should be used when mixing densities because information in denser groups of 

words may be missed by the users. This research also suggests that a good computational 

model of visual search will need to account for the strategies that people use and include 

appropriate parameters to simulate the difficulty of perceiving denser and perhaps less 

salient text.

While people are able to limit their search for words based on the color of the words, 

they evidently cannot completely ignore words of a different color, at least for those 

words further from the point of gaze. The presence of non-target-colored words slows 

people’s visual search of target-colored words. The results of this research strongly 

supports the practice of differentiating link status (i.e. visited or unvisited) with 

peripherally visible color.

Finally, when searching, people can use semantically cohesive structures with or 

without group labels much the same. When groups of words are semantically related, 

people can evaluate an entire group in one fixation. This behavior can occur whether 

labels identifying the category of the group are present or not. Nonetheless, people often 

use just one fixation to evaluate labeled groups more often than they use just one fixation 

to evaluate the unlabeled groups. This suggests that group labels can be excluded and 

users will likely still perform well, as long as the groups are meaningfully grouped . This 
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finding is especially useful when screen real estate is limited, such as on handheld 

computers, and the absence of group labels would reduce screen clutter.

The results from these experiments informed the construction of an active vision 

computational cognitive model of visual search. The tasks presented and the data 

analyses will be particularly useful for modeling visual search in the context of human-

computer interaction. Each task utilized structured layouts that approximate real-world 

interfaces like those shown in Figures 1 and 2. Particularly important for the development 

of models of visual search, precise eye movement data were collected. Not only was 

aggregate eye movement data analyzed, but also eye movement data that uncover the 

strategies people use, like the order in which visual groups in the layout are searched. The 

next chapter discusses the development of the model using reaction time and eye 

movement data.
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CHAPTER IV

MODELS

This chapter presents a candidate computational model of active vision for visual 

search. This model is a substantial push towards a model for predicting visual search in 

human-computer interaction tasks. Such a model is needed for automated interface 

analysis tools, like CogTool (John & Salvucci, 2005), which do not yet have a fully 

developed active vision model that can simulate people’s visual search behavior.

The model instantiates proposed answers to the important questions of active vision 

(Findlay & Gilchrist, 2003): What can be perceived during a fixation? When and why are 

saccades initiated?  What do the eyes fixate next? What information is integrated between 

fixations? The proposed answers to these questions, and the research these answers on 

based on, will be covered in this chapter.

Throughout this chapter, eye tracking data from two experiments is used to improve 

the models. A principled approach is proposed for building models of visual search based 

on a step-by-step improvement of the model using the most appropriate eye movement 

measurement and model parameters. In this way, the model of active vision is developed, 

refined and enhanced by accounting for more and more eye movement data.
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An aim of this research is to propose a model of visual search that can be used for 

automated interface analysis tools, like CogTool (John & Salvucci, 2005) or CORE/X-

PRT (Tollinger et al., 2005). The criterion for acceptable predictions by the models is a 

10% average absolute error (AAE) between the observed and predicted data. A 10% AAE 

will demonstrate that the models are reasonably accurate for such engineering goals 

(Kieras, Wood & Meyer, 1997).

All models presented here were built using the EPIC cognitive architecture (Kieras & 

Meyer, 1997). EPIC lends itself well to developing models of active vision, as it accounts 

for constraints imposed by the eye and eye movements. As discussed in Chapter II, EPIC 

is an computational framework written in C++. Some modifications were made to the     

C++ classes representing EPIC’s visual processors during the iterative process of refining 

the models. These modifications are discussed in the following sections. The production 

rules for the final model are presented in Appendix C.

4.1 Modeling the Local Density Task

The first task modeled in this research was the local density task presented in Chapter 

III, section 3.2. The data collected using this task provided sufficient detail to inform the 

construction of a model of visual search.

The modeling focused on the issues raised by previous research on density, e.g., the 

number of items perceived per fixation, and other fundamental perceptual and ocular 

motor issues of visual search. Previous modeling has used data from eye tracking to 
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inform the development of models with respect to the order of search (e.g. Byrne, 2001). 

However, in this section, the focus is on fixation duration and number of fixations in 

order to inform the development of other aspects of computation models.

This research starts with a baseline model using reasonable initial assumptions, and 

progresses to a model that explains many features of the data with refinements related to 

what is perceived in a fixation and when saccades are initiated.

4.1.1 Baseline Random Search Model

The initial model in this research, which will be referred to as the Baseline Model, 

starts with the a small set of reasonable assumptions. Initial assumptions of the modeling 

include constraints supplied by the architecture. All of EPIC’s perceptual properties were 

left at established values. The assumptions included: Text centered within 1° of the point 

of fixation will enter working memory after 149 ms. Saccades took time to prepare, from 

50 ms if the previous saccade had the same direction and extent up to 150 ms if the 

previous fixation had a different direction and extent. Saccades took 4 ms per degree of 

visual angle (dov).

A couple of initial assumptions were extracted from the literature. First, the model 

searched “without replacement.” That is, any object for which the text had been perceived 

was excluded from being the destination point of future saccades. While there is some 

controversy over whether visual search proceeds without replacement (see for example 

Shore & Klein, 2000) or with replacement (i.e. amnesic-search; see for example 
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Horowitz & Wolfe, 2001), the preponderance of evidence favors search without 

replacement. Second, saccade destinations were selected at random. There is a scarcity of 

evidence for where search will proceed in layouts that consist of text. However, it has 

been shown with previous modeling research that assuming a random search pattern 

provides a good initial prediction of search time (Hornof, 2004).

The Baseline Model included a production-rule strategy that executed the task as 

follows: The model fixated and memorized the target precue. As soon as the visual search 

layout appeared, the model started searching for the target. The model moved its eyes to a 

random word in the layout. As soon as the eyes arrived at the saccade destination, the 

model initiated the next eye movement to a random object whose text had not entered 

working memory. If at any time the target was identified, search was terminated, the eyes 

were moved to the target, and the target was clicked.

4.1.1.1 Predictions

The Baseline Model was overall a poor predictor of human performance. As seen in 

Figures 26 and 27, the predicted search times and fixation durations are incorrect both in 

value and trend. Nonetheless, as can be seen in Figure 28, this rudimentary model 

accurately predicts the observed number of fixations per trial for one condition. While 

overall this model incorrectly predicts the number of fixations, the prediction for the 

sparse layouts is quite good.
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BRS model for the mixed-density task. AAE = 65.5%
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4.1.1.2 What Was Learned

The model’s accurate prediction of the number of fixations per trial in the sparse 

layouts is promising and suggests that the purely random search model is a good starting 

point for modeling the characteristics of participant eye movements. While it is not likely 

that the participants are randomly selecting saccade destinations, such a strategy does 

provide an adequate starting point.

However, the fixation duration predictions show a strong need for an alternative 

means of initiating eye movements. The greatest error was found in the fixation duration 

predictions, with a 65.5% AAE. Saccades were initiated as soon as they could be by the 

model, given the constraints of the architecture. This proved to be too fast, as the model 
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line) by the BRS model for the mixed-density task. AAE = 26.7%



predicts a fixation duration of 100 ms, whereas the participants used fixations that were 

250 ms or longer. Additionally, the participants used longer fixations for the denser text 

and the model did not. Therefore, the next round of modeling explored the initiation of 

saccades to improve the model’s predictions of fixation durations. 

4.1.2 Improving the Predictions of the Fixation Duration

The observed eye movement data from the Local Density experiment presented in 

Chapter III is used once again to guide the model development. As the predicted fixation 

durations have the greatest error of the eye movement measurements examined in the last 

section, this iteration of the model will focus on improving the fixation durations 

produced by the model.

One of the things the Baseline Model got wrong was that the model initiated a 

saccade to the next randomly chosen object as soon as the previous saccade was 

complete. However, based on the results of the Local Density experiment, people appear 

to adopt a search process that increased the duration of fixations on smaller, denser text. 

This could be achieved a number of ways in the model. One approach would be for the 

production rules to directly set the fixation duration, though EPIC provides no such 

facility. Another would be to hold back each saccade until a certain amount of 

information is gathered from the currently fixated stimuli.

The model can be evaluated in the context of the four explanations of fixation 

duration described by Hooge and Erkelens (1996) and discussed in Chapter II, namely 
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preprogramming-per-trial, preprogramming-per-fixation, strict process-monitoring, and 

mixed-control. Preprogramming of fixation durations alone does not explain the mixed-

density data very well. As shown in Figure 12, the fixation duration used in dense groups 

is always longer than the duration used in sparse groups, suggesting that the density 

(perhaps discriminability of the text) is driving the fixation durations. Further, in the 

mixed-density layout trials, where a change in fixation duration is observed in the dense 

groups, the change in duration is quite sudden. A preprogramming-per-trial explanation 

would predict no change in duration during a trial. A preprogramming-per-fixation 

explanation would likely predict, if anything, a gradual change in fixation duration. 

Instead, the participants’ fixation duration tended to increase dramatically halfway 

through the search. This suggests a strategy shift and not a change in estimation.

A strict process-monitoring strategy of saccade initiation (Hooge & Erkelens, 1996) 

explains the mixed-density data better. As shown in Figure 12 in Chapter III, the fixation 

durations vary as a function of the density of the group fixated, which supports the notion 

of strict process-monitoring. The increase in fixation duration in the dense groups of the 

mixed-density layouts may support the mixed-control explanation. However, the mixed-

control explanation is less parsimonious than the strict process-monitoring alone. 

Additionally, the theory instantiated in EPIC lends itself to a process-monitoring 

explanation of saccade initiation, as the timing and retinal availability of visual features 

can be used in a straightforward manner to instantiate process-monitoring. While this fit 

between the theory in EPIC and the process-monitoring does not make process-
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monitoring “right”, Newell (1990) suggested “listen[ing] to the architecture” to find 

reasonable solutions. Additionally, instantiating the preprogramming hypotheses of 

saccade initiation would require additional mechanisms and parameters that are not 

required with the process-monitoring strategy decreasing the parsimony of the model. A 

preprogramming saccade initiation strategy might require a theory of time perception 

(such as Taatgen, Rijn & Anderson, 2007) and to predict saccade time intervals. The 

introduction of such temporal mechanisms may introduce unnecessary complexity to the 

model. Therefore, the current modeling effort explores the use of a strict process-

monitoring to explain fixation durations, and doing so finds a nice mesh of extant theory.

4.1.2.1 Strict Process-Monitoring Strategy Model

The strategy rules were modified to include a strict process-monitoring strategy. 

Figure 29 shows a flow-chart based on the production rules. This strategy, which shall be 

called the prepare-then-wait strategy, initiates saccades only after the text property for the 

current saccade destination becomes available and a decision has been made whether the 

target has been found or not.

EPIC’s perceptual processor was modified to accommodate a strict process-

monitoring, as follows. The default recoding time for text is a constant 100 ms. This was 

modified when trying to explain the human data. As shown in Table 1, the observed 

fixation duration in the dense layouts was over 100 ms longer than in the sparse layouts. 

To model this, a stepped recoding function was introduced to calculate the perceptual 

time for a feature based on the proximity of adjacent items. If an object’s closest neighbor 
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was closer than 0.15 dov (a dense object), the text recoding time was 150 ms. Otherwise 

the text recoding time was 50 ms.

4.1.2.2 Predictions

As shown in Figure 30, a large improvement was found in the predicted fixation 

durations when the model was modified to use a strict process-monitoring strategy. 

Delaying the initiation of saccades until after the text information had entered working 

memory and an increased recoding time for dense objects resulted in a differentiation in 

fixation durations similar to that in the observed data. The predicted data could have been 

further improved by reducing the text recoding time for sparse objects further, as the 

majority of the error in the predicted data lies in the sparse and mixed layouts. However, 

the purpose of this modeling was to approximate the ocular-motor behavior in the 
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Figure 29. Flow chart of the production rules for an instantiation of the strict process-
monitoring strategy. 

Look at Precue
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Select Next Saccade Destination

and Prepare Eye Movement
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Perform in parellel

Wait for both

activities to end



observed data and meet the criterion for acceptable predictions of 10%, so further fine-

tuning of fixation durations was not performed.

The predicted mean search time only improved slightly. As seen in Figure 31, there is 

now a very slight upward trend in the search time. However, the slope of the predicted 

search time line is not nearly as steep as the observed search time line.

As shown in Figure 32, the predictions for the number of fixations per trial worsened. 

The model still does not make more fixations in layouts with dense objects, as is seen in 

the observed data. Further, the overall mean number of fixations has dropped in 

comparison to the base model. Detailed traces of the models revealed that the drop in the 

mean number of fixations was due to the prepare-then-perform strategy. The Baseline 
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Figure 31. Mean search time per trial observed (solid line) and predicted (dashed line) by 
the SPMS model for the mixed-density task. AAE = 41.7%
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Figure 32. Mean number of fixations per trial observed (solid line) and predicted (dashed 
line) by the SPMS model for the mixed-density task. AAE = 48.1%



Model initiated approximately three additional fixations after the target had been fixated 

but before the text property for the target had become available. This resulted in roughly 

three more fixations per trial than the prepare-then-execute strategy, which inhibited 

additional fixations until the text property was perceived.

4.1.2.3 What Was Learned

A model using a strict process-monitoring strategy for saccade initiation provides 

straightforward, plausible predictions. The monitoring strategy is well supported by EPIC 

as the availability of features through the various visual processors produces a delay that 

is slightly less than the observed mean fixation duration in humans. Further, after 

including the time to decide, prepare, and execute the eye movement, the eye movement 

latency predicted by EPIC matches the mean fixation duration of humans very well.

While other explanations of fixation duration control (Hooge & Erkelens, 1996) could 

possibly be used to explain the observed fixation duration data, doing so would require 

introducing addition processes and many more parameters in to the EPIC cognitive 

architecture. Therefore, the process monitoring strategy will remain as an important 

component of the model in this research, as it is both parsimonious, predicts the observed 

data very well, and is supported by the literature.

Since the greatest error now lies in the predicted number of fixations per trial, the 

next model focused on improving the number of fixations predicted by the model.
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4.1.3 Improving the Predictions of the Number of Fixations

The number of fixations predicted by the model is largely determined by a 

simplifying assumption about the area in which text is perceived. The assumption was 

that all text within the fovea (1 dov) is perceived during each fixation. This results in the 

model perceiving two to three sparse objects, or five to seven dense objects, in each 

fixation. Consequently, the model was able to perceive all items in a layout with an equal 

number of fixations, regardless of the layout density. The observed data suggests that 

humans do not do this. People require more fixations for dense text. An increase in the 

number of fixations predicted for dense objects can be achieved in a number of ways. 

One way is to reduce the region within which dense text can be perceived. Another is to 

reduce the probability of correctly perceiving text based on the size or spacing of the text. 

Both methods were tested in the models.

Adjusting the region in which text can be perceived, such that two to three objects are 

processed per fixation can help account for the observed number of fixations in a search 

task (Hornof & Halverson, 2003). EPIC’s default settings already limited sparse words to 

two or three per fixation. Different region sizes for dense text were tried, and 0.5 dov 

worked best, resulting in two to three words per fixation in dense text. Perceiving two to 

three words per fixation, regardless of text density, resulted in a much better fit for the 

predicted number of fixations per trial. However, as shown in Figure 33, the model was 

still under-predicting the number of fixations per trial in all layouts, and so this words-
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per-fixation approach was passed over in favor of a probability-of-encoding approach 

discussed next.

4.1.3.1 Text-Encoding Error Model

To adjust the probability of incorrectly encoding text, EPIC’s perceptual processor 

was modified again so the probability of encoding the text of an object is based on the 

distance to the nearest neighboring object. Using the distance to the nearest neighboring 

object is one of several ways to measure density. One advantage of this measure for ease 

and practicality in predictive modeling is that it only requires the position of each item on 

the screen. If an object’s closest neighbor was 0.15 dov away or more (sparse text), the 
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probability of the model incorrectly perceiving the text was 10%. Otherwise, the 

probability of the model incorrectly perceiving the dense text was 50%. These 

probabilities were chosen because they would result in two to three items, on average, 

perceived per fixation across densities, which appeared to be the right number of items 

per fixation to explain the human data.

4.1.3.2 Predictions

As seen in Figures 33 and 34, with text-encoding errors introduced to the model, the 

predicted number of fixations and the predicted search time improved considerably. The 

average absolute errors for the two measures are 8.8% and 6.5%. The number of fixations 

per trial now closely approximates the observed data.  The accuracy of six data points, 

number of fixations and search time across all three layouts, were greatly increased by 
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adding one perceptual parameter, a parsimonious improvement . Additionally, the 

modification made to the text-encoding property remains true to a principle in the EPIC 

architecture in which the processing of visual objects is differentiated based exclusively 

on the features of those visual objects.

4.1.3.3 What Was Learned

The modeling suggests that the use of encoding errors is a good method to simulate 

the perceptual constraints of density, at least for the perception of text in the current task. 

When all items are perceived in every fixation, the model underpredicts the number of 

eye movements the humans need to find the target. Reducing the area in which the model 

could perceive text did not predict the human behavior well. When the model was 

modified to include the possibility of misperceiving text, the predictions of the number of 

fixations used in each layout became very good.

4.1.4 Discussion

During exploratory modeling (i.e. modeling to investigate how observed human data 

can be explained), a random search strategy is a reasonable first approximation that 

allows the analyst to focus on other fundamental ocular-motor activity that affects visual 

search. If an analyst can initially account for fundamental perceptual and ocular-motor 

activity with such a parsimonious strategy, the analyst may find it easier to explore other 

important aspects of the model, like the time to encode and probability of encoding the 

visual objects, which are unrelated to the order in which the objects are explored.
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The process-monitoring strategy of saccade initiation instantiated in this model not 

only accounts for fixation durations in a straightforward and parsimonious manner but 

also suggests when saccade destinations are selected. In the model, saccades are initiated 

as soon as the relevant visual features (i.e. target-identifying features, like text) of the 

currently fixated objects enter working memory and a decision is made as to whether the 

target has been found or not. The observed fixation durations can be explained by such a 

model. This suggests that visual features necessary to identify the target will affect the 

subsequent saccade destination, but that any unnecessary features that may take longer to 

enter working memory will not affect the saccade destination. Confirmation of this 

hypothesis is left for future research.

The modeling suggests that the use of encoding errors better simulates the perceptual 

constraints of density than changing the size of the region in which text can be perceived. 

One means of accounting for the number of fixations in a visual search of words is to 

limit the number of words perceived per fixation to two to three on average. Hornof 

(2004) found in that limiting the number of objects perceived per fixation to two to three 

items helped predict observed search times. The same assumption here helped to predict 

search time and number of fixations. Note, however, that different kinds of text (e.g. 

larger font, larger spacing, or longer phrases) might require more fixations per word.

Bertera and Rayner (2000) concluded that the effective field of view, the region in 

which information is used during a fixation, did not decrease as density increased. The 
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findings here support that conclusion and expand upon it. The task modeled in this 

research differed from that used by Bertera and Rayner, which used randomly arranged 

single letters. In the current task, density was manipulated by varying the size of text and 

spacing (which is arguably more ecologically valid). Still, similar conclusions were 

reached. Future work is required to study the effects of density where text size and 

spacing vary independently.

4.2 Modeling the CVC Search Task

A comprehensive model of active vision will need to account for how a person would 

deploy their active visual system to navigate a wide range of visual layouts and visual 

features, such as those shown in Figures 1 and 2 in Chapter I. The progression towards a 

model of active vision continues here with the modeling of a second set of data, the CVC 

(consonant-vowel-consonant) search task (Hornof, 2004). The CVC task is called such 

because the task used three-letter pseudowords (such as ZEJ, HAN, NUH) that were used 

to control for word familiarity and other effects. This stage of the modeling primarily 

focused on two issues — evaluating previous assumptions in the model and refining the 

model to account for additional eye movement measures.

The CVC experiment was originally conducted by Hornof (2001) without eye 

tracking, and modeled by Hornof (2004). The experiment was run again by Hornof and 

Halverson (2003) to collect eye movement data to evaluate the models in more detail. It 

is useful to return to the CVC search task because there are adequate similarities and 

meaningful differences between the local density task and the CVC search task. Again, 
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the layouts consisted of text only. However, in the CVC task the number of items in the 

layout varied with the size of the layouts and not as function of the density of the text in 

the layout.

The CVC task included layouts with and without a visual hierarchy. The layouts 

discussed in this dissertation are those without a visual hierarchy. Figure 35 shows a 

sample layout from the experiment.

Sixteen people participated in the most recent replication of the study in which eye 

movement data was collected (Hornof & Halverson, 2003). Each layout contained one, 

two, four, or six groups. Each group contained five objects. The groups always appeared 

at the same physical locations on the screen.  One-group layouts contained only group A 

in Figure 35. Two-group layouts used groups A and B.  Four-group layouts used groups 

A through D.  In each trial, the entire layout was displayed at the same moment, 

permitting any search order. The trials were blocked by layout.
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Figure 35. A layout without labels from Hornof’s (2004) CVC search task.



Each trial proceeded as follows: The participant studied and clicked on the precue; the 

precue disappeared and the layout appeared; the participant found the target, moved the 

mouse to the target, and clicked on the target; the layout disappeared and the next precue 

appeared.

4.2.1 Original CVC Model

Hornof (2004) presented models that predicted and explained the search time data 

collected from the visual hierarchy task. In the model, the eyes moved down the first 

column of text, then down the second column, and then down the third.  Furthermore, the 

eyes jumped over a carefully controlled number of items with each eye movement, 

sometimes missing items on a first pass, which introduced some “noise” into the model 

and helped explain the human search time data.  This selection strategy resulted in a 

plausible explanation for how people did the task in that the model accounted for the 

reaction time and a fair number of eye movement measures. It is perhaps impressive that 

the models correctly accounted for some of the eye movement data in that the models 

were built without any eye movement data to guide the development of the models.

However, the model’s strategy is perhaps somewhat overly tuned to aspects of this 

one visual task and layout. Components of the strategy, such as the strict use of the three 

columns, will not be directly applicable to a wide range of visual layouts.  The original 

CVC task model might thus be characterized as somewhat brittle, whereas a more 

flexible model might be more useful for predicting human performance in a wider range 

of visual search tasks.
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This concern motivated a more flexible model that would predict the eye movements 

with greater fidelity and in a more general, task-independent manner. The data collected 

by Hornof and Halverson (2003) are used to further improve on the model of active 

vision developed in this dissertation.

4.2.2 Improving Saccade Distance

The previous model included a simplifying assumption that saccade destinations are 

selected at random from all items on the screen. This assumption was good enough to 

predict the mean search times, the mean number of fixations per trial, and the mean 

fixation durations. However, as it is unlikely that people select saccade destinations at 

random, the location of where the model fixates requires improvement.

One job of the human visual search process is to decide which objects to fixate. 

Though a completely random search strategy is very useful for predicting the mean 

layout search time, people do not search completely randomly. Instead, people move their 

eyes to objects that are relatively nearby more often than objects across the layout. 

Saccade destinations tend to be based on proximity to the center of fixation when the 

target is not visually salient (Motter & Belky, 1998).

The original CVC task model suggests that moving to nearby objects is a reasonable 

strategy that explains the data. The best fitting model for the CVC task data in Hornof 

(2004) uses a strategy that moves the eyes a few items down each column of words on 
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each saccade. While the strategy of the best fitting model did a good job, a more general 

strategy for saccade destinations is needed.

Previous research supports the idea that people tend to fixate nearby objects. 

Fleetwood and Byrne’s model of icon search (2006) shifted covert visual attention to the 

nearest icon that matched the target icon in some way.  The model was very systematic in 

the sense that it always chose the closest icon that met other criteria that the research 

emphasized more, namely looking at icons that matched one randomly chosen feature of 

the target icon. Motter and Belky (1998) investigated where monkeys were likely to 

detect a target during a fixation and found that the monkey’s eyes were more likely to 

move towards objects just outside the region in which targets could be detected. 

Additionally, an important finding for the current research was that, although the eyes 

were more likely to go to nearby objects, they did not always go to the nearest object.

4.2.2.1 Fixate-Nearby Model

The strategy used by the model was modified so that saccades were more likely to 

land on nearby items, as follows. Rather than searching randomly or following a 

prescribed search order, as with previous models, the strategy selected saccade 

destinations with the least eccentricity (distance from the eye position). To account for 

variability in saccade distances, as observed in Motter and Belky (1998), noise is added 

to the model’s process of selecting the next saccade destination as follows: (a) After each 

saccade, the eccentricity property of all objects is updated based on the new eye position. 

(b) The eccentricity is scaled by a fluctuation factor, which has a mean of one and a 
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standard deviation of 0.3 (determined iteratively to find the best fit of the mean saccade 

distance). This scaling factor is individually sampled for each object. (c) Objects whose 

text has not been identified and are in unvisited groups are marked as potential saccade 

destinations (i.e. search without replacement). (d) The candidate object with the lowest 

eccentricity is selected as the next saccade destination.

The strategy used by the model was also modified to reduce how often the model 

would revisit groups before visiting the rest of the layout. While the participants did 

revisit groups on occasion, approximately once every one to four trials, the majority of 

these revisits occurred either (a) after all groups had been visited once, or (b) because the 

target was overshot, resulting in a fixation in another group before refixating the target. 

One possible explanation for the low rate of revisits is that people tend to remember the 

regions they have explored. The current research takes a straightforward approach to 

modeling this behavior: A constraint was added to inhibit group revisits until the entire 

layout had been searched. Without this constraint, the model was much more likely to 

revisit a group than found in the observed data.

4.2.2.2 Removing Text-Encoding Errors from the Model

In an effort to explain the eye movement data and to depict the human information 

processing that is not directly observable, two mechanisms have been introduced to the 

mode: (a) noisy saccades to nearby objects and (b) inhibition of group revisits. These two 

mechanism may interact to produce the same effect as the encoding errors introduced 

while modeling the local-density search task. If the noise in the saccade selection strategy  
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results in the gaze moving to another group before all words in the current group have 

been processed, the target can get passed over. Encoding errors were previously used to 

explain the additional saccades sometimes required to re-examine the layout. So that the 

model does not include two explanations for one phenomenon, the encoding errors were 

removed.

4.2.2.3 Predictions

As shown in Figure 36, the model predicts the mean saccade distances very well, with 

an average absolute error (AAE) of 4.2%, a considerable improvement over the AAE of 

43.3% in the Original Model. As shown in Figure 37, this model also does a good job of 
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predicting the observed scanpaths. The figure shows the three most frequently observed 

scanpaths, and how the current model predicts the observed scanpath frequencies better 

than does the Original Model (Hornof, 2001). However, as shown in Figure 38, the 

predicted number of fixations per trial is not within our intended AAE of 10%, although 

the predicted number of fixations did improve considerably (AAE = 14.3%) compared to 

the Original Model (AAE = 37.8%).

4.2.2.4 What Was Learned

Results from this modeling suggest that people select saccade destinations partly 

based on eccentricity from fixation center. The selection of saccade destinations based on 

proximity resulted in good fit of both the mean saccade distance and the scan paths that 

people used in this task. The model with random saccade destinations predicted saccade 

distances much larger than is seen in the observed data. Additionally, the random 

selection predicted little difference based on the size of the layout. When the saccade 

destination selection uses proximity, the effect of the size of the layout on observed 
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saccade distances seen in Figure 36 is accounted for. The observed and predicted saccade 

distances increase with the size of layout. Further, the two most frequent scanpaths, 

which account for nearly half of all observed scanpaths, are matched very well by the 

model that uses proximity.

This “nearby with noise” strategy used in the model has a couple of benefits for 

predicting visual search compared to models whose predictions are based on particular 

visual structures or saliency of visual features. First, only the location of the layout 

objects is required. This is beneficial if other properties in the layout are unknown or 
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difficult to extract. Second, this search strategy can be used when visual saliency alone 

cannot predict visual search, as is the case with goal-directed search (Koostra, Nederveen 

& de Boer, 2006). Unlike the Original Model (Hornof, 2004), the Fixate-Nearby Model 

does not require a predefined notion of how the eyes will move through the layout to 

predict the observed scanpaths.

While the fidelity of the model improved overall, the predictions for the number of 

fixations was not acceptably accurate. While the accuracy of the predictions improved 

and the number of fixations increased with the number of items in the layout, the 

predicted number of fixations diverged from the observed number of fixations as the 

layouts grew in size. The model was able to find the target with fewer fixations than the 

participants did. In the next section, the focus of the modeling returns to the number of 

fixations.

4.2.3 Revisiting the Predictions of the Number of Fixations

Text-encoding errors were removed from the model presented in the previous section, 

but the model still underpredicts the number of fixations per trial. It was speculated 

earlier that text-encoding errors introduced while modeling the local-density task might 

not be needed because of the changes made in the previous section. However, when text-

encoding was removed, the model again underpredicted the number of fixations. Text-

encoding errors are reintroduced in order to improve the model’s predictions for the 

number of fixations per trial.
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4.2.3.1 Text-Encoding Errors Revisited Model

The text-encoding error rate was once again set to the previous parameter value. This 

error rate was changed by 1% increments until the model predicted the mean number of 

fixations per trial well. A value of 9% provided the best fit for the number of fixations per 

trial.

4.2.3.2 Predictions

As shown in Figure 39, the text-encoding revisited model predicts the number of 

fixations per trial very well, with an AAE of 4.2%, which meets our goal of an AAE of 

10% or less. The introduction of text-encoding failures improved the predictions.
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4.2.3.3 What Was Learned

These results reinforce the findings presented earlier with the local-density task that 

people occasionally miss the target, even when looking directly at it. A failure rate of 

approximately 10% predicts human performance in this respect across multiple tasks. The 

increased accuracy in the model’s predictions and the similarity between the best-fitting 

text-encoding failure rate found here and the rate found in past research provides support 

for the use of the text-encoding failure rate parameter. Future research will need to 

address the possibility of encoding failure rates for non-text stimuli.

4.2.4 Revisiting the Predictions of the Fixation Duration

In the modeling of the local density task, it was found that a strict process-monitoring 

strategy predicted people’s fixation durations well. That is, saccades are initiated as soon 

as the currently fixated objects are identified.

However, the particular implementation of the strict process-monitoring strategy, the 

prepare-then-perform strategy, was found to be problematic for two reasons. First, the 

strategy overpredicts the fixation durations for the CVC task. Second, previous research 

suggests that the “prepare” part of the prepare-then-perform strategy that was previously 

implemented as a motor preparation process in EPIC is instead a cognitive process 

(Kieras, 2003).

4.2.4.1 Process-Monitoring Revisited Model

To address issues identified with the previous implementation of the strict processing 

strategy, a new saccade initiation strategy is proposed and implemented in this iteration of 
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the model. This new process-monitoring strategy differs from the previous process-

monitoring strategy largely in two ways: Ocular motor movement preparation is removed 

from the EPIC architecture and is replaced by a multi-stage process for selecting the 

saccade destination. As identified in research by Kieras (2003), only a constant motor 

movement initiation time (50 ms) is required to correctly simulate the execution of eye 

movements. The motor movement feature preparation times previously included in the 

model has been attributed to decision processes that are better modeled by selection of 

saccade destinations in the production rules. Multiple stages are used in selecting the 

saccade destination. In the first stage, different sub-strategies can each nominate saccade 

destinations. In the second stage, one of the nominated saccade destinations is selected 

based on a set of prioritized rules. 

4.2.4.2 Predictions

As shown in Figure 40, the Process-Monitoring Revisited Model predicts the fixation 

durations for unlabeled layouts very well, with an AAE of 4.6%. The new 

implementation of the strict process-monitoring strategy seems to predict the users’ 

saccade initiation strategy well. As shown in Figure 41, the model also predicts the 

observed search time well, AAE = 9.7%. 

4.2.4.3 What Was Learned

The strict process-monitoring strategy continues to predict user behavior well, even 

with a modified implementation of the saccade initiation strategy, a new set of data and 

different stimuli. While the Original Model predicted the search time better than the 
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active vision model proposed in this thesis, the active vision model still predicts the 

search time within our intended AAE of 10%. Additionally, as shown in this and previous 

sections, the active vision model predicts the eye movement data better than the Original 

Model.

4.2.5 Discussion

The computational model of visual search proposed by this dissertation does a good 

job of predicting the search time, number of fixations, fixation duration, saccade distance, 

and scanpaths for two tasks. The model does so primarily by employing four constraints 

and associated visual features: (a) a strict-processing model to account for saccade 

durations; (b) text-encoding errors to help account for total fixations; and (c) fixating 

nearby objects and (d) inhibiting group revisits, both to help account for saccades 

distances and scanpaths. The model details are motivated by eye movement data and 

previous research, and can be applied to other modeling research. In the next section, the 

active vision model is further validated.

4.3 Model Validation with the Semantic Grouping Task

An aim of this research is to inform the development of predictive, automated 

interface analysis tools and, as such, a validation of the a priori prediction capabilities of 

the post hoc model developed in this research is required. The active vision model that 

was developed and refined in the research trajectory described in sections 4.1 and 4.2 was 

next applied to the semantic grouping task discussed in Chapter III. This task provides a 

rich set of reaction time and eye movement data for a task that is arguably more 
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ecologically valid than the other tasks on which the model was built , so this should be a 

good test of the model. Search time, number of fixations, and fixation duration 

predictions of the model were compared against human performance for the semantically 

cohesive and random layouts.

4.3.1 Predictions

As shown in Figures 42, 43, and 44, the model did a very good job of predicting the 

search times, number of fixations, and saccade distances for the random-group 

conditions. In all three measures, when only considering the random conditions, the 

model predicted the observed data with accuracies well below the intended AAE of 10%.
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Figure 42. Search time observed in the semantic grouping task (circles), predicted by the 
Active Vision model (squares). The AAE is 20.7% and for the random layout alone, 
6.5%.
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With the exception of saccade distance, the model did not accurately predict human 

performance in the semantic conditions. Since the cognitive model had no representation 

for semantic information and hence did not utilize semantic information, it was expected 

that the model would make more fixations in the semantic condition than people who 

sometimes discounted entire groups of words based on one fixation when the layouts 

were meaningfully organized.

4.3.2 What Was Learned

The model developed in this dissertation does a good job of predicting visual search 

performance in tasks slightly different than those it was designed to predict, thus 

providing some validation for the model. The model predicted human data from the 

semantic grouping task (for layouts without organized semantic relationships) quite well. 

The model predicted the search time and eye movement data within our intended AAE of 

10%. The ability to predict visual search behavior a priori for a task that includes a larger 

layout, more words, and a different word set provides some validation for the active 

vision model proposed in this dissertation. These results suggest that the model would be 

an appropriate starting place for modeling more complex tasks with more complex 

stimuli.

The correct predictions and mispredictions made by the model in the semantically-

grouped conditions provide guidance for future work. The finding that the saccade 

distances could be accounted for by the current model suggests that one important aspect 

of the model, the basis of saccade destination selection, could be utilized for predicting 
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human data from the conditions in which the words were semantically organized. The 

validations suggests that certain constraints of human information processing are 

invariant across tasks and that the current model has captured those constraints. The 

misprediction of the number of fixations required to find the target in the semantically-

cohesive condition points to a need for including word-similarity for an even more 

comprehensive model.

4.4 Summary

The proposed candidate for an active vision model of visual search — and the process 

of arriving at the model — have implications for representing — and developing — 

active vision in computational cognitive models. The model of visual search proposed 

here accounts for a variety of eye movement data, from fixation duration to scanpaths. 

The model does so by employing visual search strategies and constraints, informed by 

eye movement data and previous research, that can be applied to other modeling research. 

The strategies and constraints in the model suggest answers to the four questions of active 

vision (Findlay & Gilchrist, 2003), which are: (a) What can be perceived during a 

fixation? Items nearer the point of gaze are more likely to be perceived, with varying 

eccentricities for different features. However, the visual features (e.g. text) of nearby 

objects are sometimes misidentified. This research supports the use of text-encoding 

errors, even for objects very near the center of fixation. (b) When and why are saccades 

initiated? A strict process-monitoring saccade initiation strategy predicts peoples’ fixation 

durations well. While other hypotheses of saccade initiation (Hooge & Erkelens, 1996) 
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are not ruled out by this research, the instantiation of the process-monitoring strategy 

used in this research is able to predict visual search behavior without additional 

mechanisms or parameters that would be necessary to implement the other saccade 

initiation strategies. (c) What do the eyes fixate next? The eyes tend to go to nearby 

objects. When the target does not “pop out”, a strategy of selecting saccade destinations 

based on proximity to the center of fixation predicts people’s eye movement behavior 

well. (d) What information is integrated between fixations? The memory for the locations 

previously visited is required between fixations. While identifying the constraints of 

working memory on visual search was not an explicit goal of this research, the modeling 

does suggest something about the use of memory during the visual search of structured 

layouts. The proposed model uses the memory for previous groups visited to help explain 

the observed saccade distances and scanpaths. So memory for previously fixated 

locations may be integrated across fixations to guide search toward unexplored areas 

(Klein & MacInnes, 1999).

The research reported in this dissertation informs the process of building 

computational models of visual search in a principled way. The model is (a) based on a 

variety of eye movement measures, (b) informed by previous research literature on visual 

search, and (c) guided by the principles underlying the EPIC cognitive architecture. 

Using eye movements to inform the building of computational models of visual search is 

useful. The original CVC model discussed in section 4.2 predicted the search time 

slightly better than the active vision model of visual search proposed in this dissertation. 
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However, the original model did not do as well at predicting the eye movements. This is 

not surprising since the original model was not informed by eye movement analysis. 

However, this discrepancy between predicting visual search time and predicting detailed 

visual search behavior (i.e. eye movements) shows a strong need for utilizing eye 

movement data when building models. The comprehensive model proposed in this 

dissertation was informed by a variety of eye movement measurements at every step of 

the process, which provides more support for the resulting model. The visual search 

literature provides additional support for the model. Previous claims in the research 

literature were computationally instantiated and integrated within the proposed model 

(Bertera & Rayner, 2000; Hooge & Erkelens, 1996; Motter & Belky, 1998). These 

instantiations provided potential refinements of previous claims, such as with Bertera and 

Rayner’s (2000) finding that effective fields of view do not change as a function of 

density. The modeling reinforced and refined Bertera and Rayner’s claim by showing that 

using text-encoding errors, with the error rates differentiated by text density, explains the 

data better than varying the region in which text can be perceived as a function of density.

The model currently predicts the visual search of text-based displays with an 

acceptable level of accuracy for engineering based models. An active vision model of 

visual search based on the research proposed in this dissertation will be useful for 

automated interface analysis tools. In fact, it has already been demonstrated to be useful 

for such tools. As evidence of the need for and impact of the research described in this 

dissertation, some of which has already been disseminated, CogTool-Explorer was 
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recently updated (Teo & John, 2008) to include aspects of the visual search strategies 

identified by the research reported here. The accuracy with which CogTool-Explorer 

predicts visual search behavior improved when augmented with principles identified in 

this research. Future work will be needed to improve on the range of stimuli and task 

behavior, but the computational model of active vision presented here is already looking 

to the future.
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CHAPTER V

CONCLUSION

This dissertation investigates human-computer visual interaction through experiments 

and computational cognitive modeling. Three experiments were conducted that 

investigate the effects of visual layout properties on active vision. Three sets of data (two 

from the experiments reported here) were accurately modeled in the EPIC cognitive 

architecture, the results of which extend our understanding of how people visually search 

computer displays by instantiating a model that addresses the questions put forth by the 

notion of active vision. Table 4 shows a summary of the experiment and modeling work 

reported in this dissertation.

5.1 Summary of Empirical Work

The work presented here builds useful theory for human-computer interaction. Three 

experiments were conducted that further our understanding of how people use active 

vision to interact with computer displays, specifically text-based layouts. Each 

experiment investigated the effects of a specific visual design factor. The results from 

these experiments provide insight for human-computer interaction theory and design 

practice.
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The first experiment investigates the effects of varying local density on active vision 

and finds that people tend to search sparse groups first and faster. Participants move their 

eyes faster, using shorter fixations, when searching sparse groups relative to dense groups 

and move their eyes to sparse groups first. Interestingly, when the layouts are of mixed-

density, regardless of whether the the group being searched is sparse or dense, the 

participants initially search in a manner similar to when all-sparse layouts are searched. 

However, the sparse groups tend to be searched first and when searching dense groups 

later in a trial, the participants tend to adopted a strategy similar to that used in the all-

dense layouts that utilize more and longer fixations. Perhaps users have learned over time 

that larger fonts, as used in the sparse groups, indicate headlines or headings. Regardless, 

these findings suggest that designers should use sparse text for important information that 

the users need to find earlier.
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Task Observed Phenomenon Experiments Modeling

Mixed 
Density

Sparse text searched first and faster (Halverson & 
Hornof, 2004c)

(Halverson & 
Hornof, 2004a)

Link 
Color

Irrelevantly colored items slow search, 
especially in the periphery

(Halverson & 
Hornof, 2004b)

Future Work

CVC 
Search

Group labels motivate a systematic 
strategy

(Hornof, 2004) (Halverson & 
Hornof, 2006)

Semantic 
Grouping

Semantically-cohesive groups and 
group labels allow similar 
performance but motivate slightly 
different strategies

(Halverson & 
Hornof, 2008)

non-semantic 
layouts only, 

presented here

Table 4. A summary of the tasks, observed phenomena, and where the experiments and 
modeling are reported.



The second experiment investigates the effects of text color on active vision and finds 

that people occasionally look at irrelevant text identified by color. In comparison to 

layouts where irrelevantly-colored text is absent, visual search is slower when 

irrelevantly-colored text is present. Visual search is slowed further as the ratio of 

irrelevantly-colored to relevantly-colored text increases. Further, the larger the eye 

movement, the more likely the participants are to look at an irrelevantly-colored item, as 

is expected with eye movements planned using the reduced resolution and hue sensitivity 

of peripheral vision. However, even for the very large eye movements, participants are 

more likely to fixate relevantly-colored text, suggesting a degraded but not absent use of 

color in the periphery. These findings provide a theoretical and empirical basis for 

recommendations on the use of link color: First, we have an active vision explanation for 

precisely how the differentiation of visited and unvisited links can benefit a user; the 

visited links can largely be ignored as the eyes tend to moved to nearby items where the 

color is more readily attained. Second, the differently-colored, unvisited links cannot be 

completely ignored; unvisited links should be removed to improve efficiency if layout 

consistency is not required for other reasons.

The final experiment investigates the effects of semantic cohesion and group labels 

on active vision. When groups of words are semantically cohesive, people appear to 

judge the relevance of semantically grouped words with one fixation, much like is seen 

when people search layouts in which the groups are labeled. Semantically cohesive or 

labeled layouts allow people to find the target faster by discounting more objects per 
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fixation than if the layouts are randomly organized. Interestingly, the use of the additional 

semantic information does not increase the time required to evaluate the objects in each 

fixation. These active vision findings have direct relevance to HCI as follows: When the 

space available within an interface is severely restricted (e.g. handheld displays), 

removing group labels that indicate category will not necessarily put the user at a 

significant disadvantage. If provided with sufficiently cohesive grouping, users can 

navigate such layouts as efficiently as if they groups were labeled.

5.2 Summary of Modeling Work

This dissertation presents an active vision model of visual search that accounts for a 

wide range of eye movement data. Human data from two tasks were used to develop the 

model and the data from these tasks were accounted for in the modeling. The Text-

Encoding Error Model accounted for the local-density task that was presented in the 

empirical work section. This modeling showed that fixation durations can be explained 

using a process-monitoring strategy to predict when people move their eyes. Additionally, 

simulating a small percentage of eye movement patterns that result from misperceived 

stimuli (i.e. encoding errors) is a useful, straightforward way of explaining what people 

perceive with each fixation. The Process-Monitoring Revisited Model explained the eye 

movement data from the CVC search task (Hornof, 2004) with much greater fidelity than 

had been done previously. The model showed that where and how far people move their 

eyes can be explained well by a model that prefers nearby saccade destinations.
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The resulting active vision model developed and tuned throughout this thesis was 

validated by predicting the observed eye movements from the semantic-grouping task 

presented in the empirical work section. This active vision model was able to predict 

human performance very well for the conditions in which the words were randomly 

organized. As expected, the model did not predict the effects of semantic grouping well, 

as the model does not yet have a notion of semantic relatedness. However, some aspects 

of the observed search behavior in the semantically organized layouts were predicted 

well, suggesting that the model will be useful in future modeling efforts that will account 

for additional factors, like semantics.

The model was incrementally improved based on eye movement analysis and 

psychological literature. The eye movement data analysis reported in this thesis is more 

detailed than previously reported in the literature to inform the development of cognitive 

architecture-based models of visual search (e.g. Fleetwood & Byrne, 2006). The 

application of the eye movement analysis was further supplemented by established results 

in the psychological literature, such as hypotheses of saccade initiation (Hooge & 

Erkelens, 1996), evidence for a constant effective field of view across stimuli density 

(Bertera & Rayner, 2000), and evidence for saccades tending to be directed to nearby 

locations (Motter & Belky, 1998).

5.3 Contributions to Cognitive Modeling

This dissertation moves the fields of HCI and cognitive science closer to a powerful, 

detailed, computational understanding of how people apply their active vision processes 
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to visual HCI tasks. This work extends the practice of computational cognitive modeling 

by (a) informing the process of developing such computational models by using eye 

movement data in a principled manner and (b) addressing the four questions of active 

vision for the first time in a computational framework, setting a standard of completeness 

for future modeling of visual search in HCI. Critical theoretical contributions were 

identified along the way that will be useful to incorporate into future models of visual 

search.

The constraints proposed in this research worked well to predict people’s ability to 

locate a target of visual search. The model addresses the question about what can be 

perceived during a fixation by showing that text-encoding errors may do a better job of 

explaining the limitations of what information is processed in a fixation than can be done 

by varying the effective field of view. It was found that a text-encoding error rate of 

roughly 10% helps to accurately predict how quickly people can find a target.

This thesis provides support for the use of a strict process-monitoring saccade 

initiation strategy in computational models of visual search. The modeling is relevant to 

the issue of when saccades are initiated in that it shows how a relatively straightforward 

set of assumptions regarding visual information and ocular motor processing, as built into 

a cognitive architecture, lends itself quite well to explaining, and perhaps thus supporting, 

a process-monitoring explanation of saccade initiation. This thesis extends existing 

theory within EPIC to instantiate the process-monitoring strategy. EPIC embraces the 
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notion of transduction time in the various perceptual processors, which is the time for 

information to move through a processor and become available to later stages. This thesis 

modifies the instantiation of this theory in EPIC by varying the transduction times of 

visual properties based on the value of other visual properties or relationship to other 

visual objects. This dissertation shows how the timing of this transduction can be used to 

explain the observed fixation durations.

Perhaps most important to the prediction of visual search for applications to human-

computer interaction, this dissertation provides a detailed active vision model for 

explaining scanpaths. The modeling supports the idea that proximity is an important 

factor in predicting where people move their eyes. The model predicts people’s saccade 

distributions and scanpaths by utilizing only the location of the objects in the layout, a 

further contribution to predictive modeling in HCI in that object location is one of the 

few visual characteristics that can be automatically translated from a physical device to a 

predictive modeling tool.

This thesis shows one important way in which memory for locations may be 

integrated between eye movements. The only memory that affects, to any large extent, the 

performance of the proposed model is the memory for previously fixated locations. This 

need for memory is restricted to those items currently being searched and those regions 

(i.e. groups) that have been previously searched.
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The modeling in this dissertation is a candidate computational model of active vision. 

Each of the major questions of active vision proposed by Findlay and Gilchrist (2003) are 

addressed in this dissertation: What can be perceived in a fixation? When do the eyes 

move? Where do the eyes move? And, what information is integrated between eye 

movements? Addressing each of these issues resulted in a visual search model that will be 

useful to further research in predicting and understanding user behavior in HCI.

5.4 Future Directions

While the progression of models presented in this dissertation is a substantial step 

towards a unified theory of visual search for HCI, more work is required before a truly 

unified theory of visual cognition is achieved. The proposed model answers questions 

important to the study of active vision. However, it does so for a limited domain, that of 

structured layouts of text. The proposed model is an excellent start, but more work is 

needed.

5.4.1 Integration of Models of Visual Search

Currently, models of visual search cannot accurately predict the behavior of users’ 

visual interaction with the complex visual layouts of today’s computer applications. 

Individual models exist that separately instantiate different strategies that people use 

when visually searching. However, a unified visual search theory is needed. Newell 

proposed a unified theory of cognition (Newell, 1973), which he described as “…a single 

system [that] would have to take the instructions for each [task], as well as carry out the 

task. For it must truly be a single system in order to provide the integration we seek” (p. 
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305). His vision of a unified theory of cognition (UTC) has to some extent been realized 

in cognitive architectures used to create cognitive models like the one in this dissertation. 

However, the independence of the models instantiated in the architectures can have a 

decentralizing effect if there is no unification of the theory embedded in the individual 

models. Therefore, future work is required to integrate across multiple models, including 

models from different cognitive architectures. One future extension of the research in this 

dissertation is to investigate methods for integrating the model proposed here with other 

disparate models.

5.4.1.1 Integration with Other EPIC Models

Other computational models of visual search have been proposed in EPIC that propose 

slightly different answers to some of the questions of active vision. EPIC is conducive to 

the modeling of active vision as it emphasizes perceptual and motor processes that are 

central to active vision, like the visual processor and ocular motor processor. The 

variation in different models is a good thing for a number of reasons. For one, until the 

theory is nailed down, the architecture should not unnecessarily restrict the modeling but 

should instead leave room for appropriate theoretical exploration. For another, a wide 

variety of tasks need to be simulated before a truly comprehensive model can be 

developed.

An active area of research using the EPIC cognitive architecture is the investigation of 

the perceptual constraints of the visual system (Kieras & Marshall, 2006; Kieras, 2003). 

Recent modeling efforts have refined EPIC’s visual availability functions — the 
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equations that determine what visual properties are available to cognitive processes as a 

function of where the object is in the visual field. For example, the default availability 

function for text is straightforward: text can be perceived out to 1º of visual angle. 

Availability functions are necessary to accurately describe visual search behavior. 

Kieras’ recent research with availability functions has explained a range of results from 

different visual search experiments. The resulting models support the idea that visual 

properties, like color and shape, are available according to a quadratic function (an 

equation involving two or more variables raised to the second power or less) based on the 

eccentricity from the center of fixation and size of the object. The models Kieras 

constructed using these quadratic availability functions select saccade destinations at 

random from the objects available according to the quadratic availability functions used. 

Figure 45 shows possible quadratic, linear, and constant availability functions as a 

function of eccentricity only.

Both Kieras’s availability functions and the nearest-with-noise strategy proposed in this 

thesis can be used to explain people’s saccade selection behavior in different tasks. 

Further research is required to determine whether both are necessary to predict observed 

scanpaths in visual search, or how the two methods may be integrated, or whether one 

strategy subsumes the other. This thesis and other research (Findlay, 1997) has shown that 

when people are searching for objects differentiated by color, people are more likely to 

fixate on target-colored object regardless of the distance to the object. However, there is 

sometimes a preference for nearby objects independent of the identification of the 
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objects’ visual features (ibid.). These complementary findings may support the need for 

both mechanisms. While differences remain between the modeling presented in this 

thesis and other models of visual search in EPIC, these differences are reconcilable 

through integration and additional empirical investigation. Future research will 

investigate integrating the availability functions proposed by Kieras with the saccade 

selection strategy proposed in this research. Such integration will be useful for extending 

the model proposed in this thesis to simulate active vision for a wider variety of tasks.

150

P
ro

b
a

b
ili

ty
 o

f 
A

v
a

ila
b

ili
ty

Eccentricity
Near Far

100%

0%

Zone

Quadratic

Linear

Figure 45. Theoretical plots of availability as a function of eccentricity. As objects move 
further from the point of gaze, visual features become less available. Zone functions are 
all or nothing. Quadratic functions tend to decrease slowly for nearby items and rapidly 
for distant items. Linear functions decrease uniformly.



5.4.1.2 Integration with Models of Semantic Search

The active vision model proposed in this thesis will be improved to account for the 

effects of semantics on visual search. While the model was able to explain some of the 

eye movement behavior in the Semantic Grouping task, the effects of semantics on 

saccade destination selection was not explained.

Research and modeling by Brumby and Howes (2004; 2008) has provided much 

insight in to how the semantics can guide visual search. Brumby and Howes (2008) 

investigated the effect of word meaning on the visual search of menus. Menu items may 

be semantically related to one another to a lesser or greater degree. Additionally, the 

target menu item may be semantically related to the search goal to a lesser or greater 

degree. Both the semantic relationship between menu items and between the target and 

goal can affect visual search. They found that people tend to search fewer items when 

distractor menu items are less similar to the goal and when the target is more similar to 

the goal. Further, people tend to revisit smaller and smaller groups of menu items as 

visual search progresses before selecting a menu item to click on. A model was 

constructed to explain the findings in the ACTR cognitive architecture (Brumby & 

Howes, 2004). The model used an interdependence of link assessment search strategy that 

accounts for the perceived semantic distance between menu items and the target word. 

The strategy contains three key elements: (a) If the perceived semantic distance between 

a menu item and the target is close enough, mark the menu item as a potential target. 

(b) If the perceived semantic distance between the menu item and the goal is even higher, 
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select that menu item as the target. (c) If the currently fixated menu item is not the target, 

make another eye movement to an unassessed menu item or to a menu item previously 

marked as a potential target.

It would be useful to integrate the Interdependence of Link Assessment Model with 

the model proposed in this thesis, as the models have complimentary strengths. The 

model proposed in this dissertation performs visual searches for exact targets. The 

semantic content of the text being searched does not influence the model’s visual search 

processes as would be the case for people. The Interdependence of Link Assessment 

Model has accounted quite well for the influence of the semantics of text on people’s 

visual search processes. Conversely, the Interdependence of Link Assessment model uses 

an over-simplified scanpath that searches from top-to-bottom in a menu one item at a 

time. The model presented here does quite well at predicting how people select saccade 

destinations. The integration of these models would benefit predictive modeling in HCI 

tasks greatly, as both the location and the content of computer layouts are important 

factors of screen design.

5.4.2 Informing the Development of Automated Interface Analysis Tools

The aim of all of this research is to provide theoretical underpinnings for automated 

interface analysis tools and to provide a useful method of predicting users’ gaze 

interaction with novel visual displays. Interface designers can use such tools to evaluate 

visual layouts early in the design cycle before user testing. Work is required to integrate 

the results of this modeling, and future related modeling, into one or more interface 
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analysis tools like CogTool (John & Salvucci, 2005) and CORE/X-PRT (Tollinger et al., 

2005).

At least two directions can be taken to improve the predictive power of CogTool: 

(a) Improve the predictive power of the model presented in this dissertation and (b) 

enhance CogTool with a more robust model of visual search based on this model. This 

entire dissertation has focused on improving the model. Regarding the second goal, some 

progress has already been made, but more is needed. Teo and John (2008) have enhanced 

CogTool-Explorer (an extension to CogTool) to include some aspects of the research 

presented here. For example, CogTool-Explorer searches visual objects in an order based 

on the eccentricity of the objects relative to one another. However, CogTool-Explorer and 

the computational model on which it is partially based, SNIF-ACT (Fu & Pirolli, 2007), 

do not embrace many aspects of active vision. These tools do not simulate eye 

movements, and incorporate extremely limited simulations of visual perception. For 

example, all visual objects on a web page have equal visual saliency regardless of 

location on the page. CogTool-Explorer needs a greater integration with the current 

model presented in this dissertation to more accurately simulate human visual-perceptual 

and ocular-motor processes in order to more accurately predict human visual search 

performance.

5.5 Conclusion

To better support users and predict their behavior on potential, future human-

computer interfaces, it is essential that we better understand how people search visual 
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layouts. Computational cognitive modeling is an effective means of expanding visual 

search theory in HCI, and ultimately will provide a means of predicting visual search 

behavior to aid in the evaluation of user interfaces. The experimental results presented in 

this thesis provide a better understanding of how text density, color, and word meaning 

affect human-computer visual interaction. The computational cognitive modeling that 

built upon those experimental results illustrates the efficacy of using eye movements in a 

methodical manner to better understand and predict visual search behavior. Additionally, 

the results from the modeling solidify and extend an understanding of active vision by 

instantiating the theory in a computational model. This instantiation allows us to better 

understand (a) the effects and interactions of visual search processes and (b) how these 

visual search processes can be used computationally to predict people’s visual search 

behavior. This research ultimately benefits HCI by giving researchers and practitioners a 

better understanding of how users visually interact with computers, and provides a 

foundation for tools to predict that interaction.
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APPENDIX A

WORDS USED IN EXPERIMENTS 1 AND 2

age
aisle
alley
angle
ankle
ant
ape
apple
arm
army
arrow
art
ash
atom
aunt
author
autumn
baby
back
bag
ball
band
bang
bank
bar
bark
basin
bass
bat
bath
battle
beach

bean
bear
bed
bee
beef
beer
beet
beetle
bell
belt
bet
bill
bin
birch
bird
birth
blade
block
blouse
blush
board
boat
body
boil
bone
book
boot
border
boss
bottle
bow
bowl

box
boy
bra
brain
brake
brat
bread
breath
breeze
brick
bridge
broil
broom
brush
bubble
bump
burn
burner
bush
butter
button
cable
cafe
cake
calf
camp
cape
car
card
case
cash
cast

cat
cattle
cave
cell
chain
chair
chalk
charm
chart
cheat
cheek
chin
choir
cider
cigar
circle
city
clash
clean
clock
cloth
cloud
clown
club
coach
coal
coast
coat
coffee
coil
coin
coke

cold
collar
cone
cook
copper
cork
corn
corner
cotton
couch
count
court
cousin
cow
crawl
cream
crime
cross
crow
crowd
crown
crumb
cry
cube
cup
curb
curler
curve
cut
dad
daisy
dance

dart
date
dawn
day
decay
deck
deep
deer
desk
dial
diet
dime
dinner
dirt
ditch
dive
dog
doll
dollar
dome
door
doorway
dot
down
dozen
drain
dream
dress
drug
drum
duck
dust

dye
earth
east
edge
egg
eight
elbow
end
essay
face
faint
fall
fan
farm
fat
father
feet
felt
fence
fight
figure
film
filth
fire
fish
flag
flame
flare
flash
flea
float
flood
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floor
flower
flush
flute
fog
foil
food
foot
fork
form
fox
frame
frog
frown
fruit
fun
fur
gang
gas
gate
ghost
gift
gin
girdle
girl
glass
glove
goal
gold
golf
gown
grape
graph
grass
grave
grief
grip
groan
group
guard

guest
guide
gun
guy
hair
half
hall
ham
hammer
hand
harbor
hat
hate
hawk
head
heap
heart
heat
heel
height
help
herb
hero
highway
hill
hobby
hockey
hoe
hog
hole
home
honey
hood
hook
horn
horror
horse
house
hunt
hurt

ice
inch
ink
iron
itch
jail
jam
jar
jaw
jeep
jelly
jersey
jet
jewel
job
jog
joke
joy
judge
juice
jump
jury
kettle
key
kick
kid
king
kiss
kitten
knee
knife
knight
knob
knuckle
lad
lady
lake
lamb
lamp
land

lane
lap
laugh
lawn
lawyer
lead
leader
leaf
leak
lean
leap
leather
leg
lens
letter
lever
life
lift
light
lighter
limb
limp
line
lion
lip
liquor
load
lock
locker
long
loop
love
lump
lung
mail
male
man
map
maple
march

mat
match
mate
meal
meat
medal
men
metal
mile
milk
mine
miner
mink
mirror
mist
mold
money
moon
moose
moth
mother
motor
mouse
mouth
movie
mud
mug
muscle
nag
nail
name
narrow
neck
needle
nerve
nest
net
news
nickel
night

nod
noodle
nose
note
nun
nurse
oak
ocean
office
oil
organ
ounce
oven
page
paint
pair
pale
palm
pan
pants
paper
parcel
park
party
pass
paste
pea
peach
pear
pearl
pedal
pen
penny
people
pepper
person
pet
phone
pick
pickle

pie
pig
pile
pill
pillow
pin
pine
pint
pipe
pit
plain
plane
plate
play
plug
plum
poet
point
poison
pole
pond
pony
pool
pope
pork
post
pot
pound
pour
powder
praise
prayer
prize
puddle
pump
pup
puppy
purse
quart
queen
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race
rail
rain
ramp
rat
rear
rent
rib
rice
riddle
rim
ring
riot
rise
river
road
robber
rock
rod
roll
roof
room
root
rope
rose
rough
round
rubber
rug
ruler
rum
sack
safe
sail
salt
sauce
saucer
saw
scab
scale

scar
scare
school
sea
seam
season
seat
seed
self
sewer
shadow
shallow
shape
shark
shed
sheep
sheet
shell
ship
shirt
shiver
shock
shoe
shoot
shop
shore
shot
shout
shovel
shower
sign
singer
sink
skate
ski
skin
skirt
skull
sky
slap

sleep
sleeve
sleigh
slice
slide
slip
slope
slush
smack
smash
smell
smile
smoke
snail
snake
sneeze
snow
soap
sob
soccer
sock
soda
sofa
soft
soil
song
sore
sound
soup
south
space
spade
spark
spear
spice
spoke
spool
spoon
spray
square

staff
stain
stair
star
state
steak
steam
steel
stem
step
stew
stick
stone
stool
stop
store
storm
stout
stove
straw
sugar
suit
sum
summer
sun
supper
surf
sweat
sweep
sweet
swim
table
tail
talk
tank
tap
tape
tar
tea
team

tear
teeth
tent
terror
test
thaw
thick
thief
thread
three
thrill
throat
throw
thumb
tide
tidy
tie
tiger
tin
tip
tire
toad
toast
toe
ton
tongue
tool
tooth
top
touch
tough
town
toy
track
trail
train
trash
tray
tree
tribe

trick
trip
truck
tube
tune
tunnel
turtle
twig
uncle
valley
van
vein
voice
vote
voter
wage
waist
walk
wall
war
wash
watch
water
wave
wax
wealth
weather
weed
week
weight
well
whale
wheat
wheel
whistle
wide
wife
wig
wild
win

wind
wine
wing
wink
wire
wolf
womb
wood
wool
work
worker
world
worm
wrap
wreck
yard
yawn
youth
zero
zipper
zoo
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APPENDIX B

WORDS, CATEGORIES, AND META-GROUPS

USED IN EXPERIMENT 3

The words, category labels (italicized), and super categories (bold) used in 

experiment 3 are listed below. Note that the super categories were not shown and the 

category labels were not italicized in the experiment’s layouts.

animals
 farm animals
  cow
  pig
  horse
  sheep
  goat
  lamb
  ox
  rabbit
  bull

 wild animals
  lion
  tiger
  bear
  elephant
  wolf
  boar
  fox
  deer
  cheetah
  zebra

 birds
  robin
  cardinal
  eagle
  bluebird
  sparrow
  parrot
  hawk
  pigeon
  canary
  woodpecker

 rodents
  rat
  mouse
  squirrel
  gerbil
  hamster
  opossum
  chipmunk
  bat
  beaver
  gopher

 tropical fish
  piranhas
  angelfish
  blowfish
  clownfish
  seahorse
  barracuda
  stingray
  starfish
  sunfish
  swordfish
  

food1
 bread
  rye
  pumpernickel
  sourdough
  challah
  roll
  pita
  croissant
  bagel
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  toast
  biscuit

 dairy
  milk
  cheese
  yogurt
  butter
  cream
  eggnog
  buttermilk
  cheddar
  kefir
  feta

 meat
  beef
  pork
  steak
  veal
  hamburger
  ham
  venison
  ribs
  salami
  roast

 vegetables
  carrot
  lettuce
  broccoli
  corn
  celery
  tomato
  cucumber
  potato
  peas
  onion

 fruits

  apple
  orange
  banana
  pear
  grape
  strawberry
  peach
  kiwi
  mango
  pineapple

food2
 alcohol
  beer
  wine
  vodka
  rum
  gin
  whiskey
  champagne
  tequila
  liquor
  scotch

 beverage
  water
  juice
  coke
  coffee
  tea
  lemonade
  punch
  pepsi
  sprite
  shake

 candy
  chocolate
  gum
  licorice

  sucker
  mints
  caramel
  taffy
  skittles
  jawbreaker
  snickers

 condiments
  salt
  pepper
  sugar
  vanilla
  ketchup
  lemon
  barbeque
  mustard
  vinegar
  tabasco

attire
 clothing
  shirt
  pants
  socks
  underwear
  hat
  sweater
  jacket
  skirt
  shorts
  jeans

 cloth
  cotton
  silk
  polyester
  wool
  rayon
  linen
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  nylon
  satin
  denim
  cashmere

 footwear
  sandals
  boots
  shoes
  slippers
  sneakers
  loafers
  moccasins
  pumps
  clogs
  skates

 cosmetics
  lipstick
  blush
  mascara
  eyeliner
  foundation
  powder
  rouge
  perfume
  lotion
  gloss

 jewelry
  necklace
  ring
  bracelet
  earring
  watch
  anklet
  brooch
  tiara
  cufflink
  crown

entertainment
 dance
  ballet
  swing
  tango
  waltz
  disco
  macarana
  mambo
  lambada
  samba
  polka

 music
  rock
  rap
  classical
  jazz
  country
  alternative
  blues
  hiphop
  folk
  reggae

 instruments
  piano
  flute
  drum
  saxophone
  trumpet
  violin
  guitar
  clarinet
  oboe
  tuba

 singing
  soprano

  alto
  bass
  tenor
  baritone
  falsetto
  operatic
  contralto
  mezzo
  countertenor

media
 reference
  encyclopedia
  dictionary
  thesaurus
  journal
  almanac
  atlas
  textbook
  index
  phonebook
  handbook

 reading
  magazine
  newspaper
  pamphlet
  novel
  brochure
  fiction
  comic
  essay
  book
  mystery

 writing
  pen
  pencil
  marker
  crayon
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  chalk
  highlighter
  paper
  ink
  eraser
  typewriter

 communication
  telephone
  letter
  talk
  phone
  fax
  internet
  telegram
  mail
  radio
  pager

buildings
 buildings
  school
  skyscraper
  hospital
  restaurant
  museum
  mall
  hotel
  warehouse
  prison
  bank

 building part
  annex
  atrium
  attic
  backdoor
  balcony
  basement
  bathroom

  bedroom
  ceiling
  chimney

 religious building
  church
  temple
  synagogue
  mosque
  cathedral
  chapel
  shrine
  monastery
  convent
  tabernacle

 homes
  house
  apartment
  condominium
  hut
  dormitory
  mansion
  shack
  igloo
  trailer
  townhouse

medicine
 medical specialty
  pediatrics
  gynecology
  surgical
  cardiology
  orthopedics
  obstetrics
  oncology
  urology
  ophthalmology
  dermatology

 diseases
  cancer
  herpes
  leukemia
  hepatitis
  alzheimers
  diabetes
  tuberculosis
  malaria
  hiv
  parkinsons

 organs
  heart
  liver
  lung
  kidney
  stomach
  brain
  intestine
  pancreas
  spleen
  uterus

 body part
  leg
  arm
  hand
  head
  foot
  toe
  finger
  neck
  shoulder
  chest

 face part
  nose
  eyes
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  mouth
  cheeks
  ears
  lips
  eyebrows
  forehead
  chin
  eyelashes

transportation
 auto parts
  engine
  wheel
  carburetor
  tire
  brake
  muffler
  transmission
  battery
  radiator
  axle

 bicycle parts
  seat
  chain
  spokes
  pedal
  gears
  handlebars
  frame
  horn
  reflector
  bell

 vehicles
  car
  truck
  bus
  van
  motorcycle

  train
  airplane
  jeep
  limousine
  moped

 boats
  sailboat
  yacht
  battleship
  submarine
  rowboat
  tugboat
  cruiseliner
  canoe
  speedboat
  barge

 boat parts
  sail
  mast
  bow
  stern
  deck
  hull
  rudder
  oar
  anchor
  cabin

furnishings
 major appliances
  refrigerator
  stove
  dishwasher
  dryer
  oven
  television
  freezer

  stereo
  furnace
  computer

 small appliances
  toaster
  blender
  microwave
  mixer
  juicer
  timer
  beater
  breadmaker
  crockpot
  coffeemaker

 bathroom fixtures
  sink
  toilet
  bath
  shower
  mirror
  light
  faucets
  cabinet
  fan

 furniture
  chair
  couch
  table
  bed
  desk
  sofa
  dresser
  lamp
  loveseat
  ottoman

chemistry
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 precious stones
  diamond
  ruby
  emerald
  sapphire
  opal
  amethyst
  pearl
  topaz
  garnet
  jade

 metals
  gold
  silver
  steel
  iron
  copper
  aluminum
  platinum
  tin
  lead
  bronze

 chemical elements
  oxygen
  hydrogen
  nitrogen
  helium
  carbon
  sulfur
  sodium
  lithium
  potassium
  phosphorus

 energy source
  solar
  hydro
  wind

  electricity
  gas
  coal
  oil
  nuclear
  thermal

earth
 landscapes
  mountain
  valley
  hill
  volcano
  canyon
  glacier
  plateau
  cave
  cliff
  island

 waterways
  river
  ocean
  lake
  stream
  canal
  sea
  pond
  creek
  channel
  brook

 trees
  oak
  pine
  maple
  birch
  redwood
  willow
  elm

  cedar
  palm
  spruce

 storm
  thunder
  rain
  hail
  hurricane
  tornado
  windstorm
  lightning
  blizzard
  sandstorm
  sleet

titles
 relatives
  aunt
  uncle
  cousin
  brother
  sister
  mother
  father
  niece
  grandma
  grandpa

 nonrelatives
  friend
  boyfriend
  teacher
  girlfriend
  acquaintance
  boss
  enemy
  neighbor
  mentor
  roommate
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 military title
  general
  sergeant
  lieutenant
  captain
  private
  colonel
  major
  corporal
  commander
  officer

 occupation
  lawyer
  engineer
  accountant
  banker
  professor
  psychiatrist
  artist
  actor
  secretary
  manager

 royalty
  king
  queen
  prince
  princess
  duke
  duchess
  jester
  lord
  knight
  lady
tools
 surgical instrument
  scalpel
  needle

  tweezer
  laser
  clamp
  forceps
  gauze
  stethoscope
  syringe
  suture

 garden tools
  hoe
  shovel
  rake
  spade
  trowel
  weeder
  lawnmower
  rototiller
  pots
  sprinkler

 kitchen utensil
  fork
  knife
  spoon
  spatula
  ladle
  plate
  bowl
  tongs
  cup
  whisk

 hiking equipment
  backpack
  rope
  tent
  compass
  canteen
  pick

  matches
  map
  trailmix
  raincoat
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APPENDIX C

PRODUCTION RULES FOR THE FINAL MODEL

The following are the EPIC production rules, non-default parameters, initial memory 

contents, and well known (i.e. named) locations for the final model discussed in

Chapter IV.

(Define Parameters

 // The eccentricity fluctuation factor affects
 //saccade destination selection.
 (Eye Eccentricity_fluctuation_factor Normal When_used 1 0.35)

 // Reduce ocular movement preparation cost to zero
 (Ocular Feature_time Uniform When_used 0 0.0)

 // Reduce manual movement preparation cost to zero
 (Manual Feature_time Uniform When_used 0 0.0)
 

 (Visual_perceptual_processor Text_recoding_failure_rate
  Normal When_used 0.09 0.0)

 (Visual_perceptual_processor Recoding_time Text 100)

 (Eye Availability Shape Zone 49 7.5)
 (Eye Availability Text Zone 49 1.0)

 (Visual_perceptual_store Property_decay_time Normal When_used 50 0)
)

(Define Initial_memory_contents
 (Goal Do Visual_Search Task)
 (Step Pretrial Tag Precues)
 (Tag Cursor Cursor)
)

(Define Named_location Away_from_precue 0.0 0.0)
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///////////////////////////////////////////////////////////////////////
//PRE-SEARCH STRATEGY PRs
//The following rules for response to the precue.
///////////////////////////////////////////////////////////////////////

// Tag all precue objects for examination
(Tag-all-precue-objects-for-examination
IF
(
 (Goal Do Visual_Search Task)
 (Step Pretrial Tag Precues)
 (Visual ?Object Detection Onset)
 (Not (Tag ?Object Cursor))
)
THEN
(
 (Delete (Step Pretrial Tag Precues))
 (Add (Step Pretrial Look_at Any_Precue))
 (Add (Tag ?Object Precue_to_be_examined))
))

// Look at any random, unvisited precue object.
(Look-at-any-precue-object
IF
(
 (Goal Do Visual_Search Task)
 (Step Pretrial Look_at Any_Precue)
 (Tag ?Object Precue_to_be_examined)
 (Visual ?Object Eccentricity ?ecc)
 (Motor Ocular Modality Free)
)
THEN
(
 (Delete (Step Pretrial Look_at Any_Precue))
 (Add (Step Pretrial Memorize Precue))

 (Send_to_motor Ocular Perform Move ?Object)
))

// If looking at the precue, memorize it unless the text is unknown,
//which can happen because of text recoding failures.
(Memorize-and-point-to-precue
IF
(
 (Goal Do Visual_Search Task)
 (Step Pretrial Memorize Precue)

 (Tag ?Object Precue_to_be_examined)
 (Visual ?Object Text ?Text)
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 (Not (Visual ?Object Left_of ?Anything))
 (Not (Visual ?Object Right_of ?Anything))

 // If the text is unknown, this object
 //will be revisited later.
 (Not (Visual ?Object Text Unknown))
)
THEN
(
 (Delete (Step Pretrial Memorize Precue))
 (Add (Step Pretrial Look_at Any_Precue))
 (Delete (Tag ?Object Precue_to_be_examined))

 (Add (Tag Target_Text ?Text))

 (Add (Tag ?Object Precue_Object))

 (Send_to_motor Manual Perform Point ?Object)
))

// If looking at the precue label, memorize it
(Memorize-target-group-label-in-precue
IF
(
 (Goal Do Visual_Search Task)
 (Step Pretrial Memorize Precue)

 (Tag ?Object Precue_to_be_examined)
 (Visual ?Object Text ?Text)
 (Visual ?Object Left_of ?Anything)

 // If the text is unknown, this object
 //will be revisited later.
 (Not (Visual ?Object Text Unknown))
)
THEN
(
 (Delete (Step Pretrial Memorize Precue))
 (Add (Step Pretrial Look_at Any_Precue))
 (Delete (Tag ?Object Precue_to_be_examined))

 (Add (Tag Target_Group_Label_Text ?Text))

 (Add (Tag ?Object Precue_Label_Object))
))

// If looking at a precue object and the text is unknown, look at 
//another object.
//Note: Since an objects text will remain unknown until the model 
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//looks away from the object, this rule moves the eyes to an arbitrary 
//named location so that the precue text will eventually be known. 
//This does not affect the model's predictions as this occurs before 
//search begins.
(Skip-Unknown-Precue-Object
IF
(
 (Goal Do Visual_Search Task)
 (Step Pretrial Memorize Precue)

 (Motor Ocular Modality Free)

 (Tag ?Object Precue_to_be_examined)
 (Visual ?Object Text Unknown)
)
THEN
(
 (Delete (Step Pretrial Memorize Precue))
 (Add (Step Pretrial Look_at Any_Precue))

 (Send_to_motor Ocular Perform Move Away_from_precue)
))

//The precue stage is over. Proceed with the timed portion of the 
//trial. If the eyes are not on the precue, move them back to the 
//precue.
(All-precue-objects-are-examined-so-proceed-with-trial
IF
(
 (Goal Do Visual_Search Task)
 (Step Pretrial Look_at Any_Precue)
 (NOT (Tag ??? Precue_to_be_examined))

 (Tag ?Object Precue_Object)

 (Motor Ocular Processor Free)
)
THEN
(
 (Send_to_motor Ocular Perform Move ?Object)

 (Delete (Step Pretrial Look_at Any_Precue))
 (Add (Step Pretrial Click Precue))
))

// Start trial.  Have the model wait long enough for the ocular motor 
//processor to be free, to make sure the next rule is not delayed due 
//to pre-trial activity.  The subject can wait here anyway as they 
//memorize the precue.  
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//This does not affect the search time.
(Punch-Mouse-Button-To-Show-Layout
 IF
 (
  (Goal Do Visual_Search Task)
  (Step Pretrial Click Precue)
 
  (Motor Ocular Processor Free)               
  (Motor Manual Processor Free)
 )
 THEN 
 (
  (Delete (Step Pretrial Click Precue))
  (Add (Step Move))
 
  // A location to move the eyes not been selected
  (Add (Tag nothing Selected))
  (Add (Tag nothing Current_Group))
 
  (Send_to_motor Manual Perform Punch B1 Right Index)
  )
 )

///////////////////////////////////////////////////////////////////////
//VISUAL SEARCH STRATEGY 'DAEMON' RULES
//These are PRs common to all strategies that occur at any time, 
//largely for the maintenance of 'tags'
///////////////////////////////////////////////////////////////////////

// Decide to remove the group identified tags from all groups, except 
//the currently fixated group.
//Note: This PR will fire every other cycle when there is only one 
//group present. However, in that case, this PR  only triggers a rule 
//that removes the step added in this PR. See the PR 'Remove-Reset-
//Group-Step'
(Decide-to-Reset-Group-Identified-Tags
 IF
 (
  (Goal Do Visual_Search Task)
 
  // If not already resetting the tags
  (Not (Step Reset Identified_tags))
 
  // and not if there is only one group in the layout
  (Not (Tag Do_Not Retag))
 
  // If just one "unidentified" group remains
  (Visual ?Unidentified_Group Object_Type Group)
  (Not (Tag ?Unidentified_Group Object_Identified))
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  (If_only_one)
 )
 THEN
 (
  (Add (Step Reset Identified_tags))
 )
)

//Remove all group object_identified tags
(Reset-Group-Identified-Tags
 IF
 (
  (Goal Do Visual_Search Task)
  (Step Reset Identified_tags)
 
  (Visual ?Object Object_Type Group)
  (Tag ?Object Object_Identified)
 )
 THEN
 (
  (Delete (Tag ?Object Object_Identified))
 )
)

//Remove the step to reset group identified tags
//Note: This step must be separate from the PR that removes the tags 
//since there may be only one group in the layout, in which case the 
//PR that resets the tags will not fire.
(Remove-Reset-Group-Step
 IF
 (
  (Goal Do Visual_Search Task)
  (Step Reset Identified_tags)
 )
 THEN
 (
  (Delete (Step Reset Identified_tags))
 )
)

//As the model moves to other groups, there is no need to remember 
//which objects and labels have been identified in previous groups.
(Reset-Object-Identified-Tags
 IF
 (
  (Goal Do Visual_Search Task)
 
  // Find groups that have been identified
  (Tag ?Group Object_Identified)
  (Visual ?Group Object_Type Group)
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  // Find identified objects in the identified groups
  (Visual ?Object In_Group ?Group)
  (Tag ?Object Object_Identified)
 )
 THEN
 (
  (Delete (Tag ?Object Object_Identified))
 )
)

// If the text of an object is perceived, mark it as identified if the 
//object is in the currently selected group. This rule will only apply 
//to group labels and menu item objects, as they are the only objects 
//that have both text and are in a group.
(Mark-Objects-as-Identified
 IF
 (
  (Goal Do Visual_Search Task)
 
  // But not during the pretrial stages
  (Not (Step Pretrial ??? ???))
 
  // Find the selected group
  (Tag ?Selected_Object Selected)
  (Visual ?Selected_Object In_Group ?Selected_Group)
 
  // Tag objects in the selected group
  (Visual ?Object Text ???)
  (Visual ?Object In_Group ?Selected_Group)
 
  // It is not necessary that the object has
  // not been identified before,
  // but it makes the model easier to debug
  // if this rule only fires for those
  // that have not been identified before.
  (Not (Tag ?Object Object_Identified))
 )
 THEN
 (
  (Add (Tag ?Object Object_Identified))
 )
)

// When a new group is visited, mark the previously visited group as 
//"identified"
(Mark-Group-as-Identified
 IF
 (
  (Goal Do Visual_Search Task)
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  // Get the group selected for fixation
  (Tag ?Selected_Object Selected)
  (Visual ?Selected_Object In_Group ?Selected_Group)
 
  // Get the "current group"
  (Tag ?Current_Group Current_Group)
 
  // If the current group and fixated group are different
  (Different ?Current_Group ?Selected_Group)
 )
 THEN
 (
  (Add (Tag ?Current_Group Object_Identified))
 
  (Delete (Tag ?Current_Group Current_Group))
  (Add (Tag ?Selected_Group Current_Group))
 )
)

///////////////////////////////////////////////////////////////////////
//NOMINATE PRODUCTION RULES
//This is the first step in the of nominate-then-move search strategy.
//Each strategy is represented by a set of PRs.
///////////////////////////////////////////////////////////////////////

// LABELED LAYOUT NOMINATIONS

// Nominate the labels of all groups that have not been identified 
//(i.e. fixated), if currently fixating a label, the target group has 
//not been found
(Nominate-Labeled-Any-Direction-Unidentified-Labels
 IF
 (
  (Goal Do Visual_Search Task)
  (Step Nominate)
 
  // If not currently reseting group identified tags
  (Not (Step Reset Identified_tags))
 
  // Once the eyes have stopped moving
  (Motor Ocular Modality Free)
 
  // Only if the target group has not been found
  (Not (Tag ??? Target_Group))
 
  // Nominate all group labels of unvisited groups, except
  //for a group label selected for fixation
  (Visual ?Nominate_Label Object_Type Group_Label)
  (Visual ?Nominate_Label In_Group ?Group)
  (Not (Tag ?Group Object_Identified))

172



  (Not (Tag ?Nominate_Label Selected))
 )
 THEN
 (
  (Add (Tag ?Nominate_Label Nominee Label))
 )
)

// Nominate group labels that have not been identified, if currently 
//fixating a label and there was an recoding error with the target 
//group label.
//Note: The only time other group labels are *not* nominated is when 
//the target group label has been correctly identified.
(Nominate-Labeled-Any-Direction-Target-Group-Label-Unknown
 IF
 (
  (Goal Do Visual_Search Task)
  (Step Nominate)
 
  // If not currently reseting group identified tags
  (Not (Step Reset Identified_tags))
 
  // Once the eyes have stopped moving
  (Motor Ocular Modality Free)
 
  // If the group label text was 'unknown'
  (Tag Target_Group_Label Unknown)
 
  // Nominate all group labels of unvisited groups, except for a 
  //group label selected for fixation
  (Visual ?Nominate_Label Object_Type Group_Label)
  (Visual ?Nominate_Label In_Group ?Group)
  (Not (Tag ?Group Object_Identified))
  (Not (Tag ?Nominate_Label Selected))
 )
 THEN
 (
  (Add (Tag ?Nominate_Label Nominee Label))
 )
)

// Nominate all unidentified non-label objects in the currently fixated 
//group, if this is a labeled layout, in anticipation of the fixated 
//group being the target group.
(Nominate-Labeled-All-Current-Group-Objects-Unidentified
 IF
 (
  (Goal Do Visual_Search Task)
  (Step Nominate)
 
  // If not currently reseting group identified tags
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  (Not (Step Reset Identified_tags))
 
  // Once the eyes have stopped moving
  (Motor Ocular Modality Free)
 
  // Only if this is a labeled layout
  (Visual ??? Object_Type Group_Label)
 
  // Nominate all unidentified objects in the selected group
  (Visual ?Nominate_Word Object_Type Object)
  (Not (Tag ?Nominate_Word Object_Identified))
  (Tag ?Selected_Object Selected)
  (Visual ?Selected_Object In_Group ?Selected_Group)
  (Visual ?Nominate_Word In_Group ?Selected_Group)
 )
 THEN
 (
  (Add (Tag ?Nominate_Word Nominee Object))
 )
)

// UNLABELED LAYOUT NOMINATIONS

// Nominate all unidentified menu objects in unidentified groups
(Nominate-Unlabeled-All-Unidentified
 IF
 (
  (Goal Do Visual_Search Task)
  (Step Nominate)
 
  // If not currently reseting group identified tags
  (Not (Step Reset Identified_tags))
 
  // Once the eyes have stopped moving
  (Motor Ocular Modality Free)
 
  // Only if the target text has not been found
  (Not (Tag Target_Object ?Target_Object))
 
  // Only if this is an unlabeled layout
  (Not (Visual ??? Object_Type Group_Label))
 
  // Nominate unfixated, unidentified objects in unvisited groups
  (Visual ?Nominate_Word In_Group ?Nominate_Group)
  (Not (Tag ?Nominate_Word Object_Identified))
  (Not (Tag ?Nominate_Group Object_Identified))
  (Not (Visual ?Nominate_Word Text ???))
 
  // And, the word is not "too close" to where the model was just 
  //looking
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  (Greater_than ?Ecc 1.0)
 )
 THEN
 (
  (Add (Tag ?Nominate_Word Nominee Object))
 )
)

// Control PR for the labeled strategy. All rules in the labeled 
//strategy fire after the eyes stop moving from the previous move 
//step.
(Nominate-Control
 IF
 (
  (Goal Do Visual_Search Task)
  (Step Nominate)
 
  // If not currently reseting group identified tags
  (Not (Step Reset Identified_tags))
 
  // Once the eyes have stopped moving
  (Motor Ocular Modality Free)
 )
 THEN
 (
  (Delete (Step Nominate))
  (Add (Step Move))
 )
)

///////////////////////////////////////////////////////////////////////
//MOVE PRODUCTION RULES
//This is the second step in the "search iteration" of nominate-move.
//The move rule to fire is chosen based on what has been nominated.
//If nothing has been nominated, the default move rule applies.
//Note: When the trial starts, move is the first step, not nominate.
///////////////////////////////////////////////////////////////////////

// Select the nearest nominated label if the target label has not been 
//found and the text of the currently fixated label was identified 
//properly.
(Move-to-Labeled-Strategy-Label-Nominee-Label-Known
 IF
 (
  (Goal Do Visual_Search Task)
  (Step Move)
 
  // When the eyes are free
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  (Motor Ocular Processor Free)
 
  // Only if the target group label is not being fixated
  (Tag Target_Group_Label_Text ?T)
  (Tag ?Selected_Object Selected)
  (Not (Visual ?Selected_Object Text ?T))
 
  // After the selected text is seen and known
  (Visual ?Selected_Object Text ???)
  (Not (Visual ?Selected_Object Text Unknown))
 
  // Select the nearest nominated label
  (Tag ?Selected_Word Nominee Label)
  (Not (Visual ?Selected_Word Text ???))
  (Visual ?Selected_Word Eccentricity ?ecc)
  (Least ?ecc)
 )
 THEN
 (
  (Send_to_motor Ocular Perform Move ?Selected_Word)
 
  (Add (Tag ?Selected_Word Selected))
  (Delete (Tag ?Selected_Object Selected))
 
  (Delete (Step Move))
  (Add (Step Nominate))
 )
)

// The model "believes" the target group label may have just been 
//found. That is, when the label is unknown, the currently fixated 
//group is always searched.
(Move-to-Labeled-Strategy-Object-Nominee-Label-Unknown
 IF
 (
  (Goal Do Visual_Search Task)
  (Step Move)
 
  // When the eyes are free
  (Motor Ocular Processor Free)
 
  // After the selected text is seen and unknown
  (Tag ?Selected_Object Selected)
  (Visual ?Selected_Object Text Unknown)
 
  // Select the nearest group object
  (Tag ?Selected_Word Nominee Object)
  (Not (Visual ?Selected_Word Text ???))
  (Visual ?Selected_Word Eccentricity ?ecc)
  (Least ?ecc)
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 )
 THEN
 (
  (Send_to_motor Ocular Perform Move ?Selected_Word)
 
  (Add (Tag ?Selected_Word Selected))
  (Delete (Tag ?Selected_Object Selected))
 
  (Delete (Step Move))
  (Add (Step Nominate))
 )
)

// The model "believes" the target group label may have just been 
//found. This rule also adds a tag to indicate that the model may be 
//incorrect in it's “belief” that the target label has been found.
(Move-Target-Group-Possibly-Found
 IF
 (
  (Goal Do Visual_Search Task)
  (Step Move)
 
  // When the eyes are free
  (Motor Ocular Processor Free)
 
  // After the selected text is seen and unknown
  (Tag ?Selected_Object Selected)
  (Visual ?Selected_Object Text Unknown)
 
  // Only if the model "believes" the unknown label is the target 
  //group
  (Tag Unknown Is_Target)
 
  // Get the "target" group
  (Visual ?Selected_Object In_Group ?Target_Group)
 
  // The model does not already think the target group has been 
  //found
  (Not (Tag ??? Target_Group))
 )
 THEN
 ( 
  (Add (Tag ?Target_Group Target_Group))
 
  // Add a tag representing that the model may have some 
  //reservation that the correct group label was fixated.
  (Add (Tag Target_Group_Label Unknown))
 )
)

//The target group label was just found
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(Move-to-Nearest-Object-Nominee-Target-Group-Found
 IF
 (
  (Goal Do Visual_Search Task)
  (Step Move)
 
  // When the eyes are free
  (Motor Ocular Processor Free)
 
  // A label is being fixated
  (Tag ?Selected_Object Selected)
  (Visual ?Selected_Object Object_Type Group_Label)
 
  // If the selected text is the target group label and was not 
  //identified in a previous round
  (Not (Tag ??? Target_Group))
  (Tag Target_Group_Label_Text ?T)
  (Visual ?Selected_Object Text ?T)
 
  // Get the target group
  (Visual ?Selected_Object In_Group ?Target_Group)
 
  // Select the nearest group object
  (Tag ?Selected_Word Nominee Object)
  (Not (Visual ?Selected_Word Text ???))
  (Visual ?Selected_Word Eccentricity ?ecc)
  (Least ?ecc)
 )
 THEN
 (
  (Send_to_motor Ocular Perform Move ?Selected_Word)
 
  (Add (Tag ?Selected_Word Selected))
  (Delete (Tag ?Selected_Object Selected))
 
  (Add (Tag ?Target_Group Target_Group))
 
  (Delete (Step Move))
  (Add (Step Nominate))
 )
)

// If there are menu object nominees, select the nearest.
(Move-to-Nearest-Object-Nominee
 IF
 (
  (Goal Do Visual_Search Task)
  (Step Move)
 
  // When the eyes are free
  (Motor Ocular Processor Free)
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  // Only if the target text has not been found
  (Not (Tag Target_Object ???))
  (Tag Target_Text ?Target_Text)
  (Not (Visual ?Target_Object Text ?Target_Text)
   (Visual ?Target_Object Object_Type Object))
 
  // After the selected text is seen
  (Tag ?Selected_Object Selected)
  (Visual ?Selected_Object Text ???)
 
  //And there are no label nominations
  (Not (Tag ??? Nominee Label))
 
  // Select the nearest nominated menu object whose text has not 
  //been identified
  (Tag ?Selected_Word Nominee Object)
  (Not (Visual ?Selected_Word Text ???))
  (Visual ?Selected_Word Eccentricity ?Ecc)
  (Least ?Ecc)
 
  // Get the old selected word
  (Tag ?Old Selected)
 )
 THEN
 (
  (Send_to_motor Ocular Perform Move ?Selected_Word)
 
  (Add (Tag ?Selected_Word Selected))
  (Delete (Tag ?Old Selected))
 
  (Delete (Step Move))
  (Add (Step Nominate))
 )
)

// Default movement
//This rule fires only if there are no nominations. If there are no 
//nominations, then there are no objects to move the eyes to and the 
//target
//has not been found yet. So, restart search by removing all object 
//identified tags.
//Note: This will most likely only occur when there is more than one 
//group. If there is more than one group, the object identified tags 
//for menu objects are "reset" when moving to another group.
(Move-Default
 IF
 (
  (Goal Do Visual_Search Task)
  (Step Move)
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  // When the eyes are free
  (Motor Ocular Processor Free)
 
  // Only if the target text has not been found
  (Not (Tag Target_Object ???))
  (Tag Target_Text ?Target_Text)
  (Not (Visual ?Target_Object Text ?Target_Text)
   (Visual ?Target_Object Object_Type Object))
 
  // After the selected text is seen
  (Tag ?Selected_Object Selected)
  (Visual ?Selected_Object Text ???)
 
  //And there are no nominations
  (Not (Tag ??? Nominee ???))
 
  (Tag ?object Object_Identified)
 )
 THEN
 (
  (Delete (Tag ?object Object_Identified))
   
  (Delete (Step Move))
  (Add (Step Nominate))
 )
)

// First movement
//This rule is identical to the default movement rule except that the 
//condition for identification of the saccade destination text has 
//been replaced by the condition for the selected of "nothing." This 
//is because, when the eyes first move, there is no previous saccade 
//and therefore no text in the selected saccade destination. This rule 
//cannot be consolidated with the default move rule, because with the 
//exception of the first eye movement, the text of the saccade 
//destination must be identified.
(Move-First
 IF
 (
  (Goal Do Visual_Search Task)
  (Step Move)
 
  // When the eyes are free
  (Motor Ocular Processor Free)
 
  // This is the first eye movement
  (Tag nothing Selected)
 
  // Select from all objects
  (Visual ?Selectee_Word In_Group ???)
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  (Visual ?Selectee_Word Eccentricity ?Ecc)
 
  // Except the closest objects
  (Greater_than ?Ecc 1.0)
 
  // Select the nearest such word
  (Least ?Ecc)
 
  // Get the old selected word
  (Tag ?Old Selected)
 )
 THEN
 (
  (Send_to_motor Ocular Perform Move ?Selectee_Word)
 
  (Add (Tag ?Selectee_Word Selected))
  (Delete (Tag ?Old Selected))
 
  (Delete (Step Move))
  (Add (Step Nominate))
 )
)

// Clean up nominations from the last nomination step
(Move-Clean-Up-Nominations
 IF
 (
  (Goal Do Visual_Search Task)
  (Step Move)
 
  // After the selected text is seen
  (Tag ?Selected_Object Selected)
  (Visual ?Selected_Object Text ???)
 
  // For all nominations
  (Tag ?Nominee Nominee ?Nomination_Type)
 )
 THEN
 (
  (Delete (Tag ?Nominee Nominee ?Nomination_Type))
 )
)

// Clean "Unknown is target" tag
(Move-Clean-Up-Unknown_Is_Target
 IF
 (
  (Goal Do Visual_Search Task)
  (Step Move)
 
  // After the selected text is seen
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  (Tag ?Selected_Object Selected)
  (Visual ?Selected_Object Text ???)
 
  (Tag Unknown Is_Target)
 )
 THEN
 (
  (Delete (Tag Unknown Is_Target))
 )
)

// Clean up the Target_Group_Label Unknown tag
(Move-Clean-Up-Target_Group_Label-Unknown
 IF
 (
  (Goal Do Visual_Search Task)
  (Step Move)
 
  // After the selected text is seen
  (Tag ?Selected_Object Selected)
  (Visual ?Selected_Object Text ???)
 
  (Tag Target_Group_Label Unknown)
  (Tag ?group Target_Group)
 )
 THEN
 (
  (Delete (Tag Target_Group_Label Unknown))
  (Delete (Tag ?group Target_Group))
 )
)

///////////////////////////////////////////////////////////////////////
//END OF ALL STRATEGIES
//There are a couple of steps at the end that are common to all 
//strategies.
///////////////////////////////////////////////////////////////////////

// The target has been found in an unlabeled layout. Move the eyes and 
//cursor to the target.
(Move-Gaze-and-Cursor-to-Target-Unlabeled
 IF
 (
  (Goal Do Visual_Search Task)
  (Step Move)
 
  (Motor Ocular Processor Free)
  (Motor Manual Processor Free)
 
  // The layout is unlabeled
  (Not (Visual ??? Object_Type Group_Label))

182



 
  // After the selected text is seen
  (Tag ?Selected_Object Selected)
  (Visual ?Selected_Object Text ???)
 
  (Tag Target_Text ?Target_Text)
  (Visual ?Target_Object Text ?Target_Text)
  (Visual ?Target_Object Object_Type Object)
 )
 THEN
 (
  // Clean up potential remaining steps
  (Delete (Step Move))
  (Delete (Step Reset Identified_tags))
 
  (Add (Step Punch Mouse Button))
 
  (Add (Tag Target_Object ?Target_Object))
 
  (Send_to_motor Ocular Perform Move ?Target_Object)
  (Send_to_motor Manual Perform Point ?Target_Object)
 )
)

// The target has been found in a labeled layout. Move the eyes and 
//cursor to the target.
(Move-Gaze-and-Cursor-to-Target-Labeled
 IF
 (
  (Goal Do Visual_Search Task)
  (Step Move)
 
  (Motor Ocular Processor Free)
  (Motor Manual Processor Free)
 
  // Only select from non-label objects' text if the target group 
  //has been found
  (Tag ??? Target_Group)
 
  // After the selected text is seen
  (Tag ?Selected_Object Selected)
  (Visual ?Selected_Object Text ???)
 
  (Tag Target_Text ?Target_Text)
  (Visual ?Target_Object Text ?Target_Text)
  (Visual ?Target_Object Object_Type Object)
 )
 THEN
 (
  // Clean up any remaining steps
  (Delete (Step Move))
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  (Delete (Step Reset Identified_tags))
 
  (Add (Step Punch Mouse Button))
 
  (Add (Tag Target_Object ?Target_Object))
 
  (Send_to_motor Ocular Perform Move ?Target_Object)
  (Send_to_motor Manual Perform Point ?Target_Object)
 )
)

//Click on the target
(Punch-Mouse-Button-On-Target
 IF 
 (
  (Goal Do Visual_Search Task)
  (Step Punch Mouse Button)
  (Motor Manual Processor Free)
  )
 THEN 
 (
  (Send_to_motor Manual Perform Punch B1 Right Index)
  (Delete (Step Punch Mouse Button))
  (Add (Step Pretrial Tag Precues))
  (Add (Step CLEANUP))
 )
)

// Clean up whatever needs to be cleaned up after the response
(Cleanup-All-Tags-Except-Cursor
IF
(
 (Goal Do Visual_Search Task)
 (Step CLEANUP)
 (Tag ?X ?Y)
 (NOT (Tag ?X Cursor))
)
THEN
(
 (Delete (Step CLEANUP))
 (Delete (Tag ?X ?Y))
))
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