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DISSERTATION ABSTRACT

David M. Ozog

Doctor of Philosophy

Department of Computer and Information Science

March 2017

Title: High Performance Computational Chemistry: Bridging Quantum Mechanics,
Molecular Dynamics, and Coarse-Grained Models

The past several decades have witnessed tremendous strides in the capabilities

of computational chemistry simulations, driven in large part by the extensive

parallelism offered by powerful computer clusters and scalable programming

methods in high performance computing (HPC). However, such massively parallel

simulations increasingly require more complicated software to achieve good

performance across the vastly diverse ecosystem of modern heterogeneous computer

systems. Furthermore, advanced “multi-resolution” methods for modeling atoms

and molecules continue to evolve, and scientific software developers struggle to

keep up with the hardships involved with building, scaling, and maintaining these

coupled code systems.

This dissertation describes these challenges facing the computational

chemistry community in detail, along with recent solutions and techniques that

circumvent some primary obstacles. In particular, I describe several projects and

classify them by the 3 primary models used to simulate atoms and molecules:

quantum mechanics (QM), molecular mechanics (MM), and coarse-grained (CG)

models. Initially, the projects investigate methods for scaling simulations to larger

and more relevant chemical applications within the same resolution model of
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either QM, MM, or CG. However, the grand challenge lies in effectively bridging

these scales, both spatially and temporally, to study richer chemical models

that go beyond single-scale physics and toward hybrid QM/MM/CG models.

This dissertation concludes with an analysis of the state of the art in multiscale

computational chemistry, with an eye toward improving developer productivity

on upcoming computer architectures, in which we require productive software

environments, enhanced support for coupled scientific workflows, useful abstractions

to aid with data transfer, adaptive runtime systems, and extreme scalability.

This dissertation includes previously published and co-authored material, as

well as unpublished co-authored material.
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CHAPTER I

INTRODUCTION, BACKGROUND, AND MOTIVATION

Computational chemistry codes comprise some of the most computationally

expensive scientific applications of all time, which explains why they are often

at the forefront of high performance computing capabilities, both in terms of

hardware [1, 2] and software [3, 4]. These codes make use of novel and advanced

algorithms, programming models, modern computer architectures, and even

data mining and machine learning techniques [5, 6, 7, 8, 9]. For example, density

function theory codes scale to more than 6,000,000 threads [10], large-scale tensor

contractions incorporate advanced communication optimal algorithms [11], Hartree-

Fock implementations use several novel programming paradigms [12], and molecular

dynamics simulations can cross many orders of magnitude in space and time [13].

These simulations are computationally expensive for many reasons, the primary

of which is their considerable algorithmic complexity. The most accurate models

of atoms and molecules must incorporate quantum mechanics (QM), and such

methods can scale up to O(n8) in practice, where n corresponds to the number

of basis functions used to represent the system. QM algorithms are some of the

most computationally expensive of all practical scientific simulations, and they

are intractable for all but the smallest of chemical systems. For example, the

largest calculations that include coupled cluster theory simulate only a few dozen

atoms. On the other hand, various forms of density functional theory are capable

of modeling many thousands of atoms, and classical models can track billions of

atoms [14]. In fact, many chemical models exist, each achieving a different level of

accuracy without incurring the extreme cost of full QM treatment. QM may not be
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necessary to understand dynamic, thermodynamic, and structural properties of a

chemical system, so molecular mechanics (MM) can be used instead. Furthermore,

if MM requires tracking too many particles and/or too long of time-scales, then

coarse graining (CG) molecular components can still capture relevant physics.

One goal of this dissertation is to describe these different models individually,

highlighting important optimizations made, so that simulations can effectively

apply modern high performance computing (HPC) techniques. However, the grand

challenge lies in effectively bridging these scales, both spatially and temporally, to

study richer chemical models that go beyond single-scale physics. Therefore, this

dissertation describes the state of the art in existing approaches for multi-scale

chemistry simulations, the drawbacks of such implementations, and how best to

improve the quality of this software.

The development of multiscale and multiresolution modeling software

is important for many computational physics and chemistry simulations. For

example, when modeling a biological system, certain regions must contain

relatively high detail (such as the active binding site of an enzyme), while other

regions require much less detail (such as the water solvent that surrounds the

enzyme). Of particular interest are methods that bridge the electronic structure

of relatively small regions, described by QM, with surrounding parts described

by MM. In fact, the scientists who invented these methods won the Nobel prize

in chemistry in 2013 [15]. QM/MM methods have also inspired adding a third

level of coarse-grained resolution with QM/MM/CG methods in very recent

research [16, 17]. Figure 1 shows an example of a QM/MM/CG system in which

the enzyme is modeled with QM, several proteins modeled with MM, and the

water solvent modeled with CG. The ultimate challenge here is accomplishing

2



FIGURE 1. An example of a QM/MM/CG system in which the calmodulin protein
is modeled with QM, a water layer with MM, and the water solvent with CG (and
the outer region possibly modelled with continuum mechanics).

adaptive resolution, which allows for different regions of the simulation domain

to be modeled with more or less granularity, depending on the desired level of

accuracy. Because of its novelty, adaptive resolution computational software

generally lacks thorough performance analyses and efficient application of modern

optimizations and HPC techniques. This dissertation describes the state of the art

in multiscale computational chemistry, with an eye towards improving developer

productivity on upcoming exascale architectures, where we require productive

software environments, enhanced support for coupled scientific workflows, adaptive

and introspective runtime systems, resilience to hardware failures, and extreme

scalability.

This dissertation is organized into five chapters:

– Chapter I: Introduction, Motivation, and Background

– Chapter II: Quantum Chemistry models

3



– Chapter III: Molecular Mechanics models

– Chapter IV: QM/MM and Beyond

– Chapter V: Conclusion and Future Work

Chapter I provides an in-depth survey of existing methods within QM, MM,

and CG modeling that utilize HPC to solve large-scale chemistry problems. The

high-level organization of this chapter is as follows:

– Section 1.1: Challenges at extreme scale

– Section 1.2: Quantum Chemistry models

– Section 1.3: Molecular Mechanics models

– Section 1.4: Coarse-Grained models

– Section 1.5: Multiscale and multiresolution techniques

– Section 1.6: Relevant applications

Chapters II and III discuss several research projects within the domains of

QM, MM, and CG. Finally, Chapter IV discusses ongoing work in multi-resolution

paradigms of QM/MM, MM/CG, and QM/MM/CG.

This dissertation includes prose, figures, and tables from previously published

conference and journal proceedings. Chapters I and IV are completely unpublished

with no co-authorship, other than that associated with the guidance of Prof.

Allen Malony and Prof. Marina Guenza. Chapters II and III, however, contain

content from several past paper publications. Section 2.1 includes content on

Inspector/Executor load balancing from ICPP 2013 [18]. This work was a

collaboration with scientists at Argonne National Laboratory: Jeff Hammond,

James Dinan, and Pavan Balaji; and the University of Oregon: Sameer Shende and

Allen Malony. Section 2.2 describes the WorkQ system, first presented at ICPADS

2014 [19]. This work resulted in a Directed Research Project with Prof. Malony

4



and collaborators Dr. Hammond and Dr. Balaji. Section 2.3 includes content about

UPC++ and Hartree-Fock from IPDPS 2016 [20]. This work was a collaboration

with scientists at Lawrence Berkeley National Laboratory: Kathy Yelick, Wibe de

Jong, Yili Zheng, and Amir Kamil; as well as Prof. Malony and Dr. Hammond.

Chapter III contains previously published content that is part of an ongoing

collaboration with the Guenza Lab at the University of Oregon. Section 3.1

includes published material from ICCS 2015 [21] and The Journal of Computational

Science 2015 [22]. Section 3.2 includes published content from PDP 2016 [23].

Finally, section 3.3 includes new material that is so far unpublished.

1.1 Challenges at Extreme Scale

For several decades, computational scientists have come to rely on the steady

increase of CPU clock rates for improving the performance of their application

codes. Moore’s Law, the economic observation that the number of transistors in

dense integrated circuit dies roughly doubles every two years, appears to hold into

2015, but there remains another serious problem. Dennard Scaling, the observation

that power density remains roughly constant as clock rate increases and die

size shrinks, has unequivocally ended, which also threatens the end of Moore’s

Law. Post-petascale machines will struggle to overcome this power wall without

drastic adaptations to how computational codes utilize the features of evolving

architectures. This will involve efficient load balancing in the face of millions of

cores, simultaneous multithreading, vectorizing hardware units, unconventional non-

uniform memory hierarchies, and new programming models [24].

Rapidly changing programming environments and the need to scale to

millions of cores have lead to a crisis in computational science, wherein codes
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often scale poorly, software engineering practices lack agility and rigor, and

software is difficult to maintain and extend due to increasing complexity [25].

The computational science community and culture requires a radical shift towards

improving software productivity to sufficiently adapt to extreme-scale computing

platforms [25, 24, 26, 27, 28]. Common themes arise in these reports as to what is

most important for effectively navigating extreme-scale requirements:

– Component or modular software

– Software productivity metrics

– Software methodology and architecture

– Software development infrastructure

– Scientific workflows (often tightly coupled)

– Verification and validation

– Effective development productivity of teams

– Support for legacy codes

– Multiphysics/multiscale component coupling

– Runtime feedback and control

The sections below consider how these topics are addressed in computational

chemistry applications. While these requirements are common to most major

computational science software projects, computational chemistry codes are no

exception. One goal of this dissertation is to address how these requirements are

satisfied by previous research and recent advancements in chemistry simulation

software, along with promising ideas for future improvements. The following

sections will cover advances in computational chemistry applications, highlighting

when any of the above requirements are well-supported.
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1.2 HPC in Quantum Chemistry

Quantum Chemistry (QC) is the study of atoms and molecules using a

quantum mechanical model. In quantum mechanics, energy is quantized, particles

obey the Heisenberg uncertainty principle, and wave-particle duality always

holds [29]. A thorough introduction to this topic is beyond the scope of this

dissertation, so instead, we concern ourselves with the application of QC to the

specific domain described in the next introductory Section 1.2.1.. We then focus on

applications that utilize parallel computing to push the limits of QC simulations, in

terms of their size and higher-order methods that improve accuracy. Section 1.2.2.

highlights the fact that there are several categories of QC, each with a different

fundamental approach, and the subsequent subsections describe these categories in

more detail. Section 1.2.3. describes the dominant parallel programming models

used in QC, with a focus on the PGAS model because of its applicability and its

wide-spread acceptance in QC codes. Finally, Section 1.2.4. presents and describes

some of the more influential algorithms and methods used in QC codes.

1.2.1. Introduction and Basics

The goal of QC calculations is to approximately solve the many-body time-

independent Schrödinger equation, H |ψ〉 = E |ψ〉, where H is the Hamiltonian

operator, which extracts the sum of all kinetic and potential energies, E, from

the wavefunction, |ψ〉. Here we make the standard set of assumptions: the Born-

Oppenheimer approximation (in which neutrons are fixed but electrons move

freely), Slater determinant wavefunctions (that easily satisfy the anti-symmetry

principle), and non-relativistic conditions. After these approximations, our focus
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resides only on the electronic terms of the Hamiltonian and the wavefunction:

Helec |ψelec〉 = E |ψelec〉.

The molecular orbitals that express the electronic wavefunction |ψelec〉 consist

of a sum of basis functions from set {φj}. We desire {φj} to be complete, but this

is not practical, since it generally requires an infinite number of functions. We

therefore truncate to a finite n value large enough to balance the trade-off between

accuracy and computational cost:

|ψi〉 =
n∑
j=1

cij |φj〉 (1.1)

Typically, each basis function is composed of one or more Gaussian primitive

functions centered at the nucleus location. As we will see in Section 1.2.2..1, 6-

dimensional integrals containing these primitives are the dominant computational

component of QC applications. However, because Gaussian integrals have

convenient analytical solutions, the complexity of a single integral is in practice

O(K4), where K is the number of Gaussians used to represent the basis

functions [30, 31].

1.2.2. Overview of the Most Popular QC Methods

Broadly speaking, QC methods fall into two categories: ab initio, and

everything else. The phrase ab initio means “from first principles”, which in

computational chemistry means that these methods converge to the exact solution

of the Schrödinger equation as the collection of basis functions tends towards

completeness. The most popular classes of ab initio methods are Hartree-Fock,

post-Hartree-Fock, and multireference methods. Subsection 1.2.2..1 covers the

Hartree-Fock method, and subsection 1.2.2..2 covers various post-Hartree-Fock
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methods; but other sources [32, 33] better describe the multireference methods,

which are quite similar to post-Hartree-Fock.

Another QC method that some consider ab initio is density functional theory

(DFT), discussed in subsection 1.2.2..3. DFT is the most widely used of the QC

methods, and it has many interesting HPC applications, a few of which we consider

below. Finally, we briefly consider semi-empirical methods in subsection 1.2.2..4,

and quantum Monte Carlo in subsection 1.2.2..5.

1.2.2..1 Hartree-Fock and the Self-Consistent Field Method

The Hartree-Fock (HF) method is the most fundamental of the QC

methods, because it is the fundamental starting point for approximately solving

the Schrödinger equation. HF attempts to determine the cij values that best

minimize the ground state energy, in accordance with the variational principle.

The ground state is the configuration of the molecule, along with all its electrons,

that exhibits the lowest possible energy. All other states are called excited states.

In computational chemistry, the variational principle states that the energy of an

approximate wave function is always too high; therefore, the best wavefunction is

the one that minimizes the ground state energy. This principle is the foundation

for all iterative QC methods: The degree of energy minimization determines the

relative quality of different QC results.

By utilizing a numerical technique for iteratively converging the energy,

each subsequent iteration becomes more and more consistent with the field that is

imposed by the input molecule and basis set. The method is accordingly called the

self-consistent field (SCF) method, and Algorithm 1 shows its de facto procedure in

pseudocode, with the goal of solving the generalized eigenvalue problem FC = SCε,
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Algorithm 1 The SCF Procedure

Inputs:
1) A molecule (nuclear coordinates, atomic numbers, and N electrons)
2) A set of basis functions {φµ}

Outputs:
Final energy E, Fock matrix F, density matrix D, coefficient matrix C

1: Compute overlap terms Sµν , core Hamiltonian terms Hcore
µν , and 2-electron integrals (µν|λσ).

2: Diagonalize the overlap matrix S = UsU† and obtain X = Us1/2.
3: Guess the initial density matrix D.
4: while E not yet converged do
5: Calculate F from Hµν , D, and (µν|λσ).

6: Transform F via F′ = X†FX.
7: E =

∑
µ,ν Dµν(Hcore

µν + Fµν)

8: Diagonalize F′ = C′εC′†.
9: C = XC′

10: Form D from C by Dµν = 2
∑N/2
i CµiC

∗
νi.

11: end while

where F is the Fock matrix (defined below in Eqn. 1.2), C is the matrix composed

of expansion coefficients from Eqn. 1.1, S is the matrix composed of overlap

integrals taken over all space

Sij =

∫
φ∗i (r)φj(r)dr = 〈φi|φj〉 ,

and ε is the energy eigenvalue. Many SCF iterations are required for energy

convergence, so steps 1-3 of Algorithm 1 cost much less than steps 5-10. Step 5

normally comprises a majority of the execution time in Hartree-Fock codes, because

each element of the Fock matrix requires computing several two-electron integrals:

Fij = Hcore
ij +

∑
λσ

(2(µν|λσ)− (µλ|νσ)) (1.2)
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The two-electron integrals on the right-hand side are plentiful and expensive to

compute [34]. They take this form:

(µν|λσ) =

∫∫
φ∗µ(r1)φν(r1)r−1

12 φ
∗
λ(r2)φσ(r2)dr1dr2 (1.3)

As mentioned, there are formally O(n4) integrals to compute within the basis set.

However, from the definition in 2.2, we see there are only ∼ n4/8 unique integrals

by permutational symmetry, and the number of non-zero integrals is asymptotically

O(n2) when Schwartz screening is employed.

While the two-electron integrals comprise the most computation time in SCF,

communication and synchronization overheads can very well dominate, particularly

at large scale. Inherent communication costs arise from the parallel decomposition

of HF codes, leading to load imbalance and synchronization delays. Parallel HF

applications also exhibit highly diverse accesses across distributed process memory

spaces. As such, HF is well-suited for a programming model that emphasizes

lightweight and one-sided communication within a single global address space. This

is the subject of Section 1.2.3..1.

Nearly all quantum chemistry codes implement HF, and many contain

parallel versions. QC codes with parallel versions include NWChem, Q-Chem,

GAMMESS, Gaussian, Psi, CFOUR, GPAW, MOLPRO, ACES III, Quantum

ESPRESSO, MPQC and many more. Many consider the most scalable code to

be NWChem [3, 4], but there remain serious scalability issues due to the inherent

load imbalance and the difficulty in exploiting data locality at scale. The load

imbalance comes from the fact that we must bundle the 2-electron integrals into

what are called shell quartets in order to reuse a lot of the intermediate integral
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values. Formally, a shell quartet is defined as:

(MN |PQ) = {(ij|kl) s.t. i ∈ shell M,

j ∈ shell N,

k ∈ shell P,

l ∈ shell Q}

where “shells” refer to the common notion of electrons that have the same principal

quantum number, as one learns in their first year of general chemistry. Because

this bundling is an essential optimization, it introduces more load imbalance to the

problem, because some quartets are simply more expensive than others, particularly

after screening out quartets that are close to zero. Formally, a two-electron integral

is screened if it satisfies this condition:

√
(ij|ij)(kl|kl) < τ

where τ is the desired screening threshold value.

Optimizing for locality is also very difficult, because tiled accesses across the

4-dimensional space of two-electron integral permutations are wide-spread, the data

is sparse, re-distribution is expensive, and the locality patterns strongly depend on

the input molecular geometry.

1.2.2..2 Post-Hartree-Fock Methods

Post-Hartree-Fock (PHF) methods improve on the Hartree Fock

approximation by including the electron correlation effects that HF mostly ignores
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(except for parallel-spin electrons [35], the discussion of which is beyond the

scope of this dissertation). In HF, electron correlation is treated in an average

way, whereas realistic models must account for the fact that each electron feels

instantaneous Coulombic repulsions from each of the other electrons. PFH methods

still invoke the Born-Oppenheimer approximation under non-relativistic conditions,

but now include more than a single Slater determinant.

The primary PHF methods are configuration interaction (CI), coupled cluster

(CC), Møller-Plesset perturbation theory, and multi-reference methods; but there

exist many others. Here, we focus on a brief introduction and overview of CI and

CC, although it is difficult to appreciate without a full treatment, as in [36].

PHF methods often utilize a notation for describing excited determinants

with respect to the reference HF wavefunction, |ΨHF〉. Formally, HF assumes that

each electron is described by an independent one-electron Hamiltonian:

hi = −1

2
∇2
i −

M∑
k=1

Zk
rik

such that hi |ψi〉 = εi |ψi〉. Because the total Hamiltonian is assumed separable, the

many-electron solution becomes |ΨHF〉 = |ψ1ψ2 · · ·ψN〉. On the other hand, PHF

methods strive to discover the exact wavefunction:

|Ψ〉 = c0 |ΨHF〉+
occ.∑
i

vir.∑
r

cri |Ψr
i 〉+

occ.∑
i<j

vir.∑
r<s

crsij
∣∣Ψrs

ij

〉
+ · · · (1.4)

where the notation |Ψr
i 〉 refers to a determinant in which electron i is in excited

(or virtual) state r and
∣∣Ψst

jk

〉
refers to a doubly-excited determinant in which

electron j is in excited state s, and electron k is in excited state t. Notice that

if we include all possible configuration states, then we have exactly solved this
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form of the electronic Schrödinger equation. This accomplishment is referred to

as full CI, and it is never accomplished in practice. However, given a truncated

form of Eqn. 1.4 (for example, including the first two terms is referred to as CISD),

we apply the linear variational method to form the matrix representation of the

Hamiltonian, then find the eigenvalues of the matrix. Specifically, we solve the

eigenvalue problem:

Hc = ESc

where c is now the column-vector of coefficients for our wavefunction in the desired

basis set, S is the overlap matrix, and H is the CI Hamiltonian.

CC theory, on the other hand, assumes an exponential ansatz operator

applied to the reference wavefunction:

|ΨCC〉 = eT |ΨHF〉

where the T operator definition is:

T = T1 + T2 + T3 + ...

Tn =
1

(n!)2

∑
a1...an
i1...in

ta1...ani1...in
a†a1 ...a

†
anain ...ai1

Each ta1...ani1...in
term is a tensor with rank 2n that represents the set of amplitudes

for all possible excitations of n electrons to excited states in virtual orbitals. The

terms ai and a†a are the creation and annihilation operators, respectively, that

act on electron states. The creation operator adds a row (electron) and column
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(orbital) to the Slater determinant, whereas the annihilation operator removes a

row and column. By far, the most computationally expensive component of CC

codes is the computation of tensor contractions to determine the Tn terms. This is

the object of much advanced research, and we discuss specific accomplishments in

Sections 1.2.4..3, 1.2.4..4, and, 1.2.4..5.

1.2.2..3 Density Functional Theory

Density Functional Theory (DFT) is the most widely used QC method (based

on the number of citations throughout the history of Physical Reviews [37]). It

also happens to be the most prevalent method used for large scale simulations,

parallel performance studies, and applications in the chemical industry [38]. DFT

has the distinct advantage of being able to ignore the complicated features of the

electronic wavefunction, while still accounting for correlation effects that Hartree-

Fock ignores. It is strongly based on the notion of the electron density, which is

defined as the integral over the spin (si) and spatial (ri) coordinates:

ρ(r) = N
∑
s1

· · ·
∑
sN

∫
dr2 · · ·

∫
drN |Ψ|2

where Ψ is actually a function of Ψ(r, s1, r2, s2, · · · , rN , sN). Unlike Ψ, the electron

density ρ is a physical observable that can be measured experimentally, and its

integral over all space is conveniently the total number of electrons:

N =

∫
ρ(r)dr

The goal of most DFT methods is to solve the so-called Kohn-Sham (KS)

equations (in similar form to the Schrödinger eigenvalue equations) [33] by

15



representing the total energy of the system as a functional. For example, Thomas

and Fermi produced the first DFT model [39] by writing the kinetic energy as:

TTF [ρ(r)] =
3

10
(3π2)2/3

∫
ρ5/3(r)dr (1.5)

This notation F [ρ(r)] implies that F is a functional, since it takes ρ, which

itself is a function of r, as its argument. In a pivotal result, Hohenburg and Kohn

famously proved [40] that some functional of total energy, E[ρ(r)], must exist which

represents the many-body ground state both exactly and uniquely. However, this

proof specifies neither the form of the functional, nor how to obtain it. Accordingly,

KS-DFT research often consists of exploring different forms of these functionals,

and classifying their applicability to certain chemical systems.

Solving the orbital coefficients using KS-DFT is very similar to HF [41],

except instead of the Fij elements composing the Fock matrix as in Eqn. 1.2, we

have

Fij = Hcore
ij +GJ

ij + αGK
ij + βGX-DFT

ij + γGC-DFT
ij

where the first three terms on the right hand side are the same as in HF, but

the final two more difficult terms consist of functionals of the energy, such as in

Eqn. 1.5. Here, the constants α, β, and γ can enable spanning the limits of HF

and DFT and any hybrid mixture of the two. Because of DFT’s computational

similarity, it shares the same bottlenecks: calculating all the two-electron integrals,

forming the Fock and Density matrices,
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1.2.2..4 Semi-Empirical Methods

Semi-empirical methods differ from ab-initio by incorporating empirical

observations to account for errors made by assumptions and approximations

inherent to solving the Schrödinger equation in practice. For example, including

empirical constants in terms of the secular determinant may better approximate

resonance integrals [33]. A popular semi-empirical method is the complete

neglect of differential overlap (CNDO), which adopts a series of conventions and

parameterizations to drastically simplify the application of HF theory. Specifically,

CNDO only considers valence electrons and makes the zero differential overlap

approximation, which ignores certain integrals [32], reducing the algorithmic

complexity from O(n4/8) ∼ O(n4) to O(n(n+ 1)/2) ∼ O(n2).

At this point it is important to note that methods in machine learning [8, 42]

often show less error than certain semi-empirical methods. If a semi-empirical does

not offer insight from a parameterization, then it may be a better choice to use a

machine learning method to improve accuracy.

1.2.2..5 Quantum Monte Carlo

Quantum Monte Carlo (QMC) is briefly considered here for the sake of

completeness, but also because of its extreme scalability [43] and promising

results on GPUs [44]. There are many different QMC schemes, but within the

limited scope of this dissertation it suffices to consider those that fall under the

variational Monte Carlo category. In short, this QMC method takes the variational

principle (defined in 1.2.2..1) one step further to evaluate the two-electron integrals

numerically. Because the energy depends on a given set of variational parameters,
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QMC utilizes mathematical optimization to determine the ground state energy by

selecting the best set of parameters.

1.2.3. Parallel Programming Models in QC

QC codes have extraordinary demands in term of memory requirements. For

instance, consider the well-known hierarchy of CC methods that provides increasing

accuracy at increased computational cost [36]:

· · · < CCSD < CCSD(T ) < CCSDT

< CCSDT (Q) < CCSDTQ < · · · .

Here, S refers to truncation at the singles term, D to the doubles term, T to

triples, and Q to quadruples (terms with parentheses refer to perturbation terms).

The simplest CC method that is generally useful is CCSD, has a computational

cost of O(n6) and storage cost of O(n4), where n is again the number of basis

functions. CCSD(T) is a very good approximation to the full CCSDT method,

which requires O(n8) computation and O(n6) storage. The addition of quadruples

provides chemical accuracy, albeit at great computational cost. CCSDTQ

requires O(n10) computation and O(n8) storage. Needless to say, these memory

requirements quickly become prohibitive for molecular systems of moderate size.

For even just a few water molecules with a reasonable basis set such as cc-pvdz,

the application can easily consume dozens of GBs, necessitating some form of

distributed memory management. Typically, distributed codes distribute the Fock

matrix in some sort of block cyclic or irregular block cyclic fashion.

18



Furthermore, due to the nature of the entire collection of two-electron

integrals, processes that own a particular block of the Fock matrix require access

to blocks owned by other processes during distributed computation. Treating such

communication algorithms with point-to-point message passing is intractable and

requires high synchronization overhead. QM codes therefore require efficient one-

sided message passing capabilities in which a process can get or put data into the

memory of a remote process without the explicit receiving communication call, or

even participation of the CPU on the remote process. Nowadays, many modern

network interconnects such as InfiniBand, PAMI (on Blue Gene/Q), iWARP, Cray

Gemini/Aries, support such remote direct memory access (RDMA) capabilities.

These operations are necessary, not only for tiled accesses to compute elements

of the Fock and density matrices, but also to support nxtval like dynamic load

balancing, task assignment, and work stealing [45, 18, 46].

The extraordinary demands of QC simulations require the support

and development of novel and productive parallel programming models and

paradigms. Most QC codes run on a single compute node, but the most popular

frameworks, such as GAMESS, ACE III, NWChem, and Gaussian have parallel

implementations. Most parallel HF codes listed in section 1.2.2..1 use MPI

for distributed message passing, but GAMESS, NWChem, GTFock do not

(necessarily). Interestingly, GAMESS uses the distributed data interface (DDI) [47]

for message passing, which originated as an interface to support one-sided

messaging. At the time of DDI’s inception, the MPI-2 specification included one-

sided memory window instantiations (MPI WIN CREATE) and subsequent put and get

operations (MPI PUT/MPI GET) but these functions were apparently not fully offered

by any vendor. The DDI programming model emphasizes three types of memory:
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replicated data (one copy of small matrices one each CPU), distributed data (for

large matrices or tensors spread across the cluster), and node-replicated (for data to

be stored once per compute node).

1.2.3..1 PGAS in Quantum Chemistry

The algorithmic characteristics and resource requirements of HF (and post-

HF) methods clearly motivate the use of distributed computation. HF tasks are

independent and free to be computed by any available processor. Also, simulating

a molecule of moderate size has considerable memory requirements that can easily

exceed the memory space of a single compute node. However, at a high level of

abstraction, indexing into distributed HF data structures need not be different than

indexing shared memory structures. This programming abstraction is the basis of

the partitioned global address space (PGAS) model for distributing and interacting

with data. In computational chemistry, this model is advantageous for interacting

with arrays and tensors productively and efficiently.

The PGAS model utilizes one-sided communication semantics, allowing

a process to access remote data with a single communication routine. Remote

memory access (RMA) is particularly advantageous in HF applications for three

primary reasons. First, HF exhibits highly irregular access patterns due to the

intrinsic structure of molecules and the necessary removal of integrals from the

Fock matrix in a procedure called “screening”. Second, there is a need for efficient

atomic accumulate operations to update tiles of the global matrices without the

explicit participation of the target process. Finally, dynamic load balancing in HF

is usually controlled by either a single atomic counter [3], or many counters [48, 18],

both of which require a fast one-sided fetch-and-add implementation.

20



The NWChem software toolkit [49] paved the way towards the ubiquity of

PGAS in computational chemistry using the Global Arrays (GA) library and the

underlying ARMCI messaging infrastructure [3, 4]. GTFock followed suit, also

using GA for tiled accesses across the irregularly distributed Fock and density

matrices. The GA model is applicable to many applications, including ghost

cells and distributed linear algebra, but GA’s primary use today is for quantum

chemistry. GA is limited to a C and Fortran API, but does have Python and C++

wrapper interfaces. There exist many other PGAS runtimes, including but not

limited to: UPC++, Titanium, X10, Chapel, Co-Array Fortran, and UPC.

1.2.4. Key Algorithmic Improvements

This section highlights some key algorithmic improvements made to QC

codes, particularly in the area of parallel computing and HPC. Parallel strong

scaling is crucial for QC codes, but the inherent load imbalance and communication

bound nature of the calculations require innovative optimization approaches. The

following sections describe several such optimizations.

1.2.4..1 Load Balancing: Static Partitioning + Work Stealing

Section 1.2.2..1 describes why the primary hindrance to scalability in QC

codes is often due to load imbalance, and much research tackles this problem [50,

51, 18]. Although individual two-electron integrals do not possess drastic differences

in execution time, the crucial issue is that bundles of shell quartets can vary greatly

in computational cost. It is necessary to designate shell quartets as task units

in HF codes because it enables the reuse of intermediate quantities shared by
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basis functions within a quartet [52, 48]. The goal is to assign these task units to

processors with minimal overhead and a schedule that reduces the makespan.

NWChem balances load with a centralized dynamic scheduler, which is

controlled by a single global counter control referred to as nxtval (for “next

value”). Each task has a unique ID, and a call to nxtval fetches the current ID

of an uncomputed task, then atomically adds 1 to the counter so the next task gets

executed. Once the counter reaches the total number of tasks, all work is done. For

this reason, the performance of RMA fetch-and-add operations is very important

for the scalability of computational chemistry codes like NWChem and GTFock.

This has motivated the implementation and analysis of hardware-supported fetch-

and-ops on modern interconnects, such as Cray Aries using the GNI/DMAPP

interfaces [45].

The nxtval scheme exhibits measurable performance degradation caused

by network contention, but it can be alleviated by an informed static partitioning

of tasks and the addition of atomic counters to every process or compute node.

This strategy is called Inspector/Executor load balancing, which shows substantial

speedup in NWChem [18]. The GTFock project takes this notion one step further

by following the static partitioning phase with work stealing [48, 46]. During the

local phase, each process only accesses the local memory counter; however, during

the work stealing phase, the process accesses other counters remotely. As illustrated

in Algorithm 2, each process in GTFock begins an SCF iteration by prefetching the

necessary tiles from the global density matrix and storing them into a local buffer.

After all local tasks are computed, the global Fock matrix is updated. Then, each

process probes the nxtval counters of remote processes, looking for work to steal.

This algorithm results in many more local fetch-and-adds than remote, which has
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Algorithm 2 Load balance and work stealing

1: Determine total number of tasks (after screening).

2: Statically partition tasks across process grid.

3: Prefetch data from DArrays.
4: while a task remains in local queue /* fetch add local integer */
5: compute task
6: end while
7: update Fock matrix DArray via accumulate
8: for Every process p
9: while a task remains in p’s queue /* fetch add remote integer */

10: get remote blocks
11: compute task
12: end while
13: update Fock matrix DArray via accumulate
14: end for

important performance implications for how the operations take place. GTFock

shows good Xeon Phi performance using OpenMP and vectorized two-electron

integral calculation with the OptErd library [46]. The UPC++ PGAS extension

for C++ [53] also improves performance by up to 20% when using the new DArray

library [20], as illustrated in Fig. 2.

1.2.4..2 Diagonalization vs. Purification

One of the computational bottlenecks of QM codes is the diagonalization of

the Fock matrix, which is approximately O(n3). Most parallel QM implementations

make use of a parallel linear algebra library such as ScaLAPACK, which is a

reasonable choice in terms of scalability. However, an alternative ”diagonalization-

free” technique called purification [54] claims to achieve linear scaling by exploiting

the fact that elements of the density matrix are short range in coordinate space.

This means that matrix elements, ρij → 0, as their pairwise distances, Rij → ∞.

By truncating elements beyond a certain cutoff distance, this method may achieve

linear scaling with system size.
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FIGURE 2. GTFock improves NWChem’s performance of Hartree-Fock
calculations. (The top plot is from [46]).

GTFock and the UPC++ HF implementation described in the previous

subsection both make use of the purification technique, but more needs to be

done to compare its performance relative to standard diagonalization methods.

For instance, we know that GTFock SCF iterations take far less time than

NWChem iterations, but we do not yet know about convergence properties of

the estimated ground state energy between the two approaches. For instance,

the performance per iteration of purification may be better than diagonalization,

but the convergence may be slow enough to deem these improvements fruitless.
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Future work should consider such convergence behavior in the context of overall

application performance.

1.2.4..3 Coupled Cluster and Tensor Contractions

For higher level QM methods such as coupled cluster, the tensor contraction

is the most important operation related to achieving scalable performance. The

tensor contraction itself is essentially a matrix multiplication, except between

tensors, which are multidimensional arrays. In fact, tensor contractions can

be reduced to matrix multiplication by a series of index reordering operations.

Most of the load imbalance in NWChem arises from such a decomposition of

multidimensional tensor contractions into a large collection of matrix multiplication

operations. Interesting work by Solomonik et al. [55] considers a cyclic distribution

of tensor data with the Cyclops Tensor Framework (CTF), which preserves

symmetry and drastically reduces inherent load imbalance showing significant

speedups over ScaLAPACK and NWChem. Further work proves a communication

optimal algorithm on the 5D torus of BG/Q for dense tensor contractions. The

RRR framework (for Reduction, Recursive broadcast, and Rotation) shows

significant speedups over CTF for certain tensor contractions, such as:

C[i, j,m, n] = A[i, j,m, k] ×B[k, n]

but not for others, such as:

C[i, j,m, n] = A[i, j, k, l] ×B[k, l,m, n]
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RRR generates several algorithms based on different iteration space mappings and

compatible input distributions [11]. The time to generate these algorithms is not

reported in this work, and it would be interesting to see how the chosen algorithm

depends on tensor size, network topology, and amount of memory per compute

node.

1.2.4..4 DAG Dependencies/Scheduling

Not only are tasks within a single tensor contraction of coupled cluster

calculations independent, but so too are some tensor contractions independent

of each other. Recent work has developed directed acyclic graphs (DAGs)

that represent the dependencies between the tensor contractions in CCSD

calculations [11]. Using this DAG as a task graph, the tensor contractions are

grouped into several pools (see Fig. 3) and executed with fewer global barrier

synchronization costs compared to NWChem and coupled cluster. Subsequent

work takes this notion one step further to construct a dataflow-based execution

by breaking the CC kernels down into a large collection of fine-grained tasks

with explicitly defined dependencies [56]. This work uses the PaRSEC dataflow

framework directly on the Tensor Contraction Engine of NWChem.

1.2.4..5 Accelerator applications

Implementation and performance studies of QM methods on accelerated

architecture, such as GPUs and the Intel Xeon Phi Many Integrated Core (MICs)

have been quite prevalent the past several years. There are too many to describe in

great detail here, so this section mentions only a few with impactful results.
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FIGURE 3. An example of scheduling DAG dependencies across tensor
contractions in coupled cluster doubles (CCD). This image is from [51].

Much work has considered running two-electron integrals on GPUs [31,

57, 58, 59] with satisfactory results. Now, many QM frameworks enable two-

electrons to be run on GPUs including ABINIT, ACES III, ADF, BigDFT,

CP2K, GAMESS, GAMESS-UK, GPAW, LATTE, LSDalton, LSMS, MOLCAS,

MOPAC2012, NWChem, OCTOPUS, PEtot, QUICK, Q-Chem, QMCPack,

Quantum Espresso/PWscf, QUICK, TeraChem, and VASP [60]. DePrince and

Hammond implemented the first coupled clusters code on GPUs [61], showing a

4-5 speedup relative to a multithreaded CPU in 2010. In their implementation,

the entire SCF iteration takes place on the GPU, but only CCD was implemented.

Now, there is a CCSD(T) GPU implementation in NWChem [62].

On the Xeon Phi, Apra et al. optimize CCSD(T) code for the MIC using

offload mode [63]. OptErd (the electron repulsion integral library used by GTFock)

also makes use of MICs in offload mode [46]. Shan et al. tune the TEXAS integral

module, used by NWChem to run more efficiently on multiple architectures,

including the Xeon Phi [34]. They also implement MIC optimizations for CCSD(T)
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in native mode [64], which may be more useful for future Knights Landing and

Knights Hill architectures.

Other recent work focuses on enhancing rapid development of QM codes by

generating code to run on several novel architectures. For example, Titov et al. use

metaprogramming to generate SCF code for the GPU and MIC using either CUDA,

OpenCL, or OpenMP based parallelism [65]. Also, the KPPA project by Linford et

al. [66] automatically generates C or Fortran90 code to simulate chemical kinetic

systems, and the same approach could likely be useful for QM codes as well.

1.2.4..6 Scientific Workflows in QM

This section briefly highlights work in scientific workflows applied directly

to QC. In particular, the MoSGrid project [67, 68, 69] has established a science

gateway using web-based services for end users to design complex workflows and

meta-workflows. MosGrid has considered 3 interesting general workflow use cases

in QC. Fig. 4 shows the workflow diagrams for 1) high-throughput analysis of

X-ray crystallography files, 2) transition state (TS) analysis and 3) parameter

sweeps. While these use cases are extremely interesting in terms of automation,

more needs to be done to establish how such workflows and collections of workflows

should most efficiently be scheduled, and how resources should be allocated, to

accomplish such workflows. Workflow management is clearly becoming more

important in modern scientific endeavors, and as we will see in following sections,

this is particularly true for multiscale and multiresolution computational chemistry.
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FIGURE 4. 3 QM workflow use cases supported by MosGrid. This diagram is
from [69].

1.3 HPC in Molecular Mechanics/Dynamics

This section highlights the primary aspects of molecular dynamics

simulations, and how they have evolved alongside developments in HPC. We

consider the most scalable and extendible molecular dynamics software frameworks

and how they do and do not address the challenges of extreme scale computing

listed in Section 1.1.

1.3.1. Introduction and Basics

Molecular Dynamics (MD) simulation is a type of N-body simulation in

which the particles of interest are atoms and molecules. MD simulations differ

greatly from quantum mechanical simulations: Instead of solving the Schrödinger

equation, they solve Newton’s equations of motion, which model the classical

physics of particle-particle interactions. While MD mostly ignores quantum

electronic properties of atoms, it is still able to capture relevant thermodynamics,

dipoles, and some reaction pathways/mechanisms. The most important component
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of accurate MD simulations is the potential function (sometimes called the force

field or the interatomic potential), which describes how atoms will interact based

on their positions. Incidentally, the evaluation of the potential function is also

the most expensive computational component of MD simulations. Potentials must

account for all the different forms of energy within molecular systems, both bonded

(bond stretching, valence angle bending, and dihedral torsions) and non-bonded

(electrostatics and van der Waals forces).

The potential energy function of most MD simulations includes the following

contributions:

Utotal = Ubond + Uangle + Udihedral + UVDW + UCoulomb (1.6)

Ubond corresponds to the bond stretching (as in the top 2-atom molecule in Fig. 5),

which in the simplest non-rigid case is modeled as a harmonic spring:

Ubond =
∑

bond i

kbond
i (ri − ri(eq))2 (1.7)

Similarly, Uangle is the bond angle term (as in the 3-atom molecule in Fig. 5), which

is also often modeled harmonically:

Uangle =
∑

angle i

kangle
i (θi − θi(eq))2 (1.8)
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FIGURE 5. Diagram showing the components of a potential U(r) in MD
simulations.

Udihedral corresponds to the torsional interactions between 4 atoms (see angle φ in

Fig. 5) and is usually more sinusoidal in nature:

Udihedral =
∑

dihedral i


kdihedral
i [1 + cos(niφi − γi)], ni 6= 0

kdihedral
i (0i − γi)2, n = 0

UVDW is the van der Waals term, which accounts for dipole-related forces, and is

usually described by some sort Lennard-Jones potential:

UVDW =
∑
i

∑
j>i

4εij

[(
σij
rij

)12

−
(
σij
rij

)6]
(1.9)

Finally, UCoulomb accounts for the more long-range electrostatic interactions, which

is almost always described by the standard potential energy between two point

charges:

UCoulomb =
∑
i

∑
j>i

qiqj
4πε0rij

(1.10)
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Algorithm 3 The standard MD simulation algorithm [70].

An important concept in MD simulation is the enforcement of periodic

boundary conditions (PBCs). Normally, an MD simulation consists of a simulation

cube of specified length L (but some software supports more advanced shapes such

as parallelepipeds). What happens if a particle leaves the simulation box? PBCs

suggest that the particle should re-enter at the opposite face of the cube. In this

way, a simulation of a unit cell with PBCs is equivalent to simulating an infinite

system with a repeating unit cell, as illustrated in Fig. 6. The PBC technique

upholds thermodynamic consistency, and is good for spatial load balancing, which

we discuss in Section 1.3.3..1.

The basic MD algorithm is shown in Algorithm 3. In summary, we first apply

an integrator at each time step to determine the movements of atoms. Then we

satisfy any necessary boundary or thermodynamic conditions, calculate any desired

quantities, and ultimately move on to the next timestep.

In MD software implementations, the näıve approach is to calculate the

particle interactions from Eqn. 1.6 for all unique pairs. This approach is O(n2),
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which is prohibitive for systems of moderate size. However, it is standard practice

to exploit the short-ranged nature of certain components of the total potential

energy function. For instance, the first 4 terms of Eqn. 1.6 are for very short-

ranged bonded atoms. Furthermore, the Lennard-Jones potential from Eqn. 1.9

quickly drops to zero as r increases. By imposing a cutoff distance outside of

which to neglect any short-range particle interactions, we can drastically reduce

the complexity of the simulation to ∼ O(n). Unfortunately, the Coulombic

component of the potential is long-ranged by nature, because it drops of as 1/r.

However, methods using Ewald summations can exploit the power of the fast

Fourier transform (FFT) to very quickly calculate this long-range potential, which

we consider in more detail in Section 1.3.3..2.

Finally, it is standard for each particle to have a neighbor list, which is

queried during each simulation timestep to efficiently track necessary particle

interactions [71] within a given cutoff distance. This has been deemed the most

sensitive and important parameter for performance of MD simulations [14]. It is

even more important for parallel implementations, because we must update the

neighbor list as particles move outside of the relevant cutoff region. This involves

frequent communication, particularly when the number of processes is high, the

dynamics are fast, and/or the cutoff distance is large. We consider these issues in

more detail in Section 1.3.3..1.

1.3.2. MD Force Fields

The previous section presented very simple forms for the potential energy

components in Eqns. 1.7, 1.8, 1.9, and 1.10. Together, these simple functions

comprise a force field for MD simulation, which can also be thought of as a
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FIGURE 6. An example of periodic boundary conditions.

software implementation for evaluating the potential energy function from Eqn. 1.6.

There are many such force field implementations, and each is relevant to specific

chemical systems of interest. Perhaps the primary challenge of MD simulation

studies is that there is currently no general purpose force field - it is necessary to

choose the best fit for a given chemical system.

Just as DFT has a very large number of functionals available, so too are there

a large number of force fields. The primary categories are classical force fields,

polarizable force fields, coarse-grained force fields, and water models. For MD,

the more popular options include AMBER, CHARMM, GROMOS, and UFF (the

latter being an attempt at a general force field) [33].

The total combinatorial space of atoms, molecules, chemical systems,

simulation techniques, and force fields is dauntingly large. Interesting work

considers high-throughput computational materials design to alleviate the burden

of exploring the entire space [5, 8, 72, 73]. These projects combine MD and QM
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methods with data mining and large-scale database management to generate

and analyze enormous amounts of simulation data towards the discovery and

development of novel materials. However, little work considers machine learning

techniques for choosing appropriate force fields given an input chemical system to

minimize error, despite the clear similarity to other applications [74]. This may be

promising future work.

1.3.3. High Performance MD Software Frameworks

The diversity of MD simulation software frameworks is dauntingly diverse,

however, they can generally be grouped into two different camps. Many MD

simulation frameworks focus primarily on atomistic modeling, such as NAMD [75],

AMBER [76], DL POLY [76], CHARMM [77], and Simpatico [78]. Such frameworks

require subtle improvements to force field parameters, and high-level features

such as workflow support, but in general the algorithmic developments are well-

established [79]. On the other hand, mesoscopic simulation frameworks that model

soft matter are relatively less established, because their parameters are more

dependent on the chemical system of interest, which may require more complex

parameter tuning, and many different modeling methods exist, some of which are

more applicable to a particular system setup. The latter type of framework includes

LAMMPS, GROMACS, and ESPResSo++. These simulation frameworks are the

subject of the following three sections.

1.3.3..1 LAMMPS and Parallel Decomposition Schemes

LAMMPS is a classical molecular dynamics (MD) code which emphasizes

parallel performance and scalability. It deploys distributed-memory message-passing
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parallelism with MPI using a spatial decomposition of the simulation domain. It

has GPU (CUDA and OpenCL) and OpenMP capabilities, and also runs on the

Intel Xeon Phi. LAMMPS runs from an input script, which has advantages, such as

a low barrier to entry, but also disadvantages, because the input script language is

unique and difficult to extend. LAMMPS supports modeling atoms, coarse-grained

particles, united-atom polymers or organic molecules, all-atom polymers, organic

molecules, proteins, DNA, metals, granular materials, coarse-grained mesoscale

models, point dipole particles, and more (including hybrid combinations).

Pivotal work in comparing spatial-decomposition, force-decomposition, and

atom-decomposition performance [80].

Atom decomposition: With N total atoms and P total processors, the atom

decomposition simply assigns N/P atoms to each processor. Throughout the

simulation, each processor calculates forces and updates the positions only of the

atoms which they are assigned. This decomposition implies that a processor will

compute all interactions associated with a given atom. This is generally considered

the simplest decomposition scheme, but it may require extra communication

because each process requires the coordinates of atoms from many other processors.

However, if the all-to-all operation is well-implemented on a given network, then

this operation is reasonably efficient, particularly when accounting for Newton’s

3rd law to reduce computation in half. Load balance in atom decomposition is

good if the row blocks in F have the same number of zeros. This is the case if

atomic density is relatively uniform throughout the simulation box. If not, then it

helps to randomly permute the number schemes to be less influenced by geometric

arrangement.
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Force decomposition: In the force matrix F , each element Fij represents the

force that atom i feels due to atom j. F is quite sparse because of the fast 1/rd

dropoff (d is a positive integer ≥ 2) of short-range potentials combined with the

practical use of a pairwise cutoff. Also, it is easy to see by Newton’s 3rd law that

F is a symmetric matrix. With the atom decomposition described above, each

processor is assigned N/P rows of the F matrix (or equivalently N/P columns).

On the other hand, the force decomposition technique distributes F into smaller

blocks, each N/
√
P × N/

√
P . This has the advantage of improving communication

costs to O(N/
√
P ) compared to O(N) in atom decomposition [80]. However, load

balance may be worse in force decomposition because the blocks must be uniformly

sparse in order for processors to do equal amounts of work. Even if atom density

is uniform, geometrically ordered atom identifiers create diagonal bands in F . As

in atom decomposition, a random permutation of the numbering scheme helps to

reduce load imbalance.

Spatial decomposition: Spatial decomposition involves subdividing the

simulation domain into separate 3D boxes, and assigning atoms within a box

to a particular processor. As atoms move through the simulation domain, they

are reassigned to the appropriate processor based on the spatial decomposition.

While it may seem that spatial decomposition may suffer from poor load balance

for simulations with spatially-varying density distributions, there are now several

options in LAMMPS to improve the load balance. For instance, the balance

command applies a recursive multisection algorithm to adjust the subdomain sizes

in each dimension of the simulation box. Furthermore, when using multi-threading

in LAMMPS, an atom decomposition is used for on-node parallelism, whereas

spatial decomposition is used for off-node parallelism.
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In summary, there are three practical ways to decompose MD simulations,

and LAMMPS developers were among the first to study and analyze these

alternatives; furthermore, their findings influenced many other future

implementations. Figure 7 shows their results comparing the three decomposition

schemes using MPI on a Cray machine [80]. We see that the best choice of

decomposition scheme depends on both the scale and the chosen cutoff. This

phenomenon was relevant on the outdated Cray T3D, and is certainly relevant

today with the diversification of on-node architectures/memory hierarchies,

network topologies, and programming models. Many recent exploratory MD

applications (some on the latest many-core architectures [81]) deploy strict domain

decomposition [82] based on such pivotal work as this. However, it is important to

keep in mind that the other alternatives (or hybrid schemes) may be better suited

to extreme scale systems where concepts such as minimizing communication and

exploiting vectorization are paramount for scalable performance.

FIGURE 7. Comparison of the 3 MD decompositions for two different cutoff
lengths. Although these results are dated, the concepts are important for
understanding the consequences of domain decomposition techniques when porting
MD codes to modern hardware systems using productive programming models.
This figure is from [80].
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1.3.3..2 GROMACS and Ewald Summation Techniques

This section highlights the unique aspects of the GROMACS MD framework

that improve its performance and scalability. In order to understand, a brief

introduction to Ewald summations and particle-mesh Ewald (PME) is necessary

(a more thorough introduction is found in [83]). The long-range component of the

potential energy function is shown in Eqn. 1.10. The goal for this electrostatic

interaction is to solve Poisson’s equation given the function for UCoulomb. Ewald

summation involves adding a Gaussian function to each point charge in the

system.In short, we do this because the Gaussian representation has an exact

solution to Poisson’s equation in reciprocal space. This means that if we transform

the spatial coordinates into frequency space using Fourier techniques, then we can

trivially solve Poisson’s equation across the entire simulation domain. The FFT

accomplishes this feat by imposing a domain that is a power of 2 units long in each

spatial dimension, then enforcing the point charges to be centers on the nearest

grid point.

Unfortunately, FFT scalability does not keep up with the scalability of the

short-range component of MD simulations using a given number of processes.

However, GROMACS 4.5 was the first framework to solve this problem, and

now NWChem utilizes the same technique [84]. This method uses a ”pencil”

decomposition of reciprocal space, as displayed in Fig. 8. Here, a subset of the

total MPI application processes (implemented via MPI communicators) participate

in the FFT calculation. At the beginning of each timestep, the direct-space

nodes (top of Fig. 8) send coordinate and charge data to the FFT nodes (bottom

of Fig. 8). Some number of direct-space nodes (usually 3-4) map onto a single

reciprocal-space node. Limiting the computation of the FFT to a smaller number
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FIGURE 8. GROMACS 3D spatial decomposition combined with 2D
decomposition in reciprocal space. This diagram is from [85].

of nodes significantly improves parallel scaling [85], likely due to the communication

boundedness of 3D FFTs.

Modern GROMACS (version 5.1) utilizes hierarchical levels of parallelism,

as shown in Fig. 9. First, many MD simulations depend on collections of similar

instances, which together make up a statistically significant ensemble. GROMACS

supports tools for easily constructing such ensembles and deploying them on

a computer cluster. Second, each simulation within an ensemble is spatially
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domain decomposed and dynamically load balances over MPI. Third, non-bonded

interactions are handled on GPUs because of the short-ranged calculations

compatibility with simultaneous multithreading (SIMT). Finally, CPU cores apply

SIMD operations to parallelize cluster interactions kernels or bonded interactions,

which now makes heavy use of OpenMP pragmas. This grouping of different

components onto the best suited device within the heterogeneous architecture is

what makes GROMACS a front-runner in MD simulation frameworks, especially in

light of the push towards exascale capability.

FIGURE 9. The hierarchical levels of parallelism in GROMACS. This diagram is
from [84].

1.3.3..3 NAMD

Here, we briefly consider the NAnaoscale Molecular Dynamics (NAMD)

framework, which has historically prioritized the strong scaling capabilities of MD

simulations more than other frameworks [75]. It’s capabilities are similar to that

of GROMACS and LAMMPS, but it runs over a more interesting parallel runtime,

Charm++. In Charm++, C++ objects called chares represent migratable tasks

that execute asynchronously and in a one-sided manner. Users are encouraged

to ”over-decompose” their tasks into chares, because a finer granularity leads to

better load balance and adaptability. The runtime of Charm++ manages chares
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with a system of queues on each compute node with the goal of hiding latency and

promoting asynchronous execution.

NAMD deploys a spatial decomposition into so-called ”patches” that fill

the simulation box. Unlike other common approaches, the number of patches in

NAMD is unrelated to the total number of processes. Charm++ encourages this

separation of problem decomposition from hardware resources, because it allows for

adaptability in the execution. Furthermore, the assignment of patches to processors

can be changed between iterations based on measurements made by the Charm++

runtime. The occasional redistribution of tasks at runtime gives NAMD a key

scalability advantage in terms of load balance.

We finally briefly mention some of NAMD’s auxiliary accomplishments. First,

NAMD researchers explored the implications of multi-lingual programming at

scale [86], which led to a rich and flexible software architecture, shown pictorially

in Fig. 10 (though this architecture is now out of date). Second, FPGA researchers

compiled NAMD with ROCCC, which resulted in an impressive speed-up of

the critical region that computes non-bonded interactions [87]. They focused

on generating hardware that maximizes parallelism in the FPGA circuit while

minimizing the number of off-chip memory accesses.

1.3.3..4 ESPResSo++

ESPResSo++ is a re-write of the popular ESPResSo MD software toolkit,

which primarily supports simulation of soft matter physics and physical chemistry.

Unlike alternatives such as LAMMPS and GROMACS, ESPResSo++ boldly

prioritizes software extensibility over all other concerns during development of MD

software, which often (but not always) includes performance [79].
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FIGURE 10. NAMD’s language architecture. This diagram is from [86].

ESPResSo++ supports the extensibility of MD simulations by enhancing

readability, maintainability, expandability, and verifiability by means of a well-

defined coupling between two software interfaces. First, ESPRessSo++ consists of

a high-level Python-based interface used for 1) importing relevant modules and

packages, 2) setting up the chemical system and its interactions, 3) simulation

of the system dynamics, and 4) analysis. ESPResSo++ also consists of a lower-

level C++ interface to the simulation engines and various computational tools.

Development of new modules must follow a specific protocol for exposing necessary

C++ classes to the Python user interface using the Boost.Python library.

This design is quite useful for writing adaptive simulations with in-situ

analysis capabilities. For example, to visualize a plot of the pressure every 100

timesteps using a Python library is trivial:

integrator = espresso.integrator.VelocityVerlet(system)

...

for i in range(10):

integrator.run(100)

P = espresso.analysis.Pressure(system).compute()

matplotlib.plot(P, len(P))
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While this is certainly possible with LAMMPS using the following lines in an input

script:

thermo_style custom pressure

thermo 100

run 10000

it is far more difficult to do something as simple as display a plot every 100

timesteps without resorting to custom interprocess communication (which is not

clearly possible without changing LAMMPS source code). Not only is this trivial

for ESPResSo++, one can go a step further and visualize simulation progress on-

the-fly by sending data over a socket to VMD server:

# VMD initialization

sock = espresso.tools.vmd.connect(system)

...

# Send current positions to VMD

espresso.tools.vmd.imd_positions(system, sock)

While this is certainly possible with LAMMPS using the following lines in an input

script:

thermo_style custom pressure

thermo 100

run 10000

it is far more difficult to do something in LAMMPS as simple as display a plot

every 100 timesteps. This workflow-oriented capability is inherently included in the

ESPResSo++ software design. The parallel programming model for ESPResSo++ is

unique in that all communication is done through MPI, but user programs do not

apply an SPMD model. This unexpected architecture is shown in Figure 11, where
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a program using the Python scripting interface invokes a controller that launches

MPI4Py parallel programs [88]. Furthermore, processes can either communicate

through the Python layer of abstraction, or through the C++ layer, as shown

in Figure 11. using the Boost.MPI library, ESPResSo++ has been shown to be

scalable up to 1024 cores, as shown in Figure 12. While the performance is not

as good as LAMMPS at scale, its prioritization of extensibility have allowed for

more advanced features such as adaptive resolution, and support for various course

grained potentials. Profiles suggest that the performance differences between

ESPResSo++ and LAMMPS are due to optimizations made within the neighbor list

construction and the communication of particle data [79]. In this author’s opinion,

more needs to be done to quantify the communication overheads. For instance,

there are may be overheads associated with using Boost.MPI to send serialized

object data instead of sending MPI derived types, as LAMMPS does.

FIGURE 11. The parallel execution model of ESPResSo++. This diagram is
from [79].

One reason we emphasize ESPresSo++ in this section is because it does a

good job addressing most of the extreme-scale requirements listed in Section 1.1. It

emphasizes a modular software infrastructure (sometimes sacrificing absolute best

45



FIGURE 12. ESPResSo++ strong scaling compared to LAMMPS. These results are
from [79].

performance), enables scientific workflows as an integral part of the software design,

and supports multiphysics/multiscale component coupling in the form of adaptive

resolution.

1.3.4. Other Noteworthy MD Accomplishments in HPC

This section briefly mentions other noteworthy accomplishments in

MD software implementations that utilize HPC. First of all, most key MD

frameworks are GPU-accelerated, including ACEMD, AMBER, BAND, CHARMM,

DESMOND, ESPResso, Folding@Home, GPUgrid.net, GROMACS, HALMD,

HOOMD-Blue, LAMMPS, Lattice Microbes, mdcore, MELD, miniMD, NAMD,

OpenMM, PolyFTS, SOP-GPU and more [60]. Other codes, such as ESPResSo++

are currently porting and optimizing GPU kernels.

On MICs, miniMD has implemented and published on very effective

vectorization techniques that run on the Xeon Phi [81]. LAMMPS, GROMACS,

and NAMD also have support for MIC [84], but more optimizations need to be
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made to compete with the CPU implementation and to balance work between

CPU and devices. Incorporating vectorization into full-fledged MD simulation

frameworks on socket-attached MIC architectures such as Knights Landing and

Knights Hill is a very promising area for future work.

Custom alternative architectures also show remarkable potential for MD

simulation. For instance, researches have ported NAMD benchmarks to an

FPGA and report 800x improvement for single-precision performance and 150x

improvement for double precision over a conventional x86 architecture [87]. Also,

Anton [1, 2], a special purpose supercomputer designed from the ground up to be

optimized to MD simulations, shows impressive performance improvements over

general purpose machines, with speedups of up to 180x.

1.4 Coarse-Grained Molecular Simulations

On the largest modern supercomputers, molecular dynamics (MD) simulations

of polymer systems contain billions of atoms and span roughly a few nanoseconds

of simulation time per week of execution time. Unfortunately, most macromolecular

processes of interest contain many orders of magnitude more particles and often

bridge microsecond or even millisecond timescales or longer. These include

phenomena like microphase separation transition in block-copolymers [89], phase

separation in polymer blends and composite materials [90], polymer crystallization,

and glass formation and aging [91] to mention just a few. Despite our pervasive

access to massive computing power, full united-atom (UA) simulations do not come

close to representing real-world polymer systems (see Figure 45), because they are

too computationally expensive and slow. Simply put, we require new approximation

methods that capture the relevant physics and chemistry while requiring fewer
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computational resources. The most promising approach is the coarse-graining

(CG) method, in which groups of atoms are represented as one collective unit.

CG has proven to be valuable for eliminating unnecessary degrees of freedom and

tackling the scaling complexity of larger problems [92]. The key issue is how to

simultaneously maintain solution accuracy and high performance.

The following sections describe some popular approaches for conducting

accurate CG simulations. They fall into two broad categories: numerically based

and theoretically based. Section 1.4.1. considers a new software framework

called VOTCA that provides an interface to several numerical CG approaches.

Section 1.4.2. considers a more theoretically driven CG technique called integral

equation coarse-graining that relies on principles in statistical mechanics to derive

an analytical potential that describes CG models of polymer melts.

1.4.1. VOTCA

There exist several different techniques for applying CG models to molecular

systems, such as iterative Boltzmann inversion, force-matching, and inverse Monte

Carlo. We begin our discussion of CG techniques by considering the Versatile

Object-Oriented Toolkit for Coarse-Graining Applications (VOTCA), because it

provides a unified framework that implements many different CG methods and

allows their direct comparison [93]. The momentous publication that describes

VOTCA [93] provides a nice comparison of these numerically-driven CG techniques,

and they are the subjects of the following three sections.
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1.4.1..1 Boltzmann Inversion

Boltzmann inversion (BI) is considered to be the simplest method for deriving

a CG potential, because it simply involves inverting the distribution functions of a

coarse-grained system. Specifically, the bond length, bond angle, and torsion angle

distributions are sampled from a simulation trajectory, then inverted to derive the

desired potential functions. For example, sampled bond lengths may be fitted to a

Gaussian:

p(r) =
A

ω
√
π/2

exp

[
−2(r − req)2

ω2

]
Now, exploiting the fact that a canonical ensemble obeys the Boltzmann

distribution between independent degrees of freedom:

p(r) = Z−1 exp[−βU(r)]

(where Z is the standard partition function), this can be inverted to derive the

desired harmonic potential:

U(r) = −kβT ln[p(r)] = Kr(r − req)2.

Here, Z becomes an irrelevant additive constant to the CG potential [94].

This simple approach has disadvantages. First, assumes independent degrees

of freedom:

P (r, θ, φ) = exp[−βU(r, θ, φ)]

P (r, θ, φ) = Pr(r)Pθ(θ)Pφ(φ)
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which may not be true for some systems; however, it is true, then BI is an exact

CG representation of the potential. Another problem is that we require smoothing

U(q) to provide a continuous force, which can be accomplished with extrapolation.

Finally, we require an atomistic reference system to accomplish BI, be we would

prefer a CG model that is independent of any full atomistic simulation.

1.4.1..2 Iterative Boltzmann Inversion

Iterative Boltzmann Inversion (IBI) is very similar to Boltzmann Inversion

from the previous section except that the non-bonded CG potential is iteratively

updated until it matches the corresponding radial distribution function (RDF) of

the atomistic representation:

Ui+1(r) = Ui(r)− αkBT ln

[
gi(r)

gt(r)

]

where α is a scaling factor (to reduce large deviations between iterations), gi(r) is

the RDF of the ith iteration and gt(r) is the target RDF. The RDF is an extremely

important quantity in MD simulation studies, because if it is known, it can be used

to derive thermodynamic quantities. Fig. 13 shows a graphical representation of an

RDF for a liquid chemical system.

1.4.1..3 Inverse Monte Carlo and Force Matching

Two other popular numerical methods for deriving CG potentials are Inverse

Monte Carlo (IMC) and Force Matching (FM). An in depth description of these

techniques is unnecessary for this discussion, but it suffices to say that IMC is quite

similar to IBI, except that it is based on more rigorous thermodynamic arguments.
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FIGURE 13. An illustration of the radial distribution function, g(r). The left
image shows a liquid with “solvation shells” surrounding a central atom. The g(r)
function on the right shows the statistical likelihood of a solvation shell at a given
distance r, which decreases to zero at large distances.

IMC has advantages over IBI in that it shows better and faster convergence, but

also is more expensive computationally.

The FM approach is quite different from IMC and IBI. It is non-iterative like

BI, but instead of generating distribution functions from reference simulations, FM

generates force functions with the goal of matching CG units to atomistic units. It

is non-iterative, and therefore less computationally expensive.

1.4.1..4 Iterative Workflow

VOTCA enables the direct comparison of the above CG methods (and

potentially many more) by providing a modular interface to a workflow template

for generating CG potentials. Fig. 14 shows this iterative workflow. Such

capabilities are important for computational chemists because they allow for

controlled verification, validation, and testing of new techniques across several

different development teams of MD software. Sections below will present a large

variety of multiscale and multiresolution simulation methods that would also

benefit from a VOTCA-like simulation framework for comparing workflows.

One current drawback of VOTCA, however, is that it is currently focused on

numerically-driven techniques for deriving CG potential and force functions, despite
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the fact that more consistent techniques exist in analytically-driven techniques for

deriving CG potentials. This approach is the subject of Section 1.4.2. below.

FIGURE 14. VOTCA’s iterative workflow. The diagram is from [93].

1.4.2. Integral Equation Coarse Graining Theory

The Integral Equation Coarse-Grained (IE-CG) model by Guenza and

coworkers [96, 97, 98, 99, 100, 101] adopts an analytically-derived potential and

dramatically improves spatial and temporal scaling of polymer simulations, while

accurately preserving thermodynamic quantities and bulk properties [102, 103, 104].
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Several numerical techniques and force fields exist for performing coarse-grained

simulations [105, 106, 107]. However, these methods generally preserve either

structure or fully preserve thermodynamics, but not both. As a result, only a small

level of coarse-graining is typically adopted to limit the errors in the simulated

structure and thermodynamics. In contrast, the IECG model adopts the analytical

approach offered by statistical mechanics theory, because it recovers crucial

structural and thermodynamic quantities such as the equation of state, excess free

energy, and pressure, while enabling a much higher level of coarse-graining and the

corresponding gains in computational performance.

Although CG polymer physics is a mature field, little has been done to

analyze the performance benefits of CG versus UA representations. While it

is clear that CG will exhibit computational gains, does it strong scale to as

many processors as the corresponding UA simulation? Likely not, because CG

tracks far fewer overall particles, sometimes by orders of magnitude. Also, the

scalability of CG simulations likely depends on the granularity factor, e.g, the

number of UA coordinates a CG unit represents. Despite the purpose of CG

research to improve computational efficiency of MD simulations, the relevant

literature lacks measurements that quantify expected computational performance

of various CG techniques, and how they scale across different supercomputer

architectures. Furthermore, CG related parameters may be chosen to give the

FIGURE 15. A representation of the average polyethylene chain length determined
by chromatography experiments [95]. Most studies are limited to very short chain
lengths (≤ 1000) due to the prohibitive cost of UA simulations, but recent work
freely explores the realistic systems with 104 to 106 monomers per chain [23].
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absolute performance, but do they also give the best accuracy? Two primary goals

of this work are to quantify expected performance of IE-CG simulations at large

scale, and to evaluate the trade-off between granularity, scalability, and accuracy.

FIGURE 16. A representation of the different block averaged components of the
IECG equations. The diagram is from [97].

When considering homopolymers, the IECG model represents polymer chains

as collections of monomer blocks that consist of many monomers and interact via

soft long-range potentials. If each chain has N monomers, we say that there are nb

blocks per chain with Nb monomers per block. The most important quantity used

to derive the CG potential is the time correlation function, which is essentially a

measure of the pairwise influence between particles as a function of distance. They

are related by the radial distribution function, g(r) which is defined as:

g(r) =
1

ρ

〈
1

N

n∑
i

n∑
j 6=i

δ(~r − ~rij)
〉

the total correlation function relates to g(r) by:

h(r) = g(r)− 1.
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The Polymer Reference Inter Site Model (PRISM) site-averaged Ornstein-

Zernike equation relates the relevant time correlation functions in Fourier Space:

ĥmm(k) = ω̂mm(k)ĉmm(k)[ω̂mm(k) + ρĥmm(k)]

from which we derive the CG potential. These equations contain a large

number of terms, so they are neglected here, but can be found in the relevant

literature [96, 97, 98, 99, 100, 101]. Using this solution for the potential, CG

simulations in LAMMPS have been shown to capture the relevant thermodynamics

while drastically reducing the number of degrees of freedom [102, 103, 104].

Furthermore, using the analytical approach, there are far fewer tunable parameters

than the numerical approaches such as Boltzmann inversion. Finally, numerical

approaches often require a atomistic reference system, which to some degree defeats

the purpose of gaining efficiency with CG. Assuming an informed value of the

radius of gyration and the direct correlation function limit as k → 0, called c0 [103],

the IECG potential only requires such reference systems for validation studies.

1.5 Multiscale / Multiresolution Chemistry

One of the grand challenges of modern molecular simulation is bridging

length and time scales in physically meaningful and consistent ways [108]. Consider

a biomolecular system such as a collection of eukaryotic cells. From a low-level

chemical point of view, each cell consists of many different biopolymers such

as DNA, proteins, sugars, enzymes, and upwards of 90% liquid water. From a

higher-level biological point of view, intercellular communication (between cells)

plays an important role in synaptic transmission, hormone secretion, and other
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signaling events, even at long distances. Currently, MD simulations are capable of

modeling a few biopolymers in a water bath, and accurate QM simulations can

reasonably simulate regions with a few dozen atoms. CG methods are capable

of simulating much larger regions, but methods normally consist of repeating

units of the same atomic or molecular type. Continuum mechanics goes one step

further, and models materials as a continuous mass rather than a system of discrete

particles. For example, the water within a cell can potentially be modeled with

methods in hydrodynamics and fluid mechanics. Furthermore, it is known that

biological processes occur over extremely long timescales, whereas MD simulations

can reasonably only reach the order of microseconds.

In order to effectively and accurately model and simulate such complex

systems, we require tractable and robust methods for bridging the QM, MM, CG,

and continuum scales, both spatially and temporally, while still exhibiting the

correct behavior at the edges of multiscale regions. This research area is expansive,

consists of many different facets, and even contains cross-discipline similarities

and analogies between topics in chemistry and physics [109, 110]. However, the

following sections limit the scope of mutliscale and multiresolution methods to

particle-based computational chemistry, with a particular focus on available

software frameworks and methodologies, which are currently somewhat lacking

possibly due to the difficulty of the problem.

1.5.1. QM/MM

QM/MM simulations consist of a relatively small region accurately modeled

by QM methods, with the remaining regions modeled more efficiently by MM

methods. Fig. 17 shows a simple example of a QM/MM hybrid simulation region.
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In this example, we presume the inner region is interesting because it contains some

chemical reaction, which QM models well. The outer region, on the other hand,

may contain no chemical reactions, but we still desire consistent thermodynamics

and inclusion of long-range effects on the QM region. There are three types of

interactions in this hybrid system: interactions between atoms in the QM region,

interactions between atoms in the MM region, and interactions between QM and

MM atoms. Sections I.1.2 and I.1.3 of this dissertation described the QM and

MM interactions (respectively) in detail, and their evaluation within QM/MM

simulations is no different. However, the interactions between the QM and MM

regions are more complicated, and researchers have proposed several approaches for

handling them.

One simple approach is called subtractive QM/MM coupling. The idea is fairly

simple, and is represented by this equation:

VQM/MM = VMM(MM + QM) + VQM(QM)− VMM(QM) (1.11)

Here, we claim that the total potential energy of the QM/MM system, VQM/MM,

involves adding two terms and subtracting another term. Fig. 18 shows a

representative diagram of the subtractive QM/MM coupling method. The first

term on the right hand side of Eqn. 1.11 corresponds to the sum of the QM and

the MM regions evaluated at the MM level, as shown in the third box from the left

of Fig. 18. The second term on the right hand side corresponds to the QM region

evaluated at the QM level, as shown in the second box from the left of Fig. 18.

Finally, the subtracted term corresponds to the QM region evaluated at the MM

level, as shown in the rightmost box of Fig. 18. The most popular implementation

of this approach is the ONIOM method [111], which is available in NWChem and
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Gaussian. Besides the subtractive QM/MM coupling scheme, there is also additive

QM/MM coupling:

VQM/MM = VMM(MM) + VQM(QM) + VQM−MM(QM + MM) (1.12)

in which the third term on the right hand side considers the interactions between

QM and MM atoms explicitly. Another popular, but more sophisticated, approach

is capping bonds at the QM/MM boundary. This approach cuts bonds crossing the

QM/MM region boundary, and replaces them with something like link atoms or

localized orbitals [112]. The specifics of this approach bring about complications

that are beyond the scope of this dissertation, but are covered elsewhere [113, 114,

112, 109, 110].

Simulation frameworks that support QM/MM through various packages

include NWChem, GROMACS, QuanPol, GAMESS (both US and UK version),

and AMBER. The method has become so important for computational chemists

that the inventors of QM/MM, Warshel and Levitt, won 2013 Nobel Prize in

Chemistry [115]. Despite its importance, there is a dearth of research that considers

the parallel performance of these workflows. This is puzzling given the fact that it

usually relies on the tight coupling of different simulation modules, even between

different frameworks [116]. For instance, Fig. 19 shows the overall control flow of a

QM/MM simulation. At a glance, it is clear that this directed acyclic graph (DAG)

of dependencies offers opportunity to exploit parallelism, but popular QM/MM

frameworks do not support such dynamic execution. Future dissertation work could

consider the performance of these methods in the context of scientific workflow

management and how to efficiently share computational resources in the face of

tight application coupling.
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FIGURE 17. QM/MM concept. Diagram is from [114].

FIGURE 18. QM/MM subtractive coupling. Diagram is from [114].

1.5.2. MM/CG

The MM/CG model is analogous to the QM/MM model, except that MM

represents a smaller region more accurately, and CG models the remaining regions

more efficiently. Such methods are particularly important for multiscale simulations

in which there are large regions with well-verified CG models, such as the solvent

regions around active proteins. Interestingly, the first CG model of a globular

protein was introduced in a 1975 paper by Warshel and Levitt [117], the recipients

of the 2013 Nobel Prize in Chemistry. Even more impressive, this was the first

multiscale MM/CG simulation, because side-chains of the protein were treated

with atom-level detail. Since then, MM/CG has been explored in much more

sophisticated scenarios [118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 13,

79, 129]. Most notably, methods in Adaptive Resolution Schemes (AdResS) consider

ways to specify regions having different granularities. AdResS is the subject of the

following subsection 1.5.2..1.
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FIGURE 19. QM/MM software flow diagram. Diagram is from [114].

In terms of software implementations, MM/CG is less ubiquitous than

QM/MM, but is currently available in GROMACS (however, documentation

is limited and support is constrained to certain systems such as those in which

only the water solvent is coarse-grained). Other tools, such as the ChemShell

environment [116] do apparently allow for flexible MM/CG setups [16], but again,

thorough documentation is currently limited to QM/MM procedures. Finally,

recent work by Ozog et al. enables switching between MM and CG representations

in an automated way [22], which is a considerable step towards AdResS and

MM/CG in the LAMMPS framework.

1.5.2..1 Adaptive Resolution (AdResS)

Many QM/MM studies do not consider dynamical systems in which atoms

freely move between the QM and MM regions. For MM/CG simulations however,

this may be a more important requirement, because we often coarse grain in
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FIGURE 20. A simple AdResS simulation box with the switching function, w(x),
overlaid.

order to bridge longer timescales. The adaptive resolution, or AdResS, technique

addresses the following requirements:

1. Specification of MM and CG regions, analogous to QM/MM from Fig. 17;

however, simpler AdResS experiments consider the scenario in Fig. 20.

2. Free exchange of atoms and molecules from the MM region to the CG region

and vice versa.

3. Dynamics should occur under thermodynamic equilibrium, i.e., at the same

temperature, density, and pressure throughout the simulation box.

L.D. Site and others have led several explorations [108, 118, 119, 120, 130,

123, 126, 128, 13, 129] of an AdResS technique with a hybrid region between MM

and CG domains where the derived forces couple in the following manner:

Fαβ = w(Rα)w(Rβ)Fatom
αβ + [1− w(Rα)w(Rβ)]Fcm

αβ (1.13)

This equation describes the force between two molecules as a function of their

positions (in the x dimension). Here, α and β refer to two molecules, and the

positions of their center of mass are Xα and Xβ, respectively. Fatom
αβ is the force
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derived from the atomistic (MM) potential and Fcm
αβ is the force derived from the

CG potential. The function w(x) is a smooth switching function that is 0 in the

CG region and 1 in the MM region. With this force description, atoms moving

in the hybrid region slowly lose (or gain) degrees of freedom. ESPResSo++, from

section 1.3.3..4 and GROMACS+MARTINI use this technique for doing AdResS

simulations.

The model from Eqn. 1.13 is quite simple, and it clearly satisfies requirements

1 and 2 from above. However, to satisfy requirement 3, the authors must make non-

trivial adjustments. For instance, an external source of heat must be introduced

to each degree of freedom to assure that the temperature is constant through the

hybrid region [108]. Also, an external force is added to assure thermodynamic

equilibrium [131]. Interestingly, the IECG work discussed in Section 1.4.2. does

not seem to require such adjustments for different levels of granularity. While

Eqn. 1.13 may not be compatible with IECG in its form above, future work should

consider whether something like a gradual (or sudden) change in granularity

(for example, within a polymer melt) can be used for AdResS. Not only might

this trivially satisfy requirement 3 without external forces/thermostats, but it is

possible computation will be more efficient when using the analytically derived

IECG potential.

1.5.2..2 Backmapping

Defining a new representation of the polymer as a chain of soft colloidal

particles greatly reduces the amount of information to be collected and controlled,

which speeds up the simulation. It is well known that modeling fewer colloidal

particles with an appropriate potential decreases the degrees of freedom and
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computational requirements by an amount proportional to the granularity [92].

The representation of a polymer as a chain of soft blobs also allows the chains to

more easily cross each other, decreasing the required time for the simulation to find

the equilibrium structure. However, the information on the molecular local scale

needs to be restored at the end of the simulation to account for properties on the

UA scale. In a nutshell, it is important to alternate between the CG representation

(which speeds up the simulation) and the UA representation (which conserves the

local scale information). By quickly switching back and forth from UA to CG,

we open doors to new studies of polymeric systems while maintaining simulation

accuracy and efficiency. While optimizing the computational performance of CG

codes is important, without a way to incorporate UA-level detail, CG efficiency has

relatively less value. The goal is to develop an integrated approach for conducting

simulations that exploit both CG efficiency and UA accuracy.

In homopolymer systems, transforming from the UA representation to the

CG representation is straightforward: for each subchain having Nb monomers,

the new soft sphere coordinate is simply the center of mass of the subchain. On

the other hand, the reverse procedure of mapping from the CG representation

to the UA representation is not generally well-defined. This transformation of a

CG model into a UA model is a popular research topic, commonly referred to as

the backmapping problem (See section 3.2). For our homopolymer system, the

backmapping problem is simply stated as follows: given a collection of CG soft

sphere chains coordinates, insert monomer chains in such a way that we would

recover the original CG configuration if we were to coarse-grain the system again.

It is easy to see that solutions to backmapping problems are not unique,

because there are many different UA configurations that could map back to a given
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CG configuration. Much backmapping work focuses on biomolecules [132], but

relatively little work has explored homopolymers. However, efficient backmapping

procedures in polymer simulations are imperative for developing a full-fledged

adaptively resolved simulations [133]. Furthermore, backmapping procedures

contain clear opportunities for exploiting parallelism, which have yet to be

explored.

1.5.3. QM/MM/CG

The availability of QM/MM and MM/CG methods begs the question of

whether it is possible and informative to study QM/MM/CG models. It is easy to

conjure such a triple-scale workflow that may be of interest. Consider the chemical

system shown in Fig. 21, which describes the backmapping loop of a collection

of liquid crystals containing azobenzene compounds, which may have potential

applications in photo-switching [134]. Upon illumination, the azobenzene molecule

can isomerize from a trans to a cis state:

then possibly decays back to the trans state, depending on the immediate

neighborhood of other atoms. The first step shown in Fig. 21 involves constructing

a CG simulation that represents a collection of azobenzene molecules. Then, similar

to the fast equilibration work by Ozog et al. [22] mentioned in Section 1.5.2., we

simulate the CG model long enough to reach equilibration. After equilibrating,

a small region is chosen to be modeled with QM, and the atomic coordinates are
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backmapped using techniques described in Section 1.5.2..2. A QM simulation

determines whether the isomerization takes place, then is equilibrated using an

MM model, then reinserted into the larger CG domain. This entire process is then

repeated if necessary.

The workflow described in the previous paragraph has no implementation,

the paper only presents the scenario as a multiscale problem of interest [108].

However, other recent publications suggests that an implementation of a triple-

scale model is possible and accurate [16, 17] using the ChemShell interactive

environment [116]. In fact, this is the same work used in the visualization from

Fig. 1. The capabilities of ChemShell are quite interesting, because they exploit

the simplicity of most hybrid methods (such as described in Section 1.5.1.) to

support a sizeable collection of QM, MM, and CG supporting simulation tools.

These currently include NWChem, GAMESS-UK, DALTON, Molpro, Gaussian,

Q-Chem, DL POLY, CHARMM, GROMOS, and several more. Fig. 22 shows

ChemShell’s software architecture, which enables modularity of the components at

each scale. One disadvantage (to many) is that ChemShell relies on a custom TCL

interactive shell. While this does enable the construction of intricate QM/MM/CG

workflows, a more modern programming language such as Python may be a better

choice because of its available scientific programming libraries, better extendibility,

superior error and exception handling, and support for HPC computing.

1.6 Relevant Applications

This section itemizes several example applications that utilize the concepts

discussed in this dissertation. In this author’s opinion, the most encouraging

publication comes from the BASF, which is the largest chemical producer in the
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FIGURE 21. An example of a triple-scale workflow. The diagram is from [108].

world [38]. This paper presents applications of quantum chemistry in industry,

and highlights the importance of QM/MM methods in designing new materials

(CG methods are mentioned as being important as well, but beyond the scope of

the paper). In addition, the following publications are relevant to multiscale and

multiresolution computational chemistry simulations:

– HF and DFT simulations of Lithium/air batteries using a new 3D FFT

implementation [10]

– Divide-and-conquer quantum MD with DFT for hydrogen on-demand [37]

– Multiscale crack modeling (w/ LAMMPS and other tools) using the PERMIX

computational library [82]

FIGURE 22. (A) Schematic of the QM/MM/CG partitioning. (B) Example of
the components of a QM/MM/CG workflow (from the ChemShell code). The
schematic is from [16].

66



– Light-induced phase transitions in liquid crystal containing azobenzene

photoswitch (QM/MM/CG) [130]

– Cloud environment for materials simulations [135]

– Screening quantum chemistry databases for organic photovoltaics [72]

– Data mining to aid material design [73].
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CHAPTER II

QUANTUM CHEMISTRY: SOFTWARE OPTIMIZATIONS

This chapter contains previously published material with co-authorship.

Section 2.1 includes content on Inspector/Executor load balancing from ICPP

2013 [18]. This work was a collaboration with scientists at Argonne National

Laboratory. Jeff Hammond, Jim Dinan, Pavan Balaji served as primary advisors

and gave me close guidance during all research activities. Dr. Hammond wrote

the introduction and background sections of the paper and supervised the software

development. I wrote the rest of the paper and gathered all experimental data.

Section 2.2 describes the WorkQ system, first presented at ICPADS 2014 [19].

This work resulted in a Directed Research Project with Prof. Malony and

collaborators Dr. Hammond and Dr. Balaji. We had weekly meetings discussing

progress and next steps. I wrote the paper and Prof. Malony suggested edits and

revisions. I wrote all the relevant code and gathered all experimental data.

Section 2.3 includes content about UPC++ and Hartree-Fock from IPDPS

2016 [20]. This work was a collaboration with scientists at Lawrence Berkeley

National Laboratory: Kathy Yelick, Wibe de Jong, Yili Zheng, and Amir Kamil;

as well as Prof. Malony and Dr. Hammond. Throughout this summer project, Dr.

Yelick, Dr. de Jong, Dr. Zheng, and Dr. Kamil were close advisors and supplied

much guidance. I wrote all code associated with the Hartree-Fock port to UPC++

and the progress thread feature to UPC++ itself. Dr. Hargrove contributed the

fetch and add network atomic feature to GASNet, and a paragraph about the

implementation. Dr. Kamil wrote the background section on UPC++ and the
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multi-dimensional array library, and I wrote the rest. Dr. Zheng made several

relevant bug fixes and relatively minor contributions to the paper prose.

2.1 Load Balancing Algorithms

2.1.1. Inspector/Executor Introduction

Load balancing of irregular computations is a serious challenge for petascale

and beyond because the growing number of processing elements (PEs) – which

now exceeds 1 million on systems such as Blue Gene/Q – makes it increasingly

more difficult to find a work distribution that keeps all the PEs busy for the same

period of time. Additionally, any form of centralized dynamic load balancing,

such as master-worker or a shared counter (e.g., Global Arrays’ NXTVAL [136]),

becomes a bottleneck. The competition between the need to extract million-way

parallelism from applications and the need to avoid load-balancing strategies that

have components which scale with the number of PEs motivates us to develop

new methods for scheduling collections of tasks with widely varying cost; the

motivating example in this case is the NWChem computational chemistry package.

One of the major uses of NWChem is to perform quantum many-body theory

methods such as coupled cluster (CC) to either single and double (CCSD) or triple

(CCSDT) order accuracy. Popular among chemists are perturbative methods

such as CCSD(T) and CCSDT(Q) because of their high accuracy at relatively

modest computational cost.1 In these methods, (T) and (Q) refer to perturbative

a posteriori corrections to the energy that are highly scalable (roughly speaking,

they resemble MapReduce), while the iterative CCSD and CCSDT steps have

1 The absolute cost of these methods is substantial when compared with density-functional
theory (DFT), for example, but this does not discourage their use when high accuracy is required.
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much more communication and load imbalance. Thus, this section focuses on the

challenge of load balancing these iterative procedures. However, the algorithms we

describe can be applied to noniterative procedures as well.

In this section of the dissertation, we demonstrate that the inspector-executor

model (IE) is effective in reducing load imbalance as well as eliminating the

overhead from the NXTVAL dynamic load balancer. Additionally, we find that IE

algorithms are effective when used in conjunction with static partitioning, which

is done both with task performance modeling and empirical measurements. We

present three different IE load-balancing techniques which each display unique

properties when applied to different chemical problems. By examining symmetric

(highly sparse) versus nonsymmetric (less sparse) molecular systems in the context

of these three methods, we better understand how to open doors to new families of

highly adaptable load-balancing algorithms on modern multicore architectures.

2.1.2. NWChem and Coupled-Cluster Background

Chapter I introduced at a high-level the NWChem software framework and

the PGAS paradigm on which it depends. The following subsections give a more

thorough background of PGAS, NWChem, coupled-cluster methods, the Global

Arrays programming model, and the Tensor Contraction Engine. A reader who is

familiar with these concepts can safely jump ahead to Section 2.1.3..

2.1.2..1 PGAS

The availability and low cost of commodity hardware components have

shaped the evolution of supercomputer design toward distributed-memory

architectures. While distributed commodity-based systems have been a boon for
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effectively and inexpensively scaling computational applications, they have also

made it more difficult for programmers to write efficient parallel programs. This

difficulty takes many forms: handling the diversity of architectures, managing load

balance, writing scalable parallel algorithms, exploiting data locality of reference,

and utilizing asynchronous control, to name a few. A popular parallel programming

model that eases the burden on distributed-memory programmers is found in

PGAS languages and interfaces.

In the PGAS paradigm, programs are written single program, multiple data

(SPMD) style to compute on an abstract global address space. Abstractions are

presented such that global data can be manipulated as though it were located

in shared memory, when in fact data is logically partitioned across distributed

compute nodes with an arbitrary network topology. This arrangement enables

productive development of distributed-memory programs that are inherently

conducive to exploiting data affinity across threads or processes. Furthermore,

when presented with an application programming interface (API) that exposes

scalable methods for working with global address space data, computational

scientists are empowered to program vast cluster resources without having to worry

about optimization, bookkeeping, and portability of relatively simple distributed

operations.

Popular PGAS languages/interfaces include UPC, Titanium, Coarray Fortran,

Fortress, X10, Chapel, and Global Arrays. The implementation in this work was

built on top of Global Arrays/ARMCI, which is the subject of the next section.
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2.1.2..2 NWChem

NWChem [137] is the DOE flagship computational chemistry package,

which supports most of the widely used methods across a range of accuracy scales

(classical molecular dynamics, ab initio molecular dynamics, density-functional

theory (DFT), perturbation theory, coupled-cluster theory, etc.) and many of

the most popular supercomputing architectures (InfiniBand clusters, Cray XT

and XE, and IBM Blue Gene). Among the most popular methods in NWChem

are the DFT and CC methods, for which NWChem is one of the few codes (if

not the only code) that support these features for massively parallel systems.

Given the steep computational cost of CC methods, the scalability of NWChem

in this context is extremely important for real science. Many chemical problems

related to combustion, energy conversion and storage, catalysis, and molecular

spectroscopy are untenable without CC methods on supercomputers. Even when

such applications are feasible, the time to solution is substantial; and even small

performance improvements have a significant impact when multiplied across

hundreds or thousands of nodes.

2.1.2..3 Coupled-Cluster Theory

Coupled-cluster theory [138] is a quantum many-body method that solves an

approximate Schrödinger equation resulting from the CC ansatz,

|ΨCC〉 = exp(T )|Ψ0〉,
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where |Ψ0〉 is the reference wavefunction (usually a Hartree-Fock Slater

determinant) and exp(T ) is the cluster operator that generates excitations out of

the reference. Please see Refs. [139, 140] for more information.

A well-known hierarchy of CC methods exists that provides increasing

accuracy at increased computational cost [141]:

· · · < CCSD < CCSD(T ) < CCSDT

< CCSDT (Q) < CCSDTQ < · · · .

The simplest CC method that is generally useful is CCSD [142], has a

computational cost of O(N6) and storage cost of O(N4), where N is a measure of

the molecular system size. The “gold standard” CCSD(T) method [143, 144, 145]

provides much higher accuracy using O(N7) computation but without requiring

(much) additional storage. CCSD(T) is a very good approximation to the full

CCSDT [146, 147] method, which requires O(N8) computation and O(N6)

storage. The addition of quadruples provides chemical accuracy, albeit at great

computational cost. CCSDTQ [148, 149, 150] requires O(N10) computation

and O(N8) storage, while the perturbative approximation to quadruples,

CCSDT(Q) [151, 152, 153, 154], reduces the computation to O(N9) and the storage

to O(N6). Such methods have recently been called the “platinum standard”

because of their unique role as a benchmarking method that is significantly more

accurate than CCSD(T) [155].

An essential aspect of an efficient implementation of any variant of CC is

the exploiting of symmetries, which has the potential to reduce the computational

cost and storage required by orders of magnitude. Two types of symmetry exist
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in molecular CC: spin symmetry [156] and point-group symmetry [157]. Spin

symmetry arises from quantum mechanics. When the spin state of a molecule

is a singlet, some of the amplitudes are identical; and thus we need store and

compute only the unique set of them. The impact is roughly that N is reduced

to N/2 in the cost model, which implies a reduction of one to two orders of

magnitude in CCSD, CCSDT, and CCSDTQ. Point-group symmetry arise from the

spatial orientation of the atoms. For example, a molecule such as benzene has the

symmetry of a hexagon, which includes multiple reflection and rotation symmetries.

These issues are discussed in detail in Refs. [158, 159]. The implementation of

degenerate group symmetry in CC is difficult; and NWChem, like most codes,

does not support it. Hence, CC calculations cannot exploit more than the 8-

fold symmetry of the D2h group, but this is still a substantial reduction in

computational cost.

While the exploitation of symmetries can substantially reduce the

computational cost and storage requirements of CC, these methods also introduce

complexity in the implementation. Instead of performing dense tensor contractions

on rectangular multidimensional arrays, point-group symmetries lead to block

diagonal structure, while spin symmetries lead to symmetric blocks where only the

upper or lower triangle is unique. This is one reason that one cannot, in general,

directly map CC to dense linear algebra libraries. Instead, block-sparse tensor

contractions are mapped to BLAS at the PE level, leading to load imbalance and

irregular communication between PEs. Ameliorating the irregularity arising from

symmetries in tensor contractions is one of the major goals of this work.
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2.1.2..4 Global Arrays

Global Arrays (GA) [160, 161] is a PGAS-like global-view programming

model that provides the user with a clean abstraction for distributed

multidimensional arrays with one-sided access (Put, Get, and Accumulate). GA

provides numerous additional functionalities for matrices and vectors, but these

are not used for tensor contractions because of the nonrectangular nature of these

objects in the context of CC. The centralized dynamic load balancer NXTVAL was

inherited from TCGMSG [136], a pre-MPI communication library. Initially, the

global shared counter was implemented by a polling process spawned by the last

PE, but now it uses ARMCI remote fetch-and-add, which goes through the ARMCI

communication helper thread [162]. Together, the communication primitives of

GA and NXTVAL can be used in a template for-loop code that is general and can

handle load imbalance, at least until such operations overwhelm the computation

because of work starvation or communication bottlenecks that emerge at scale. A

simple variant of the GA “get-compute-update” template is shown in Alg. 4. For

computations that are naturally load balanced, one can use the GA primitives and

skip the calls to NXTVAL, a key feature when locality optimizations are important,

since NXTVAL has no ability to schedule tasks with affinity to their input or output

data. This is one of the major downsides of many types of dynamic load-balancing

methods—they lack the ability to exploit locality in the same way that static

schemes do.

While there exist several strategies for dynamically assigning collections of

tasks to processor cores, most present a trade-off between the quality of the load

balance and scaling to a large number of processors. Centralized load balancers can

be effective at producing evenly distributed tasks, but they can have substantial
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Algorithm 4 The canonical Global Arrays programming template for dynamic
load balancing. NXTVAL() assigns each loop iteration number to a process
that acquires the underlying lock and atomically increments a global counter.
This counter is located in memory on a single node, potentially leading to
considerable network communication. One can easily generalize this template to
multidimensional arrays, multiple loops, and blocks of data, rather than single
elements. As long as the time spent in FOO is greater than that spent in NXTVAL,
Get, and Update, this is a scalable algorithm.

Global Arrays: A, B
Local Buffers: a, b
count = 1
next = NXTVAL()

for i = 1 : N do
if ( next == count ) then
Get A(i) into a
b = FOO(a)
Update B(i) with b
next = NXTVAL()

end if
count = count + 1

end for

overhead. Decentralized alternatives such as work stealing [163, 164] may not

achieve the same degree of load balance, but their distributed nature can reduce

the overhead substantially.

2.1.2..5 Tensor Contraction Engine

The Tensor Contraction Engine (TCE) [165, 166] is a project to automate

the derivation and parallelization of quantum many-body methods such as CC.

As a result of this project, the first parallel implementations of numerous methods

were created and applied to larger scientific problems than previously possible.

The original implementation in NWChem by Hirata was general (i.e., lacked

optimizations for known special cases) and required significant tuning to scale

CC to more than 1,000 processes in NWChem [167]. The tuning applied to the
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TCE addressed essentially all aspects of the code, including more compact data

representations (spin-free integrals are antisymmetrized on the fly in the standard

case), reduction in communication by applying additional fusion that the TCE

compiler was not capable of applying. In some cases, dynamic load balancing

(DLB) was eliminated altogether when the cost of a diagram (a single term in the

CC eqns.) was insignificant at scale and DLB was unnecessary overhead.

The TCE code generator uses a stencil that is a straightforward generalization

of Alg. 5. For a term such as

Z(i, j, k, a, b, c)+ =
∑
d,e

X(i, j, d, e) ∗ Y (d, e, k, a, b, c), (2.1)

which is a bottleneck in the solution of the CCSDT equations, the data is tiled

over all the dimensions for each array and distributed across the machine in a

one-dimensional global array. Multidimensional global arrays are not useful here

because they do not support block sparsity or index permutation symmetries.

Remote access is implemented by using a lookup table for each tile and a GA

Get operation. The global data layout is not always appropriate for the local

computation, however; therefore, immediately after the Get operation completes,

the data is rearranged into the appropriate layout for the computation. Alg. 5

gives an overview of a distributed tensor contraction in TCE. For compactness of

notation, the Fetch operation combines the remote Get and local rearrangement.

The Symm function is a condensation of a number of logical tests in the code that

determine whether a particular tile will be nonzero. These tests consider the indices

of the tile and not any indices within the tile because each tile is grouped such that

the symmetry properties of all its constitutive elements are identical. In Alg. 5,
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Algorithm 5 Pseudocode for the default TCE implementation of Eq. 2.1. For
clarity, aspects of the Alg. 4 DLB template are omitted.

Tiled Global Arrays: X, Y, Z
Local Buffers: x, y, z
for all i, j, k ∈ Otiles do

for all a, b, c ∈ V tiles do
if NXTVAL() == count then

if Symm(i, j, k, a, b, c) == True then
Allocate z for Z(i, j, k, a, b, c) tile
for all d, e ∈ V tiles do

if Symm(i, j, d, e) == True then
if Symm(d, e, k, a, b, c) == True then
Fetch X(i, j, d, e) into x
Fetch Y(d, e, k, a, b, c) into y
Contract z(i, j, k, a, b, c)+=

x(i, j, d, e)*y(d, e, k, a, b, c)
end if

end if
end for
Accumulate z into Z(i, j, k, a, b, c)

end if
end if

end for
end for

the indices given for the local buffer contraction are the tile indices, but these

are merely to provide the ordering explicitly. Each tile index represents a set of

contiguous indices so the contraction is between multidimensional arrays, not single

elements. However, one can think of the local operation as the dot product of two

tiles (Otile and V tile in Algs. 5, 6, and 7).

TCE reduces the contraction of two high-dimensional tensors into a

summation of the product of several 2D arrays. Therefore, the performance of the

underlying BLAS library strongly influences the overall performance of TCE. For

the purposes of this work, each tensor contraction routine can be thought of as a

global task pool of tile-level 2D DGEMM (double-precision general matrix-matrix
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multiplication) operations. This pool of work items is processed according to the

following execution model:

1. A unique work item ID is dynamically assigned via an atomic read-modify-

write operation to a dynamic load balancing counter (see [18] for details).

2. The global addresses of two tiles (A and B) in the global array space is

determined (TCE hash lookup).

3. The corresponding data is copied to the local process space (via one-sided

RMA) with GA Get() calls.

4. A contraction is formed between the local copies of tiles A and B and stored

into C. When necessary, a permute-DGEMM-permute pattern is performed

in order to arrange the indices of the tensor tiles to align with the format of

matrix-matrix multiplication.

5. Steps 2, 3, and 4 repeat over the work-item tile bundle; then C is

accumulated (GA acc() call) into a separate global array at the appropriate

location.

Although this algorithm is specific to CC, we note we that it falls under a

more general get/compute/put model that is common to many computational

applications. For example, the problem of numerically solving PDEs on domains

distributed across memory spaces certainly falls under this category.

Section 2.1.3. will motivate a scheme that reduces the load on the centralized

NXTVAL mechanism within the TCE. Later, Section 2.2.3. will provide motivation

for the development of an alternative execution model that is able to perform the

get/compute/put computation more efficiently by overlapping communication and

computation.
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2.1.3. Inspector/Executor Motivation and Design

In this section we discuss our motivation for developing inspector-executor

(IE) algorithms, the implementation of the IE in the TCE-CC module of NWChem,

and the design of our cost partitioning strategy. We begin by characterizing the

function of a simple version of the inspector, then augment the IE model by

incorporating performance models of the dominant computational kernels. The

performance models provide estimations of task execution time to be fed into the

static partitioner, then to the executor. While the IE design and implementation

is described within the context of NWChem’s TCE-CC module, the methods

can be applied to any irregular application where reasonably accurate estimation

of kernel execution times is possible, either analytically or empirically. In our

NWChem implementation, the inspector initially assigns cost estimations by

applying performance models of computational kernels for the first iteration, then

by doing in situ execution time measurements of tasks for subsequent iterations.

2.1.3..1 Inspector/Executor

When using Alg. 4 in TCE-based CC simulations, the inherently large

number of computational tasks (typically hundreds of thousands) each require

a call to NXTVAL for dynamic load balancing. Very large systems can potentially

require many billions of fine-grained tasks, but the granularity can be controlled by

increasing the tile size. Although NXTVAL overhead can be limited by increasing

the tile size, it is far more difficult to balance such a coarse-grained task load

while preventing starvation, so typically a large number of small-sized tasks is

desirable. However, the average time per call to NXTVAL increases with the number
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Algorithm 6 Pseudocode for the inspector used to implement Eq. 2.1, simple
version.

for all i, j, k ∈ Otiles do
for all a, b, c ∈ V tiles do

if Symm(i, j, k, a, b, c) == True then
Add Task (i, j, k, a, b, c) to TaskList

end if
end for

end for

of processes (as shown below), so too many tasks is detrimental for strong scaling.

This is the primary motivation for implementing the IE.

This increase in time per call to NXTVAL is primarily caused by contention

on the memory location of the counter, which performs atomic read-modify-write

(RMW) operations (in this case the addition of 1) using a mutex lock. For a

given number of total incrementations (i.e., a given number of tasks), when more

processes do simultaneous RMWs, on average they must wait longer to access to

the mutex. This effect is clearly displayed in a flood-test microbenchmark (Fig. 24)

where a collection of processes calls NXTVAL several times (without doing any other

computation). In this test, only off-node processes are allowed to increment the

counter (via a call to ARMCI Rmw); otherwise, the on-node processes would be able

to exploit the far more efficient shared-memory incrementation, which occurs on the

order of several nanoseconds.The average execution time per call to NXTVAL always

increases as more processes are added.

The increasing overhead of scaling with NXTVAL is also directly seen in

performance profiles of the tensor contraction routines in NWChem. For instance,

Fig. 23 shows a profile of the mean inclusive time for the dominant methods in a

CC simulation of a water cluster with 10 molecules. The time spent within NXTVAL

accounts for about 37% of the entire simulation. We propose an alternate algorithm
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Algorithm 7 Pseudocode for the inspector used to implement Eq. 2.1, with cost
estimation and static partitioning.

for all i, j, k ∈ Otiles do
for all a, b, c ∈ V tiles do

if Symm(i, j, k, a, b, c) == True then
Add Task (i, j, k, a, b, c, d, e, w) to TaskList
costw = SORT4 performance model estm(sizes)
for all d, e ∈ V tiles do

if Symm(i, j, d, e) == True then
if Symm(d, e, k, a, b, c) == True then

costw = costw + ...
SORT4 performance model estm(sizes)
costw = costw + ...
DGEMM performance model estm(m,n, k)
Compute various SORT4 costs

end if
end if

end for
end if

end for
end for
myTaskList = Static Partition(TaskList)

which is designed to reduce this overhead by first gathering task information, then

evenly assigning tasks to PEs, and finally executing the computations.

We collect relevant tensor contraction task information by breaking the

problem into two major components: inspection and execution (similar to

Refs. [169, 170, 171]). In its simplest form, the inspector agent loops through

relevant components of the parallelized section and collates tasks (Alg. 6).

This phase is limited to computationally inexpensive arithmetic operations and

conditionals that classify and characterize tasks. Specifically, the first conditional of

any particular tensor contraction routine in NWChem evaluates spin and point-

group symmetries to determine whether a tile of the tensor contraction has a

nonvanishing element [165], as introduced in section 2.1.2..3. Further along, in
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FIGURE 23. Average inclusive-time (in seconds) profile of a 14-water monomer
CCSD simulation with the aug-cc-PVDZ basis for 861 MPI processes across 123
Fusion nodes connected by InfiniBand. The NXTVAL routine consumes 37% of
the entire computation. This profile was made using TAU [168]; for clarity, some
subroutines were removed.

a nested loop over common indices, another conditional tests for nonzero tiles

of a contraction operand by spin and spatial symmetry. While the inspector’s

primary purpose is to a create an informative list of tasks to help accomplish load

balance during the executor phase, it also has this advantage of revealing sparsity

information by applying spin and spatial symmetry arguments before designating a

particular task.

While the following section describes a more complicated version of the

inspector, the executor is the same in both cases. The pseudocode for the executor

is shown in Alg. 8, where tasks gathered in the inspection phase are simply looped

over. The executor contains the inner loop of the default TCE implementation

with another set of symmetry conditionals, which are found to always return true

for the cases considered in this work (we cannot exclude the possibility that they

may be false in some other cases). Because the inner loop is dense in the sense

that no additional sparsity is achieved at that point, it is natural to aggregate

these computations into a single task in order to reduce the number of calls to

Accumulate, which is more expensive than either Put or Get because it requires

a remote computation, not just data movement (which might be done in entirely

in hardware with RDMA). Combining all the inner loop computations in a single
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Algorithm 8 Pseudocode for the executor used to implement Eq. 2.1.

for all Task ∈ Tasklist do
Extract (i, j, k, a, b, c) from Task
Allocate local buffer for Z(i, j, k, a, b, c) tile
if Symm(i, j, d, e) == True then

if Symm(d, e, k, a, b, c) == True then
Fetch X(i, j, d, e) tile into local buffer
Fetch Y(d, e, k, a, b, c) tile into local buffer
Z(i, j, k, a, b, c) += X(i, j, d, e)*Y(d, e, k, a, b, c)
Accumulate Z(i, j, k, a, b, c) buffer into global Z

end if
end if

end for

task also has the effect of implying reuse of the output buffer, which is beneficial

if it fits in cache or computation is performed on an attached coprocessor (while

heterogeneous algorithms are not part of this work, they are a natural extension of

it).

2.1.3..2 Task Cost Characterization

The average time per call to NXTVAL increases with the number of

participating PEs, but the IE algorithm as presented so far will improve strong

scaling only as much as the proportion of tasks eliminated by the spin and spatial

symmetry argument. DLB with NXTVAL for large non-symmetric molecular systems

(biomolecules usually lack symmetry) will still be plagued by high overhead due to

contention on the global counter despite our simple inspection. In this section we

further develop the IE model with the intent to eliminate all NXTVAL calls from the

entire CC module (pseudocode shown in Alg. 7).

By counting the number of FLOPS for a particular tensor contraction

(Fig. 25), we see that a great deal of load imbalance is inherent in the overall

computation. The centralized dynamic global counter does an acceptable job of
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handling this imbalance by atomically providing exclusive task IDs to processes

that request work. To effectively eradicate the centralization, we first need to

estimate the cost of all tasks, then schedule the tasks so that each processor is

equally loaded.

In the tensor contraction routines, parallel tile-level matrix multiplications

and ordering operations execute locally within the memory space of each processor.

The kernels that consume the most time doing such computations are the DGEMM

and SORT4 subroutines. The key communication routines are the Global Arrays get

(ga get) and accumulate (ga acc) methods, which consume relatively little time for

sizeable and accurate simulations of interest. For this reason we use performance

model-based cost estimations for DGEMM and SORT4 to partition the task load of

the first iteration of each tensor contraction (Alg. 7). For each call to DGEMM or

SORT4, the model estimates the time to execute, and accrues it into costw. Details

regarding the specific performance models used is beyond the scope of this work,

but others have explored the development of models for such BLAS kernels [172].

During the first iteration of TCE-CC, we measure the time of each task’s entire

computation (in the executor phase) to capture the costs of communication along

with the computation. This new measurement serves as the cost which is fed into

the static partitioning phase for subsequent iterations.

2.1.3..3 Static Partitioning

In our IE implementation, the inspector applies the DGEMM and SORT4

performance models to each tile encountered, thereby assigning a cost estimation

to each task of the tensor contractions for the first iteration. Costs for subsequent

iterations are based on online measurements of the each task’s entire execution
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FIGURE 24. Flood benchmark showing the execution time per call to NXTVAL for
1 million simultaneous calls. The process hosting the counter is being flooded with
messages, so when the arrival rate exceeds the processing rate, buffer space runs
out and the process hosting the counter must utilize flow control. The performance
gap from 150 to 200 cores is due to this effect occurring at the process hosting the
NXTVAL counter.

time, which includes communication. In both cases, the collection of weighted

tasks constitutes a static partitioning problem which must be solved. The goal

is to collect bundles of tasks (partitions) and assign them to processors in such

a way that computational load imbalance is minimized. In general, solving this

problem optimally is NP-hard [173], so there is a trade-off between computing an

ideal assignment of task partitions and the overhead required to do so. Therefore,

our design defers such decisions to a partitioning library (in our case, Zoltan [174]),

which gives us the freedom to experiment with load-balancing parameters (such

as the balance tolerance threshold) and their effects on the performance of the CC

tensor contraction routines.

Currently we employ static block partitioning, which intelligently assigns

“blocks” (or consecutive lists) of tasks to processors based on their associated
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weights (no geometry or connectivity information is incorporated, as in

graph/hypergraph partitioning). However, incorporating task connectivity in terms

of data locality has been shown to be a viable means of minimizing data access

costs [175]. Our technique focuses on accurately balancing the computational

costs of large task groups as opposed to exploiting their connectivity, which also

matters a great deal at scale. Fortunately, our approach is easily extendible to

include such data-locality optimizations by solving the partition problem in terms

of making ideal cuts in a hypergraph representation of the task-data system (see

Section 2.1.5.). An application making use of the IE static partitioning technique

may partition tasks based on any partitioning algorithm.

2.1.3..4 Dynamic Buckets

When conducting static partitioning, variation in task execution times is

undesirable because it leads to load imbalance and starvation of PEs. This effect is

particularly noticeable when running short tasks where system noise can potentially

counteract execution time estimations and lead to a poor static partitioning

assignment. Furthermore, even when performance models are acceptably accurate,

they generally require determination of architecture-specific parameters found via

off-line measurement and analysis.

A reasonable remedy to these problems is a scheme we call dynamic buckets

(Fig. 26), where instead of partitioning the task collection across all PEs, we

partition across groups of PEs. Each group will contain an instance of a dynamic

NXTVAL counter. When groups of PEs execute tasks, the imbalance due to dynamic

variation is amortized since unbiased variation will lead to significant cancellation.

Also, if the groups are chosen such that each counter is resident on a local compute
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FIGURE 25. Total MFLOPS for each task in a single CCSD T2 tensor contraction
for a water monomer simulation. This is a good overall indicator of load imbalance
for this particular tensor contraction. Note that each task is independent of the
others in this application.

node relative to the PE group, then NXTVAL can work within shared memory,

for which performance is considerably better. The other motivation for choosing

the execution group to be the node is that contention for the NIC and memory

bandwidth in multicore systems is very difficulty to model (i.e. predict) in a

complicated application like NWChem, hence we hope to observe a reasonable

amount of cancellation of this noise if we group the processes that share the same

resources. The idea is that the node-level resources are mostly fixed and that noise

will average out since the slowdown in one process due to another’s utilization of

the NIC will cancel more than the noise between processes on different nodes, since

there is no correlation between NIC contention in the latter case. Finally, with a

more coarse granularity of task groups, it is feasible that load balance would be

acceptable even with a round-robin assignment of tasks to groups (i.e. without
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performance model based task estimation) because of the adaptability inherent to

having several dynamic counters.

When using the dynamic buckets approach, tasks are partitioned by applying

the Longest Processing Time algorithm [176], which unlike block partitioning, is

provably a 4/3 approximation algorithm (meaning it is guaranteed to produce a

solution within ratio 4/3 of a true optimum assignment). First, tasks are sorted

by execution time estimation in descending order using a parallel quicksort. Then,

each task with the longest execution time estimation is assigned to the least loaded

PE until all tasks are assigned. To increase the efficiency of the assignment step,

the task groups are arranged in a binary minimum heap data structure where nodes

correspond to groups. Tasks can be added to this minimum heap in O(log n) time

(on average) where n is the number of task groups.

The dynamic buckets design in Fig. 26 also captures elements of topology

awareness, iterative refinement, and work stealing. The results in Section 2.1.4.

are based on an implementation with node-level topology awareness and a single

iteration of refinement based on empirically measured execution times. We refer the

reader to other works [163, 164] for information on work stealing implementations.

2.1.4. NWChem with Inspector/Executor Experimental Results

This section provides experimental performance results of several experiments

on Fusion, an InfiniBand cluster at Argonne National Laboratory. Each node has

36 GB of RAM and two quad-core Intel Xeon Nehalem processors running at

2.53 GHz. Both the processor and network architecture are appropriate for this

study because NWChem performs very efficiently on multicore x86 processors

and InfiniBand networks. The system is running Linux kernel 2.6.18 (x86 64).
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FIGURE 26. Inspector/Executor with Dynamic Buckets.
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NWChem was compiled with GCC 4.4.6, which was previously found to be just as

fast as Intel 11.1 because of the heavy reliance on BLAS for floating-point-intensive

kernels, for which we employ GotoBLAS2 1.13. The high-performance interconnect

is InfiniBand QDR with a theoretical throughput of 4 GB/s per link and 2 µs

latency. The communication libraries used were ARMCI from Global Arrays 5.1,

which is heavily optimized for InfiniBand, and MVAPICH2 1.7 (NWChem uses

MPI sparingly in the TCE). Fusion is an 8 core-per-node system, but ARMCI

requires a dedicated core for optimal performance [177]. We therefore launch all

NWChem experiments with 7 MPI processes per node, but reserve all 8 cores using

Fusion’s job scheduler and resource manager. Because the application is utilizing 8

cores per node, results are reported in multiples of 8 in Figs. 27, 29, and 30.

First we present an analysis of the strong scaling effects of using NXTVAL.

Then we describe experiments comparing the original NWChem code with two

versions of inspector/executor: one, called I/E NXTVAL, that merely eliminates

the extraneous calls to NXTVAL, and one that eliminates all calls to NXTVAL in

certain methods by using the performance model to estimate costs and Zoltan to

assign tasks statically. Because the second technique incorporates both dynamic

load balancing and static partitioning, we call it I/E Hybrid. Finally, we show the

improvement of the I/E Dynamic Buckets approach for a simulation where I/E

Hybrid cannot overcome the effects from variation in task execution time due to

system noise.

2.1.4..1 Scalability of centralized load-balancing

The scalability of centralized DLB with NXTVAL in the context of CC tensor

contractions in NWChem was evaluated by measuring the percentage of time
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FIGURE 27. Total percentage of execution time spent in NXTVAL for a 10-H2O
CCSD simulation (15 iterations) with the aug-cc-pVDZ basis running on the Fusion
cluster (without IE). The 14-H2O test will not fit in global memory on 63 nodes (8
cores per node = 504 cores) or fewer. These data points were extracted from mean
inclusive-time profiles as in Fig. 23.

spent incrementing the counter (averaged over all processes) in two water cluster

simulations. The first simulation (blue curve in Fig. 27) is a simulation of 10-water

molecules using the aug-cc-pVDZ basis, and the second simulation (red curve)

is the same but with 14-water molecules. The percentages are extracted from

TAU profiles of the entire simulation run, with the inclusive time spent in NXTVAL

divided by the inclusive time spent in the application.

Fig. 27 shows that the percentage of time spent in NXTVAL always increases

as more processors are added to the simulation. This increase is partly because

of a decrease in computation per processor, but also because of contention for the

shared counter, as displayed in Fig. 24. For 10-water molecules, NXTVAL eventually

consumes about 60% of the overall application time as we approach 1,000 processes.
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TABLE 1. Summary of the performance experiments

N2 Benzene 10-H2O 14-H2O
Simulation type CCSDT CCSD CCSD CCSD
# of tasks* 261,120 14,280 2,100 4,060
Ave. data size** 7,418 94,674 2.2 mil. 2.7 mil.
Scale limit (cores) 200 320 750 1,200

*from the largest tensor contraction
**in terms of DGEMM input, mk + kn

In the larger 14-water simulation, NXTVAL consumes only about 30% of the time

with 1,000 processes, because of the increase in computation per process relative

to the 10-water simulation. The 14-water simulation failed on 504 cores (as seen in

Fig. 27) because of insufficient global memory.

2.1.4..2 Inspector/Executor DLB

Table 1 summarizes the NWChem experiments we performed in terms of their

task load in the largest tensor contraction of the simulation. Figure 28 compares

four different variants to clarify how performance improvements arise with the I/E

algorithm. CC simulations fall into two broad categories, symmetrically sparse and

dense (i.e., a benzene molecule versus an asymmetric water cluster). We found that

problems falling in the sparse category are suitable for the I/E NXTVAL method

because they have a large number of extraneous tasks to be eliminated. While the

water cluster systems can potentially eliminate a similar percentage of tasks, their

relatively larger average task size results in DGEMM dominating the computation.

The differences in task loads between these problems necessitate different I/E

methods for optimal performance, as shown below in Figs. 29 and 30.

Applying the I/E NXTVAL model to a benzene monomer with the aug-cc-

pVTZ basis in the CCSD module results in as much as 33% faster execution of
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TABLE 2. Inspector/Executor 300-node performance

Processes 2400
Nodes 300
I/E NXTVAL 498.3 s
I/E Hybrid 483.6 s
Original -

code compared with the original (Fig. 29). The I/E NXTVAL version consistently

performs about 25-30% faster for benzene CCSD. Table 2 shows a single

measurement of much larger 300 compute node run. With such a large number

of processes, the original code consistently fails on the Fusion InfiniBand cluster

with an error in armci send data to client(), whereas the I/E NXTVAL version

continues to scale to well beyond 400 processes. This suggests that the error is

triggered by an extremely busy NXTVAL server.

2.1.4..3 Static Partition

The I/E Hybrid version applies complete static partitioning using the

performance model cost estimation technique to long-running tensor contractions

which are experimentally observed to outperform the I/E NXTVAL version. Fig. 29

shows that this method always executes in less time than both the original code

and the simpler I/E NXTVAL version. Though it is not explicitly proven by any of

the figures, this version of the code also appears to be capable of executing at any

number of processes on the Fusion cluster, whereas the I/E NXTVAL and original

code eventually trigger the ARMCI error mentioned in the previous section.

Unfortunately, it is a difficult feat to transform the machine-generated tensor

contraction methods from within the TCE generator, so we have taken a top-down

approach where the generated source is changed manually. Because there are over
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FIGURE 28. Comparative load balance of a tensor contraction for benzene CCSD
on 210 processes: (a) Original code with total time in NXTVAL overlapped in
yellow (all values are normalized to this maximum execution time). (b) I/E with
superfluous calls to NXTVAL eliminated. (c) First iteration of I/E with performance
modeling and static partitioning (overhead time shown in red). (d) Subsequent
iterations of I/E static (with zero overhead and iterative refinement). Despite the
increase in load variation in (d), the overall time is reduced by 8% relative to (b).

70 individual tensor contraction routines in the CCSDT module and only 30 in the

CCSD module, we currently have I/E Hybrid code implemented only for CCSD.

2.1.4..4 Dynamic Buckets

I/E Dynamic Buckets (I/E-DB) is usually the method with the best

performance, as seen in Fig. 30. This plot shows the two most time consuming

tensor contractions in a 10-H2O system. In this problem, I/E NXTVAL performs

no better than the original code because of relatively less sparsity and larger
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FIGURE 29. Benzene aug-cc-pVQZ I/E comparison for a CCSD simulation.

task sizes in the overall computation. I/E Hybrid (not shown) performs slightly

worse than the original code. As explained in section 2.1.3..4, this is due to error

in the task execution time estimations. The I/E-DB technique shows up to 16%

improvement over IE-NXTVAL due to better load balance when dynamic counters

manage groups of tasks.

2.1.5. Related Work in QM Load Balancing

Alexeev and coworkers have applied novel static load balancing techniques to

the fragment molecular orbital (FMO) method [178]. FMO differs in computational

structure from iterative CC, but the challenge of load balancing is similar, and their

techniques parallel the IE cost estimation model. The FMO system is first split

into fragments that are assigned to groups of CPU cores. The size of those groups

is chosen based on the solution of an optimization problem, with three major terms

representing time that is linearly scalable, nonlinearly scalable, and nonparallel.
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FIGURE 30. Comparison of I/E NXTVAL with I/E Dynamic Buckets for the two
most time consuming tensor contractions during a 10-H2O simulation, t2 7 and
t2 7 3. The execution time of the original code is not shown because it overlaps
the performance of I/E NXTVAL.

Hypergraph partitioning was used by Krishnamoorthy and coworkers

to schedule tasks originating from tensor contractions [175]. Their techniques

optimize static partitioning based on common data elements between tasks. Such

relationships are represented as a hypergraph, where nodes correspond to tasks,

and hyperedges (or sets of nodes) correspond to common data blocks the tasks

share. The goal is to optimize a partitioning of the graph based on node and edge

weights. Their hypergraph cut optimizes load balance based on data element size

and total number of operations, but such research lacks a thorough model for

representing task weights, which the IE cost estimation model accomplishes.

The Cyclops Tensor Framework [179, 55] implements CC using arbitrary-

order tensor contractions which are implemented by using a different approach from

NWChem. Tensor contractions are split into redistribution and contraction phases,

where the former permutes the dimensions such that the latter can be done by
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using a matrix-matrix multiplication algorithm such as SUMMA [180]. Because

CTF uses a cyclic data decomposition, load imbalance is eliminated, at least for

dense contractions. Point-group symmetry is not yet implemented in CTF and

would create some of the same type of load imbalance as seen in this work, albeit

at the level of large distributed contractions rather than tiles. We hypothesize that

static partitioning would be effective at mitigating load-imbalance in CTF resulting

from point-group symmetry.

2.1.6. Inspector/Executor Conclusions and Future Work

We have presented an alternate approach for conducting load balancing in the

NWChem CC code generated by the TCE. In this application, good load balance

was initially achieved by using a global counter to assign tasks dynamically, but

application profiling reveals that this method has high overhead which increases as

we scale to larger numbers of processes. Splitting each tensor contraction routine

into an inspector and an executor component allows us to evaluate the system’s

sparsity and gather relevant cost information regarding tasks, which can then be

used for static partitioning. We have shown that the inspector-executor algorithm

obviates the need for a dynamic global counter when applying performance model

prediction, and can improve the performance of the entire NWChem coupled cluster

application. In some cases the overhead from a global counter is so high that

the inspector-executor algorithm enables the application to scale to a number of

processes that previously was impossible because of the instability of the NXTVAL

server when bombarded with tasks.

The technique of generating performance models for DGEMM and SORT4 to

estimate costs associated with load balancing is general to all compute-kernels and
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can be applied to applications that require large-scale parallel task assignment.

While other noncentralized DLB methods (such as work stealing and resource

sharing) could potentially outperform such static partitioning, such methods tend

to be difficult to implement and may have centralized components. The approach

of using a performance model and a partitioning library together to achieve load

balance is easily parallelizable (though in NWChem tensor contractions, we have

found a sequential version to be faster because of the inexpensive computations

in the inspector) and easy to implement and requires few changes to the original

application code.

Because the technique is readily extendible, we plan to improve our

optimizations by adding functionality to the inspector. For example, we can exploit

proven data locality techniques by representing the relationship of tasks and data

elements with a hypergraph and decomposing the graph into optimal cuts [175].
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2.2 Runtime Execution Models

The previous section presented the Inspector/Executor algorithm, which

reduces the overhead of centralized dynamic load balancing in the TCE by

statically partitioning tasks to individual processes or process groups. However,

that work focused much more on developing the Inspector component rather

than the Executor component. The following section presents an intelligent

Executor system called WorkQ which provides a relatively effortless way to overlap

communication and computation in the TCE.

2.2.1. WorkQ Introduction

Many distributed-memory computational applications undergo a basic flow

of execution: individual processes determine a task to complete, receive data

from remote locations, compute on that data, send the result, and repeat until all

tasks are handled or convergence is reached. Accomplishing this in a performance-

optimal manner is complicated by communication wait times and variability of

the computational costs among difference tasks. Several execution models and

programming models strive to account for this by supporting standard optimization

techniques, yet certain conditions exist for doing so effectively. In message-

passing applications, for example, nonblocking communication routines must be

preferred over blocking routines in order to hide the latency cost of communication.

However, processes must also be capable of making asynchronous progress while

communication occurs. At the same time, the balance of workload across processor

cores must be maintained so as to avoid starvation and synchronization costs.

If the variability of task execution time is not considered when incorporating

latency-hiding optimizations, then suboptimal performance occurs. For instance,
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if computation of a task finishes before a previous nonblocking routine completes,

then starvation occurs despite the asynchronous progress. In order to eliminate

this problem in such applications, there must exist a dynamic queue of task data

in shared memory that accommodates irregular workloads. However, if this queue

becomes overloaded with data relative to other queues on other compute nodes,

then load imbalance and starvation also occur despite asynchrony. This section

introduces and analyzes an execution model that accomplishes zero wait-time for

irregular workloads while maintaining systemwide load balance.

Irregularity within computational applications commonly arises from the

inherent sparsity of real-world problems. Load imbalance is a result of data

decomposition schemes that do not account for variation due to sparsity. Not only

is there fundamental variation in task dimensions associated with work items from

irregular sparse data structures, but the variety and nonuniformity of compute

node architectures and network topologies in modern supercomputers complicate

the wait patterns of processing work items in parallel. For example, a process

that is assigned a work item may need to wait for data to be migrated from the

memory space of another process before computation can take place. Not only does

incoming data often cross the entire memory hierarchy of a compute node; it may

also cross a series of network hops from a remote location. The contention on these

shared resources in turn complicates the development of distributed computational

algorithms that effectively overlap communication and computation while efficiently

utilizing system resources.

While nonblocking communication routines enable asynchronous progress

to occur within a process or thread of execution, care must be taken to minimize

overheads associated with overlapping. Polling for state and migrating data too
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often between process spaces can be expensive. Also, often some local computation

must occur before communication can take place. The Tensor Contraction Engine

(TCE) of NWChem, the target application of this work, exhibits this behavior

because a relatively sizable amount of local computation takes place to determine

the global location of sparse tensor blocks before communication can take place.

For these reasons, performance may be best when the communication sections have

a dedicated core, especially in modern many-core environments, where sacrificing

some cores for communication may result in the most optimal mapping for latency

hiding.

In this section we study a new execution model, called WorkQ, that

prioritizes the overlap of communication and computation while simultaneously

providing a set of runtime parameters for architecture-specific tuning. This

model achieves effective load balance while eliminating core starvation due to

communication latency. Using an implementation of the WorkQ model, we perform

various experiments on a benchmark that mimics the bottleneck computation

within an important quantum many-body simulation application (NWChem),

and we show good performance improvement using WorkQ. In Section 2.1.2.,

we provided the necessary background regarding the partitioned global address

space (PGAS) model (Section 2.1.2..1), NWChem application 2.1.2..2, coupled-

cluster method 2.1.2..3, and Tensor Contraction Engine (TCE) 2.1.2..5, so we

now assume familiarity with those topics. Below, Section 2.2.2. discusses the

motivation for constructing our execution model. Section 2.2.3. outlines the design

and implementation of WorkQ, Section 2.2.4. describes a set of experimental

evaluations, Section 2.2.5. discusses related work, and Section 2.2.6. summarizes

our conclusions and briefly discusses future work.
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2.2.2. Overlapping Communication and Computation

In this section we briefly present performance measurements that support our

motivation for developing a new runtime execution model for processing tasks in

applications such as the TCE-CC within Global Arrays. We begin by considering

measurements from a simple trace of a tensor contraction kernel. We then discuss

the implications of a new execution model.

2.2.2..1 Communication/Computation Overlap

In order to better understand the performance behavior of the TCE task

execution model described at the end of section 2.1.2..5, we develop a mini-

application that executes the same processing engine without the namespace

complications introduced by quantum many-body methods. The details of this

mini-app will be discussed in Sections 2.2.3..2 and 2.2.4..1, but here we present a

simple trace and profile of the execution to better motivate and influence the design

of our runtime in Section 2.2.3..

The (A) and (B) portions of Fig. 31 show an excerpt of a trace collected with

the TAU parallel performance system [168] for 12 MPI processes on 1 node within

a 16 node application executed on the ACISS cluster (described in Section 2.2.4.).

This trace is visualized in Jumpshot with time on the horizontal axis, each row

corresponding to an MPI process and each color corresponding to a particular

function call in the application. Specifically, the purple bars correspond to step

1 in the TCE execution model described in the previous section. The green bars

correspond to the one-sided get operation on the two tiles A and B from step 3

(step 2 is implicit in the mini-app and is thus not contained in a function). The

yellow bars are non-communication work cycles, and the pink bars are DGEMM
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FIGURE 31. (Top:) TAU trace of original code (A) compared to WorkQ (B) for a
192 MPI process job. Yellow is computation, purple is ARMCI Rmw (corresponding
to NXTVAL call), green is ARMCI NbGetS (corresponding to GA Get call), and pink
is DGEMM. (Bottom:) Profile information comparing the two execution models for
a larger 960 MPI process job. The work queue implementation accomplishes full
overlap without sacrificing load balance.

(these are small because of the relatively small tile size in this experiment). Yellow

and pink together correspond to step 4. Step 5 is not shown in this timeline but

occurs at a future point at the end of this task bundle. The 12 rows in portion (B)

show a corresponding trace with our alternative parallel execution model in which

6 MPI processes dedicate their cycles to computation, and the other 6 processes

dedicate their cycles to communication.

The bottom half of Fig. 31 contains timing information extracted from

TAU profiles for a larger job with 960 MPI processes. The measurements clearly

show that the work queue execution model accomplishes effective overlap of
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communication with computation without sacrificing load imbalance. This

results in a speedup of almost 2x over the original get/compute/put model for

this experiment. The advantage can be inferred from the trace: in the original

execution, there are moments when hardware resources are fully saturated with

computation (i.e., all rows are yellow at a particular time) yet other moments

where starvation is occurring (i.e., rows are green at a particular time). Besides

dramatically reducing moments of work starvation, the alternative model enables

tunability: for instance, the optimal number of computation versus communication

processes can be determined empirically.

2.2.2..2 Variability in Work-Item Processing

The TCE engine uses blocking GA get() and GA acc() calls to gather and

accumulate tiles, respectively, into the global space. While it is reasonable to

use the corresponding nonblocking API for GA (GA nbget and GA nbacc) to

accomplish overlap, doing so will not achieve optimal performance in the face

of highly irregular workloads. For example, one can submit a nonblocking get

before doing computation on local data; but if the computation finishes before

the communication request is satisfied, then starvation occurs. Variation in

execution time occurs often, because of either system noise or inherent differences

in task sizes. This variability necessitates the calling of multiple nonblocking

communication operations managed by a queue so that data is always available

once an iteration of computation finishes. On the other hand, the number of

work items in this queue must be throttled so that the queue does not become

overloaded with respect to other queues on other nodes. If this were to happen,
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then load imbalance would surely occur without the usage of techniques such as

internode work stealing, which potentially incur high overheads.

2.2.3. WorkQ Design and Implementation

The desire to overlap communication and computation in a dynamic

and responsive manner motivates the development of a library for managing

compute node task queuing and processing within SPMD applications. We have

implemented such a library, which we call WorkQ. This section presents the

software architectural design for WorkQ, describes some implementation details and

possible extensions, and presents a portion of the API and how it can be deployed

for efficient task processing in distributed memory SPMD programs.

2.2.3..1 WorkQ Library

As described in Section 2.2.2., the TCE-CC task-processing engine has the

potential to experience unnecessary wait times and relatively inefficient utilization

of local hardware resources. Here we describe an alternative runtime execution

model with the goals of (1) processing tasks with less wait time and core starvation,

(2) exposing tunability to better utilize hardware resources, and (3) responding

dynamically to real-time processing variation across the cluster.

Here we simplify the operations of TCE described in Section 2.1.2..5 into a

pedagogical model that is akin to tiled matrix multiplication of two arrays, A and

B . In this model, A and B contain GA data that is distributed across a cluster

of compute nodes. The overall goal of the application is to multiply corresponding

tiles of A and B, then to accumulate the results into the appropriate location of a

separate global array, C. In order to accomplish this within the original execution
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engine, individual processes each take on the execution loop from Section 2.1.2..5:

get(A); get(B); compute(A,B); acc(C). The behavior of a single compute

node involved in this computation is characterized by the trace in the top half of

Fig. 31: at any given moment in time, processes work within a particular stage of

the execution loop.

In the WorkQ runtime, each compute node contains an FIFO message queue,

Q1, in which some number of courier processes are responsible for placing A and

B tile metadata onto Q1, then storing the incoming tiles into node-local shared

memory. Meanwhile, the remaining worker processes dequeue task metadata

bundles as they become available, then use this information to follow a pointer to

the data in shared memory and perform the necessary processing. Once a worker

process is finished computing its task result, it places the resultant data into a

separate FIFO message queue, Q2, which contains data for some courier process

to eventually accumulate into C.

We now describe the four primary components of the WorkQ implementation:

the dynamic producer/consumer system, the on-node message queues, the on-node

shared memory, and the WorkQ library API.

2.2.3..1.1 Dynamic Producer/Consumer This runtime system exhibits a

form of the producer/consumer model in which courier processes are the producers

and worker processes are the consumers. In the model described so far, couriers

perform mostly remote communication, and workers constantly read/write data

from/to local memory and perform a majority of the FLOPS in this phase of the

application. However, we found via performance measurements that this system

can still struggle with unacceptable wait times and starvation from the point of

view of the workers. This situation occurs, for example, when Q1 is empty because
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FIGURE 32. Flow diagram for the dynamic producer/consumer version of the
WorkQ execution model. The left green column represents the activities of courier
processes, and the right yellow column represents activities of worker processes. In
this system, couriers can temporarily become workers and vice versa.

of either relatively long communication latencies or not enough couriers to keep the

workers busy. For this reason, the WorkQ implementation allows for the dynamic

switching of roles between courier and worker.

Figure 32 displays how role switching occurs in the WorkQ runtime. To

bootstrap the system, both couriers and workers perform an initial get() operation.

This “initialization” of Q1 is done to avoid unnecessary work starvation due to an

empty initial queue. We determined this to be critical for performance, especially

when the time to get/enqueue a task is greater than or equal to the compute time.

If this is the case (and the number of workers approximately equals the number

of couriers), the workers may experience several rounds of starvation before the

couriers can “catch up.”
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After the first round (with workers computing on tiles they themselves

collected), workers dequeue subsequent tasks to get data placed in Q1 by the

couriers. If Q1 ever becomes empty when a worker is ready for a task, the worker

will get its own data and carry on. On the other hand, if a courier finds either that

Q1 is overloaded (as determined by a tunable runtime threshold parameter) or that

Q2 is empty with no remaining global tasks, then the courier will become a worker,

dequeue a task, and compute the result. In either case, the process will return to

its original role as a courier until both Q1 and Q2 are empty.

2.2.3..1.2 Message Queues The nodewise metadata queues are implemented

by using the System V (SysV) UNIX interface for message queues. This design

decision was made because SysV message queues exhibit the best trade-off between

latency/bandwidth measurements and portability compared with other Linux

variants [181]. Besides providing atomic access to the queue for both readers and

writers, SysV queues provide priority, so that messages can be directed to specific

consumer processes. For example, this functionality is utilized to efficiently end a

round of tasks from a pool: when a courier is aware it has enqueued the final task

from the pool, it then enqueues a collection of finalization messages with a process-

unique mtype value corresponding to the other on-node process IDs.

2.2.3..1.3 Shared Memory The message queues just described contain

only metadata regarding tasks; the data itself is stored elsewhere in node-local

shared memory. This approach is taken for three reasons: (1) it reduces the cost

of contention on the queue among other node-resident processes, (2) Linux kernels

typically place more rigid system limits on message sizes in queues (as seen with

ipcs -l on the command line), and (3) the size and dimension of work items
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vary significantly. The message queue protocol benefits in terms of simplicity

and performance if each queued item has the same size and structure. Within

each enqueued metadata structure are elements describing the size and location

of the corresponding task data. The WorkQ library allows for either SysV or

POSIX shared memory depending on user preference. There is also an option

to utilize MPI 3 shared-memory windows (MPI Win allocate shared) within a

compute node. This provides a proof of concept for doing MPI+MPI [182] hybrid

programming within the WorkQ model.

2.2.3..1.4 Library API The WorkQ API provides a productive and portable

way for an SPMD application to initialize message queues on each compute node

in a distributed-memory system, populate them with data, and dequeue work

items. Here we list a typical series of calls to the API (because of space constraints,

arguments are not included; they can be found in the source [183]):

– workq create queue(): a collective operation that includes on-node MPI

multicasts of queue info

– workq alloc task(): pass task dimensions and initialize pointer to user-

defined metadata structure

– workq append task(): push a microtask’s data/metadata onto the two

serialized bundles

– workq enqueue(): place macrotask bundle into the queue then write real-

data into shared memory

– workq dequeue(): remove a macrotask bundle from the queue and read data

from shared memory
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– workq get next(): pop a microtask’s metadata and real data in preparation

for computation

– workq execute task(): (optional) a callback so data can be computed upon

with zero copies

– workq free shm(): clean up the shared memory

WorkQ also includes a wrapper to SysV semaphores, which is needed only if the

explicit synchronization control is needed (i.e., if certain operations should not

occur while workers are computing). These functions are workq sem init(),

sem post(), sem release(), sem getvalue(), and sem wait().

2.2.3..2 TCE Mini-App

The performance of the WorkQ runtime system implementation is evaluated

in two ways: directly, with the original NWChem application applied to relevant

TCE-CC ground-state energy problems, and indirectly, with a simplified mini-app

that captures the overall behavior of the TCE performance bottleneck (described

in Section 2.1.2..5). The primary advantage of the mini-app is that it removes the

need to filter through the plethora of auxiliary TCE functionalities, such as the

TCE hash table lookups, or the many other helper functions within TCE. Although

the mini-app will not compute any meaningful computational chemistry results, it

captures the performance behavior of TCE in a way that is more straightforward

to understand and simpler to tune. Furthermore, the tuned runtime configuration

within the mini-app environment can be applied to NWChem on particular system

architectures.

The TCE mini-app implements the pedagogical model described in

Section 2.2.3..1: corresponding tiles from two global arrays (A and B) are

111



multiplied via a DGEMM operation and put into a third global array C. The

mini-app is strictly a weak-scaling application that allows for a configurable local

buffer length allocation on each MPI process. These buffers are filled with arbitrary

data in the creation/initialization of A, B, and C. As in TCE, all global arrays are

reduced to their one-dimensional representations [165]. The heap and stack sizes

fed to the global arrays memory allocator [184] are set to as large as possible on a

given architecture. Two versions of the code are implemented to calculate the entire

pool of DGEMMs: one with the original get/compute/put model on every process

and one with the WorkQ model on every compute node. The resulting calculation

is verified in terms of the final vector norm calculated on C.

2.2.4. WorkQ Experimental Results

The performance of the WorkQ execution runtime compared with the

standard get/compute/put model is evaluated on two different platforms. The first

is the ACISS cluster located at the University of Oregon. Experiments are run on

the 128 generic compute nodes, each an HP ProLiant SL390 G7 with 12 processor

cores per node (2x Intel X5650 2.67 GHz 6-core CPUs) and 72 GB of memory per

node. This is a NUMA architecture with one memory controller per processor.

ACISS employs a 10 gigabit Ethernet interconnect based on a 1-1 nonblocking

Voltaire 8500 10 GigE switch that connects all compute nodes and storage fabric.

The operating system is RedHat Enterprise Linux 6.2, and MPICH 3.1 is used with

the -O3 optimization flag.

The second platform is the Laboratory Computing Resource Center “Blues”

system at Argonne National Laboratory. The 310 available compute nodes each

have 16 cores (2x Sandy Bridge 2.6 GHz Pentium Xeon with hyperthreading
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disabled) and 64 GB of memory per node. All nodes are interconnected by

InfiniBand Qlogic QDR. The operating system is Linux running kernel version

2.6.32. MVAPICH2 1.9 built with the Intel 13.1 compiler was used for our

experiments.

Unless otherwise specified, performance experiments are executed with 1 MPI

process per core, leaving 1 core open on each compute node for the ARMCI helper

thread (for example, 11 processes per node on ACISS and 15 processes per node on

Blues). Previous work has shown this mapping to be optimal for reducing execution

time as suggested by detailed TAU measurements in NWChem TCE-CC [177].

The systems above provide a juxtaposition of the performance benefits

gained with the WorkQ runtime between two very different network interconnects:

Ethernet and InfiniBand (IB). The GA/ARMCI and MPI layers utilize socket-

based connections on ACISS, meaning that the servicing of message requests

involves an active role of each compute node’s operating system. Blues, on the

other hand, has full RDMA support, so data can be transferred between nodes

without involving the sender and receiver CPUs.

2.2.4..1 TCE Mini-App

Our first experiment considers the weak scaling performance of the TCE mini-

app on ACISS and Blues for two different tile sizes. The tile size in the mini-app

corresponds to the common dimension of the blocks of data collected from the

GAs described in Section 2.2.3..2. In this experiment, all DGEMM operations are

performed on matrices with square dimensions, N × N , where N is the so-called

tile size. Figure 33 considers tile sizes 50 (2,500 total double-precision floating-point

elements) and 500 (250,000 elements). The mini-app is a weak-scaling application
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FIGURE 33. Weak-scaling performance of the TCE mini-app with ARMCI
over sockets on ACISS (top) and ARMCI over InfiniBand on Blues (bottom) for
different tile sizes. On ACISS the WorkQ implementation was run with 6 courier
processes and 5 worker processes, and on Blues with 3 couriers and 4 workers. On
both architectures, the WorkQ execution shows better relative speedup with small
tile sizes but better absolute performance for relatively larger tile sizes.

in which a constant amount of memory is allocated to each process/core at any

given scale. That is, if the scale is doubled, then the size of the overall computation

is doubled (hence, execution time increases for higher numbers of processes). GA’s

internal memory allocator is initialized so that the total heap and stack space per

node is about 20 GB.

Figure 33 clearly shows that using the relatively large tile size of 500 results

in better overall absolute performance for both the WorkQ execution model
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FIGURE 34. Time per CCSD iteration for w3 aug-cc-pVDZ on ACISS versus
tile size. The top row contains execution measurements on 32 nodes (384 MPI
processes), and the bottom row contains measurements on 16 nodes (192 MPI
processes).

and the original execution model. This phenomenon is well understood [18] and

is due mainly to the overhead associated with data management and dynamic

load balancing when tile size is relatively small. In general, larger tile sizes are

desirable in order to minimize this overhead, but at a certain point large tiles are

detrimental to performance because it leads to work starvation. For instance, if

more processes/cores are available to the application than there are number of tiles,

then work starvation will surely occur.

On the other hand, the best speedups achieved with the WorkQ model on

both systems are seen with the smaller tile size of 50, particularly at relatively

large scales. Our TAU profiles show that at a tile size of 50, the total time spent

in communication calls (ARMCI NbGetS and ARMCI NbAccS) is considerably larger

than with a tile size of 500. These results suggest that at smaller tile sizes, there is

more cumulative overhead from performing one-sided operations and therefore more
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likelihood that processes will spend time waiting on communication. This scenario

results in more opportunity for overlap but worse absolute performance because of

the incurred overhead of dealing with more tasks than necessary.

2.2.4..2 NWChem

We now analyze the performance of the WorkQ model applied to TCE in

NWChem by measuring the time of execution to calculate the total energy of water

molecule clusters. These problems are important because of their prevalence in

diverse chemical and biological environments [185]. We examine the performance of

the tensor contraction that consistently consumes the most execution time in the

TCE CCSD calculation, corresponding to the term

rp3p4h1h2
+=

1

2
tp5p6h1h2

vp3p4p5p6

(see [165] for details regarding the notation). In TCE, this calculation is

encapsulated within routine ccsd t2 8() and occurs once per iteration of the

Jacobi method.

Figure 34 shows the minimum measured time spent in an iteration of

ccsd t2 8() on a 3-water molecule cluster using the aug-cc-pVDZ basis set across a

range of tile sizes. These measurements are on the ACISS cluster at two different

scales: 32 compute nodes in the top plot and 16 compute nodes in the bottom

plot, with 12 cores per node in each case. Here we use the minimum measured

execution time for a series of runs because it is more reproducible than the average

time [186]. On 16 nodes, we see overall performance improvement with WorkQ

across most measured tile sizes. As in the TCE mini-app (Fig. 33), WorkQ shows
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better performance improvement at small tile sizes but best absolute performance

with a medium-sized tile. The performance with the small tile size is important

because NWChem users do not know a priori which tile size is appropriate for

a given problem. It is typically best to initially choose a relatively small tile size

because load imbalance effects can be avoided with a finer granularity of task sizes.

2.2.5. Related Work to the WorkQ Execution Model

Other execution and programming models incorporate node-local message

queues for hiding latency and supporting the migration of work units. For example,

Charm++ provides internal scheduling queues that can be used for peeking

ahead and prefetching work units (called chares) for overlapping disk I/O with

computation [187]. The Adaptive MPI (AMPI) virtualization layer can represent

MPI processes as user-level threads that may be migrated like chares, enabling

MPI-like programming on top of the Charm++ runtime.

Another interesting new execution model targeted to exascale development

is ParalleX, which is implemented by the HPX runtime [188]. The ParalleX model

extends PGAS by permitting migration of objects across compute nodes without

requiring transposition of corresponding virtual names. The HPX thread manager

implements a work-queue-based execution model, where parcels containing active

messages are shipped between “localities.” Like ParalleX, WorkQ provides the

benefit of implicit overlap and load balance with the added feature of dynamic

process role switching, which keeps the queue populated if too few items are

enqueued and throttled if too many are enqueued. Unlike HPX and Charm++,

the WorkQ library API enables such implicit performance control on top of other

portable parallel runtimes, such as MPI itself and Global Arrays/ARMCI.
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In execution models based on node-local message queues, work stealing

enables more adaptive control over load balance. The work-stealing technique is

well studied, especially in computational chemistry applications [163, 189]. In a

typical work-stealing implementation, local work items are designated as tasks that

may be stolen by other processes or threads. In some sense, most tasks in WorkQ

are stolen from on-node couriers by workers. Couriers work on their own tasks only

if the queue is deemed overloaded, and workers take tasks from the global pool if

the queue is running empty.

Novel developments in wait-free and lock-free queuing algorithms with

multiple enqueuers and dequeuers [190] could potentially improve performance of

this execution system by reducing contention in shared memory. SysV and POSIX

queues provide atomicity and synchronization in a portable manner, but neither is

wait-free or lock-free.

2.2.6. WorkQ Conclusion

The get/compute/put model is a common approach for processing a

global pool of tasks, particularly in PGAS applications. This model suffers

from unnecessary wait times on communication and data migration that could

potentially be overlapped with computation and node-level activities. The WorkQ

model introduces an SPMD-style programming technique in which nodewise

message queues are initialized on each compute node. A configurable number of

courier processes dedicate their efforts to communication and to populating the

queue with data. The remaining worker processes dequeue and compute tasks. We

show that a mini-application that emulates the performance bottleneck of the TCE

achieves performance speedups up to 2x with a WorkQ library implementation. We
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also show that WorkQ improves the performance of NWChem TCE-CCSD across

many tile sizes on the ACISS cluster.

Future work will include the incorporation of internode work stealing

between queues and performance analysis of the queuing system using event-based

simulation techniques.
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FIGURE 35. A graphene subunit with 36 atoms. The blue and red blobs show the
lowest unoccupied molecular orbital based on a Hartree-Fock calculation.

2.3 Parallel Programming Models

2.3.1. UPC++ and DArrays Introduction

In order to develop the next generation of materials and chemical

technologies, molecular simulations must incorporate quantum mechanics to

effectively predict useful properties and phenomena. However, chemical simulations

that include quantum effects are computationally expensive and frequently scale

superlinearly in the number of atoms in the system simulated. Even for a relatively

modest system like the graphene unit in Figure 35, substantial computing power is

required for an accurate treatment of quantum effects. Despite the opportunities

for exploiting parallelism, even the most sophisticated and mature chemistry

software tools exhibit scalability problems due to the inherent load imbalance and

difficulty in exploiting data locality in quantum chemistry methods.
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The Hartree-Fock (HF) method is the quintessential starting point for doing

such ab initio calculations, so most all quantum chemistry codes provide some

sort of HF implementation. Additionally, the more accurate and very popular

post-Hartree-Fock methods, such as coupled cluster and many-body perturbation

theory, depend on the reference wavefunction provided by HF. Nearly all quantum

chemistry codes base their post-Hartree-Fock software implementations on the

programming model and data structures used in the corresponding HF component.

It is therefore vital, when developing modern quantum chemistry codes, to start

from the ground-up with very efficient and scalable programming constructs in the

HF modules.

Unfortunately, the most well-used and scalable HF and post-HF codes often

utilize programming models that do not embrace modern software capabilities,

such as those provided by C++11 and C++14. For example, NWChem is generally

considered to be the most scalable of all quantum chemistry codes [3],[4], yet it

uses a toolkit called Global Arrays (explained fully in section 2.3.2..2), which only

supports distributed arrays containing elements of type int, float, double, or

complex. Even new codes such as GTFock, which introduce impressive algorithmic

enhancements to HF, still use the same Global Arrays programming model without

support for features like distributed structures of objects, active messages, and

remote memory management. UPC++ is parallel programming library that

supports these modern features. Others have recently utilized these capabilities

of UPC++ for scientific calculations, while achieving comparable or better

performance than similar implementations that use only MPI [191, 192].

This section explores the use of UPC++, a partitioned global address

space (PGAS) extension for C++, for doing HF calculations. We base our
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implementation on the GTFock code, but instead of using the Global Arrays (GA)

library for operating on distributed data structures, we use a new DArray library

written in UPC++. The DArray library incorporates the functionality of GA while

supplanting it with new features, such as the ability to apply user-defined functions

across distributed tiles of the global data structure. Using DArrays, our UPC++

HF application accomplishes the same algorithmic improvements as GTFock,

while making efficient use of unique DArray capabilities. Our measurements show

that the UPC++ version of Hartree-Fock achieves as much as 20% performance

improvement over GTFock with up to 24,000 processor cores.

2.3.2. Hartree-Fock and UPC++ Background

2.3.2..1 The Hartree-Fock Method

The goal of the Hartree-Fock (HF) method is to approximately solve the

many-body time-independent Schrödinger equation, H |ψ〉 = E |ψ〉, where H is the

Hamiltonian operator, which extracts the sum of all kinetic and potential energies,

E, from the wavefunction, |ψ〉. Here we make the standard set of assumptions: the

Born-Oppenheimer approximation (in which nuclei are fixed but electrons move

freely), Slater determinant wavefunctions (that easily satisfy the anti-symmetry

principle), and non-relativistic conditions. After these approximations, our focus

resides only on the electronic terms of the Hamiltonian and the wavefunction:

Helec |ψelec〉 = E |ψelec〉.

In both HF and post-HF methods, the molecular orbitals that express the

electronic wavefunction consist of a sum of primitive basis functions from set {φj}.

We desire {φj} to be complete, but this is not practical since it generally requires

an infinite number of functions. We therefore truncate to a finite n value large
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enough to balance the trade-off between accuracy and computational cost:

|ψi〉 =
n∑
j=1

cij |φj〉

Typically, each primitive is a Gaussian function centered at the nucleus location.

The HF method attempts to determine the cij values that best minimize the

ground state energy in accordance with the variational principle. By utilizing a

numerical technique for iteratively converging the energy, each subsequent iteration

becomes more and more consistent with the field that is imposed by the input

molecule and basis set. The method is accordingly called the self-consistent field

(SCF) method, and Algorithm 1 shows its de facto procedure in pseudocode.

Many SCF iterations are required for energy convergence, so steps 1-3 of

Algorithm 1 cost much less than steps 5-10. Step 5 normally comprises a majority

of the execution time in Hartree-Fock codes, because each element of the Fock

matrix requires computing several two-electron integrals:

Fij = Hcore
ij +

∑
λσ

(2(µν|λσ)− (µλ|νσ))

The two-electron integrals on the right-hand side are plentiful and expensive to

compute [34]. They take this form:

(µν|λσ) =

∫∫
φ∗µ(r1)φν(r1)r−1

12 φ
∗
λ(r2)φσ(r2)dr1dr2 (2.2)

As mentioned, there are formally O(n4) integrals to compute within the basis set.

However, from the definition in 2.2, we see there are only ∼ n4/8 unique integrals
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by permutational symmetry and the number of non-zero integrals is asymptotically

O(n2) when Schwartz screening is employed.

While the two-electron integrals comprise the most computation time in SCF,

communication and synchronization overheads can very well dominate, particularly

at large scale. As discussed below (Section 2.3.2..5), inherent communication costs

arise from the parallel decomposition of HF codes, leading to load imbalance

and synchronization delays. Parallel HF applications also exhibit highly diverse

accesses across distributed process memory spaces. As such, HF is well-suited for

a programming model that emphasizes lightweight and one-sided communication

within a single global address space. This is the subject of the next section.

2.3.2..2 PGAS in Quantum Chemistry

The algorithmic characteristics and resource requirements of HF (and post-

HF) methods clearly motivate the use of distributed computation. HF tasks are

independent and free to be computed by any available processor. Also, simulating

a molecule of moderate size has considerable memory requirements that can easily

exceed the memory space of a single compute node. However, at a high level of

abstraction, indexing into distributed HF data structures need not be different than

indexing shared memory structures. This programming abstraction is the basis of

the partitioned global address space (PGAS) model for distributing and interacting

with data. In computational chemistry, this model is advantageous for interacting

with arrays and tensors productively and efficiently.

The PGAS model utilizes one-sided communication semantics, allowing

a process to access remote data with a single communication routine. Remote

memory access (RMA) is particularly advantageous in HF applications for three
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primary reasons. First, HF exhibits highly irregular access patterns due to the

intrinsic structure of molecules and the necessary removal of integrals from the

Fock matrix in a procedure called “screening.” Second, there is a need for efficient

atomic accumulate operations to update tiles of the global matrices without the

explicit participation of the target process. Finally, dynamic load balancing in HF

is usually controlled by either a single atomic counter [3], or many counters [48, 18],

both of which require a fast one-sided fetch-and-add implementation.

The NWChem software toolkit [49] paved the way towards the ubiquity of

PGAS in computational chemistry using the Global Arrays (GA) library and the

underlying ARMCI messaging infrastructure [3, 4]. GTFock followed suit, also

using GA for tiled accesses across the irregularly distributed Fock and density

matrices. The GA model is applicable to many applications, including ghost

cells and distributed linear algebra, but GA’s primary use today is for quantum

chemistry. GA is limited to a C and Fortran API, but does have Python and C++

wrapper interfaces. Besides UPC++, which is the subject of the next section, there

exist many other PGAS runtimes, including but not limited to: Titanium, X10,

Chapel, Co-Array Fortran, and UPC.

2.3.2..3 UPC++ and Multidimensional Arrays

UPC++ is a C++ library for parallel programming with the PGAS model.

It includes features such as global memory management, one-sided communication,

remote function invocation and multidimensional arrays [191].

2.3.2..3.1 Multidimensional Arrays A general multidimensional array

abstraction is very important for scientific applications, but unfortunately, the
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support for multidimensional arrays in the C++ standard library is limited [193].

The UPC++ library implements a multidimensional array abstraction that

incorporates many features that are useful in the PGAS setting, and we build our

own distributed array representation on top of UPC++ multidimensional arrays.

Here, we briefly introduce the concepts that are relevant to implementing the

distributed arrays used in the HF algorithm:

– A point is a set of N integer coordinates, representing a location in N -

dimensional space. The following is an example of a point in three-

dimensional space:

point<3> p = {{ -1, 3, 2 }};

– A rectangular domain (or rectdomain) is a regular set of points between

a given lower bound and upper bound, with an optional stride in each

dimension. Rectangular domains represent index sets, and the following is

an example of the set of points between (1, 1), inclusive, and (4, 4), exclusive:

rdomain<2> rd( PT(1,1), PT(4,4) );

– A UPC++ multidimensional array, represented by the ndarray class

template, is a mapping of points in a rectdomain to elements. The following

creates a two-dimensional double array over the rectdomain above:

ndarray<double,2> A( rd );

UPC++ supports a very powerful set of operations over domains, including

union, intersection, translation, and permutation. Since UPC++ multidimensional

arrays can be created over any rectangular domain, these domain operations
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simplify the expression of many common array operations. New views of an array’s

data can also be created with transformations on its domain. For example, the

following code transposes an array A into a new array B by creating B over a

transpose of A’s domain, creating a transposed view of A, and copying that view

into B:

rectdomain<ndim> permuted_rd =

A.domain().transpose();

ndarray<T, ndim> B( permuted_rd );

B.copy(A.transpose());

An ndarray represents an array that is stored in a single memory space.

However, the memory space containing an ndarray may be owned by a remote

process; the global template parameter is used to indicate that a given ndarray

may reside in a remote memory space:

ndarray<T, ndim, global> remote_array;

In keeping with the PGAS model, UPC++ supports one-sided remote access to

an ndarray, both at the granularity of individual elements and, using the copy

operation, a set of multiple elements.

The one-sided copy operation on ndarrays is an especially powerful feature.

In the call B.copy(A), the library automatically computes the intersection of

the domains of A and B, packs the elements of A that are in that intersection if

necessary, transfers the data from the process that owns A to the process that owns

B, and unpacks the elements into the appropriate locations in B. Active messages

are used to make this process appear seamless to the user, and the library also

supports non-blocking transfers using the async copy() method on ndarrays.
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A final domain and array feature used in the HF code is the upcxx foreach

construct, which iterates over the points in a domain. This allows the expression of

dimensionality-independent loops, such as the following code that sets all elements

of an array A to 0.0:2

upcxx_foreach( pt, A ) { A[pt] = 0.0; };

2.3.2..3.2 Other UPC++ Features UPC++ shared arrays, a feature

inherited from the Unified Parallel C (UPC) language, are simple 1D arrays block-

cyclically distributed across all processes. The following declares a shared array:

shared_array<T> A;

where T is the type of the array elements and should be trivially copyable. Before

its first use, a shared array must be explicitly initialized by calling init() with the

array size and block size as arguments. The creation of a shared array is collective,

which means that the set of processes storing the array must agree on the same

array size and block size. Shared arrays are limited in that they are only one-

dimensional and have fixed block sizes.

To help move computation and save communication, UPC++ extends

C++11’s async feature for distributed-memory systems, enabling functions to

execute on any node in a cluster. UPC++ uses C++11 variadic templates to

package function arguments together with the function object and ships the closure

to a remote node via GASNet [194].

2This example is just for illustration, since the call A.set(0.0) accomplishes this much more
concisely.
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FIGURE 36. By default, UPC++ uses a regular round-robin distribution (upper
left), while GA uses a regular 2D block-cyclic distribution (upper right). After
screening and repartitioning, HF arrays are irregularly distributed (bottom left).
A tiled access (in red) may span multiple owning processes (bottom right), in this
case ranks 5, 6, 9, 10, 13, and 14.

2.3.2..4 Distributed Arrays with Irregular Ownership

HF and post-HF methods require storing large, irregularly distributed arrays.

Figure 36 shows examples of regularly distributed arrays with round-robin and 2D

block-cyclic assignments, and irregularly distributed arrays with 2D blocks. In HF,

the irregular distributions arise after screening out negligible integral quantities.

For example, the top right of Figure 36 may represent the initial assignment of the

Fock matrix to processes. However, after determining the number of non-zeros in

the collection of all shell pairs, the matrix is repartitioned so that each process is

assigned approximately the same number of non-zero tasks. This new distribution

might look more like the bottom left of Figure 36.
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Like GA, UPC++ shared arrays can be either regularly or irregularly

distributed, as shown in Figure 36. Unlike GA, element assignment in UPC++

is round robin by default; however, irregular arrays with N dimensions containing

elements of type T can easily be created in this manner:

shared_array< ndarray<T, N> > A;

A.init( my_local_array );

where each rank defines my local array across its relevant portion of the global

rectdomain. GA creates a similar structure using the NGA Create irreg API call.

GA supports arbitrary tiled accesses from the global array; however, prior to this

work, UPC++ did not support such accesses unless done for each owning process

explicitly. More specifically, if tile is the object represented in red in Figure 36,

then a get call would need to occur for all ranks 5, 6, 9, 10, 13, and 14. This

motivates a higher level of abstraction when doing tiled access operations. As a

result, we implemented a distributed version of the multidimensional array library,

the implementation of which is the subject of Section 2.3.3..2.

2.3.2..5 Load Balancing in Quantum Chemistry

The primary hindrance to scalability in quantum chemistry codes is often

due to load imbalance [50, 51, 18]. Although individual two-electron integrals do

not possess drastic differences in execution time, bundles of shell quartets can vary

greatly in cost. It is necessary to designate shell quartets as task units in HF codes

because it enables the reuse of intermediate quantities shared by basis functions

within a quartet [52, 48]. The goal is to assign these task units to processors with

minimal overhead and a schedule that reduces the makespan.
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NWChem balances load with a centralized dynamic scheduler, which is

controlled by a single global counter control referred to as nxtval (for “next

value”). Each task has a unique ID, and a call to nxtval fetches the current ID

of an uncomputed task, then atomically adds 1 to the counter so the next task gets

executed. Once the counter reaches the total number of tasks, all work is done. For

this reason, the performance of RMA fetch-and-add operations is very important

for the scalability of computational chemistry codes like NWChem and GTFock.

This has motivated the implementation and analysis of hardware-supported fetch-

and-ops on modern interconnects, such as Cray Aries using the GNI/DMAPP

interfaces [45].

The nxtval scheme exhibits measurable performance degradation caused by

network contention, but it can be alleviated by an informed static partitioning of

tasks and the addition of atomic counters to every process or compute node [18].

GTFock takes this notion one step further by following the static partitioning phase

with work stealing. During the local phase, each process only accesses the local

memory counter; however, during the work stealing phase, the process accesses

other counters remotely. As illustrated in Algorithm 2, each process in GTFock

begins an SCF iteration by prefetching the necessary tiles from the global density

matrix and storing them into a local buffer. After all local tasks are computed,

the global Fock matrix is updated. Then, each process probes the nxtval counters

of remote processes, looking for work to steal. As we will see in Section 2.3.4..2,

this algorithm results in many more local fetch-and-adds than remote, which has

important performance implications for how the operations take place.
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2.3.2..6 Making Progress in PGAS Runtimes

Modern network hardware often supports RDMA (remote direct memory

access), which can transfer contiguous data without involving the remote CPU at

the destination. But for more complex remote operations such as accumulates,

non-contiguous data copies, and matrix multiplications, the remote CPU needs to

participate in processing the tasks. In addition, the GASNet communication library

used by UPC++ also requires polling the network regularly to guarantee progress.

For example, in Algorithm 2, if process A is busy doing computation in line 5 while

process B is trying to steal a task in line 9, then GASNet on process A may be

unable to make progress until the main application thread can reach line 4 to probe

the runtime. This scenario unfortunately leads to work starvation on process B.

The key design issue here is how to make CPUs attentive to remote requests

without wasting cycles for unnecessary polling. For instance, Global Arrays usually

enables asynchronous progress with a software agent that polls continuously

(interrupt-driven progress is less common, but was used on Blue Gene/P, for

example). This explains why NWChem usually shows the best performance

when each compute node dedicates a spare core to the constantly polling helper

thread [177]. However, the optimal polling rate is generally application-dependent,

so UPC++ provides two polling options: 1) explicit polling by the user application;

and 2) polling at regular intervals where the user controls when to start and

stop. UPC++ also allows processes on the same compute node to cross-map each

other’s physical memory frames into its own virtual memory address space (e.g.,

via POSIX or System V shared memory API), which can be used to implement a

process-based polling mechanism like Casper [195].
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2.3.3. DArray Design and Implementation

This section describes the design and implementation of our Hartree-Fock in

UPC++. We focus on the new DArray library, which incorporates the functionality

of Global Arrays into UPC++.

2.3.3..1 UPC++ Hartree-Fock

We base our UPC++ implementation of HF on the GTFock code because

of its exceptional load balancing capabilities and support for OpenMP multi-

threading. GTFock itself contains about 5,000 lines of C code, and it uses the

optimized electron repulsion integral library, OptErd [196], which contains about

70,000 lines of C and Fortran.

Because the main GTFock application is written in C, porting it to use

UPC++ was mostly straightforward for computational components of the code.

In particular, many GTFock routines solely do calculations (such as two-electron

integrals) with little to no communication. An example is the local computation of

the Fock matrix elements, which is the computational bottleneck of the application

and makes optimized use of OpenMP clauses. In some cases, our UPC++

implementation uses C++ objects in place of GTFock’s C structures, but the port

primarily retains the C-style memory management and data structures.

For communication regions however, porting the GTFock code required

substantial development and even new UPC++ features. In particular, the

functionality of Global Arrays needed to be created using the UPC++ model.

To aid with this, we created the DArray library, which is the subject of the next

section.
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2.3.3..2 The DArray Library

The DArray library uses UPC++ functionality to implement tiled operations

on irregularly distributed arrays, like those in GTFock. This section begins by

presenting how the library is used and ends with some discussion regarding the

implementation. The creation of a DArray object is very similar to the creation of

UPC++ multidimensional arrays:

/* Create a local block with rectdomain (plocal, qlocal)

in the SPMD style, then call the DArray constructor.

The rectdomain (pglobal, qglobal) defines the global

array space of dimension M ×N. */

/* Local array */

point<2> p_local = PT( p_row, p_col );

point<2> q_local = PT( q_row, q_col );

rectdomain<2> rd = RD( p_local, q_local );

ndarray<T, 2> local_arr( rd );

...

/* Global DArray */

point<2> p_global = PT( 0, 0 );

point<2> q_global = PT( M, N );

rectdomain<2> rd_global = RD( p_global, q_global );

DArray<T, 2> A( prows, pcols, rd_global, local_arr );

Now the DArray can be used for arbitrary gets and puts, even if the desired tile is

owned by multiple ranks:
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/* Get data residing in global rectdomain (p, q),

then place it into a local ndarray. */

ndarray<T, 2> tile;

tile = A( p, q );

/* Put local data into rectdomain rd. */

ndarray<T, 2> tile( rd );

upcxx_foreach( pt, rd ) { tile[pt] = rand(); }

A.put( tile );

UPC++ async functions also allow for custom user-defined functions to be applied

to arbitrary tiles. For example, here is how we implement accumulate:

/* User-defined accumulate function. */

void my_accum(ndarray<T,2,global> local_block,

ndarray<T,2,global> remote_block) {

ndarray<T,2,global> block(remote_block.domain());

block.copy(remote_block);

upcxx_foreach( pt, block.domain() ) {

local_block[pt] += block[pt];

}; }

/* Accumulate local data into rectdomain rd. */

ndarray<T, 2> tile( rd );

upcxx_foreach( pt, rd ) { tile[pt] = rand(); }

A.user_async( tile, my_accum );

Finally, DArrays support simple linear algebra operations such as matrix

addition, multiplication, and transpose. Currently, only two-dimensional operations

are supported, because they are relevant to the HF application. However, we plan

to incorporate functionality for arbitrary array dimensions in the future.
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Within the DArray library itself, UPC++ multidimensional arrays

are used to keep track of data ownership, make copies to/from restricted

rectdomains when necessary, and manipulate local data blocks. For instance, the

DArray::transpose() method first performs a local ndarray::transpose() on

each block, then makes a restricted-set copy to the ranks that own the data in the

transposed view.

2.3.3..3 Load Balancing / Work Stealing

Our implementation of Hartree-Fock in UPC++ uses the same strategy

as GTFock for load balancing as described in Section 2.3.2..5 and outlined in

Algorithm 2. However, there are many ways to implement the dynamic task

counters, and we will see in Section 2.3.4..2 that these alternatives have very

different performance characteristics. This section outlines the different alternatives

we have explored for carrying out the counter fetch-and-adds.

2.3.3..3.1 UPC++ Shared Arrays This naive implementation simply

uses a UPC++ shared array of counters and does fetch-and-adds to the elements

directly. However, this is incorrect because shared arrays do not support atomic

writes without locks. If multiple processes simultaneously add to a shared counter,

it is possible for one of the processes to overwrite the counter with a stale value.

We describe this version here only to clarify that the operation is not trivial.

2.3.3..3.2 UPC++ asyncs This approach uses UPC++ async functions to

increment the values of a shared array or some element of a global DArray. Because

async’s are enqueued at the target process, they are executed atomically.
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2.3.3..3.3 GASNet active messages GASNet active messages (AM’s) allow

user-defined handlers to execute at a target process with the message contents

passed as arguments. UPC++ async functions are built on top of GASNet AM’s,

but they carry more infrastructure to enable greater flexibility (for instance, an

async can launch GPU kernels or contain OpenMP pragmas). On the other hand,

GASNet AM handlers are more lightweight than asyncs, which makes them a good

candidate for a simple operation like fetch-and-add. UPC++ has an experimental

feature for launching such an AM with the upcxx::fetch add() function.

2.3.3..3.4 GASNet GNI atomics The Cray Gemini and Network Interface

(GNI) and Distributed Shared Memory Application (DMAPP) interface provide

access to one-sided communication features available to Cray Aries and Gemini

network interface controllers (NIC’s). For instance, 8-byte aligned atomic memory

operations, such as fetch-and-add, have native hardware support on the NIC

itself. They also have an associated cache for fast accesses to such data, which is

particularly efficient for remote work stealing. However, accessing counters resident

in a local NIC cache has relatively high overhead compared to accessing DRAM.

GASNet does not yet expose such network atomics, but for this work we introduce

a prototype implementation of fetch-and-add on 64 bit integers, anticipated to be

included in GASNet-EX, the next-generation GASNet API.

2.3.3..4 Attentiveness and Progress Threads

As discussed in Section 2.3.2..6, making good progress in the PGAS runtime

is very important. This is particularly true while a process attempts to steal

work from a victim that is busy doing computation. In order to improve the
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attentiveness while the application executes Algorithm 2, we added a progress

thread start/stop feature, which the application may use to initiate runtime

progress polling. In its initial implementation, the progress thread start() function

spawned a pthread that calls gasnet AMpoll() intermittently. We experimented

across several orders of magnitude for the polling frequency and chose every 10

µs for the Hartree-Fock application. The user should call the start function just

before the process will do computation and will not do any communication. If

communication occurs before calling progress thread stop(), it requires a thread-safe

version of GASNet.

Section 2.3.4..3 presents measurements that suggest that calling pthread join()

at the end of each task incurs too much overhead for the HF application

because there are potentially very many small tasks per process. We therefore

introduce the progress thread pause() function. This function makes use of

pthread cond wait() to sleep the progress thread and block it on a condition

variable, whereas pthread join() typically busy waits on a mutex (as in the GNU C

Library implementation), consuming valuable CPU resources. In this new version,

progress thread start() spawns the progress thread upon the first call, then signals

the thread to unblock and continue polling in subsequent calls. Algorithm 9 shows

the correct placement of these progress thread controller functions.

2.3.4. Hartree-Fock with DArray Measurements and Results

This section highlights the performance measurements of our UPC++ HF

application and compares it with GTFock, which uses Global Arrays and ARMCI.

All experiments were run on the Edison supercomputer at the National Energy

Research Scientific Computing Center (NERSC). Edison is a Cray XC30 petaflop
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Algorithm 9 Load balance and work stealing

Statically partition tasks and prefetch data (steps 1-3 of Alg. 2).
while a task remains in local queue

upcxx::progress thread start()
compute task
upcxx::progress thread pause()

end while
update Fock matrix DArray via accumulate
for Every process p

while a task remains in p’s queue
get remote blocks
upcxx::progress thread start()
compute task
upcxx::progress thread pause()

end while
update Fock matrix DArray via accumulate

end for
upcxx::progress thread stop()

system featuring the Aries interconnect with a Dragonfly topology. Edison compute

nodes contain two Intelr Xeonr E5-2695 processors with two-way Hyper-Threaded

cores for a total of 48 “logical cores” per compute node. Each node has 64 GB

memory.

For software, our experiments were run with the default Edison module for

the Intel programming environment (5.2.56 and -O3), Cray LibSci for BLAS,

LAPACK, and ScaLAPACK, and a custom build of the development version of

GASNet preceding the 1.26.0 release. Global Arrays is the 5.4b version linked with

LibSci (and peigs disabled).

2.3.4..1 Single Node Performance

We begin with a single-node performance exploration of UPC++ and

OpenMP across sensible combinations of processes and threads. The data are

shown in Figure 37, where each measurement is the total time spent in an SCF

iteration (averaged across 5 runs). Black boxes are not possible to run on Edison
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FIGURE 37. Single-node performance of the UPC++ HF application with UPC++
processes vs. OpenMP threads.

compute nodes because the job scheduler does not allow oversubscribing. The best

performance is usually seen when using more threads relative to processes (except

in the pathological case of only 1 process on 1 CPU socket). This is a particularly

exciting result because we know that memory consumption is best with fewer

UPC++ processes. Also, this property is favorable for performance on many-core

architectures [46]. Other codes, such as NWChem, only exhibit good performance

with 1 single-threaded process per core [177], which is a troubling characteristic in

light of the prominent adoption of many-core architectures.

The best performance is seen along the diagonal, for which all executions

exploit Hyper-Threading. The absolute best performance is with 2 processes (1

per socket) and 24 OpenMP threads per process. Therefore, all of our scaling

experiments below are run with this configuration.
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FIGURE 38. Flood microbenchmark with 1 million fetch/add calls per process -
local (left) and remote (right) versions.

FIGURE 39. TAU profile data comparing the time in nxtval for Global Arrays
(upper left), UPC++ asyncs (upper right), GASNet AM’s (lower left), and
GASNet GNI atomics (lower right). The experiment is C40H82 with 768 processes.
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2.3.4..2 Load Balancing / Work Stealing

Our initial implementation of the task counters for load balancing/work

stealing (described in Section 2.3.3..3) used UPC++ asyncs. However, TAU profile

data, in the upper-right histogram of Figure 39, shows this method incurs too

much overhead for such a lightweight operation. This motivated a microbenchmark

analysis for the various implementation options described in Section 2.3.3..3. The

microbenchmark is simple: each process owns a counter, and the benchmark ends

when all counters reach 1 million. We create two different versions: one in which

only local counters are incremented, and one in which random remote counters are

incremented. The results are shown in Figure 38.

The most important feature of Figure 38 is that the GNI hardware-supported

atomic operations on Aries show extremely good performance for remote fetch-

and-adds, but relatively poor performance for local fetch-and-adds. This makes

sense: GNI atomics must probe the NIC cache line for the counter, even if it is

local. UPC++ asyncs and GASNet AM’s access main memory and therefore

exhibit less latency overhead. We note here that GTFock uses the C INT type (4

byte integers) for task counters. However, in the ARMCI backend, this does not

use the DMAPP implementation of hardware-supported atomics on Aries. It is a

simple fix to use type C LONG, which immediately shows much better remote fetch-

and-add performance.

Due to the nature of Algorithm 2, the HF application does ∼90% local fetch-

adds and ∼10% remote fetch-adds in high performing executions. Therefore, when

comparing the in-application performance of GNI atomics to GASNet AM’s in

Figure 39, we do not see a drastic improvement. However, there is a slight benefit
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FIGURE 40. Strong scaling of UPC++ HF compared to GTFock and GA
on Edison for two molecules: C40H82 and a DNA 5-mer. The “ideal” curves
are projected with respect to the UPC++ execution at 1 node and 32 nodes,
respectively.

to using the atomics overall. Therefore, in our scaling studies in section D below,

we use the GNI implementation.

2.3.4..3 Progress and Attentiveness

We noticed in TAU profiles (not included due to space constraints) that

pthread join() consumes too much execution time when calling the stop function in

every iteration of the task loop. This overhead is enough to degrade performance,

particularly when the task granularity is small and there are a large number of

tasks. The effect is particularly noticeable when running with a large number of

processes, since the relative time of the overhead eventually overshadows the time

spent doing the two-electron integrals. To alleviate this effect, we added the pause
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feature described in Section 2.3.3..4. This optimization is included in our strong

scaling measurements with a polling rate of 10 microseconds. We also use a PAR

build of GASNet because we require its thread-safety and do not observe any effect

on the performance of the HF application.

2.3.4..4 Strong Scaling

With the preceding optimizations made to the UPC++ HF application, we

now compare performance to the original GTFock implementation using Global

Arrays and ARMCI on the Edison cluster. We look at two molecules: an alkane

polymer (C40H82) and a DNA 5-mer, both using the cc-pVDZ Dunning basis set.

The alkane requires 970 basis functions and the DNA 5-mer requires 3,453. Both

are run with the configuration that gives the best performance: 1 process bound to

each socket and 24 OpenMP threads per process. The minimum of multiple runs

(2-5) is reported to reduce noise due to system variation. In summary, UPC++ HF

achieves 10-20% performance improvement, with the best gains occurring in the

region just before strong scaling inevitably dwindles.

2.3.5. Related Work to DArrays

Related work explores relatively simple Hartree-Fock implementations in

other PGAS languages like Fortress, Chapel, and X10 [12, 197]. The work from [12]

presents interesting implementations in all three languages, but unfortunately

deferred performance results to future work. The work from [197] reports

performance measurements, but only for static partitioning, saying that the

dynamic load balancing implementation does not scale, and using the X10 async

for spawning tasks consistently runs out of memory.
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Alternative communication infrastructures for Global Arrays have been

explored in projects such as ARMCI-MPI [198]. Also, in [199] Gropp et al. present

an edifying version of Global Arrays written directly with MPI-3, along with several

versions of nxtval, including a threaded implementation.

Our UPC++ HF application has inherited the diagonalization-free

purification technique for calculating the density matrix [54] from GTFock. The

purification code is written in MPI, and the fact that our application uses it

highlights the inter-operability of UPC++ and MPI. However, to keep things

simple, our performance measurements have not included time spent in purification

(except in Figure 37). The numerical effectiveness of this approach compared to

classic diagonalization methods is left as future work. This is important because

it affects the convergence behavior of the SCF algorithm, which will ultimately

determine how well our UPC++ HF application will compare in performance to

NWChem.

Related load balancing research includes resource sharing barriers in

NWChem [164], inspector-executor load balancing in NWChem [18], exploiting

DAG dependencies in the tensor contractions [51], and performance-model based

partitioning of the fragment molecular orbital method [50]. Related work in

optimizing runtime progress includes Casper, which was used to improve progress

performance in NWChem [195]. It uses a process-based design that dedicates

a few CPU cores to assist in communication progress of other processes, and it

shows a performance benefit over traditional thread-based schemes with continuous

polling. Future work might consider a comparison with our user-specified thread

start/pause/stop approach.
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2.3.6. DArrays Conclusion

Our results demonstrate that a highly tuned Hartree-Fock implementation

can deliver substantial performance gains on top of prior algorithmic improvements.

The performance analysis and optimization techniques presented in this work are

also applicable to a broad range of use cases that would benefit from dynamic

work stealing and a global view of distributed data storage. Looking forward,

we believe that both novel algorithm design and sophisticated implementation

optimization are crucial to scaling real applications on upcoming parallel systems

with heterogeneous many-core processors, deep memory levels, and hierarchical

networks.

To facilitate tiled operations on irregularly distributed arrays, we designed

and developed the DArray library∗, which is capable of applying tiled gets, puts,

and user-defined functions across irregularly distributed arrays containing elements

of any type. DArray will be an important and reusable building block for many

other similar kinds of computational problems. In future work, we plan to further

enhance it by: 1) adding conditional gets on DArray blocks, where only non-

zero blocks are transferred after screening; 2) optimizing other initialization-only

operations (e.g., DGEMM); and 3) including other features such as diagonalization

and LU decomposition. Finally, our promising OpenMP performance measurements

motivate a follow-up performance analysis in preparation for the deployment of

the Cori system at NERSC, which will equip over 9,300 Intel Knights Landing

processors with the Cray Aries high-speed Dragonfly topology interconnect.

∗The UPC++, Multidimensional Array, and DArray code repositories are publicly available
online at https://bitbucket.org/upcxx
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CHAPTER III

MOLECULAR DYNAMICS: SCIENTIFIC WORKFLOWS

This chapter contains previously published material with co-authorship.

Section 3.1 includes content from ICCS 2015 [21] and the Journal of Computational

Science 2015 [22]. This work was a collaboration with the Guenza Lab. I wrote

all the workflow code (at the time of the 2015 publications), which wraps several

existing Fortran/C programs and the LAMMPS application to create an automated

workflow pipeline. Prof. Guenza wrote most of the background section of the

paper, and I wrote the rest of the prose and gathered experimental data. Prof.

Malony provided guidance and several minor paper edits.

Section 3.2 includes content from PDP 2016 [23]. This is another

collaborative project with the Guenza Lab. I wrote all the regular grid

backmapping code and analysis scripts, and prepared all experimental data. I also

wrote most of the paper with several minor edits from Prof. Malony. Prof. Guenza

wrote much of the IECG background section and also provided several minor edits.

Section 3.3 includes unpublished content that is in submission at the time of

this writing. This work is another collaborative effort with the Guenza Lab. It is a

journal paper extension from the PDP conference paper above with approximately

30-40% new content. I gathered all the new experimental data and wrote most of

the new prose. However, the math that verifies the CG intramolecular harmonic

period is proportional to 1/
√
nb has contributions from Josh Frye, and the model

for predicting the number of interactions given the granularity was developed by

Richard Gowers.
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3.1 Coarse-Grained Workflows

3.1.1. Fast Equilibration Workflow Introduction

Despite considerable advancements in hardware and software technologies

for supporting large-scale molecular simulations, computational chemists are

confined to simulating relatively small systems compared to most laboratory

experiments and real world bulk measurements. This constraint quickly becomes

apparent in the simulation of polymer melts, which is important for materials

science applications. Polymers are macromolecules that consist of repeating

units of monomers (such as CH2) that form long molecular chains. When

simulating polymeric systems, many interesting properties depend on the chain

length [200], such as the boiling/melting points, the viscosity, and the glass

transition temperature. Even with a small number of molecules, however, it is

computationally expensive to simulate chains with more than 105 monomers

each, which is a reasonable chain length to study. Limited memory space also

constrains simulations to 106-1010 total atoms, even on large allocations of modern

supercomputers. Considering that a drop of butane contains approximately 1020

atoms suggests that these capabilities do not come close to bulk experiments in the

laboratory.

Defining a new representation of the polymer as a chain of soft colloidal

particles greatly reduces the amount of information to be collected and controlled,

which speeds up the simulation. It is well known that modeling fewer colloidal

particles with an appropriate potential decreases the degrees of freedom and

computational requirements by an amount proportional to the granularity [92].

The representation of a polymer as a chain of soft blobs also allows the chains to
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more easily cross each other, decreasing the required time for the simulation to find

the equilibrium structure. However, the information on the molecular local scale

needs to be restored at the end of the simulation to account for properties on the

united atom (UA) scale. In a nutshell, it is important to alternate between the

coarse-grained (CG) representation (which speeds up the simulation) and the UA

representation (which conserves the local scale information). By quickly switching

back and forth from UA to CG, we open doors to new studies of polymeric systems

while maintaining simulation accuracy and efficiency. While optimizing the

computational performance of CG codes is important, without a way to incorporate

UA-level detail, CG efficiency has relatively less value. Therefore, this chapter

focuses on integrating an approach for conducting simulations that exploit both

CG efficiency and UA accuracy.

Unfortunately, it is not trivial to automate the transformation between the

CG and UA representations for general sets of input parameters. Accomplishing

the overall task involves multiple processing steps, with different applications,

programming languages, naming schemes, and data representations. This issue

is common to many other scientific software environments and is collectively

referred to as the scientific workflow problem [201]. In short, the collection of

all the required steps to conduct an overall research study comprises a workflow

that may consist of several large simulations, real-world experiments, human

intervention and analysis, and more. In this paper, we present a lightweight and

customizable approach for creating an effective scientific workflow in the context

of our CG/UA simulation experiments. We discuss techniques that are general to

other computational problems and explore new ideas that are not prevalent in other

more heavyweight workflow toolkits.
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FIGURE 41. UA representation with 80 chains 120 monomers per chain

FIGURE 42. The corresponding CG representation with 3 sites per chain (and 40
internal monomers per site). CG spheres appear hard, but are soft with long range
effects.

The paper is organized as follows: Section 3.1.2. contains background

information regarding the CG approach and integral equation theory, Section 3.1.3.

discusses the design and implementation of the fast equilibration workflow,
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Section 3.1.4. presents our experiments in evaluating the workflow, Section 3.1.5.

discusses related work, and Section 3.1.6. contains concluding remarks.

3.1.2. Integral Equation Coarse-Graining Background

This section briefly reviews the coarse-grained approach based on integral

equation theory. We consider a homopolymer fluid (in which all monomers are the

same type) with molecular number density, ρm, consisting of n polymer chains.

Some number of monomer sites, N , makes up each polymer chain, where each site

is usually taken to be either a CH, CH2 or CH3 group. This bead-spring description

is the UA simulation model. Within the UA description, the Polymer Reference

Inter Site Model (PRISM) site-averaged Ornstein-Zernike equation relates the

relevant pair correlation functions in Fourier Space, [202]:

ĥmm(k) = ω̂mm(k)ĉmm(k)[ω̂mm(k) + ρĥmm(k)] (3.1)

where the “mm” superscript denotes monomer-monomer interactions and hmm(k) is

the Fourier transform of the total correlation function, hmm(r). In fact, hmm(r) =

gmm(r) − 1, where g(r) is the well known radial distribution function. Also from

Eqn.(3.1), cmm(k) is the direct correlation function, ωmm(k) is the intra-chain

structure factor, and ρ is the monomer site density, given as ρ = Nρm. The CG

representation can be fully represented as a function of the physical and molecular

parameters that define the atomistic description. The key quantity to be solved

in the CG representation is the potential, which must be included as an input

to the molecular dynamics (MD) simulation of the polymer melt in the reduced

CG representation. This potential has been derived analytically using an integral

equation formalism. In the CG model, each chain contains an arbitrary number nb

151



of chemically identical blocks, or “blobs”. Each block contains a sufficiently large

number of sites so that we can utilize Markovian properties of the internal chain’s

random walk. The integral equation coarse-graining approach (IECG) allows us

to determine an analytical solution to the potential when N/nb = Nb ≈ 30. At

that scale the structure of the chain follows a random walk, and the distribution

of the CG units along the chain is Markovian, so that the IECG formalism can be

solved analytically [97]. In a macromolecular liquid, the random distribution of

the CG units is a general property of any molecule when sampled at large enough

lengthscales [203].

The IECG model conserves thermodynamics while accurately reproducing

the structure of polymer liquids across variable levels of resolution [97, 102, 103].

Insights from the IECG theory provide reasonable justifications for some of the

advantages and shortcomings of coarse-graining methods in general [99, 204].

The potential is solved analytically in the mean spherical approximation,

which is valid for low compressible polymer liquids [205]. In the limit of large

separations in real space, where r >> 1 (in units of the polymer size), the potential

is approximated as [104, 102]

V bb(r) ≈ kBT
[( 45
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1/4
b
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√
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(3.2)

where Q′ = 51/4
√

3/2Γ
−1/4
b and Q ≡ Q′Γ

1/4
b . The key quantity of interest here is

the universal parameter Γb = Nbρ|c0|, which is defined once we decide the level of

coarse-graining, Nb, as well as the molecular and thermodynamic parameters of our

system. This quantity also depends on the direct correlation function at k = 0,
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c0, which is in principle not known. However, this function relates to the potential

between atomistic units and the isothermal compressibility of the liquid, so it can

be determined numerically or from experiments.

When compared with full atomistic simulation (i.e., UA) the CG simulations

that use the potential of Eq. 3.2 show quantitative consistency in the structure

and thermodynamics. The CG potential is in this way fully transferable, and it

can be conveniently applied in MD simulations of polymer melts, at the chosen

thermodynamic and molecular parameters, with computational gain. The ability of

CG models to maintain thermodynamic and structural properties while varying the

coarse-graining resolution is important when one develops computational techniques

with variable resolution. It allows the computational time of the MD simulations

to be controlled by changing the resolution as needed. This notion motivates the

development of a workflow that supports transformation between the UA and CG

descriptions, which dynamically adjusts CG resolution at desired simulation times

and spatial regions, while maintaining simulation accuracy and equilibrium through

transitions to united-atom simulation.

3.1.3. The Fast Equilibration Workflow

This section describes the fast equilibration workflow, which consists of a

series of computational programs and analyses that comprise an overall application

for quickly stabilizing a polymeric liquid. Figure 43 shows the 7 high-level stages

involved in the workflow, each of which may involve multiple processing steps. Each

step is accomplished by one or more programs, applications, or simulations. Before

this work, these steps each required manual intervention by a researcher, but now

they are automated by our fast equilibration workflow.
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FIGURE 43. The UA↔CG Workflow. Blue circles (1,3,5,7) represent stages of
custom programs that either generate coordinates and potentials, transform data
for input into LAMMPS, or conduct convergence analysis. Red squares (2,4,6)
represent parallel LAMMPS MD simulations executing via MPI. Our workflow
system automates this process for a given set of input parameters.

3.1.3..1 Workflow Design

Stages 1 and 2 from Figure 2 initialize the workflow by generating a geometric

configuration and equilibrating the system just enough to remove instabilities.

Stage 1 randomly generates a polymer system of n chains, each with N monomers.

Each chain begins at a random coordinate, and the subsequent N monomers

bond randomly onto the enclosing spherical surface. Given a desired n, N and ρ,

we generate a collection of random chains within a simulation box of volume V

with periodic boundary conditions and length, L, such that V = L3. We also

include periodic boundary image flags to help reconstruct the polymer chains

later. Because randomly generated configurations likely contain regions of high

strain and numerical instabilities due to overlapping chains, we carefully adjust
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the configuration of these areas. Stage 2 accomplishes this with a brief LAMMPS

simulation in which chains slowly drift apart via a soft repulsive potential for 10

picoseconds of simulation time. Then, we minimize energy via a Lennard-Jones

potential with a series of short executions, in which the system runs for 1,000

timesteps with an incrementally increasing amount of time per step (e.g., 0.02, 0.08,

0.25 femptoseconds, etc).

Stages 3 through 7 constitute an iterative strategy that alternates between

the UA and CG representations towards equilibration. Stage 3 determines the

center of mass for each soft-sphere that encompasses a group of Nb monomers.

The center of mass coordinates are the “fictitious sites” of the soft colloids from

which the multi-block potential is derived. During this stage we also store the

internal monomer configurations within each block for rigid tracking within the

upcoming CG simulation (see Section 3.1.3..2.2). The multi-block potential, which

depends on parameters such as temperature, density, and number of blocks per

chain, is generated at runtime during the first iteration [97]. The ensuing LAMMPS

execution in Stage 4 simulates the CG system with the multi-block potential,

treating the internal monomer chains within a block as coupled rigid bodies. In our

experiments below, Stage 4 runs approximately 60,000 timesteps at 3 femtoseconds

per step, although this is easily customizable.

After the CG simulation, Stage 5 restores the UA description by applying

the saved internal chain coordinates to their new location within each updated

block position. To mitigate any unphysical bond lengths within chains, Stage 6

runs a short simulation within the UA description using the same Lennard-Jones

pair potential from Stage 2. Finally, in Stage 7, we determine whether or not

LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) is a classical
molecular dynamics code. http://lammps.sandia.gov
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to perform another iteration. While there are several alternatives for evaluating

convergence effectively, we choose to consider the total correlation function,

hmm(r), because of its relevance in deriving system thermodynamic properties

(see Section 3.1.4..2). Finally, if we determine that the system has satisfactorily

equilibrated, the workflow is complete.

3.1.3..2 Workflow Implementation

This section describes in more detail the implementation of the workflow

design discussed in the previous section. Our overall approach involves bundling

each set of Fortran and C programs that encapsulate Stages 1, 3, 5, and 7 (in

Figure 2) with Python scripts. Then, using a standard Python argument parsing

system, argparse, to define all the parameters in Table 3 at launch time, we

subsequently pass the parameter bundle (as a Python object) through the entire

workflow program. During initial development of the workflow, the computational

and analytical programs were hard coded to contain the parameters, filenames, and

directory paths. In addition, no record of launch configurations were stored (such

as number of MPI processes, the cluster name, or execution time). After easily

restructuring the internal programs and procedures to extract relevant values of

the parameters from the argparse interface, a fully automated system for doing

UA/CG polymer equilibration is in place. For instance, one can now launch the

entire workflow with a single command:
fast_equil -nchain 350 -nmonomer 192 -sitesperchain 6 -temperature 450

-bondlength 1.55 -mono-mass 14.0 -cnot -9.7 -timestep 1.0 ...

Certain flags, such as -viz, can provide outlets for user analysis by stopping the

workflow and presenting a visualization of a desired quantity, such as hmm(r), or

The source code is available at https://github.com/mguenza/Fast-Equilibration-Workflow
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Input Parameter Create Chain Coarse Grain Strip CG Converge LAMMPS
create chain cg chain multiblock strip cg hmmr lmp run

ρ (density) yes no yes no yes no
T (temperature) no no yes no no yes
n (# of chains) yes yes no yes yes yes∗

N (monomers) yes yes yes yes yes yes∗

nb (# of blocks) no yes yes yes no yes∗

c0 (dc constant) no no yes no no no
L (box length) no yes yes no yes yes
p (MPI procs.) no no no no no yes
Experiment ID no no no no no no

. . .

TABLE 3. Input parameter dependencies for the stages of UA/CG equilibration.
Our workflow system obviates tracking dependencies by implicitly passing all
parameters throughout each stage, forming a unique parameter space for each
overall experiment. (Items marked with * are not directly passed to LAMMPS, yet
they determine the total number of input atoms.)

the simulation box itself. If flags are not specified, they are set to default values as

disclosed by the --help reference flag.

Upon each launch of a workflow instance, the parameter set, execution

timestamp, and path to output datafiles are saved to a database management

system (DBMS) for historical reference and provenance. Our current

implementation interfaces the Python workflow runtime code with a local SQL-

based DBMS. Future work will consider how to extend this feature towards

collaborative efforts by exploring remote database interactions and knowledge

awareness/extraction.

The previous discussion is related to defining the parameter space within the

various components of the workflow in an automated fashion. However, there are

some peculiarities in the LAMMPS side of the workflow in Stages 2, 4, and 6 that

deserve special attention. This is the subject of the following subsections.
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3.1.3..2.1 Generating LAMMPS Input and the Multi-Block Potential

at Runtime Our initial implementation of the multi-block potential utilizes

the table feature of LAMMPS for doing bond, angle, and intermolecular

calculations. Although a direct evaluation of the potential may feasibly achieve

better performance, the table approach establishes the overall workflow and, if

necessary, is substitutable in future versions. Because the multi-block potential

depends on the parameters ρ, T , N , nb, c0, and L, we generate the potential at

runtime. Fortunately, this takes less than 5 seconds on a standard processor, which

is negligible compared to a typical cycle of the workflow, which can take several

hours even on hundreds of processors.

Another interesting feature of our workflow environment is that we generate

LAMMPS input files via a template processor system. Originally, template

processors were designed to be used to create dynamic websites in which content

is generated on-the-fly by filling an HTML template file with runtime data [206].

This avoids the error-prone, tedious, and inflexible approach of generating content

with code in this manner:

print("<html>\n <body>\n <p>" + str(mycontent) + \

"</p>\n </body>\n </html>\n")

Template processing, on the other hand, renders the following index.html input

template:

<html> <body> <p> @user.name : @user.age </p> </body> </html>

with standard programming objects like so:

template.render("index.html", {"user": Jane})

An intriguing analogy existed when we initially generated LAMMPS input files,

print("minimize "+ str(etol) +" "+ str(ftol) +" "+ str(iter) + ... )
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So, with a LAMMPS input template (in.lammps),

minimize @etol @ftol @iter @maxeval ...

we can render the simulation input files in the same fashion:

parameters = {"etol": 1e-4, "ftol": 1e-6, "iter":100, "maxeval": 1000}

template.render("in.lammps", parameters)

Template processing is central to the popular model-view-controller (MVC)

architectural pattern. It is clear that many scientific workflows fit the same

design pattern, where the data is the model, the workflow is the controller, and

the simulation input/output is the view. Just as the MVC paradigm emphasizes

a separation of concerns between database engineers, backend programmers,

and designers [207]; we see MVC applying equally as well to the data scientists,

software engineers, and domain specialists that represent the stakeholders in

any effective scientific workflow. It is prudent to note the ubiquity of managing

scientific simulations through input files (LAMMPS, GROMACS, NWChem,

Gaussian, GAMESS, OpenMC, Nek5000, and many more), and that controlling

the parameters dynamically with a clear separation of implementation concerns

exposes new research possibilities and opportunities for productivity.

3.1.3..2.2 Transforming from the CG to the UA Description with the

POEMS Library Our approach for transforming between the UA and CG

descriptions involves storing the coordinates internal to blocks before the CG

simulation and treating them as rigid bodies. This is done using the Parallelizable

Open Source Efficient Multibody Software (POEMS) library included with

LAMMPS. In POEMS, when computing the total force and torque on rigid bodies,

the coordinates and velocities of the atoms update such that the collection of

bodies move as a coupled set [208]. When transiting from UA to CG, the definition
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of the rigid blocks and their internal atomic identities occurs in Stage 3 of the

workflow simultaneously with the generation of the CG description. When mapping

from CG back to UA in Stage 5, the final state of the simulation from Stage 4 is

used to restore the rigid coordinates. After stripping the fictitious sites from the

simulation box, Stage 6 commences with the appropriate timestamp update to keep

the overall simulation time consistent.

In our simulations, we observe that calculating the force and torque on

rigid bodies comes at a performance cost. However, more efficient methods for

carrying the rigid coordinates exist, for instance, by either 1) ignoring rigid body

calculations or 2) regenerating random internal configurations between stages

of the workflow. Because our approach only requires that chains’ random walks

be Markovian, approach 2 may bear fruit. Our preliminary studies show that

simulations applying methods 1 and 2 exhibit speedups over UA on the order

of the granularity factor. Future work will consider in detail the performance of

alternative methods for managing the internal configurations.

3.1.4. Fast Equilibration Workflow Experiments

3.1.4..1 Experimental Setup and Evaluation

We conducted our scientific workflow evaluation on the ACISS cluster

located at the University of Oregon. Experiments are run on the 128 generic

compute nodes, each with 12 processor cores per node (2x Intel X5650 2.67 GHz

6-core CPUs) and 72 GB of memory per node. This is a NUMA architecture

with one memory controller per processor. ACISS employs a 10 gigabit Ethernet

interconnect that connects all compute nodes and storage fabric. The operating
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system is RedHat Enterprise Linux 6.2, and MPICH 3.1 is used with the -O3

optimization flag.

Overall, the overhead introduced by stages 1, 3, and 5 is negligible (far less

than 1% of the total workflow execution time). Due to space limitations, we defer

computational performance measurements for another publication. We instead

focus on the correctness and validity of our approach as verified by the radial

distribution function.

3.1.4..2 Radial Distribution Function Analysis

Analysis of the radial distribution function is critically important in the

evaluation of the validity of a simulation result. Given this function and assuming

pairwise additivity, all the thermodynamic properties of the liquid may be

calculated [209]. This function, often called g(r), is defined as

g(r) =
1

ρ

〈
1

N

n∑
i

n∑
j 6=i

δ(~r − ~rij)
〉

and h(r) = g(r) − 1 (we introduced h(r) in Section 3.1.2.). We calculate h(r) at

the convergence step of each workflow iteration, and compare it to the previous

determination of h(r). If the mean percentage error is less than a user-defined

threshold, then the workflow completes. If available, we can alternatively compare

to a long-running “full UA” simulation (with no CG). To clearly specify that we

calculate this quantity in the UA (monomer) representation (not including the

block sites), we henceforth use the mm superscript, denoting this function as

hmm(r).

Figure 44 shows hmm(r) for several phases of the workflow. In this

experiment, the full UA “gold standard” ran for 1.25 nanoseconds of simulation
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FIGURE 44. The total correlation function, hmm(r), for a workflow experiment
with ρ=0.03355 sites/Å3, T=450K, n=350, N=192, nb=32, c0=−9.67344,
L=126.05Å, and p=96 MPI processes on the ACISS cluster. The bottom curves
show 3 ramping steps from Stage 2 of the workflow (as in Figure 2) and the top
curves show 4 iterations through Stages 3-7. Satisfactory convergence occurs (both
in terms of ∆hmmi (r) and w.r.t. full UA) after 4 workflow iterations.

time, and is shown as the black dotted line. The 4 CG iterations were run for a

total of 0.72 nanoseconds, and each UA transition stage (Stage 6 from Figure 2)

ran for 0.0125 nanoseconds. The “Timestamp Ramp” steps correspond to Stage

2 with total simulation times of 20, 80, and 250 femtoseconds, respectively. The

figure clearly shows that the system converges quickly towards the correct liquid

character.

Without the automated workflow, creating Figure 44 would have required

too many human hours and too much tedious intervention between simulations to

have been practical. Furthermore, experiments of this nature are easy to launch

with different input parameters through a job scheduler, such as PBS. It is no more

difficult to conduct an experiment with a few simulations than with hundreds of

simulations, except for the time it takes to execute.
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3.1.5. Related Work to Scientific Workflows

Related research supports the notion that the CG representation equilibrates

more quickly than fully atomistic replicas, and that re-expressing a melt in the

UA description can more completely equilibrate the system [92]. While our

verification of hmm(r) is encouraging for verifying correctness, this function is

known to be relatively insensitive to certain geometric flaws, particularly in

bonding. For instance, it may be possible to have a well-matched hmm(r), but still

have occasional bond lengths that are unphysical. Instead, Auhl [210] evaluates

〈R2(n)〉/n and shows that this phenomenon may occur and can be fixed. Future

work will examine 〈R2(n)〉/n in Stage 7 of the workflow (which may be less

expensive to compute than hmm(r)).

Research and development on scientific workflows is pervasive. Some of

the more popular frameworks include Kepler (with recent notable applications

in drug design [211] and support of distributed data-parallel patterns, such as

MapReduce [212]) Pegasus [213], and Taverna [214]. Other related work focuses

on the intricacies of data modeling and dataflow in scientific workflows [42]. Instead

of committing to a full-blown workflow framework up-front, this work has focused

on the advantages of using a considerably lightweight system for managing input

parameters while benefiting from simple data provenance and template processing.

As far as we are aware, template processing capabilities within other scientific

workflows is limited, and is not to be confused with reusable “workflow templates”,

which is a powerful plug-and-play concept found in any good workflow suite. Our

future work may consider porting our implementation to a more powerful workflow

system, but we are so far content with the portability, ease of customization, lack of

a GUI, and template processing features within this work.
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3.1.6. Fast-Equilibration Workflow Conclusion

Coarse-graining methods benefit from reduced computational requirements,

which expands our capabilities towards simulating systems with a realistic number

of atoms relative to laboratory bulk experiments. However, without integrating

local scale UA information, configurations cannot equilibrate as completely. This

section focused on a workflow based solution for exploiting CG efficiency and UA

accuracy by iterating between UA and CG representations towards convergence. By

utilizing a lightweight scheme for propagating parameters, controlling simulation

input files via template processing, and generating multi-block potentials in the

CG description, we have constructed an automated system for conducting large

scale experiments of polymer liquid systems. We have verified the correctness of

the approach of mapping between the atomic and coarse-grained descriptions by

comparing the radial distribution function of a long-running atomic simulation with

a series of iterations through the workflow.

The fast equilibration workflow system enables the running of experiments

that were previously not possible, such as parameter sweeps across different

densities, CG granularities, temperatures, and more. Our simple workflow system

is based on Python, and incorporates support for parallel (MPI) simulations, data

provenance, and template processing. Future work will examine and optimize the

computational efficiency, introduce more powerful workflow features, and explore

more thorough verifications of correctness.

164



3.2 Backmapping between Representations

3.2.1. Introduction to Backmapping within IECG

On the largest modern supercomputers, molecular dynamics (MD) simulations

of polymer systems contain billions of atoms and span roughly a few nanoseconds

of simulation time per week of execution time. Unfortunately, most macromolecular

processes of interest contain many orders of magnitude more particles and often

bridge microsecond or even millisecond timescales or longer. These include

phenomena like phase separation in polymer blends and composite materials [90],

polymer crystallization, and glass formation and aging [91] to mention just a few.

Despite our pervasive access to massively parallel computers, full united-atom (UA)

simulations do not come close to representing real-world polymer systems (see

Figure 45), because they are too computationally expensive and slow. This makes

direct comparison between experiments and simulations impossible as the two

systems are dynamically different. For these reasons, scalability of MD simulations

is paramount.

Simply put, we require new approximation methods that capture the relevant

physics and chemistry while requiring fewer computational resources. The most

promising approach is the coarse-graining (CG) method, in which groups of

atoms are represented as one collective unit. CG has proven to be valuable for

eliminating unnecessary degrees of freedom and tackling the scaling complexity

of larger problems [92]. The key issue is how to simultaneously maintain solution

accuracy and high performance. With the alternation of CG and atomistic

simulations enabled by the workflow presented in this section, it is possible to

quickly equilibrate the system during the CG simulation, then reintroduce local
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details into a UA simulation, taking advantage of the performance of the CG

simulation and the realism of the UA representation.

The Integral Equation Coarse-Grained (IECG) model by Guenza and

colleagues [96, 97, 98, 99, 101] adopts an analytically-derived potential and

dramatically improves spatial and temporal scaling of polymer simulations, while

accurately preserving thermodynamic quantities and bulk properties [102, 103, 104].

Several numerical techniques and force fields exist for performing coarse-grained

simulations [105, 106, 107]. However, these methods generally preserve either

structure or fully preserve thermodynamics, but not both. As a result, only

a small level of coarse-graining is typically adopted to limit the errors in the

simulated structure and thermodynamics. In contrast, our work adopts the

analytical approach offered by IECG theory, because it recovers crucial structural

and thermodynamic quantities such as the equation of state, excess free energy,

and pressure, while enabling a much higher level of coarse-graining and the

corresponding gains in computational performance.

Although CG polymer physics is a mature field, little has been done to

analyze the performance benefits of CG versus UA representations. While it is

clear that CG will exhibit computational gains, does it strong scale to as many

FIGURE 45. A representation of the average polyethylene chain length determined
by chromatography experiments [95]. Most studies are limited to very short chain
lengths (≤ 1000) due to the prohibitive cost of UA simulations, but this project
freely explores the realistic systems with 104 to 106 monomers per chain.
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processors as the corresponding UA simulation? Likely not, because CG tracks

far fewer overall particles, sometimes by orders of magnitude. Accordingly, the

scalability of CG simulations likely depends on the granularity factor, e.g., the

number of UA coordinates a CG unit represents.

One reason for the lack of performance analysis in CG research is likely due

to the inherent complexity and variability in executing useful CG simulations.

For instance, CG representations are generally based on a corresponding (usually

unequilibrated) UA geometry. A helper program, which is usually independent

of the MD simulation framework, maps the UA representation into the CG

representation. Furthermore, after the CG simulation equilibrates, we usually

desire a “backmapped” geometric description of the equilibrated system in a UA

representation to restore properties at the local molecular scale. The amalgamation

of these processing steps encompass a scientific workflow for conducting CG

simulations, shown pictorially in Figure 46. In order to benefit most from CG

computational gains, the coupled processing stages of this workflow must be high

performance, low overhead, and asynchronous whenever possible.

In this section of the dissertation, I present such a scientific workflow that

integrates the analytical IECG approach for calculating CG forces with new high-

performance techniques for mapping back and forth between the UA and CG

descriptions in LAMMPS. This workflow benefits from the performance of CG,

while maintaining the accuracy of the full-atom representation. Our workflow

optimizations legitimize our comparisons between UA and CG execution times.

Scaling results show speedups of up to 12x at 3,072 cores on the Hopper system

at NERSC. Furthermore, our workflow opens possibilities for the validation of

polymeric systems that have never before been simulated at realistic chain lengths.
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FIGURE 46. The high-level progression of a UA↔CG workflow. The CG
representation is calculated from UA coordinates, and the UA representation
is recovered by solving a backmapping problem (described in Sections 3.2.2..3
and 3.2.3.). CG spheres appear hard, but are soft with long range effects.

3.2.2. Background: Backmapping and the UA↔CG Workflow

This section provides background information and context for understanding

the motivation, design, and implementation of our scientific workflow that manages

CG simulations of polymer melts. Section 3.2.2..1 describes our analytically based

CG methods. Sections 3.2.2..2 and 3.2.2..3 examine the UA↔CG workflow and two

crucial optimizations for ensuring efficient execution.

3.2.2..1 Background: Integral Equation Coarse-Graining

This section briefly reviews the Integral Equation Coarse-grained

approach [96, 97, 98, 99, 101]. We simulate a homopolymer fluid (in which all

monomers are the same chemical species) with monomer number density ρm,

consisting of n polymer chains at temperature T . Each polymer contains N
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monomers, each located at a three-dimensional Cartesian coordinate, which we

call a monomer site. At the atomistic resolution, MD simulations were performed

with LAMMPS using the UA model, where each site is either a CH, CH2 or CH3

group. In the coarse-grained representation, each polymer is described as a chain

of soft particles, or spheres, and each sphere represents a number of monomers Nb.

The number of spheres per chain is given by nb = N/Nb. Models that have fewer

spheres per chain track fewer degrees of freedom than more fine-grained models,

which promotes computational efficiency.

The IECG is an integral equation formalism that builds on the Ornstein-

Zernike [215] equation and the PRISM atomistic theory [216]. The IECG model

gives a complete description of the coarse-grained system as consisting of the

effective intermolecular potential between coarse-grained units on different

chains, effective bond potentials, and angle potentials designed to preserve

Gaussian statistical distributions [217] and by postulating that the effective

intermolecular potential must act between monomers farther apart on the same

chain [102, 103, 104]. The intermolecular pair potential acting between CG units

is fully represented as a function of the physical and molecular parameters that

define the system, which are Nb, ρm, T , the liquid compressibility, and the direct

correlation function c0.

In the specific regime of Nb ≥ 30 it is possible to derive an analytical form of

the potential. At that scale the structure of the chain follows a random walk, and

the distribution of the CG units along the chain is Markovian. This is a general

property of the macromolecules [217] when sampled at large enough lengthscales.

It should be stressed that in the IECG papers, the analytical potential serves as an

approximation, under reasonable assumptions, for the numerical potential that is

169



used in simulations. Having an analytical potential allows one to understand the

scaling behavior of the potential with structural parameters, as well as to estimate

thermodynamic quantities of interest. The relevant equations are quite sizeable and

beyond the scope of this work, but the complete analytical forms can be found in

previous publications [103].

Using this potential we perform simulations of the CG systems, and then

compare thermodynamic quantities and structural quantities of interest from these

simulations with UA simulation data. The agreement between CG and atomistic

descriptions is quantitative, where the direct correlation contribution at large

distances, c(k → 0) = c0, is the only non-trivial parameter. It is evaluated either

from experiments or from theory. Consistency for structural and thermodynamic

properties is observed in all comparisons between numerical solutions of the IECG,

analytical solutions, UA simulations, and mesoscale simulations [103].

3.2.2..2 Background: The UA↔CG Workflow

The CG representation enables simulations to explore larger chemical systems

because it exposes far fewer degrees of freedom than the UA representation. CG

can also explore longer timescales because it does not suffer from the geometric

constraints within UA systems, such as those caused by entanglements that

prohibit efficient dynamics. Unlike bonded monomer chains, CG soft spheres

may overlap, which expedites the equilibration of the melt that would have

otherwise been entangled. Furthermore, previous work has shown that fundamental

thermodynamic properties are fully captured by the CG representation when using

our analytically-derived potential [97, 102, 103].
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However, after accomplishing equilibration in the CG representation, we

still require molecular information on the local scale to account for all properties

of interest. By transforming the CG system to a UA representation, we can

potentially deliver an equilibrated system having atomistic detail to material

scientists at a fraction of the full-atomistic execution time. Furthermore, if we

can alternate between the CG representation and the UA representation in an

automated manner, then we can simultaneously benefit from the performance of

CG and the accuracy of UA. Novel approaches for adaptive resolution in molecular

dynamics, in which more interesting regions are coarse-grained at a finer resolution

than less interesting regions [119], also require innovative methods for on-the-

fly mapping back and forth between UA and CG. Section 3.2.3..1 describes our

UA↔CG scientific workflow approach, which accomplishes this feat.

After a CG simulation has equilibrated to a minimal energy configuration,

a crucial question is then: which UA system(s) are accurately represented by this

arrangement? This raises the notion of the backmapping problem which is the

subject of Sections 3.2.2..3 and 3.2.3..

3.2.2..3 Background: Backmapping

In homopolymer systems, transforming from the UA representation to the

CG representation is straightforward: for each subchain having Nb monomers,

the new soft sphere coordinate is simply the center of mass of the subchain. On

the other hand, the reverse procedure of mapping from the CG representation to

the UA representation is not generally well-defined. This transformation of a CG

model into a UA model is a popular research topic, commonly referred to as the

backmapping problem. For our homopolymer system, the backmapping problem is
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simply stated as follows: given a collection of CG soft sphere chains coordinates,

insert monomer chains in such a way that we would recover the original CG

configuration if we were to coarse-grain the system again.

It is easy to see that solutions to backmapping problems are not unique,

because there are many different UA configurations that could map back to a

given CG configuration. Much backmapping work focuses on biomolecules [132],

but relatively little work has explored homopolymers [133]. However, efficient

backmapping procedures in polymer simulations are imperative for developing full-

fledged adaptively resolved simulations.

In previous work [22], we used the Parallelizable Open source Efficient

Multibody Software (POEMS) library to avoid backmapping. POEMS treats the

internal subchains of each CG soft sphere as a set of coupled rigid bodies. This

greatly reduces degrees of freedom in the simulation, and has the additional benefit

of eliminating the need for solving the backmapping problem. Unfortunately, this

approach suffers from poor computational performance, and our performance

profiles unequivocally suggest it is due to time spent in POEMS’ Solve,

initial integrate, and final integrate functions. Also, an analysis of internal

monomer distances versus endpoint distances (e.g., the monomers that connect

adjacent CG spheres) shows that the endpoint bonds stretch to unphysical

distances. This issue motivates the need for a backmapping procedure that leads

to more physical bond distances throughout the system. Section 3.2.3. presents the

design of our new backmapping procedure.
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3.2.3. Workflow and Backmapping Design

This section discusses the design of our scientific workflow environment

for obtaining high-performance equilibration of polymer melts with atomistic

accuracy. We henceforth refer to the overall process as the UA↔CG workflow.

Section 3.2.3..1 briefly describes the UA↔CG workflow implementation with

the goal of providing context and motivation for the backmapping procedure.

Further details regarding the workflow implementation can be found elsewhere [22].

Section 3.2.3..2 answers why, when, and how backmapping occurs within the

workflow. We then describe our backmapping algorithm, and discuss future

directions for possible improvements.

3.2.3..1 Design: The UA↔CG Workflow

The UA↔CG workflow consists of a series of computational programs

and analyses that comprise an overall application for quickly stabilizing a

randomly generated polymer melt of n chains, each with N monomers per chain.

Subsequently, the workflow may be used to do production simulations of the

equilibrated polymeric liquid. Figure 43 shows the 7 high-level stages involved in

the equilibration workflow, each of which may involve multiple processing steps.

Each step is accomplished by one or more programs, applications, or simulations.

Before this work, these steps each required manual intervention by a researcher, but

now they are automated by our workflow.

The workflow consists of a set of standardized Python wrappers of each

Fortran, C, or C++ program that encapsulates Stages 1, 3, 5, and 7 from

Figure 43. Some of these programs are actually our own custom versions of

LAMMPS tools (such as chain.f, which generates random polymer chain systems)
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that are optimized to run large-scale polymer systems. We use the standard Python

argument parsing system, argparse, to define all simulation parameters at launch

time. We subsequently pass the parameter bundle as a Python object throughout

the entire workflow application.

In order for the workflow to be useful, Steps 3, 5, and 7 must have low

overhead when compared to the full UA simulation itself. Furthermore, Step

4, which comprises the CG component of the equilibration, must exhibit

better performance than UA and must converge towards a physically correct

configuration. In our original implementation, the performance of Step 4 was

unsatisfactory, especially when considering the vastly fewer degrees of freedom

in the CG representation. The next section on backmapping discusses the source

of this performance obstacle and our solution. In short, Step 4 executes most

efficiently when completely discarding the internal UA coordinates tracked in steps

1-3. Unfortunately, this raises the additional concern of needing to recover those

coordinates. This issue is considered in detail in Section 3.2.3..2.

It is worthwhile to note that workflow performance can be improved by

eliminating step 2, which may be a relatively expensive UA simulation. To do this,

we can transform the randomly generated configuration in step 1 directly to the

CG representation. Despite starting from a non-equilibrated UA system, the CG

equilibration is so fast (as we will see in Section 3.3.2..2) that we can save a large

amount of execution time by skipping step 2. Step 1 builds the UA chains with the

desired monomer density, step 2 is skipped, step 3 transforms the chains to CG,

and step 4 rapidly equilibrates them.

Much of the data transfer between the workflow steps occurs by processing

LAMMPS dump files to create new LAMMPS input files. In most cases, the time
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spent reading files is negligible compared to the MD simulations, particularly

when we configure LAMMPS to write to disk at relatively large timestep

intervals. However, the larger the interval, the less information can be included

in convergence analysis. In our studies, convergence is detected by examining

the percent error change of the radial distribution function [22] within the UA

representation. If the average percent error is below a user-defined threshold, then

the workflow completes.

3.2.3..2 Design: Backmapping Software

One approach for backmapping is to store the subchain fragments in a

database for later reinsertion into the soft spheres. However, this makes little

sense for polymeric systems, because the necessary size of the database quickly

becomes prohibitive. Firstly, we need a separate database of fragments for every

value of Nb. Secondly, we need a large number of databases for different monomer

types (e.g., different bond distances and masses). Finally, in order to obtain good

statistics, many different suitable configurations are required for each possible Nb,

and monomer type.

The approximate reconstruction approach for backmapping is far more

suitable for homopolymer systems. If the configurational statistics of the

reconstructed system is close enough to the equilibrium configuration, a perfect

solution in not required because a quick UA simulation can remove any geometric

strain and produce an equilibrated system (Step 6 of the workflow from Figure 43).

In our first implementation, we take advantage of this technique by generating

a very simple configuration of chains on a regular Cartesian grid. The steps for

constructing a polymer melt on such a grid are as follows:
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1. Store the center of mass coordinates for each soft sphere along the polymers.

2. Calculate the midpoints between the center of mass coordinates of each pair

of adjacent spheres.

3. Initialize a regular grid across the simulation box with grid point distances

equal to the desired bond length.

4. Redefine the above midpoints as the desired endpoints of each subchain and

place onto the nearest grid point.

5. Generate paths connecting each pair of endpoints with the “Manhattan

distance” length between endpoints.

6. Randomly extend each the path to the desired number of edges, Nb, by

inserting extensions.

Figure 47 illustrates a simple example of the random extension in step 6. The

leftmost graph is the result of steps 1-5 for a single subchain. By removing edge

e1 and inserting the ext1 extender in its place, we extend the length of the chain’s

path by 2. Next, edge e2 is randomly selected and the path is extended by another

2 bond lengths. If we desire 10 monomers per sphere, then the algorithm is

complete. Figure 48 shows a full example with roughly 30 monomers per soft

sphere. For brevity, we omit certain implementation details in this algorithm

description. The fully commented source code can be found in the UA↔CG

Workflow repository, freely available online [218].

This backmapping approach has the advantage of being straightforward

to implement, lightweight, relatively general, and potentially parallel. For

polyethylene, however, this approach has the disadvantage of producing chains

with unphysical bond angles along the carbon backbone, which means that a longer
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simulation is required to equilibrate the newly generated UA system. An extension

to the regular grid approach is to instead construct a tetrahedral grid, in which

angles between grid points are forced to be 109.5◦ instead of 90◦. We leave the

tetrahedral implementation and comparing its equilibration requirements as future

work.

3.2.4. Backmapping Experiments

Stages 1, 3, and 5 of the workflow only transform a single simulation

snapshot. The algorithms are O(m) (m is the total number of monomers), involve

no communication, and typically comprise far less than 1% of the total workflow

execution time. Stages 2, 4, and 6 potentially involve millions or billions of

snapshots with much communication as particles advance. Stage 4 alone may

consume over 90% of the workflow execution time (depending on how many time

steps are assigned to each stage), making it the clear performance bottleneck.

Therefore, Section 3.2.4..2 focuses on strong and weak scaling experiments of

Stage 4 in the workflow, emphasizing the benefit of using our analytically-derived

multiblock potential in the CG representation.

In addition, Section 3.3.2..2 discusses the overall performance of UA versus

CG by considering the rate of convergence for each model.

FIGURE 47. Simple example of regular grid backmapping.
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FIGURE 48. A randomly generated path with fixed endpoints on a regular grid.
This is the UA configuration backmapped from a CG representation with ∼30
monomers per sphere. Each color corresponds to a different subchain, and units are
in angstroms.

3.2.4..1 Experimental Setup and Evaluation

Experiments were conducted on the ACISS cluster located at the University

of Oregon. We use the 128 generic compute nodes, each an HP ProLiant SL390 G7

with 12 processor cores per node (2x Intel X5650 2.67 GHz 6-core CPUs) and 72

GB of memory per node. ACISS employs a 10 gigabit HP Voltaire 8500 Ethernet

switch that connects all compute nodes and storage fabric. The operating system

is RedHat Enterprise Linux 6.2, and we used Intel version 14.0 compilers with

OpenMPI 1.7. The latest version of LAMMPS (version 10-Feb-2015) was used with

a slight modification to the chain generation tool to enable massive particle scaling.

We also include scaling experiments conducted on the Hopper system at

NERSC. Hopper is a Cray XE6 cluster, where each compute node has 2 AMD 12-
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core MagnyCours (24 cores total) running at 2.1 GHz. There are 32 GB of DDR3

RAM per node. We use the default LAMMPS 20140628 module, and the default

PGI Cray compiler, version 14.2-0.

3.2.4..2 UA versus CG Performance per Timestep

Figures 49 and 50 show the strong and weak scaling of the UA versus CG

components of the workflow on ACISS. These timings measure 500 femtoseconds

of simulation time, then extrapolate to hours of execution time per nanosecond

of simulation time, since we know that several nanoseconds are typically required

to reach equilibration. The auxiliary workflow programs (CGgen, UAInit, and

BMinit) never take more than a few seconds, which constitutes far less than 0.1%

of the overall runtime for full simulations, so we do not include those times in these

measurements.

It is important to note that all CG simulations in this section were performed

with a 1 femtosecond timestep independent of the granularity of the GC model.

However, we will see (in Figure 53) that the choice of the CG model affects the

minimum timestep that needs to be considered in the MD simulation: the higher

the level of coarse-graining the larger the timestep, which leads to a computational

speed up even on a single processor.

Figure 49 shows a strong scaling experiment on ACISS, where each data point

corresponds to a simulation that represents 200,000 UA monomer sites. In the UA

case we run 20 chains, each with 10,000 monomers. The number of sites in the

CG representation, however, depends on the granularity of the decomposition. For

instance, with 10 CG sites per chain, each soft sphere contains 1,000 monomers,

and only 200 total soft spheres are simulated. Therefore, it comes at no great
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FIGURE 49. Strong scaling on ACISS for 20 chains each with 10,000 monomers.
As expected, CG does not strong scale to as many processes as UA because it
simulates fewer particles. However, absolute performance is usually far better for
CG than UA, even at scale. Including more sites per chain is faster per timestep,
but this ignores the rate of convergence of thermodynamic quantities and the use
of a simulation timestep that gets larger the higher the level of coarse-graining (see
text for further explanation).

surprise that the CG component of the workflow stops strong scaling after 8

nodes on ACISS (or 96 processes). At 8 nodes, only about 2 spheres reside in

each process, and at 16 nodes, there are more processes than spheres, which is

highly undesirable for an application like LAMMPS where communication between

neighboring atoms plays a large role. At 250 sites per chain there are a total of

5,000 soft spheres, which is still far too small to exhibit good strong scaling at large

numbers of processes.

It may be unexpected that the absolute performance is better for larger

numbers of sites per chain, and is best at 250. There are two main reasons for

this. The first is that we use an identical timestep in every CG simulation, whereas

realistic MD should always adopt the maximum timestep allowed for a given level
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of granularity. This issue will be explored in more detail in Section 3.3.2..2. The

second effect is that having fewer sites per chain requires longer-ranged interactions

(which we quantify in Section 3.3.2..1). The larger cutoff results in more neighbor

particles per process, and the application becomes communication bound. Also,

these measurements do not yet take into consideration the rate of convergence of

structural and thermodynamic quantities, which we expect to be faster for coarser

models.

FIGURE 50. Weak scaling on ACISS for 20 chains per compute node, each chain
containing 10,000 monomers.

Figure 50 shows the corresponding weak scaling experiment on ACISS, in

which the number of chains per compute node is held constant at 20 chains for

each execution. For instance, at 32 nodes, UA simulates 640 chains for a total of

6.4 million particles. CG also simulates 640 chains at 32 nodes, but at 200 sites per

chain 32,000 spheres are tracked. The plot clearly shows that tracking 32,000 soft

spheres exhibits far better weak scaling than simulating 6.4 million atoms. This

is certainly expected, but it is also important to note that using our potential in

the CG simulation also accurately produces an equilibrated system with the same
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thermodynamic properties as the UA simulation. Previous work has demonstrated

excellent recovery of pressure, free energy, and structural correlations at several

different granularities of up to 1,000 soft spheres per chain [103]. Until this work,

modeling 10,000 to 1 million monomer sites per chain was impractical.

FIGURE 51. Strong scaling on Hopper for 20 chains each with 10,000 monomers.

To provide evidence that the above results are independent of the cluster

architecture, we ran a comparable experiment on the Hopper system at NERSC.

Figure 51 shows a strong scaling experiment with 20 chains and 10,000 monomers

per chain for UA versus CG with 200 sites per chain. As before, the CG simulation

stops strong scaling before UA, likely due to the much smaller number of particles

tracked (1,000 versus 200,000). On the other hand, Figure 52 confirms that the CG

simulation weak scales far better than UA, up to 3072 processes.

We also ran equivalent weak scaling experiments with 2 chains per node

and 100,000 monomers per chain with very similar performance results. We omit

those results here for brevity, but the fact that this is possible is exciting for

future validation work and our ability to simulate systems that reflect real-world

polyethylene melts.
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FIGURE 52. Weak scaling on Hopper. Each UA simulation runs 20 chains per
node with 10,000 monomers per chain. The CG simulations have a granularity
of 200 soft sphere sites per chain, so each sphere contains 50 monomers. Our CG
simulations weak scale nicely, and offer a speedup of about 12x at 3,072 cores.

While it is possible to achieve speedups on the order of 10x for CG

simulations based on IECG theory, it is important to converge to a useful

configuration in UA space. Measurements of our backmapping procedure are on the

order of a few seconds, even for systems containing millions of particles. Compared

to the several hours required to complete a full equilibration, this time is negligible,

and gives more significance to our CG versus UA comparisons.
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3.3 Modeling for the Simulation Timestep

3.3.1. Introduction to MD/CG Simulation Timesteps

The coarse-grained potential developed by Guenza and co-workers

describes a collection, each of which we call a block, of monomers. As described

in Section 3.2.2..1, each block models several individual UA monomer units.

Therefore, the CG polymer chain forms a multi-block model, in which different

intramolecular and intermolecular terms describe the relevant interactions.

A primary goal of this chapter is to consider how simulation performance

varies with the number of blocks used to model polymers. This is particularly

important because previous work shows that the CG potential correctly models

the free energy, structure, and thermodynamics of polymer melts [103], so we

want to choose the best granularity to optimize computational performance. Since

reducing the blocks per polymer reduces the degrees of freedom, we might expect

this to improve simulation performance. However, we also need to consider how the

long-range effects of the coarser potential increase the size of the Verlet list data

structure.

In addition, the integration timestep, which is the amount of time between

evaluations of the potential, directly affects computational efficiency. If the

timestep is chosen to be too short, then wasted calculations increase the number

of issued CPU instructions, but do not lead to improvements in accuracy. If

the timestep is too long, then aliasing errors may lead to incorrect trajectories

that degrade the structural and thermodynamic correctness of the simulation.

Typically, UA simulations choose a timestep of about 1 femtosecond to capture

the relevant atomistic dynamics. In general, the timestep is selected to be two
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orders of magnitude smaller than the fastest dynamics in the simulation, which

for molecular liquids are the bond fluctuations. CG simulations, however, allow for

a larger timestep because the frequency of intramolecular vibrations is considerably

slower.

To see this, consider that the potential between bonded sites in the multi-

block model is derived from the direct Boltzmann inversion of the probability

distribution of the effective bond length [103]:

vbond(r) = −kBT ln[P (r)/r2] (3.3)

where

P (r) = 4π

[
3

π8R2
gb

]3/2

r2 exp

[
− 3

8R2
gb

]
. (3.4)

and Rgb = Rg/
√
nb with Rg being the polymer radius of gyration and nb the

number of blocks per polymer chain. Substituting Eqn. 3.4 into Eqn. 3.3, we have

vbond(r) =
3kBT

8R2
gb

r2 + const. (3.5)

Comparing this to the well-known potential for a harmonic oscillator, U(r) = kr2/2,

we see that the bond’s spring constant is

kbond =
3kBTnb

4R2
g

(3.6)

and the period of this harmonic oscillator is τbond = 2π
√
m/kbond, or

τbond = 2π

√
4mR2

g

3kBTnb
∝ 1
√
nb

(3.7)
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FIGURE 53. slope=1/2 analysis From Equation 3.7, this plot shows the intra-
molecular harmonic period, τbond, across several CG granularities, where nb =
{3, 4, 6, 8, 12, 16, 24}. Each polyethylene chain contains 192 monomers, temperature

is 509 K, and R2
g = 541.0334Å

2
.

This rather interesting result suggests that coarsening (that is, decreasing the

blocks per chain) the multi-block model allows us to increase the CG simulation

timestep proportionally to 1/
√
nb.

As a more concrete example, Figure 53 shows the values of Tbond for a

polyethylene system in which T=509K and R2
g = 541.0334Å. For the tri-

block model (nb = 3), intra-molecular vibrations have a period of ∼10,000

femtoseconds. To be able to catch the bond vibrational motion with accuracy in

the MD simulation, the timestep has to be considerably shorter. Standard practice

is for sample frequency to be at least a couple of orders of magnitude faster than

the period, which is about 1 picosecond. This is a considerable improvement over

the typical UA timestep of 1 femtosecond. For a six-block model the timestep is

around 600 femtoseconds, and it further reduces as the granularity coarsens.
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3.3.2. Timestep Experiments

Next, we performed an empirical study to verify that the expected period

values shown in Figure 53 accurately estimate an appropriate timestep parameter

for CG simulations. This experiment involves running LAMMPS at several different

timesteps while keeping the granularity nb fixed. The intent is to determine how

large the timestep can be set in order to converge to the correct pressure. We set

nb=6 in this experiment because our analysis in Section 3.3.2..1 showed that the

192 monomer system shows the best performance with nb=6, which is the highest

value that still maintains the requirement Nb ≥ 30. Then, we run several CG

simulations while varying the timestep to find the maximum value that converges

to the correct pressure of 356 ± 1 atm (as determined by a gold-standard UA

simulation). The results are shown in Table 4, where we see that larger timsteps

require fewer simulation steps to reach pressure convergence. Specifically, we can

increase the timestep to 600 femtoseconds until LAMMPS fails with a numerical

error resulting from a CG unit that is launched too rapidly out of the simulation

box. Typically, the timestep in a simulation is selected to be two orders of

magnitude lower that the fastest dynamics simulated. The expected period values

shown in Figure 53 suggest a harmonic period of ∼60,000 femtoseconds, which

corresponds to a timestep of ∼600 femtoseconds. This prediction is in very good

agreement with the value found empirically.

3.3.2..1 Analysis of CG Computational Performance

The results shown in Figure 49 may initially seem counter-intuitive. The

plot suggests that models with finer granularity perform better than models with

coarser granularity, despite the higher number of particles and more degrees of
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FIGURE 54. Theory versus simulation for the harmonic intramolecular potential
(vbond from Equation 3.3) across several nb granularities. The model parameters are
the same as in Tables 4 and 5.

freedom. In fact, several effects compete against each other to determine the

overall computational performance of CG simulations. We mentioned in the

previous section that the speedup of simulations for coarser models is due in

part to having the opportunity to choose a larger minimum timestep. A second

effect, which instead slows the performance, is that coarser models have a longer

ranged potential, which leads to a larger cutoff distance. The theoretical scaling

of the timestep with CG granularity was introduced in Section 3.3.1., but this

section describes the effect of changing this cutoff in more detail, and presents an

explanatory performance model. The performance of the simulation with increasing

timestep is further discussed in Section 3.3.2..2.

The speed of performing an MD simulation is proportional to the number of

nonbonded pairs that must be evaluated, Nints. This can be approximated as the

product of the total number of particles and the average number of particles each
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timestep (femtoseconds) Pressure (atm) steps to convergence

1 356.3 ± 1.0 95,000
10 356.2 ± 0.7 6,100
100 355.5 ± 0.5 500
200 355.5 ± 0.5 300
300 355.6 ± 0.7 200
400 355.9 ± 1.9 90
500 356.2 ± 2.1 50
600 numerical error N/A

TABLE 4. Empirical timestep experiment in LAMMPS. The parameters are

350 chains, N=192, nb=6, T=509K, c0=−10.019, Rg=541.034Å
2
. The “steps to

convergence” column is calculated by determining the first 10 timesteps whose
average pressure is within 1 atm of 356. The overall pressure is then calculated for
the following 10,000 steps. For timesteps greater than 600, the dynamics become
too fast and inter-molecular atoms tend to launch apart after a few steps, causing a
LAMMPS error.

particle interacts with:

Nints = (ρbVsystem)× (ρbVsearch) (3.8)

where Vsystem and Vsearch are the simulation volume and search volume, respectively,

and the CG site number density, ρb, is proportional to the number of blocks per

polymer chain, nb:

ρb =
ρm
N
nb. (3.9)

As before, ρm is the monomer density and N is the number of monomers per

polymer chain, which are constant for a given system.

The system volume is lower-bounded by the cutoff of the coarse-grained

potential (rcut). At a minimum, the box length in each dimension must be twice
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the potential cutoff, giving this total volume as

Vsystem = (2rcut)
3. (3.10)

Finally, the search volume around each particle is a sphere with radius rcut:

Vsearch =
4

3
πr3

cut. (3.11)

Combining Equations 3.8, 3.9, 3.10, and 3.11 gives

Nints = (nb)
2 (rcut)

6
(ρm
N

)2
(

32π

3

)
. (3.12)

This equation provides a useful model for predicting how granularity affects

the number of interactions tracked by a simulation, which is directly related to

computational performance.

Our approach for determining rcut is to choose a root (or zero) of the

derivative of the potential energy function. This eliminates the possibility of

particles experiencing abrupt and spurious forces near the edge of the cutoff region.

Choosing the first root only includes the first repulsive part of the potential, which

leads to incorrect pressures (as seen in Table 5). Choosing the second or third root

includes the repulsive section(s) of the potential and the attractive contribution

between them, which gives a correct pressure value. Because the third root results

in a larger value of rcut and therefore a more expensive simulation, we always

choose the second root.

Let us now consider how the granularity of the CG model effects the value

of Nints and, consequently, the performance of the simulation. In general, rcut
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nb root rcut (Å) Nints (theory/sim.) time (s) P (atm)

3 1st 67 300.3 / 403.6 24.2 395.9
3 2nd 127 2,015 / 2,612 99.2 357.4

4 1st 54.2 217.4 / 243.0 17.5 395.3
4 2nd 103 1,471 / 1,567 71.0 356.6

6 1st 40.7 137.6 / 159.1 19.2 391.5
6 2nd 77.3 945.9 / 1,025 53.6 356.3

UA N/A 50 (N/A) / 82.3 374.1 356 ± 1.0

TABLE 5. Tabulated data showing how granularity affects the performance and
pressure correctness of CG simulations. The model includes 350 chains, 192

monomers per chain, R2
g=541.034Å

2
, c0=−10.019. The Nints theoretical value is

calculated with Vsystem set to the LAMMPS box-size. The simulation value is the
average neighbors / atom as reported by LAMMPS. The time is overall LAMMPS
execution time for 15,000 steps, and the pressure is the average value after 100,000
steps.

decreases with nb when the granularity is coarse enough such that the requirement

Nb ≥ 30 is satisfied. On the other hand, nb obviously increases with itself.

Therefore, Equation 3.12 suggests that chain granularity increases the value of

Nints as n2
b , but decreases Nints as r6

cut. Because the value of rcut itself depends on

nb, we tabulate several values of Nints to quantify the overall effect of changing

the granularity of the CG model. These values are shown in Table 5. Values that

correspond to a LAMMPS simulation (the “Nints(sim.)”, “time”, and “pressure”

columns) were run with 96 MPI processes (12 processes per compute node) on the

ACISS cluster.

Table 5 contains values for a model with 350 chains and 192 monomers

per chain. We set nb to 3, 4, and 6 because these are the only values for which

Nb ≥ 30 and the CG bond angle potential, vangle(θ), is valid (see [103] for details

The claim that rcut decreases with nb is easily verified with a plot, but it is not included here
for the sake of brevity. Table 5 shows this behavior for nb = 3, 4, 6. On the other hand, rcut
eventually increases with nb, but only in the region where the theory is no longer valid, i.e., when
Nb < 30.
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on vangle(θ), which is analogous to vbond(r) from Equation 3.3.). Table 5 confirms

that the r6
cut term dominates overall, because Nints decreases as we coarsen the

granularity of the CG model. The fourth column of Table 5 shows the theoretical

lower bound for Nints from Equation 3.12 (with Vsystem set to the size of the

simulation box in LAMMPS) along with a measurement from LAMMPS that

includes the average number of neighbor interactions (which also includes intra-

molecular interactions). We see that the theoretical lower-bound predictions closely

match (and never exceed) the actual simulation measurements.

Table 5 also displays a column that includes the total execution time of

15,000 simulation steps in a LAMMPS simulation. The data suggests that overall

simulation performance is directly proportional to Nints. This claim is further

verified by observing that most of each simulation’s execution time is spent doing

pairwise calculations and communication (typically, over 90%). This behavior

suggests that more fine-grained models exhibit better computational performance

properties. While this is true for a constant simulation timestep, the next section

will describe how the timestep can be dramatically increased as we coarsen the

granularity of the polymer system.

The final column of Table 5 shows the pressure of the CG systems after

100,000 simulation steps with a timestep of 1 femtosecond. The corresponding UA

simulation produces a final pressure of 356±1.0 atmospheres, which we establish as

the correct pressure. We see that the 1st root overestimates the pressure by over

10%, which affirms that the 2nd root is the better choice for accuracy. The 3rd

roots (not shown) also reproduce the correct pressure, but are considerably more

expensive due to the increase in rcut and, consequently, in Nints. The final take-
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away is that the granularity of the CG model has no effect on the correctness of the

pressure, despite the different computational costs.

3.3.2..2 Overall Convergence Performance of UA versus CG

The previous section presented and verified a performance model that

confirms the computational efficiency of coarser models is lower than finer grained

models (given a constant timestep). This effect is due to the increase in rcut and

neighbor interactions, Nints. Here we study how the timestep may increase for

coarser granularities. It is well known that CG dynamics are faster than the

corresponding atomistic simulation or experiment [219, 220]. Using our analysis

from Section 3.3.1., we can explore how increasing the timestep with granularity

accordingly results in a faster convergence towards thermodynamic equilibrium.

We begin by verifying that the theoretical vbond(r) and P (r) functions

described by Equation 3.3 and 3.4, respectively, correspond to the actual CG

simulation data. Once verified, we have substantial confidence that the shape of

the harmonic potentials (specifically, the multiplicative spring constant) provide

a model for selecting a reasonable timestep according to Equation 3.7. Figure 55

shows how the theoretical expression from Equation 3.4 compares to actual CG

simulation data across several different granularities. We see good agreement,

which is expected because the intra-molecular bond vibrations are dictated by

Equation 3.3, which depends only on temperature, the polymer radius of gyration,

and the granularity. From this data, we can also compare Equation 3.5 directly to

the simulation data, which also shows good agreement in Figure 54.
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FIGURE 55. Theory versus simulation for the bond probability histogram (P (r)
from Equation 3.4) across several nb granularities. The model parameters are the
same as in Tables 4 and 5.

3.3.3. Related Work to CG Workflows

Most related CG models (such as within the MARTINI force field [107]) use

numerically optimized potentials, with the problem that numerical errors in the

optimization of the potential can propagate to other physical quantities, such as

thermodynamic properties. In general, numerically optimized CG potentials have

problems with transferability and correct representability. It has been observed that

numerical CG potentials that are optimized to reproduce some physical quantity

correctly, such as the structure, may not correctly reproduce other quantities,

such as the pressure or the free energy of the system [221, 102, 222, 223]. This

problem is not present in our analytically-based CG simulations, because the formal

solution of the potential, as well as of the structural and thermodynamic quantities

of interest, ensures their consistency across variable levels of resolution in the CG

description.
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Many others have studied the backmapping problem, and due to the non-

unique nature of the solutions, many different methods have been proposed such

as fragment-based libraries [224] and optimization procedures with gradually

relaxing harmonic constraints between the UA and CG systems [225]. Furthermore,

particular backmapping procedures tend to be specific to the problem under

consideration, often by necessity. For example, backmapping polymer models

have been applied to nonequilibrium shear flows by Chen et al. [226]. For CG

models of polymers with rigid side groups, Ghanbari et al. use simple geometric

properties of the molecular fragments to reconstruct the atomic system [227].

Our implementation in Section 3.2.3..2 supports homopolymers with a relatively

constant bond distance (although, it would certainly be possible to generalize

to heteropolymers or block copolymers in future implementations). The general

sentiment in the CG research community is that backmapping procedures

are important for supporting adaptive resolution capabilities, but we desire

a general approach for backmapping. We believe that online construction of

realistic configurations offers the most promising approach for a general and high

performance backmapping procedure.

A plethora of related research and development focuses on optimizing the

performance and productivity of scientific workflows. One of the most popular

frameworks is Kepler, which has recently presented full-fledged workflows for

drug design, and developments towards supporting popular distributed data-

parallel patterns, such as MapReduce [212]. Other scientific workflow environments

include Pegasus [213], and Taverna [214]. Instead of committing to a full-blown

workflow framework up-front, we tap into the advantages of using a considerably

lightweight system for managing input parameters while benefiting from simple
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data provenance and template processing. For instance, our workflow is trivial to

setup on any Linux based machine with Python and LAMMPS installed.

3.3.4. UA↔CG Workflow Conclusion

Coarse-graining methods benefit from reduced computational requirements,

allowing us to simulate systems with a realistic number of atoms relative to

laboratory bulk experiments. Few polymer simulation studies have explored long-

chain configurations, despite their importance for studying real-world systems.

This chapter has presented a customized set of software tools for running such

large systems with LAMMPS as the primary molecular dynamics framework. We

use the analytically based IECG potential, which has been shown to preserve

both thermodynamic quantities and bulk properties, unlike other numerically

based potentials. In addition to our collection of individual software tools,

we have implemented a full-fledged scientific workflow that enables automatic

transformation between UA and CG representations. The CG to UA backmapping

problem is handled by randomly generating a polymer onto a regular Cartesian grid

followed by a short UA equilibration.

The UA↔CG workflow enables four noteworthy features for conducting large-

scale polymer studies:

1. Automated setup of CG systems based on a corresponding UA configuration

2. Excellent parallel performance when applying IECG theory

3. A backmapping procedure from the CG to the UA representation, restoring

local molecular information

4. Potential to iterate through several cycles of the workflow loop
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By having low-overhead tools between workflow phases, we can focus on the

performance comparison of CG versus UA. Not only do our scaling experiment

results show a general benefit of using our CG potential over straightforward

UA, they also suggest the effectiveness of our new workflow for transforming

between UA and CG. We have quantified what performance improvements to

expect when in the CG component of the workflow, and we have presented a

performance model which accurately estimates the number of particle interactions

for a given granularity. Others can use this model to better understand how to

choose the granularity factor to best exploit computational performance benefit and

thermodynamic accuracy.

Now that simulation of long-chain polymer systems is possible, efficient, and

dynamically transformable into either UA or CG representation, future work will

formally validate the thermodynamic quantities similarly to what has been done for

≤1000 monomers per chain. By quickly switching back and forth from UA to CG,

we open doors to new studies of polymeric systems while maintaining simulation

accuracy and efficiency.
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CHAPTER IV

QM/MM: HYBRID QUANTUM/MOLECULAR MECHANICS

This chapter explores the state of the art in the capabilities of existing

QM/MM software applications, then presents and analyzes new features for

improving their programmability and performance. Section 1.5 described the

QM/MM concept and provided detailed background information. Recall that

the goal of the QM/MM method is to simultaneously exploit the accuracy of

QM and the efficiency of MM by carefully combining the two models into a

multiscale simulation. Many other sources [114, 112, 228] describe the theoretical

foundation for QM/MM, but this chapter instead studies software implementations

of these methods. Several different software artifacts exist for accomplishing

QM/MM calculations, and they all differ in very important ways. In this chapter, I

categorize the different implementations while analyzing their software engineering

patterns and how they improve (or impair) development productivity and parallel

performance. In particular, I focus on issues that arise when combining different

modules or libraries into complete QM/MM applications.

4.1 Existing QM/MM Implementations

This section surveys and classifies existing QM/MM software implementations

according to their software design, architecture, and coupling features. Many of

the most popular packages have software licenses with proprietary components,

such as AMBER [76], CHARMM [77], and GROMOS [229]; however, this section

focuses primarily on software with completely free and open source licenses,

such as LAMMPS [230], GROMACS [85], CP2K [231], and NWChem [232]. It is
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more practical to focus this study on open source projects because their software

architectures and designs are more apparent, and there exist more leading-edge

research publications related to these packages. Despite the availability of the

source code, however, the software architecture and design is not always clearly

documented, which means that we may require some reverse engineering to glean

information about the software structure.

As illustrated in Sections 1.2 and 1.3, the calculations for the QM and

MM modules are vastly different. For instance, QM applications are usually

bottlenecked by the sheer number of electron integrals and/or the tensor

contraction calculation costs, whereas MM applications are relatively more

bottlenecked by communication latencies. It is commonplace for QM/MM code

bases to be distinctly separated into independent modules, files, libraries, and/or

binaries, according to their role as either QM, MM, or hybrid QM/MM kernels (but

sometimes the components are more diverse and categorizing them within one of

the three models is more dubious). Table 6 classifies several open source packages

according to the relatively broad distinction between single/multiple binary

architectures and internal/external library coupling. Sections 4.1.1. and 4.1.2.

describe the differences between these architectures and justify the classification

of each QM/MM package.

Before diving into the detailed descriptions of the software architecture and

design of QM/MM implementations, it is pertinent to define and clarify these

commonly overloaded and misinterpreted terms. In the subsections below, the

phrase software architecture refers to a high-level description and/or abstraction

of how software components interact and what programming concepts facilitate the

big-picture software requirements. On the other hand, the phrase software design
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Package Architecture Couples with

CP2K
Single-binary,

internal libraries
N/A

NWChem
Single-binary,

internal libraries
ChemShell, LICHEM

GROMACS
Single-binary,

external libraries
GAMESS-UK, Gaussian,

MOPAC, and ORCA

ChemShell
Single or Multiple-binary,

external libraries
GAMESS-UK, NWChem,

Gaussian, ORCA, and more

LICHEM
Multiple-binary,

no linking
NWChem, Gaussian,
TINKER, and PSI4

LAMMPS (QMMMW)
Multiple-binary,
external libraries

Quantum ESPRESSO

LAMMPS (USER-QMMM)
Single-binary,

external libraries
Quantum ESPRESSO

TABLE 6. A comparison of the software architecture and supported coupling of
several QM/MM packages.

refers to a relatively lower-level description of exactly how API’s are defined and

what happens, both syntactically and semantically, when invoking these interfaces

that connect individual components.

4.1.1. Single versus Multiple Binary Architectures

As far as this work is concerned, the most important division between

QM/MM implementations is whether the compiled application runs as a single

program binary or across multiple program binaries. It is trivial to determine

whether a QM/MM package is a single or multiple-binary architecture: when

executing the application (usually with a startup mechanism such as mpirun) how

many different binary files must execute to complete the simulation? In the case

of CP2K, NWChem, GROMACS, and LAMMPS (USER-QMMM), it is clear that

only one binary (cp2k, nwchem, gmx, and lmp, respectively) is passed to mpirun.

For others, such as LICHEM or LAMMPS-QMMMW, multiple binaries need to
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be executed, either by invoking mpirun multiple times on the command line (as

in LAMMPS-QMMW), or by a driver program that makes multiple system calls

against existing binaries (as in LICHEM). Some packages may be capable of either

single or multiple-binary execution, such as ChemShell, which has both a library-

based “direct linking” mode and an “external binary” mode with various support

for different calculations and methods across several software frameworks.

The single and multiple-binary architectures each have advantages and

disadvantages. One clear advantage of a single binary is the convenience of

executing and controlling its launch via job scheduling systems on various computer

clusters. For multiple binaries, the procedure for launching multiple parallel jobs

simultaneously with a workload manager can vary greatly, and sometimes support

is partial. This can also be problematic on clusters with job schedulers that do

not allow binaries to launch other binaries from backend compute nodes, which

is common on today’s largest supercomputer systems (like Titan at Oak Ridge

and Edison at NERSC). On the other hand, if multiple binary execution is well-

supported, runtime control and tuning is arguably more flexible, simply because

separate parameters (e.g. the number of threads versus processes) can be more

easily passed to the separated binaries based on what performs best for each

parallel program.

While a single binary is generally preferable with regard to parallel execution,

it may require too much development effort to couple code bases having different

software stacks. For instance, the MPMD mechanism of MPI is not used in any of

the QM/MM implementations in Figure 6, possibly because of the lack of a robust

standard for how such applications execute across different MPI implementations

and job schedulers. It is also relatively less desirable to couple applications with
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different software stacks or programming languages into a single binary (or with

MPMD MPI) compared to other mechanisms that support a higher level of data

abstraction, such as through ADIOS, which I describe further in the next section.

Concerning data abstractions, we must consider that either the single or

the multiple-binary approach may rely on the generation of framework-specific

input files for the different software components. Few frameworks have support

for automatically generating these input files (LICHEM and ChemShell), but

others rely on the user to create separate input files for each component, usually

with considerably different scripting paradigms and definitions. This can be quite

burdensome on users, especially when using multiple binaries for frameworks which

use completely different scripting definitions, which is essentially the case for all

computational chemistry frameworks (though projects such as OpenBabel alleviate

this issue, at least for QM codes). Data transfer itself is relatively more difficult

with multiple binaries and requires passing files (slowly) or managing shared

memory between applications with separate memory address spaces. LAMMPS-

QMMMW supports a select few mechanisms such as POSIX shared memory

(shm open/unlink and mmap), files, and Python sockets. However, as of this writing

these mechanisms only support sequential MM execution. Section 4.3 discusses why

this is a serious detriment to scalability, and Section 4.2 presents a data abstraction

that mitigates this issue.

The multiple-binary architecture are usually more maintainable and

interoperable than a single binary, especially when dealing with disparate software

stacks. Furthermore, as long as components are modularized with a preference

towards functional design, independent software stacks are not as much of a

problem compared to single binaries which apply tighter coupling. By definition,
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a multiple-binary architecture requires two different linking steps, which actually

coincides with the paradigm that QM and MM applications are best managed as

separate software repositories with separate compilation procedures. This alludes to

how coupling libraries are linked and organized (internally versus externally), which

is the subject of the next section.

4.1.2. Internal vs External Coupling Designs

Another characteristic of QM/MM software architecture (and many other

coupled physics applications for that matter) is whether their coupling is achieved

via internal or external library interfaces. This distinction is somewhat related

to the single/multiple binary categorization, but instead depends on how the

API design of computational chemistry libraries are utilized to create overall

applications. Internally linked libraries rely on a design in which components

fall within a single software framework, and usually share consistent naming

schemes, modular design patterns, and programming languages. Externally linked

libraries simply combine the libraries of more than one framework to accomplish

QM/MM calculations. An example of a framework utilizing an internal QM/MM

design is NWChem, which implements separate Fortran modules to couple QM

and MM regions using libraries that are built as a part of the overall software

package. Specifically, these are the libmm, libqmmm, and other QM libraries (such

as libtce and libnwdft). While NWChem implements QM/MM internally, its

design sufficiently allows other frameworks to link with its libraries externally (for

example, ChemShell supports external linking with NWChem). An example of

a framework that uses an external design is LAMMPS, which can couple with

Quantum ESPRESSO regardless of whether using the single or multiple binary
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FIGURE 56. The software architecture of production-ready QM/MM applications
fall into 3 categories. The first is a completely internal module-based application
(not shown) in which a single binary implements the entire QM/MM application,
usually through an object-oriented design. The second (left) is where a single
application binary makes library calls to the QM, MM, and QM/MM components.
The third (right) involves separate component binaries using a common coupling-
library for data transfers and synchronization.

architecture of USER-QMMM or QMMMW. Other examples include GROMACS,

CHARMM, and ChemShell.

The advantages and disadvantages somewhat mirror the discussion from the

previous section. Internal libraries are usually easier to maintain because they

often share a common software stack and API design patterns. Furthermore,

in the experience of this author, it can be far more difficult to link together

disparate libraries from external chemistry frameworks simply because of issues

like compatibility of static/dynamic linking, link ordering on some Linux systems,

and sometimes the need to pass linking flags through a compilation procedure

that otherwise would not need them. This last hurdle can be especially apparent

in QM/MM implementations that use external linking to compile a single binary.

On the other hand, internal libraries are by definition less flexible in terms of

supporting high interoperability between software frameworks. If there is no library
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API for a chemistry framework that is designed for external interaction, there is

little to no chance of it implementing QM/MM with other frameworks.

Figure 56 contains a graphic that represents two software architectures of

interest in the QM/MM context. The left side shows an architecture with a single

application binary that makes several different library calls to perform the required

calculations (this diagram does not specify whether these libraries are linked

internally or externally). On the other hand, the architecture on the right side of

Figure 56 shows a multiple-binary arrangement, in which a single library somehow

coordinates data transfer and execution coordination across multiple required

binaries. This juxtaposition is not unique to QM/MM applications; in fact, the

coupling of many multi-physics software frameworks can also be done with single or

multiple program binaries [233].

4.2 A Novel Design for QM/MM/CG Coupling

The DataPrep library provides a common infrastructure for sending relevant

atomic data between QM, MM, and CG application components, regardless

of whether the hybrid simulation is compiled as a single or a multiple-binary

application. An application initializes DataPrep before and after MPI:

/* QM_binary.c */ /* MM_binary.c */

MPI_Init(&argc, &argv); MPI_Init(&argc, &argv);

dataprep_init(&argc, &argv); dataprep_init(&argc, &argv);

dataprep_init_QM("MM_binary"); dataprep_init_MM("QM_binary");

/* Application work ... */ /* Application work ... */

dataprep_finalize(); dataprep_finalize();

MPI_Finalize(); MPI_Finalize();
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Now consider the following C++ object which captures the relevant atomic data for

QM/MM simulations (passing an equivalent C-style struct is also supported):

class QMM_Data { /* QMM_Data class methods */

int natoms; void SetNatoms(int);

double box_dimensions[6]; void SetBoxDims(double[6]);

double *atoms_positions; void SetPositions(double *);

... }; ...

After packing this struct, passing data between components is simple. For example,

the MM application may put coordinates:

QMM_Data MM_data;

/* Initialize and equilibrate atomic positions here ... */

dataprep_put(&MM_data);

and the QM application may get those coordinates:

dataprep_get(&MM_data);

Other key methods assist with sharing data in multiple-binary MPI applications

by either yielding CPU resources and waiting for a UNIX signal or putting data

then signaling another program. For example, one can easily accomplish a simple

ping-pong style passing between QM and MM programs:

/* QM application work: */ /* MM application work: */

for (int i=0; i<ITERS; i++) { for (int i=0; i<ITERS; i++) {

/* Do QM calculations here... */ dataprep_get_wait(&qmmdata);

/* Put data and wait for MM put */ /* Do MM calculations here... */

dataprep_put_then_signal(&qmmdata); /* Put data and wait for QM put */

dataprep_get_wait(&qmmdata); } dataprep_put_then_signal(&qmmdata); }

The DataPrep library makes use of the ADIOS read/write API [234] for

packaging and transporting atomic simulation data. By leveraging the features
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of ADIOS, DataPrep can support several languages, modern network interconnects,

and data types with relatively high portability. DataPrep currently provides the

QMM Data structure as a C struct, a C++ object, and Fortran derived datatype, and

it is straightforward to pass this data structure between multi-language applications

- ADIOS takes care of the individual datatype sizes, byte alignments, and data

transport mechanisms. The DataPrep abstraction hides the complexity of the

ADIOS implementation: it specifies ADIOS transport configuration files that fit the

QM/MM/CG paradigm and generates the necessary ADIOS read/write routines,

buffer specifications, language particulars, and synchronization strategies. If users

desire an augmented data structure, it is a relatively easy update to the DataPrep

library to update the relevant ADIOS configuration XML files and necessary

packing/unpacking to support the additional data.

4.3 QM/MM Experiments

This section describes a series of experiments that expose issues with the

parallel performance of both single and multiple binary implementations of

QM/MM applications. These experiments were run on two different computer

clusters: the ACISS cluster located at the University of Oregon and the Comet

cluster located at the San Diego Supercomputing Center. ACISS experiments were

run on the generic compute nodes, each having 2 Intel X5650 2.67 GHz 6-core

CPUs (12 processor cores total) per node and 72 GB of memory per node. ACISS

has a 10 gigabit Ethernet interconnect based on a 1-1 nonblocking Voltaire 8500

10 GigE switch that connects all compute nodes and storage fabric. The operating

system is RedHat Enterprise Linux 6.2, and MPICH 3.1 is used with the GCC 4.4.7

compiler collection and default optimizations. Comet experiments were run on the
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“compute” queue nodes, each having 2 Intel Xeon E5-2680v3 12-core CPUs (24

processor cores total) per node and 128 GB of DDR4 DRAM per node. Comet has

a 56 Gbps bidirectional InfiniBand FDR interconnect with a fat-tree topology.

As made clear in the previous section, there is a plethora of existing

QM/MM implementations. Instead of including a performance analysis of all

these software implementations, the following subsections instead focus on the

LAMMPS and Quantum ESPRESSO coupling, as realized by both the USER-

QMMM and QMMMW packages. These two implementations of QM/MM make

for an interesting juxtaposition because they conduct the same calculation, yet

have two very different software architectures and designs. USER-QMMM is a

single-binary application with an external library design, and all distributions

of the LAMMPS source code include it as an optional package. It relies on MPI

intercommunicators (one each for QM, MM, and a “slave” component) for data

passing and component synchronization. QMMMW is closely based on the USER-

QMMM implementation, but instead separates the applications into two different

binaries and exposes a useful API for supporting data transfers between the

QM and MM components [235]. Both USER-QMMM and QMMMW follow a

LAMMPS-master, LAMMPS-slave, and quantum component architecture in

which data is shared across these three modules. In the opinion of this author,

the “slave” component is a bit of a misnomer (it calculates the MM forces on the

QM subsystem), so it is instead referred to as the MM→QM component in this

section. For clarity and brevity, it is helpful to limit the scope of our study to

these two packages, but also allows us to focus on both the single and multiple

binary architectures, as described in section 4.1.1.. This also highlights the more
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FIGURE 57. A ray-traced visualization of the 103 water system used in this
experiment. The enlarged water molecule in the middle of the simulation box is
modeled with QM, and all other molecules with MM.

preferable (yet more challenging to manage) external linking architecture, in hopes

of motivating future work and collaboration on supporting these packages.

4.3.1. Water QM/MM Relative Size Experiment

This first experiment involves profiling the execution time within the

LAMMPS/Quantum ESPRESSO QM/MM coupled application, and to determine

how best to assign processor resources to the individual components. In other

words, the goal of this experiment is to determine whether or not the QM

component is always the computational bottleneck, or similarly, how big the MM

system must be before needing to assign more threads/processes to it. The TAU

performance measurement system [168] was used to measure the time spent in

various functions of the coupled application, and expose the three most time-

consuming functions (which completely dwarf all other functions). To keep things
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simple and easy to reproduce, the chemical system studied in this experiment is

a simple collection of water molecules, an example of which is included with both

the USER-QMMM and QMMMW software packages source code repositories∗ .

A visualization of this chemical system is shown in Figure 57, where one central

molecule is modeled with QM and the rest are modeled with MM. Our experiments

run mechanical coupling (but electrostatic coupling is also supported by USER-

QMMM), the QM model is plane-wave DFT, and a simple Lennard-Jones

intermolecular pair potential with harmonic bond and bond angle potentials. In

addition, a very minor change was made to the source code to fix an MPI bug

which resulted in a segmentation fault on certain systems (please contact the

author if interested in the patch).

The results are shown in Figures 58 and 59. These experiments show profile

data for three different allocations of MPI processes on a single compute node on

the Comet cluster:

1. 22 QM processes, 1 MM process, 1 MM→QM process

2. 12 QM processes, 11 MM processes, 1 MM→QM process

3. 1 QM process, 22 MM processes, 1 MM→QM process

In Figure 58, the left panel shows allocation #1, the middle panel shows allocation

#2, and the right panel shows allocation #3. Only 1 process is ever assigned to

the MM→QM component because it is extremely inexpensive and the time spent

there is always negligible compared to the other components. Although LAMMPS

and Quantum ESPRESSO both support OpenMP, our measurements suggest

that the best performance is achieved with 1-2 threads per MPI process, so we

∗At the time of this writing, the input files and parameters for this water-cluster example can
most easily be found here:
https://github.com/lammps/lammps/tree/master/lib/qmmm/example-mc

210

https://github.com/lammps/lammps/tree/master/lib/qmmm/example-mc


FIGURE 58. A comparison of the LAMMPS USER-QMMM bottleneck routines
as the number of MM water molecules increases on a single Comet compute node.
The left subplot shows simulations that allocated 22 processes for QM calculations
and 1 process for MM. The center subplot allocated 12 QM processes and 11 MM
processes, and the right subplot had 1 QM process and 22 MM processes. All runs
reserve 1 MM→QM process and run 1 OpenMP thread per process.

choose OMP NUM THREADS=1. This data includes simulations from the USER-QMMM

package only, but the performance of QMMMW is almost exactly the same as the

single MM process case (because currently, having multiple MM processes is only

supported in QMMMW via a shared networked file system).

The left panel of Figure 58 suggests that allocation #1 has good performance

for small MM system sizes, but as more MM water molecules are added, an

exorbitant amount of time is spent in QM processes blocking on MM calculations
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(in USER-QMMM this is a single MPI Recv per iteration). This occurs because a

single MM process is not sufficient to track large MM system sizes, and the QM

MPI communicator blocks until the MM calculations finish. The middle panel

shows acceptable performance across all MM system sizes for the more balanced

allocation #2, and only mild degradation for very small numbers of MM water

molecules. At the very least, this result motivates the need for a parallel MM

component (for which support was unfortunately removed in the latest version of

USER-QMMM, as of this writing). Finally, the right panel shows that performance

deteriorates severely when only 1 process is allocated to the QM component. If this

is clear for only a single water molecule in the QM region, it would surely become

more prominent for larger and more interesting QM systems.

Figure 59 shows data from the same simulations as Figure 58, but instead

shows the total execution time of the QM/MM calculation from start to finish for

each of the three allocations. As we might expect, the best overall performance

across various MM system sizes is with the balanced allocation #2. Except for very

large MM sizes, allocation #1 is better than allocation #3. Interestingly, allocation

#1 shows better performance then allocation #2 only for instances with a very

small MM size. This reaffirms the instinct that the QM component is the most

important to parallelize when the number of MM molecules is relatively low. But

this allocation also suffers from extreme performance degradation when the size of

the MM system is relatively very large. This suggests that being able to control

resource allocations in coupled QM/MM applications is paramount, and that

the best allocation given the QM and MM system sizes is apparently not entirely

straightforward - even for this simple water cluster.
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FIGURE 59. Total execution time for the experiments shown in Figure 58. The
balanced process allocation shows the best performance with larger MM domains,
but with fewer MM molecules, allocating more QM processes is advantageous.

4.3.2. Mini-App Barrier Experiment

The next experiment aims to expose a performance issue related to

component coordination that is found directly in the USER-QMMM package,

and is closely related to performance degradations seen in other QM/MM

implementations, especially those that support iterative dynamics by passing

control between externally linking QM and MM programs (such as GROMACS

with GAMESS-UK). QMMMW does not exhibit this problem as readily, but this is

because none of its transport mechanisms fully support a parallel MM component.

The scaling measurements below also include an equivalent implementation that

uses the DataPrep library (see section 4.2) to coordinate and facilitate data transfer

between QM and MM components.

213



In the USER-QMMM package, for example, atomic position data is

intermittently transferred between three MPI intercommunicators. While one

component is busy with a calculation, a representative process from the other two

intercommunicators blocks on an MPI Recv while all other processes wait in an

MPI Barrier. Depending on the MPI implementation, runtime parameters, and

the number of processes per compute node, this strategy may cause performance

degradation in the active component because of busy-polling or intermittent-

polling mechanisms in the barrier implementation. To expose this and analyze

the consequences on performance, we consider a simple mini-app that launches

two MPI applications, one that does a compute-intensive calculation. In this

case, we solve Poisson’s equation,
(
d2

dx2
+ d2

dy2

)
u(x, y)=f(x, y), on a 2-dimensional

domain using Jacobi iterations (which is meant to roughly resemble the QM

calculation). The other application mimics a waiting MM application where one

process waits for the Jacobi calculation to finish, while the other processes stall on

an MPI Barrier.

Figures 60 and 61 show the results of a scaling experiment on the ACISS

and Comet clusters, respectively. Each line on the plot corresponds to a run with

a number of processes per compute node waiting in a barrier while the other

application performs a compute-intensive calculation. On ACISS, the compute-

intensive application is always assigned 1 process and 12 OpenMP threads, and on

Comet, 1 process and 24 OpenMP threads, because those assignments exhibit the

best stand-alone performance. The vertical axis shows the slowdown of the Jacobi

application defined by the measured time with the barrier application divided by

the stand-alone time. Each data point corresponds to the minimum of 5 executions

to reduce the noise of the measurements.
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FIGURE 60. Slowdown of the multiple binary architecture when one application is
blocked in a barrier consuming compute resources. The effect is exacerbated when
there are a large number of QM processes (such as in the left side of Figure 58). At
the largest measured scale, DataPrep provides a ∼3.7x speedup when using 12 MM
processes.

There are three salient features worth noting in these plots. First, the

performance slowdown is exacerbated by the presence of more processes in the

barrier-blocked application. Second, the performance generally deteriorates as the

scale increases, and the effect is worse when the number of blocked processes is

high. The first observation is clearly expected, because there are more processes

that must poll to make progress, which consumes valuable resources for the

compute-intensive application. The second observation is relatively more surprising,

because it suggests that having more off-node blocked processes results in larger

synchronization delays. This is sensible because the global barrier finishes after

the final representative process receives a notice, and all other representatives

must wait in the barrier until that time. Finally, we observe that the DataPrep

implementation completely avoids these performance degradations, because it relies

215



FIGURE 61. Similar experiment to Figure 60, but instead on the Comet cluster.
Here, the effect is less detrimental than the Ethernet network for relatively
comparable process counts, likely due to more efficient RDMA-based algorithms
implemented in MVAPICH on this fabric [236, 237]. At the largest measured scale,
DataPrep provides a ∼4.4x speedup when using 24 MM processes.

on synchronization via custom UNIX signal handling instead of polling. While the

Jacobi calculations complete, the stalled application is completely suspended, and

only awakens after the call to dataprep put then signal. Also note that both

plots only show the DataPrep result for the worst case - 12 suspended processes.

All other numbers of processes also exhibit the same result, and they are excluded

for clarity. In this worst case scenario, DataPrep shows a ∼3.7x speedup on ACISS

and a ∼4.4x speedup on Comet.
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CHAPTER V

CONCLUSION AND FUTURE WORK

Computational chemistry is naturally a multiscale problem: interesting

length and time scales span many orders of magnitude, and bridging these scales

remains an important unsolved problem. Chemical models of vastly different scale

require vastly different theories, software implementations, parallel decompositions,

algorithms, and parallel programming methods. This dissertation discussed the

challenges within the most prevalent scales of modern molecular simulations: QM,

MM, and CG. Software implementations and their utilization of HPC differ greatly

across these scale domains, and new research is required to effectively bridge these

scales in the face of extreme challenges as the community pursues the exascale

computing objective.

In our consideration of QM codes, we learned that QM algorithms often suffer

from extremely diverse communication requirements that worsen as we add more

processes to the application. More work needs to be done to quantify the potential

benefit of optimizing for locality, and how best to reduce communication overhead

at scale. Furthermore, relatively little work has been done in QM on new computer

architectures such as Intel’s Knights Corner device. Exploring methods that

optimize vector operations is remarkably important in light of the large acquisition

of copious Xeon Phi resources (Cori, Aurora, and Trinity), which will all contain

Knights Landing and Knights Hill architectures.

In our sections highlighting the characteristics of MD codes, we learned that

many software frameworks are relatively mature, but may benefit from an updated

perspective on their load balance strategies, their tuning of important parameters
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such as the cutoff distance, and possibly utilizing data mining and machine learning

techniques to alleviate the combinatorial explosion of simulation parameters and

chemical system knowledge.

In the field of CG theory, we learned that there are several approaches to

reducing the number of degrees of freedom from MD simulations. At the highest

level, there are numerical and theoretical approaches. Broadly speaking, future

work in numerical approaches should improve the accuracy of CG models while

considering that introducing more parameters requires their tuning and sufficient

training data. For theoretical methods, work remains to extend the models to more

diverse chemical systems, such as block copolymers, and models that incorporate

adaptive resolution.

In some sense, QM, MM, and CG codes have individually reached an

appreciable state of maturity, but hybrid codes such as QM/MM/CG are relatively

less supported, and the barrier of entry is too high for many computational

chemists. Part of the reason for this is the novelty and diversity of many different

multiresolution methods in chemistry. Much work remains to improve and

eventually verify and validate these existing models, which requires supportive

tools (such as VOTCA for CG) that allow for direct comparison of hybrid methods.

The community would greatly benefit from more modular, extendible, and scalable

software interfaces that enable exploration of different multiscale methods, and

offer guidance in choosing the best fit for the chemistry problem at hand. Workflow

systems management plays a crucial role in this regard, yet there is a general lack

of support, adaptivity, performance metrics, and modularity in this field. The

hardware infrastructure is available, we only require the committed development

of new and extendible computational chemistry tools for multiscale simulations.
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Rountev. Hypergraph Partitioning for Automatic Memory Hierarchy
Management. In Supercomputing (SC06), 2006.

235



[176] R. L. Graham. Bounds on Multiprocessing Timing Anomalies. SIAM Journal
on Applied Mathematics, 17(2):416–429, 1969.

[177] Jeff R. Hammond, Sriram Krishnamoorthy, Sameer Shende, Nichols A.
Romero, and Allen D. Malony. Performance Characterization of Global
Address Space Applications: A Case Study with NWChem. 24(2):135–154,
2012.

[178] Yuri Alexeev, Ashutosh Mahajan, Sven Leyffer, Graham Fletcher, and Dmitri
Fedorov. Heuristic Static Load-Balancing Algorithm Applied to the Fragment
Molecular Orbital Method. Supercomputing, 2012.

[179] Edgar Solomonik. Cyclops Tensor Framework.
http://www.eecs.berkeley.edu/ solomon/cyclopstf/index.html.

[180] R. A. Van De Geijn and J. Watts. SUMMA: Scalable Universal Matrix
Multiplication Algorithm. Concurrency: Practice and Experience,
9(4):255–274, 1997.

[181] W. Richard Stevens. UNIX Network Programming, Volume 2 (2nd ed.):
Interprocess Communications. Prentice Hall PTR, Upper Saddle River, NJ,
1999.

[182] T. Hoefler, J. Dinan, D. Buntinas, P. Balaji, B. Barrett, R. Brightwell,
W. Gropp, V. Kale, and R. Thakur. MPI + MPI: A New Hybrid Approach to
Parallel Programming with MPI plus Shared Memory. Computing,
95(12):1121–1136, 2013.

[183] D. Ozog. TCE mini-app source code repository.
https://github.com/davidozog/NWChem-mini-app.

[184] J. Nieplocha, R.J. Harrison, and R.J. Littlefield. Global Arrays: A Nonuniform
Memory Access Programming Model for High-Performance Computers. The
Journal of Supercomputing, 10(2):169–189, 1996.
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