
Implemention and Evaluation of PRIME, a

Peer-to-Peer Streaming Mechanism for Live Video

Jimmy Hastings

August 2009



ii

Abstract

User-generated content is becoming increasely popular on the Internet, and peer-

to-peer networks provide opportunity for scalable delivery thereof. However, the

ability to transmit video to a large number of people remains in the hands of those

with significant resources, who become de facto gatekeepers. I examine one protocol,

PRIME, designed to bridge this gap by providing live, peer-to-peer streaming. I

implement the protocol for the first time and test it for desired properties, providing

convincing evidence that this system could be deployed in real-world situations.
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Chapter 1

Introduction

1.1 Background

Recently, the Internet has seen a boom in user-generated content, including pictures,

podcasts, video, and any other type of file.. Anybody who so desires can produce and

share something interesting with whomever they please, be they videos on YouTube,

podcasts on iTunes, blogs on Blogger, or any number of other media and services.

Unlike with television, there is now no clear distinction between those who provide

content for others to experience and those who consume the content. This allows a

much richer variety than anyone had previously thought possible.

Unfortunately, the resources required to transfer video to large groups of people

are still large enough that the ability to do so remains in the hands of a few de facto

gatekeepers, including television networks and Internet companies with large server

farms. Despite coming from a myriad of users, YouTube videos are ultimately con-

trolled and transmitted by Google, a company with the resources and the willingness

to do so. For a sporting event, if the right person or company does not take an interest

and commit their resources, that game will not be broadcasted.
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The tradditional approach for these applications is client-server, requiring the

content provider to have bandwidth resources proportional to the number of users.

However, peer-to-peer technologies scale with the number of users, and can therefore

bridge this resource gap for some applications. BitTorrent [1], for example, allows

someone to share a file with an unbounded number of users, while only requiring

enough bandwidth to share one copy of the file, rather than either requiring enough

bandwidth to send to each recipient, or relying on a third party such as RapidShare

[2] to make up the bandwidth difference.

This is because peer-to-peer networks can utilize the bandwidth of every user in

the system. Because each peer can receive the data in any order, different peers can

start with different parts of the file, and share it with each other until everybody has

the entire file. This works for static files, such as computer programs or individual

songs, but fails for streaming content, such as YouTube videos or television, because

it matters in what order the data is sent if it is being streamed.

1.2 Motivation

The ability to stream high-quality media to a large number of people need not be

limited to those who can afford the bandwidth. If we can bridge that gap, we can

see an even more diverse, vibrant Internet. Any sports team, no matter how small or

large, could broadcast their games to any size audience, no matter how large or small.

A grandmother at her home would be able to produce cooking shows for hundreds

of viewers with only a residential Internet connection. A small group of people could

easily start an Internet radio or tv station dedicated to some niche group or interest.

This kind of technology would even have implications for large corporations, in that

they would no longer need to invest in all the infrastructure required to send the same
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data to thousands of different people.

However, even though we have technologies such as BitTorrent for static files, a

similar solution for streaming content is not yet widely available in the real world.

This is because peer-to-peer streaming offers challenges unique from other contexts.

As in all peer-to-peer services, we must be concerned with effectively utilizing each

peer’s contributed bandwidth, including deciding who connects to whom (this is called

the overlay). Unlike with static files, however, we also must ensure that each peer

receives their required data in a timely fashion. Because each peer is constantly

consuming data, one cannot simply send the data in a random order, as BitTorrent

does. Timeliness is especially important when dealing with live content instead of

a video on demand setting, as users will expect very little delay if content is, for

example, a New Year’s Eve countdown or a sports game. However, we can also

use the knowledge that each user is transmitting content at the same time to our

advantage.

There are a few protocols that attempt to achieve the goal of peer-to-peer stream-

ing of live content, such as CoopNet [3] and PRIME [4]. Each of these systems

addresses the previous concerns in slightly different ways, but none of these are yet

deployed for mass-market consumption.

1.3 Main Focus

The focus of this thesis is on implementation and evaluation of PRIME, the peer-

to-peer receiver-driven mesh-based streaming protocol developed at the University of

Oregon. While this protocol had been previously tested using simulations [5], I have

implemented this protocol for the first time to conduct real-world experiments on

both a local testbed of computers, and the Internet.
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Using this code, I ran a series of experiments to test how well PRIME performs,

first over a small set of local machines, then over PlanetLab [6], a worldwide testbed of

networked computers. Analyzing the output from these machines, we show efficiently

each peer uses its bandwidth, and how quickly packets are able to diffuse throughout

the nodes. We also show how an increase in source bandwidth affects the performance

of the system.

1.3.1 Findings

My main findings from experiments are as follows:

• Over a local testbed, PRIME is able to efficiently use resources to deliver a high

quality of content to all users

• Globally, PRIME is suitable for large, distributed deployment, with inefficien-

cies only occurring on unusually high-bandwidth connections.

• Bandwidth utilization spikes downward immediately after the startup phase has

ended on local tests. This is not significant for final efficiency, but should be

resolved in the future.

1.4 Road Map

The rest of this report is organized as follows: In chapter 2, I describe the challenges

and benefits of peer-to-peer networks, specifically focusing on the differences between

dealing with static files and streaming content. In chapter 3, I examine PRIME in-

depth, specifically focusing on the details as they relate to my implementation and

evaluation. Chapter 4 describes my implementation, both of the PRIME protocol

and the analysis scripts I needed to consolidate the information contained in the
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various log files. I pay specific attention to my major design decisions with respect

to architecting the code for maintainability and ease of debugging. I then discuss in

chapter 5 the performance evaluation metrics of a peer-to-peer streaming system, as

well as the practical concerns surrounding data collection and diagnosis of problems.

Finally, in chapter 6 I will discuss my results, both from experiments on the local

testbed and worldwide. I discuss what this means for PRIME and for the Internet,

and what further work in this area is needed.
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Chapter 2

The Advantages and Challenges of

Peer-to-Peer Systems

This chapter provides context for this study by first, in section 2.1, explaining the

main idea behind peer-to-peer systems, then explaining how they differ from a tradi-

tional client-server model, and why they are more scalable. Section 2.2 then discusses

the difference between static and streaming content, and the challenges specific to

this study’s focus of peer-to-peer live streaming. Section 2.4 examines two ways in

which one can generate an overlay for a peer-to-peer system, and the advantages and

disadvantages of each.

2.1 Architectures

The ways of distributing content can be roughly divided into two categories based on

the interactions between sender and receiver.
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Figure 2.1: Traditional client-server model. Note that all connections come from the
server.

2.1.1 Client-Server Architecture

The traditional model is a client-server approach, as shown in figure 2.1. One entity,

the server, has all the content, and each client that wants to receive the content

should directly connect to the server. The advantage to this scheme is that it is

easy to set up and easy to control. As long as the server is up and has the required

resources (mainly bandwidth), it can provide the content. The main problem with

this approach is that it is not easily scalable. If the server is streaming content that

requires x kbps delivery rate to n clients, the server needs n ∗ x kbps of bandwidth

to deliver packets to all clients in time. That is, twice as many clients means twice

as many resources that the server needs.
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Figure 2.2: Peer-to-peer model. Peers mainly share data with each other.

2.1.2 Peer-to-Peer Architecture

The main idea in a peer-to-peer architecture is that each user who receives content

also helps to send it. In essence, each client now acts as a mini-server. The main

advantage of this approach is scalability. That is, if there are twice as many peers

in the system, we automatically have twice as much bandwidth to deliver it. Both

demand for resources and available resources scale with the number of users, whereas

in a client-server model, only demand scales.

There are already several protocols in use that use a peer-to-peer architecture for

sharing some types of content. Companies use peer-to-peer protocols to distribute

video game demos and large video game updates that will be in high demand without

putting a strain on their servers. Likewise, artists might make their content available

through peer-to-peer file-sharing servers to lessen the burden on their servers. Crim-

inals, too, use certain peer-to-peer systems to share copyrighted content. All these

applications use peer-to-peer architectures to distribute files.
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Unfortunately, once we begin to implement a peer-to-peer architecture, our models

become much more complicated. Peer-to-peer systems must meet several challenges

to be effective, including how peers decide what data to transfer, how peers find

other peers with which to connect, and how to deal with some peers having higher

bandwidth than others. These challenges are examined in more detail in section 2.3.

2.2 Classes of data

Content can be roughly divided into two classes, based on its delivery style.

2.2.1 Static Content

Most of the content sent over the Internet consists of files that are considered static

in nature. That is, a user will request a file that has been created at some point in

the past, and the data does not change over the course of the data transfer. The user

then consumes the data after it has been completely transmitted. When a user views

a web page, he is requesting a static file, no matter how often the file changes on

the server, or if it was generated specifically for the user. The user cannot view the

content until it is finished transferring. Likewise, many peer-to-peer systems such as

BitTorrent deal in the realm of static files, a user does not require the first part of

the file before the last part— he needs the entire file to consume it anyway.

2.2.2 Streaming Content

Content is considered to be streaming if the client consumes it as the content arrives.

For example, audio or video content is usually streaming, and they often have a

natural rate for delivery based on how much data is consumed each second. Streaming
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content can be further divided into two types based on when the content is intended

to be played.

Stored Streaming Content

In this situation, content is created and stored on a server. When a user wishes to

view this content, he requests it from the server and it is transferred continuously.

The user begins to consume it as soon as he has enough to consume, while the data

is still being transferred. YouTube is perhaps the most visible example of a service

for stored streaing content. Comcast offers a video on demand service through their

cable television that works the same way.

Live Streaming Content

On the other hand, live content is being created as it is being transmitted. This

means that each user that consumes the data does so at roughly the same time.

Examples include live Internet television and radio programs. Sports events are a

prime candidate for live transmission, because fans usually want to see the scores and

results as they happen.

2.3 Challenges in Peer-to-Peer Live Streaming

PRIME operates in the realm of peer-to-peer streaming of live content, and must

address the following challenges associated with it.

First, as with all peer-to-peer systems, we must be concerned with effectively

utilizing the bandwidth of all clients to achieve scalability, when initially only the

source has content to send to anyone. We must decide how to connect peers to each

other, and how to distribute content on those connections.
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BitTorrent [1] solves this problem by forming a random mesh, where each peer

connect to a random subset of peers. Initially, each peer is sent a different portion

of the file, so they are likely to have different pieces than their neighbors. This

works because each peer cannot consume the data until it has finished transferring.

However, in a streaming context, we must be concerned with the order of arrival. If

we are to use a swarming method as BitTorrent does, how do we properly incorporate

new data into the mesh?

Other systems, such as CoolStreaming [7] and ChunkySpread [8] form multiple

trees, sending a different portion of the content through each tree. Ultimately, this

approach suffer when peers enter and leave the system while streaming [9].

Once the overall behavior of the system is determined, we must decide how each

agent in the system acts to achieve the goal. Peers are often working with incomplete

information about the nature of the system when making individual decisions.

2.4 Overlay Structure

Different peer-to-peer systems have solved the problem of creating an overlay in dif-

ferent ways. These can be categorized as one of two basic overlay structures: tree

and mesh.

The more structured way is with a tree rooted at the source, as seen in figure

2.4(a). That is, each node will have one parent and a set number of children (the

degree of the tree). This allows the system to push the content in an orderly fashion,

and guarantee that all peers get what they need within a reasonable amount of time

(the delay is proportional to the depth of the tree). The problem here from an

efficiency standpoint is that the nodes at the bottom (the leaves of the tree) do not

use their outgoing bandwidth to help the system. Because at least half of tree nodes
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Figure 2.3: Two structures for peer-to-peer overlays

(a) Tree-based approach (b) Mesh-based approach

are leaves, over half of the potential system bandwidth is left untapped. There is

also an issue with durability. If one of the nodes at a high level leave, either due to

network outages or by choice, none of their children can get that content, and the

whole subtree withers, as seen in figure 2.5(a). One needs trusted internal nodes for

this scheme to work well.

CoopNet [3] handles this by forming multiple trees, and having different channels

pushed down different trees. The trees are built such that each peer is an internal

node for one of those trees. This solves the efficiency problem, but magnifies the

problem of peers departing.

An alternate method is to have each node connect to several random nodes in

the system. This is known as a mesh (Figure 2.4(b)), and is the scheme used by

BitTorrent [1]. Now, each node has several parents, so if one parent leaves, as seen

in figure 2.5(b), peers are not left without data entirely. Additionally, peers that
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Figure 2.4: What if Fred leaves?

(a) Tree-based approach: Dawn and Bob get
no packets.

(b) Mesh-based approach: Carol can still
provide packets to Dawn and Bob until they
get an additional parent.

lose a parent will be able to request a new connection without forcing the overlay to

restructure itself. New nodes are likewise seamlessly integrated into the system in the

same way, because position in the mesh is assigned randomly.

The main issue with a random overlay is that the system loses the ability to

orderly distribute content. Because the system is random, it is difficult to guarantee

that every peer will receive timely content. Likewise, it is difficult to guarantee that

each node can efficiently use its outgoing bandwidth.
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Chapter 3

The PRIME Protocol

The main idea behind the PRIME Protocol [4] is that peers form a random mesh and

use swarming content delivery on top of the mesh. This is similar to what BitTorrent

[1] does, but with some important distinctions unique to the problem of live streaming

content. This chapter describes the two main components of the PRIME protocol:

• Overlay construction (section 3.1.1)

• Content delivery (section 3.1.3)

Section 3.2 examines how the actions of each node affect the overall goals of the

system.

3.1 Main Components

3.1.1 Overlay construction

One of the major components of any peer-to-peer system is method of overlay con-

struction [9]. In PRIME, there is one node, called the bootstrap node, that keeps

track of all the peers in the system. When a peer wants to join the system, it sends
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a UDP packet to the bootstrap node, informing it of the peer’s presence and it how

many parents are needed. The bootstrap node, after a short delay to give other nodes

a chance to enter, then sends a random subset of the participating peers to the re-

questing peer as potential parents. If at any point a peer needs additional parents,

it sends a new request to the bootstrap node. Also, periodically each peer sends a

heartbeat to the bootstrap node to indicate that the peer is still in the mesh. This

makes the system more robust in the case of peers being disconnected.

Key to the PRIME protocol is the organized view of the peer mesh. We define

the distance of a peer p from the source as the shortest path from the source to p.

Peers can now be grouped based on their distance from the source into levels. If each

peer has an out degree of d, and level n has p(n) nodes, p(n + 1) <= p(n) ∗ d.

One can visualize this by placing peers of each level in the same row of the graph.

The mesh from figure 2.4(b) on page 12, when viewed in this way, looks something

like figure 3.1.

From this, we can see that there are two kinds of edges: straight edges that go

from a higher level to a lower level, and curved edges that don’t. Parents that are

in a higher level than the child are called diffusion parents. Parents on the same or

lower level are known as swarming parents. This distinction becomes very important

when delivering content.

3.1.2 Video Encoding

The video that PRIME transmits is encoded by a method method where data is split

into several layers (or descriptions), and further split into e.g. 50-millisecond packets.

As long as a client has one description per packet slice, it can play out the movie, but

the more descriptions it has, the higher quality the video that results. Note that the
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Figure 3.1: Organized view of mesh

peer need not have the same description for each packet slice. For example, it might

have description 2 for timestamp 50, and description 5 for timestamp 100, and that

is as good as having description 4 for both timestamps 50 and 100.

Each packet is a standard size, and a combination of packet size, packet duration,

and maximum number of layers determines the bandwidth required to transmit or

receive the video. This is known as the stream rate. For example, if each packet

is 5120 bits, lasts 50 ms, and there are 8 potential descriptions, the stream rate is

5120 ∗ 8/50 = 819.2 bits/ms, or 800 kbps. The source’s bandwidth needs to be at

least the stream rate for all the packets to get out into the overlay.



CHAPTER 3. THE PRIME PROTOCOL 17

3.1.3 Swarming Content Delivery

As mentioned in section 2.3, our main goal with a peer-to-peer system is to effectively

use the bandwidth of each participating peer. This means that each parent needs to

be able to send something useful to its children. In a streaming context, we have the

additional requirement of ensuring that each packet is delivered to peers before its

playout time.

With those goals and requirements in mind, PRIME dedicates diffusion edges to

delivering new packets. This helps to ensure proper diffusion of new packets through-

out the mesh. This allows the swarming parents to have sufficient variety to swarm

the remaining packets.

3.2 Packet Scheduling

PRIME uses a receiver-driven, or “pull”-based content delivery system. To that end,

as each peer receives packets, it reports the new packets it has received to its children,

piggybacked in the header of a content packet. Every ∆ seconds, each peer examines

the packets its parents possess, and decides which packets to request from each parent,

and in what order. If a parent no longer has any requests from its child, it will send

marked packets until it receives more requests. This serves as a signal, both to inform

the child that it should request more packets, and to allow the child to accurately

know the bandwidth of its parent for future scheduling operations.

Each child requests the number of packets it thinks its parent can provide, based

on past received bandwidth from that parent. Using an exponentially-weighted mov-

ing average (EWMA) of past bandwidths, a child requests the estimated number of

packets the parent could provide in this scheduling period, plus 2 standard deviations.

Peers maintain a buffer of ω seconds of data. This should be approximately
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(h+3)∗∆ where h is the maximum expected level to contain peers, or (logd(n)+3)∗∆

where n is the expected size of the mesh, and d is the out-degree of peers (the number

of children each peer is expected to have). Because new packets are given priority,

we expect each new packet to reach the next level in ∆ seconds, the time between

scheduling periods. Therefore, we expect packets to have permeated the mesh in h∗∆

seconds. We allow 3 ∗ ∆ seconds for the packets to swarm through the mesh. Note

that ω must be the same for every peer. We cannot have certain peers decide to keep

more or less of a buffer because of personal bandwidth.

3.2.1 Buffer Windows

When scheduling, peers organize the buffer into three different windows, based on

relative timestamp. Peers select packets to request based on which window they

belong.

Diffusion (New) Window

This window is the highest priority, and it consists of the newest packets the peer

knows about. This is the range [tmax − ∆, tmax] where tmax is the timestamp of the

latest packet that any parent has reported as available. This window ensures that

new packets permeate the mesh quickly. We can identify diffusion parents by the

ones that possess packets in the diffusion window.

Playing Window

This window is of second highest priority, and it contains the packets that we need

to play out before the next scheduling event. This is the range [tp, tp + ∆] where tp

is the lowest timestamp in the buffer. Every ∆ seconds, we slide the buffer forward,
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Figure 3.2: Buffer maintained by each peer, with the three windows labeled

advancing the playback window by ∆.

Swarming Window

These are the packets that are currently being swarmed in the mesh. These packets

have the lowest priority, but this will be the largest window. This is the range

(tp + ∆, tmax −∆) with tp and tmax defined as before.

3.2.2 Packet Assignment

Once a packet has been chosen from the appropriate window, it is assigned to the

request list of a parent. When multiple parents could provide the packet, a child will

request it from the parent whose request list is least full at the point of assignment,

with capacity decided by the EWMA of received bandwidth from that parent.
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3.2.3 Quality Adaptation

Each peer has an expected quality. This is the number of descriptions per packet slice

it is attempting to consume. Each scheduling operation consists of two rounds. In

the first round, a peer will not request a packet that would give him a higher quality

than it conservatively expects. After that, if it appears that the parents have any

bandwidth left, a child will request any extra packets.

Every ∆ seconds, before requesting new packets, each peer goes through a process

called quality adaptation (QA). This uses the EWMA of useful packets the peer has

received, along with the current state of the buffer, to decide if the peer needs to

add or drop a description. A peer will drop a description if the number of packets

he expects to receive in ∆ seconds is less than the number it would need to fill ∆

seconds of its swarming buffer to the target quality. A peer will add a description if

the number of packets it expects to receive in ∆ seconds minus one standard deviation

exceeds what would be required to fill ∆ seconds of his swarming buffer to one greater

than the target quality.

3.2.4 Startup Phase

When a peer first joins an overlay, it has no packets to offer or to play. Before the node

can operate as a normal peer, it goes through a startup phase which lasts ω/2 seconds.

During this period, the goal is to be able to play as quickly as possible. To that end,

a peer will never attempt more than one description. It will also perform a scheduling

event whenever it receives a marked packet from a parent who has previously sent

something useful. This speeds up the rate at which new packets are distributed when

most of the peers have no packets.

Because startup phase only lasts ω/2 seconds, and peers begin playing the content



CHAPTER 3. THE PRIME PROTOCOL 21

after startup phase, it cannot start until the source has at least ω−ω /2 =ω /2 seconds

of data. If there are peers in the mesh when the source reaches ω/2 seconds, all peers

are notified to begin their startup phase.

3.2.5 Passive Coordination

Because the source node is the only one that starts out with all the packets, its

bandwidth is particularly precious. That is, if the source only has enough bandwidth

to send every packet once, then sending one duplicate packet means not delivering a

different packet into the overlay at all. Therefore, when a child requests a duplicate

packet from the source, it will instead look in [r,min(r + 2 ∗∆, tmax)], where r is the

requested timestamp, and send the least sent packet instead. In the case of ties, the

earliest packet is chosen to send.

This is known as passive coordination, because it subtly coordinates the peers at

level 1 to ensure that the mesh gets all the packets that were generated. Because

diffusion packets are of highest priority, and the source has every packet, level 1 peers

will never request playing window packets, so we can be certain this behavior does not

prevent a child from playing. Even when the source has excess bandwidth, passive

coordination is beneficial because it ensures an even mix of all the packets in the

overlay, and can send newly-created packets even before its children’s next scheduling

events.
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Chapter 4

Architecture of Implementation

Although PRIME had been tested in ns [10] simulation, there had not been any imple-

mentation of the code to run on live computers over the Internet. This study involved

an implementation of the PRIME protocol in C++ to work on both Apple i386 iMacs

and Fedora i686 environments, as well as support scripts to run experiments over local

machines and PlanetLab.

This chapter details the architecture of this PRIME implementation, as well as the

rationale behind some of the design decisions. It notes both the overall structure and

some of the smaller details that may not be obvious from the PRIME specification.

Finally, section 4.4 touches on the support code that needed to be written to assist

with running the experiments and analyzing the data.

4.1 Goals

When writing any piece of software intended for long-term use, a main goal is main-

tainability, both for software writer and those that may view it later. To that end,

this code implements the standard practices of modularity, organization, and docu-
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mentation.

This implementation is split into two main levels, one of which implements basic

network functionality and houses the main program loop, and the other implements

PRIME-specific and role-specific functions. These two levels can communicate in a

flexible, robust way that allows the upper level to be programmed in an event-driven

manner. Figure 4.1 shows an example of such communication.

4.2 Lower Level

The lower level, stored in server.cpp, handles interacting with the TCP and UDP

sockets, and notifying the upper level if certain events happen, e.g. a timer has expired,

or data arrives from the network. This is also what houses the main loop body of the

program, and is the same for source, peer, or bootstrap nodes. The main interface

functions of server.cpp are as follows:

• listenTCP(port,onConnect,onData,onClose) causes the server to listen on

the specified port, and to call the function onConnect() when a peer connects,

onData() when data is received on a connection generated from this listening

on this port, and onClose() when said peer disconnects.

• connectTCP(ipaddr,port,onConnect,onData,onClose) connects the server

to a specific IP address (ipaddr) at the specified port, notifying the upper

level in a similar manner as listenTCP()

• sendTCP(id,data,size,onSuccess) sends data on a TCP connection identi-

fied by id. When finished, it calls the onSuccess() function. Note that this

will hold on to the data if the TCP buffer is full, and thus delay the call to

onSuccess(). This allows a program to queue up more data every time it re-
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Figure 4.1: Abbreviated view of two-tiered implementation method used in this
project
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ceives the onSuccess() call, allowing an application like PRIME to send as

much data as possible.

• disconnectTCP(id) simply forces a disconnect of a connection associated with

that id. This will, in turn, cause the program to call the onClose() function

associated with that connection

• listenUDP(port,onData) is similar to listenTCP(), but only has an onData()

callback function because UDP does not involve connections

• sendUDP(ipaddr,port,data,size,onSuccess) is similar to sendTCP(), but

does not require an established connection.

• addTimer(milliseconds,onExpire,repeating) stores either a recurring or

single-use timer in the system. When this timer expires, it calls onExpire().

This allows an application to have periodic processes, or delayed reactions to

certain events.

• run() is the main loop of the program. An application would call this func-

tion only once, once it has prepared the preliminary ports and timers. Using

select(), run() waits for the events that it was told to monitor, and calls

their respective callback functions. Note that these events are not static. While

running, the callback functions can still call any of the previously mentioned

functions to set up more connections, timers, etc.

• stop(), as its name implies, stops the server. This is the only way to cause the

run() function to return.

This code is designed to be as flexible as possible, allowing nearly any network

event-driven application to run atop it, while still meeting the needs of this PRIME
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implementation. Each type of role (peer, source, and bootstrap) uses the server

code for its low-level network interaction and timer management.

4.3 Upper Level

On top of the server layer, there is a different set of code for the source, peer, and

bootstrap roles, stored in source.cpp, peer.cpp, and bootstrap.cpp, respectively.

Each of these calls functions in server.cpp, giving different callback functions to

call when events occur, such as a parent connecting, a child disconnecting, new data

being sent, or a timer expiring.

The upper level also stpres the buffer, represented as a two-dimensional array,

with one dimension as timestamp and the other as layer. In each cell, there is a flag

to mark the state of the packet, i.e. whether we have the packet, we know someone

who has the packet, or we haven’t heard about the packet yet. Also in that space is

a pointer to either the data itself, or a linked list of parents who have the data. This

buffer operates as a circular array, so that every ∆ seconds when the peer advances the

buffer and consumes some of the data, we are not required to copy the entire structure,

merely clear ∆ seconds’ worth of packets and advance the pointer indicating the base

of the stack. A similar circular queue records which children have been informed of

newly received packets. There is a pointer for each child indicating the most recent

packet the child has been informed about. As children pointers advance, the former

front of the queue is filled with more packets, and becomes the back of hte queue.

Most of these functions can be classified into receiver- or sender-centered tasks.

The source, of course, would only contain sender functions, but the peer nodes contain

both sender and receiver because of their dual role sending and receiving data, as we

discussed in section 2.1.2. The bootstrap node has a unique function, and doesn’t
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share any code with source or peers.

Each of these functions is designed to be modular, making each function do a

discrete thing that is easy to describe and reason about. This is both to make it

easier to replace functions later, and to aid in understanding.

4.3.1 Scheduling Hierarchy

Consider the function call hierarchy this implementation uses when scheduling packets

to be received. Each function has a discrete role, and delegates work that would

complicate it.

• assign(index,layer) takes a packet specification, and assigns that packet to

the parent with the smallest ratio of assigned bandwidth to total estimated

bandwidth for this scheduling session. If there is no parent with bandwidth

remaining, assign() will return with a failure condition.

• schedule(minIndex,maxIndex,assignedTable,quality) will attempt to as-

sign all packets between minIndex and maxIndex to a parent. It attempts to as-

sign rare packets first, and beyond that in a random order, while assignedTable

keeps track of which packets have already been assigned. Once schedule() de-

cides to attempt to schedule a packet, it calls assign() on that packet, leaving

the decision about which parent to that function.

• scheduleAll() handles an entire scheduling session by calling schedule() on

different windows, depending whether we are in the startup phase or not. First,

scheduleAll() will call schedule() for the relevant windows with a quality

that matches our current goal. Once it has gone through one round, it calls

the functions again, but with the quality maximized, ensuring that the peer

utilizes all its incoming bandwidth if possible.
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4.3.2 Bandwidth Throttling

After the majority of the PRIME code was finished I discovered a problem. On the

local network, there was an abundance of bandwidth, and thus the protocol cold not

be properly tested because almost any system would thrive in such a rich environment.

Because I did not have control over the bandwidth of the network connections, and was

interfacing directly with the C sockets interface, I could not throttle my bandwidth

to a reasonable, experimentally consistent level outside of the program. Therefore, I

implemented a programmatic solution.

I accomplished this by having an intermediate level between the upper and lower

levels. Instead of immediately sending more packets when a packet was through the

sendTCP() function, it would instead put the IP address on a queue. Then, as often

as possible, the timer would call a function called sendToNextIPs() to empty the

queue. The peer would then wait the time it “should” have taken to send the data.

When running experiments, one can test that the program is accurately limiting

the bandwidth to the specified amount.

4.4 Experimental Support

Programming PRIME itself is not the whole of this project. It also requires scripts

to do various things to support experiments and analysis, including:

• Generating static overlays to test against dynamic, bootstrap-generated overlays

• Running locally several peers on each machine

• Uploading code to each PlanetLab node in our slice

• Gathering logs from PlanetLab nodes
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• Analyzing the log files to determine the level of each peer

• Generating data files and graphs from individual log files

Some of these were simple scripts to automate tedious tasks, and others were much

more complicated, but they all represent part of the code base of this project that

hopefully will be used by another researcher.
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Chapter 5

Strategies and Challenges to

Performance Evaluation

An implementation of a protocol does little good if one cannot effec tively evaluate

it. This chapter details the issues with evaluating a live peer-to-peer system, both

in simply collecting all the data into a readable form (section 5.1), and in analyzing

problems with the system (section 5.2). Section 5.3 then describes the metrics used

for evaluating the success of the system, as well as for determining the source of any

problems that might have arisen.

5.1 Logistical Issues

The main challenge in evaluating and debugging a peer-to-peer system is also its

main advantage: its decentralized nature. Because of that, there is no one point from

which we can examine the data to get an accurate picture of the system. Because we

need 50 or more nodes to have a meaningful test, we need to gather logs from that

many places in order to have a meaningful analysis.
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A related problem is about synchronization. We need to be able to start the

experiment on all nodes at one or more predefined times, and also have log files with

timestamps that are consistent. Otherwise, analysis shows packets arriving at nodes

beforee they have been created. To solve that problem, I used only nodes that support

the Network Time Protocol (NTP), so they could all have adequately synchronized

internal clocks.

5.2 Analytical Issues

The decentralized nature of the system also comes into play when analyzing the

system, because the cause of a problem and its symptoms may not appear in the

same place. For example, if a level 1 peer had a bug that caused it to delay for

2 ∗∆ before requesting packets, we would not likely see the effects in that peer. We

would instead see its diffusion children suffering farther down the tree. Likewise, if

there were a poorly-constructed overlay, we might not see the effects anywhere in

particular, just bandwidth utilization would be low because of lack of diversity. Even

once we discover that there is a bug, it can be difficult to find exactly where in the

code it occurs, because PRIME is a system that intentionally uses randomness to

communicate with several other entities — the conditions to trigger the bug might

not occur the next time that scenario is run.

5.3 Metrics for Evaluation

To evaluate the PRIME system, and to address some of the issues raised in section

5.2, we use several metrics [5] to examine what is going on in the mesh, and how well

the peers are performing.
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In many of these graphs, we make heavy use of the organized view discussed in

section 3.1.1, and that can be seen on figure 3.1 on page 16. That is, peers are

classified by their distance from the source. Sometimes this means having different

graphs for peers at different levels, and sometimes this is integral to the metric itself.

When there are several data points to examine, it is usually helpful to visualize this

in the form of a cumulitive distribution function (CDF). This allows us to quickly see

various aspects of the data that we would not see with a cloud graph, while allowing

more depth than distilling the data to a single number.

The main metrics we used for evaluating PRIME are as follows:

• Average quality: This is the main metric that individual clients care about.

That is, what is the quality of the video that the peers receive. In the experi-

ments, maximum quality was always 8, meaning there were 8 different descrip-

tions for each timestamp.

• Bandwidth utilization: This measures how we handle the main challenge of

any peer-to-peer network: effective use of bandwidth. In PRIME, this translates

to the ratio of marked to data packets received by peers, since a node always

uses all its bandwidth.

• Diffusion rate: This is the rate at which new packets enter a level of the

overlay tree. This should remain fairly constant throughout the experiment,

and be approximately equal to the stream rate, ensuring that all packets make

it to each level. If for some reason the source node’s bandwidth is below the

stream rate, the diffusion rate should be equal to that.

• Diffusion time: This is the measure of the time it takes for new packets to

reach a level of the overlay. Because new packets are prioritized, it should only
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take approximmately ∆ seconds for the packets to reach each subsequent level

of the tree.
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Chapter 6

Experiments and Results

This chapter first describes the experiments over locally-networked machines (section

6.1), detailing both the configuration and results of the tests. Then, section 6.2

describes the configuration of PlanetLab and the tests thereon. Finally, I reveal the

results of my tests on PlanetLab. Higher-quality versions of these graphs can be

found in Appendix A.

6.1 Local experiments

6.1.1 Configuration

For the local tests, twelve 2.16 GHz Intel Core 2 Duo iMacs with 3 GB of RAM running

Mac OS 10.5.7 each ran 5 peers. One 2.20 GHz Intel quad-core Linux machine with

500 GB of RAM, running Fedora Core 9 ran the bootstrap and source nodes. In total,

there were 60 peers, one bootstrap, and one source running on a local network

For these tests, each packet was 640 bytes, representing 50 ms of one layer of the

stream. There were 8 possible layers, which adds up to a stream rate of 800 kbps

(or 100 kBps). The maximum number of children a node could have was 6, and that
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Table 6.1: Configurations used in local experiments
Pkt size (bytes) 640 640 640 5120 640
Pkt time (ms) 50 50 50 50 50

Max quality 8 8 8 8 8
Rate (kbps) 800 800 800 800 800

Peer bw (kbps) 835.92 835.92 835.92 6437.52 835.92
Source bw (kbps) 835.92 875.04 875.04 7000.32 875.04

∆ (sec) 5 5 5 5 5
ω (∆s) 7 7 7 8 7

Node degree 6 6 6 6 6
Duration (sec) 600 600 600 600 600

Overlay rand file file file rand

was the number of parents a node was trying to acquire. This leaves an optimum

bandwidth of 133 1/3 kbps (or 16 2/3 kBps) per connection. Source bandwidth was

varied, but peers’ outgoing bandwidth was kept equal to the stream rate, plus a small

amount for overhead associated with piggybacking packet announcements (see page

17). ω was also varied between 7∆ and 8∆. The experiments lasted 10 minutes each,

or 120 ∆ intervals.

6.1.2 Results

The results from running local experiments generally matched the ns simulation re-

sults [5] with one notable exception in efficiency for a few seconds after startup phase

ends. That is discussed at the end of this subsection.

Change in ω

The maximum depth for local tests was 4, which would set ω = 7 ∗∆. When varying

to ω = 8 ∗∆, there was an increase in average quality, but only slightly, as shown in

figure 6.1.
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Figure 6.1: Comparing quality by ω

(a) ω = 7 ∗∆ (page 48) (b) ω = 8 ∗∆ (page 48)

Predefined vs. Bootstrap-defined Overlay

Some tests ran with a predefined overlay designed to distribute content effectively,

which means that each peer was told its parents beforehand. Comparing this to

random overlays generated by the bootstrap node on the fly, there is no significant

difference in average quality. The only noticeable trait is that in the random case,

peers took longer to connect to steady parents, but this was before startup phase

began, so it had no effect on transmission.

Source Bandwidth changes Received Quality

When changing the source bandwidth, we expect to see a higher quality sent by the

source. When that translates into the source having fewer packets at the beginning

that are never sent, we expect to see a commensurate increase in peer received qual-

ity. Conversely, when this translates into more duplicate packets being sent out, we

only expect to see a marginal increase in peer received quality, because hopefully

those duplicate packets were already being swarmed around. Comparing the quality

sent and received CDFs (per timestamp, not average as in figure 6.3) shows us that
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Figure 6.2: Comparing quality by overlay type

(a) Predefined Overlay (page 49) (b) Bootstrap (page 49)

switching from 0% extra to 5% extra is indeed a shift in source output, but the shift

in peer input occurs mainly when the quality was already 5 or higher.

Dip in efficiency

There was one property that all runs had that was unexpected, deviating from the

simulation results. Immediately after the startup phase, there is a severe drop in

bandwidth efficiency in all connections except connections with source. This is only

visible if you examine efficiency over time, as in figure 6.4. When examining the logs,

we see that this is due to the peers not being able to schedule the whole 5 seconds (∆)

of data directly after the normal phase begins. At this time, I am unable to determine

the cause of this anomaly, and the reason it did not appear in simulation results. It

represents a very small drop in overall quality, so this does not seriously threaten

PRIME’s effectiveness, but nevertheless it should be identified and eliminated in the

code’s next iteration.
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Figure 6.3: Comparing quality by source bandwidth

(a) Source output with 0% extra bandwidth
(page 50)

(b) Source output with 5% extra bandwidth
(page 50)

(c) Total input with 0% extra bandwidth (page
51)

(d) Total input with 5% extra bandwidth (page
51)
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Figure 6.4: Dip in efficiency for most connections

(a) Diffusion connections for a level 2 peer (page
52)

(b) Swarming connections for a level 1 peer (page
53)

6.2 PlanetLab

6.2.1 Configuration

PlanetLab [6] is a set of computers spanning the globe intended for developing and

testing planetary-scale services. To use it, a researcher get a “slice” from his school’s

site coordinator, and then adds nodes that slice, giving the researcher “slivers” on each

node on which to run experiments. For this study, I first acquired several hundred

nodes, the ran small tests to determine if they were suitable for these experiments.

After removing those that failed to respond to login attempts or install basic software,

I was left with approximately 150 nodes, all of which ran a single peer for each exper-

iment. The source and bootstrap nodes were hosted locally on the aforementioned

Linux computer.

For the PlanetLab tests, all factors affecting the stream rate were identical to the

local tests. The degree was varied between 4, 6 and 8. Source bandwidth remained

capped at the stream rate, but often the realities of the Internet gave the source

node a lower bandwidth than the stream rate, resulting in lower quality for the entire
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Table 6.2: Configurations used in PlanetLab experiments
Pkt size (bytes) 640 640 640
Pkt time (ms) 50 50 50

Max quality 8 8 8
Rate (kbps) 800 800 800

Peer bw (kbps) 835.92 835.92 835.92
Source bw (kbps) 835.92 835.92 835.92

∆ (sec) 5 5 5
ω (∆s) 8 8 8

Node degree 4 6 8
Duration (sec) 600 600 600

Overlay rand rand rand

swarm. ω remained at 8, although in normal circumstances, ω would vary with

degree, because it changes the likely depth of the mesh. Like the local tests, these

experiments lasted 10 minutes each, or 120 ∆ intervals.

6.2.2 Results

Results from the PlanetLab runs were much more heterogeneous than those from the

local test. Peers often had lower bandwidth than was being throttled, which allowed

other connections to have very high bandwidth, as only the aggregate bandwidth

is throttled, not per connection. To manage heterogeneous bandwidth, the PRIME

protocol attempts to enforce a common per-connection speed. High-bandwidth users,

instead of having potentially higher-bandwidth (and potentially not) connections,

simply connect with more peers. A low-bandwidth peer might have only enough

bandwidth to connect to one or two peers. Unfortunately, this implementation as-

sumed the ability to control bandwidth, so this functionality was not implemented.
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Figure 6.5: Diffusion times over PlanetLab (page 55)

Base Performance

Despite the heterogeneity of results, several of the metrics measured results perfectly

in line with expectations. Diffusion time is one such measurement. Most packets

reach the next level in 5 seconds or less, as shown in 6.5

The logs show that the source sent only 82% of the packets, a fact that agrees

with the diffusion rate graph on page 56, which shows the diffusion rate for level 1

peers as between 650 and 700 kbps. Given that, we expect average quality to be 6.5

or worse. Figure 6.6 shows that efficiency is not that high.

As is evident in figure 6.7, the main inefficiencies lie in high-bandwidth connections

not being effectively used. On the low end of bandwidth, total and useful bandwidth

are nearly the same, but once total bandwidth increases, effective bandwidth usually

cannot raise to the same level. Implementing a system where peer degrees are dynamic

would likely fix this inefficiency.
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Figure 6.6: Average received quality over PlanetLab (page 54)

Figure 6.7: Bandwidth utilization over PlanetLab

(a) For diffusion connections (page 57) (b) For swarming connections (page 58)
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Figure 6.8: Bandwidth utilization over PlanetLab

(a) For degree 4 diffusion connections (page 56) (b) For degree 4 swarming connections (page 57)

(c) For degree 8 diffusion connections (page 58) (d) For degree 8 swarming connections (page 59)

Effect of Peer Degree

Comparing the efficiency of the system using degree 6 in figure 6.7 with degrees 4 and

8 in figure 6.8, degree 8 is clearly the least efficient, and degree 4 appears to be most

efficient.

When examining the average received quality for each trial, one can see a clearer

picture. A 4-child system is much better for those at degree 1 because they each can

use more of the source’s bandwidth. Those that are in level 2, for example, benefit

from the degree 8 trial. Degree 6 seems to have the best overall quality.
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Figure 6.9: Average received quality over PlanetLab

(a) Degree 4 (page 54) (b) Degree 8 (page 55)

Unfortunately, there were not enough trials to reach any conclusiions as far as

the best static peer degree, but they did generate some hypotheses. These trials also

showed that PRIME can work in the field, and that it needs higher bandwidth for

the source and heterogeneous peer degree.
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Chapter 7

Conclusion

This paper shows the challenges of live, peer-to-peer streaming, and how PRIME

handles them. It introduces one PRIME impementation, and the challenges inherent

therein. It shows the ways in which one would evaluate the PRIME protocol, and

evaluates several experimental trials. With one notable exception, these experiments

matched expectations and the simulation tests. I believe this system is fit for further

development, building on top of the current code base. We are now one step closer

to realizing the goal of peer-to-peer live streaming, and getting it into the hands of

consumers. Here are the next steps toward that goal, in no particular order:

• Pair this with a video encoding method, so that we could be actually streaming

video, instead of dummy packets. (The code is marked in every place it would

need to be changed for that)

• Add the method for having a dynamic node degree based on bandwidth. This

would accommodate the varying bandwidths of consumers on the Internet.

• Test further on PlanetLab, to ensure that the system has the properties we

want over such a heterogenous space.
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• Finally, build a user-friendly interface so that anyone can use it.

If we can do that, we could be well on our way to a more open Internet.
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Appendix A

Full-Quality Graphs
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Figure A.1: Average quality with ω = 7 ∗∆, source having 5% extra bandwidth on a
predefined overlay

Figure A.2: Average quality with ω = 8 ∗∆, source having 5% extra bandwidth on a
predefined overlay
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Figure A.3: Average quality with predefined overlay, source having 5% extra band-
width and ω = 7 ∗∆ on a random mesh

Figure A.4: Average quality with a random mesh, source having 5% extra bandwidth
and ω = 7 ∗∆ on a random mesh
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Figure A.5: Source sent quality per timestamp with source having 0% extra band-
width and ω = 7 ∗∆ on a random mesh

Figure A.6: Source sent quality per timestamp with source having 5% extra band-
width and ω = 7 ∗∆ on a random mesh
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Figure A.7: Quality per timestamp with source having 0% extra bandwidth and
ω = 7 ∗∆ on a random mesh

Figure A.8: Quality per timestamp with source having 5% extra bandwidth and
ω = 7 ∗∆ on a random mesh
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Figure A.9: Bandwidth utilization for the diffusion connections of a level 1 peer,
source having 0% extra bandwidth and ω = 7 ∗∆ on a random mesh

Figure A.10: Bandwidth utilization for the diffusion connections of a level 2 peer,
source having 0% extra bandwidth and ω = 7 ∗∆ on a random mesh
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Figure A.11: Bandwidth utilization for the swarming connections of a level 1 peer,
source having 0% extra bandwidth and ω = 7 ∗∆ on a random mesh

Figure A.12: Bandwidth utilization for the swarming connections of a level 2 peer,
source having 0% extra bandwidth and ω = 7 ∗∆ on a random mesh
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Figure A.13: Average received quality on PlanetLab with degree 4

Figure A.14: Average received quality on PlanetLab with degree 6
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Figure A.15: Average received quality on PlanetLab with degree 8

Figure A.16: Diffusion times on PlanetLab with degree 6
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Figure A.17: Diffusion rates on PlanetLab with degree 6

Figure A.18: Bandwidth utilization for diffusion connections on PlanetLab with de-
gree 4
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Figure A.19: Bandwidth utilization for swarming connections on PlanetLab with
degree 4

Figure A.20: Bandwidth utilization for diffusion connections on PlanetLab with de-
gree 6
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Figure A.21: Bandwidth utilization for swarming connections on PlanetLab with
degree 6

Figure A.22: Bandwidth utilization for diffusion connections on PlanetLab with de-
gree 8
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Figure A.23: Bandwidth utilization for swarming connections on PlanetLab with
degree 8
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