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THESIS ABSTRACT

Hannah Pruse

Bachelor of Science

Computer and Information Science

June 2013

Title: Automating USB-Based Host Fingerprinting with Embedded Devices

Approved:
Kevin Butler

It is important to be able to confirm a computer’s identity when performing secure

transactions. When plugging a USB device into a host, one needs to be sure that the machine

is really what is expected, and not a malicious device answering in its place. This paper presents

a method of fingerprinting a machine to determine its operating system and model based on the

timing of the events in a transaction with a USB device. We chose USB for this task because it

is ubiquitous–almost every device has a USB port. Additionally, USB is a master-slave protocol,

which ensures that the device gets answers from the host. Unlike performing over a network,

where it is difficult to determine which machine is answering, our scheme uses a direct connection

to analyze the unique physical characteristics of the host. We show that small and inexpensive

commodity devices, which have relatively low granularity in timing measurements, are sufficient

for this task.
This thesis includes co-authored material.
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CHAPTER I

INTRODUCTION

Determining the identity of a computer has become a problem of considerable importance,

especially when trying to determine the trustworthiness of a machine. For example, protocols

based on any form of trusted computing principles such as IMA [53] rely on identifying a host

machine’s trusted platform module (TPM). Within transactions between two machines, a

malicious third party can intercept messages and answer in place of the intended target, often

with aims of validating the target as something it is not. Such attacks are known as “cuckoo

attacks” [47] and are frequently used against distance bounding systems [5] in attacks such as

Mafia fraud, in which a man-in-the-middle adversary attempts to prove that it is in proximity

to a legitimate prover, when it may not be. Computer forensics investigators constantly rely on

computer identity in criminal cases and in defending against cyber crime.

This research focuses on developing a scheme to fingerprint a given machine and to

determine its operating system and model. Since the USB interface is virtually ubiquitous, and

is thus available on almost every computer and device, we wish to use USB communication as a

means to identify a machine. Various operating systems and system hardware (i.e., USB busses)

can have an influence on the speed and types of events present in any given USB transaction,

and thus it may be possible to discover patterns or classes of attribute durations and sequences

that define a particular type of machine. Unlike previous fingerprinting schemes, such as wireless

device identification [31], Xprobe [56], and Nmap [38], we use a physical connection to identify

hosts, rather than relying on visual channels [39] or remote network monitoring, which can yield

a quicker result and more accurate results. The combination of software variation amongst

USB stacks, differences in USB host controllers, and variations in manufacture of the bus,

chipsets, and other hardware portions allow us to fingerprint machines based on the timing of

USB messages they send to a device connecting to them. Consequently, we call our technique

USB Fingerprinting, and demonstrate its practicality and efficacy.

While USB analyzers can be used to get fine-grained information to better make these

decisions, they suffer from being bulky, expensive, and exotic. To make USB Fingerprinting

broadly adoptable, we demonstrate that a USB mass storage device running a modified Linux
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kernel can be used to effectively and automatically perform the collection of USB data. Such a

device is small and inexpensive, and feasible for everyday users.

Thesis Statement: Host fingerprinting can be performed on small, cost-effective embedded

flash drives.

The basic idea behind the fingerprint method is to use USB event information collected

from several types of machines to train a classifier, and then identify hidden patterns within the

data that would be indicative of a particular make or model of machine. The model resulting from

the classifier learning process can then be used to identify USB information that had previously

been unseen. Various classifiers were used in the development of our work, but we found decision

tree-based classifiers to perform most effectively. Based on this framework, we collected over 3750

traces of USB operations from over 75 different machines, representing a diversity of makes,

models, and operating systems. Through the use of feature extraction and machine learning

classification techniques, we can differentiate between operating systems with 79.7% accuracy.

We show that our current data granularity is insufficient to differentiate between individual

machines, but we propose alternate methods for retrieving and analyzing data that yields more

accurate and reliable results. The limited granularity of the USB event messages from the device

is a constraint that limits our accuracy. In future work, we hope to address this issue by recording

events at a lower level and to consider sequencing as an attribute and expand possible applications

for USB fingerprinting. The portion of this work in focus is the classification aspect, as well as

the data collection device setup. Furthermore, we will only consider the timing of events as an

attribute.
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CHAPTER II

LITERATURE REVIEW

Fingerprinting

Fingerprinting has become a popular method for device identification, and has been used

to identify home electronics [23], websites [10, 21, 37, 44, 25, 26], the operating system of virtual

machines [22, 43], and the source of phone calls [4]. The concept of fingerprinting stems from

leveraging measurable signals caused by hardware imperfections in analog circuitry to uniquely

identify devices. Fingerprinting has been extensively studied and used for identifying RFID smart

cards [13], Ethernet cards [20] and 802.11 devices [36, 17, 42, 8, 6], as well as users [45].

Remote fingerprint techniques identify devices using only characteristics of their

communication [13]. Identifying machines remotely has been a popular method, resulting in tools

like Nmap [38] and Xprobe [56] that detect operating systems by examining network traffic. While

effective in some cases, network fingerprints can be fooled by systems that spoof operating systems

at the network layer, such as Honeyd [48]. Other remote schemes, such as work by Kohno et

al. [31] and Jana et al. [28], identify machines using clock skew data. However, it has been shown

that TCP and ICMP timestamps can be disabled or manipulated [46, 40, 54]. Semi-persistent

network data has also been used to fingerprint devices [27, 45] and browsers [15, 29]. Services

to fingerprint browsers are available commercially, and are of particular interest to advertising

agencies [3].

While many remote fingerprinting methods exist, there has been little previous exploration

into host identification using USB traffic through a physical connection. A recent work by Wang

et al. [55] uses USB-equipped smart phones to detect the host operating system; however, the

authors do not achieve OS version-level granularity as we are able to achieve with our method.

Butler et al. [32] present a USB fingerprinting method that feeds data from a USB protocol

analyzer into a decision tree classifier. Our work obtains comparable accuracy while considering

finer-grained machine attributes over a larger corpus of hosts, and provides further insight into the

nature of the collected USB.

Machine learning classification techniques have been deployed to create accurate

fingerprinting schemes for user re-authentication in smartphones. Li et al. [33] used feature
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extraction and SVMs to recognize an individual smartphone user’s finger movements. Similarly,

we leverage basic features to calculate additional attributes for more accurate classification.

Our approach offers several benefits over existing machine classification methods. Work

proposed by Desmond et al. [36], can take one hour at a minimum to collect enough data to

perform classification. With our scheme, we can collect data and make a decision in at most

4 minutes, and in as few as 12 seconds. Device identification work by Gerdes et al. [20] and

Brik et al. [8] differentiates unique network cards of the same model, but is only applicable

to network devices. Our USB Fingerprinting technique is applicable to any device using the

virtually ubiquitous USB protocol. Network-based OS classification methods such as Richardson

et al.’s [52] suffer from more noise than our USB approach, due to its direct connection to the

machine. By using the same classifiers investigated by these authors, we are able to distinguish

between individual OSes with 99% accuracy. Given an adequate sample size, we are even able to

reach 95% confidence of the identity of an individual machine.

Compromise Detection

Network-based (NIDS) and host-based (HIDS) intrusion detection systems [14, 41, 35, 30]

can be used for compromise detection. NIDS analyze incoming and outgoing network traffic in

order to determine if a system has been infected. HIDS usually refers to software that examines

audit logs for suspicious activity, looking for changes in user behavior. Attackers gaining kernel

control, however, will be able to control all other software running on a computer, including HIDS.

Garriss et al.’s trustworthy kiosk system [19] uses a smartphone to remotely verify system

integrity based on trusted computing techniques. A disadvantage of this approach is the fact that

a separate visual identification channel is required. Butler et al.’s Kells system [9] provides similar

guarantees, but uses a USB flash drive as a remote verifier. Ensuring physical interaction with the

target machine eliminates the need for a visual channel, but the approach is still susceptible to

relay attacks, such as Parno’s “cuckoo” attack [47].

Distance Bounding

Distance bounding protocols have been used in numerous systems, from computers to

radio. Rasmussen et al. [51] demonstrate the need for fast processing speeds on any system
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implementing such protocols to prevent distance spoofing. Ramaswamy et al. [50] showed that

processing delay within networks has become a significant concern, and an individual packet can

experience increasing delays. Since our method performs the fingerprinting task over a direct

physical connection, we are able to obtain more accurate timing measurements than possible over

a network. VIPER [34] demonstrates software attestation with embedded systems, and also shows

resilience to similar relay or proxy attacks.
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CHAPTER III

BACKGROUND

This chapter includes co-authored material from Ryan Leonard and Adam Bates.

USB Protocol

Overview of USB Operation

The USB standard defines a software protocol, firmware protocol, and a set of hardware

used in communication between a host and a device across a serial bus [12]. Since USB is a

master/slave protocol, the host initiates all interactions. As shown in Figure 1, USB stacks vary

from host to host, and are made up of a host controller, a controller driver, a USB driver, and

host software. Many machines today support USB, including personal computers, servers, tablets,

routers, and many embedded systems. The focus of this work is on the USB 2.0 protocol because,

while the USB 3.0 “SuperSpeed” protocol has been codified, it has not been as widely deployed.

For a USB device to be used with a given host, it must go through a setup procedure

consisting of three steps. First, is the bus setup, during which a set of standard electrical signals

is relayed between a host and device between their respective serial interface engines (SIE).

This step indicates to the host that a device is connected; the two parties then handshake and

negotiate parameters such as communication speed of the device, (high speed, full speed, or

low speed). The second step is the enumeration process, whereby the host queries the device to

determine information about it, such as the device’s type (e.g., mass storage, human interface

device), its manufacturer and model, and the functionality it supports, among other parameters.

Finally, further interactions are passed up to the host’s client software through the standard

system call interface (e.g., read(), write(), ioctl()) and to the device’s high-level USB functions

(e.g., providing an interface to internal storage, relaying video from a webcam).

Enumeration

In this work, we analyze the enumeration period of a USB interaction to make inferences

about a host’s USB stack. The enumeration period is a good candidate for analysis, as extensive

interaction with the host system is not required to force the host to enumerate a device. Thus,
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FIGURE 1. Overview of host USB Stack.
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GetDescriptor (Device)

Setup Transaction
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Setup Transaction

In/Status Transaction

FIGURE 2. Excerpt from USB Enumeration. Control transfers starts are marked by dotted line,
and transactions by solid line. Individual packets are not pictured.

it is possible to capture the USB enumeration process on any physically accessible machine, even

when lacking login credentials. Additionally, the enumeration process is well defined in the USB

2.0 specification [12], making it easy to interpret. While specific message content and timing will

vary depending on the host’s USB stack and the connecting peripheral, the presence and purpose

of the enumeration period is host and device agnostic.

The enumeration process is a host-driven operation that consists of a three-layered

protocol. At the top layer, control transfers send abstract information about a device to its

connected host. An example of a control transfer is GetDescriptor(String Manufacturer),

which informs the host of the device’s manufacturer. At the middle layer, transactions offer a

logical abstraction for bundles of packets. A notable transaction is the setup transaction,

which describes in detail what the following transactions will be; once the content of the setup

transaction is known, the content of subsequent messages is well defined. Note that interrupt
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requests (IRQ) on a device must be signaled at the end of each transaction, to inform the

device’s software to queue a future transaction. At the bottom layer there are USB packets, which

transmit the actual data. Each control transfer is formed by two or more transactions, and each

transaction is composed of two or more packets. A sample composition of the USB enumeration

process is portrayed in Figure 2.

Classifier Background

Using information extracted from USB enumerations, we employ machine learning

classification to predict different characteristics of a target machine. We use the popular machine

learning software Weka [24], as it is well respected in the data mining community, and it also

provides extensive support for various machne learning algorithms.

In an effort to increase accuracy and ensure the robustness of our models, we analyzed

our data with several different supervised learning classifiers. Supervised learning algorithms

generate an inferred function to classify previously unseen data instances. They are built with

a set of training data instances that contain a vector of attributes, as well as an expected class

label. Supervised algorithms then analyze this data, outputting a classification model. Most of

the algorithms we use are decision tree-based. We found that decision trees are an excellent fit for

USB Fingerprinting data, in which individual features are often sufficient to rule out large subsets

of the possible class labels.

J48 Decision Tree The first classifier used in analysis was the J48 decision tree, which is an

implementation of Quinlan’s C4.5 algorithm [49]. J48 builds a tree classifier by examining the

information gain of each attribute, then branching on the attribute yielding the highest amount

of information for classification. Information gain is based on the entropy, or the measure of

uncertainty, in an attribute. This branching occurs recursively until all instances being examined

are of the same class, then a leaf node is created.

Boosting In general, boosting is an ensemble learning method, meaning that it combines

multiple weak learner classifiers to create a strong learner and improve accuracy. We employ

the AdaBoost algorithm [18], created by Freund and Schapire, which is one of the best known

boosting algorithms. AdaBoost trains several weak classifiers, such as decision stumps, then
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adjusts the weights of each misclassified instance. Each subsequent run of this classifier becomes

more and more accurate, as the weights will adjust how instances are classified. Boosting is a

common technique to increase accuracy, which is the main reason it was chosen. We used Decision

Stumps [2] as the classifier to be boosted, as they are significantly more efficient than J48 trees.

Random Forest The Random Forest classifier [7] proposed by Breiman and Cutler is known

for its flexibility and high accuracy [11]. This classifier generates multiple decision trees, providing

each with a random subset of the total feature vector, then classifies the instance with each

tree. The overall class label is chosen by selecting the mode class label reported by all the trees.

Random Forests are extremely efficient in the learning phase.

Support Vector Machines Support Vector Machines (SVMs) attempt to find a large margin

hyperplane that separates two classes. This classifier generally achieves high accuracy, as the

dividing plane is only affected by a small number of nearest points, or support vectors, thus

allowing for less opportunity for misclassification. When more than two classes are present,

a separate hyperplane can be learned for each class. SVMs are a very popular choice in many

machine learning applications, since their accuracy is usually higher than other linear classifiers;

however, our results showed a much lower accuracy using Weka’s SMO implementation of SVMs

than with the many decision-tree-based algorithms that we used. Rationale for this reduction in

accuracy is discussed in later sections. Additionally, when working with our full data set we found

the building of SVM models to be prohibitively slow.

9



CHAPTER IV

METHODOLOGY

With our fingerprinting scheme, we aim to identify several unique features of a machine,

and eventualy be able to identify a single machine’s unique identity. In this particular work, we

focus on identifying a host’s operating system. Individual machine identity is also explored.

Operating System Classification

For general operating system classification, we selected the J48 and Boosted Decision

Stump algorithms. We began by attempting to build a model that precisely identified the USB

enumerations of different operating systems. Our data corpus for these trials, described in Table

2, consisted of the 3 major operating system families. We first built a model for the different

classes of OS, disregarding version numbers. Following the default Weka parameters, the model

was built on 66% of the dataset, with 34% withheld for evaluation.

For operating system classification, we also attempted to use SVM classifiers on a subset

of our features to improve accuracy; however, we saw a distinct drop in accuracy. This failure

suggests that combinations of features, which can be easily represented by decision trees, are more

helpful in representing the decision boundary between the classes.

Since our data was best suited to a tree-based classifier, we also considered the Random

Forest algorithm for this work, due to its high efficiency and high accuracy. RandomForest works

similarly to bagging J48 trees; however, since we have very few attributes in this iteration of tha

data corpus, Random Forest’s multiple trees proved unnecessary. The model obtained by Random

Forest yielded the same results as a single J48 tree, and thus we opted for the more efficient J48

algorithm.

Individual Machine Classification

Next, we attempted to build a model that allowed for the identification of a unique

individual machine. We used the dataset described in Figure 2, though we altered the class

variable to reflect the individual machine, rather than its operating system. Data was partitioned
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across machines. We once again used the J48 and Boosted Decision Stump algorithms,

withholding 34% of the data for later evaluation of the model.
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CHAPTER V

DATA COLLECTION

One of the goals of this work was to use small, commodity devices that would be accessible

to the general user population. In previous work [32], we used an Ellisys USB analyzer (pictured

in Figure 3) for data collection, which was able to collect the USB timing information at a

nanosecond granularity; however, it was large, expensive, and required us to manually insert and

remove the device 100 times per collection trial. This made using such devices impractical for

everyday users. Therfore, this work presents the idea of using a modified USB mass storage device

to obtain data traces for analysis. While the granularity of the readings from this device is lower

than larger tools, we show that positive results can still be obtained with reasonable accuracy.

The most significant contribution of this work was the development of this data collection device.

Device Setup

For our data collection device, we chose to use a Gumstix Overo Fire Computer-on-

module (COM) [1] pictured in Figure 4, as it was fully modifiable and offered the same form

and functionality as a standard USB mass storage device. It also came equipped with three

USB ports that supported host, device, and on-the-go (OTG) protocols. This was important,

as our collection process required the device to be connected to both the host machine, as well

as a laptop machine running a console into the device. The Gumstix was also inexpensive and

allowed the flexibility of installing a custom Linux kernel. The Gumstix is an Open Multimedia

Applications Platform (OMAP) 3530-based COM with a ARM Cortex-A8 processor core.

Linux Kernel

Initially, the Gumstix COM was simply a blank device. We needed to be able to modify

the kernel to make the device appear as a mass storage device to hosts, and we also needed to

modify kernel drivers to log and timestamp the USB protocol messages. We used a micro SD

card to install and configure Linux, as it was easier to format and install than the NAND memory

embedded in the device itself. It should be noted, however, that the NAND memory can still be

written with an image from the SD card, making the device more user-friendly for everyday use.
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FIGURE 3. Ellysis USB Explorer 200.

FIGURE 4. Gumstix Overo Fire COM.

First, we configured and installed OpenEmbedded Linux on the Gumstix COM. The

Ångstrom distribution was chosen due to its versitility and ability to run on devices with very

limited amounts of memory. Since our eventual goal is to create a collection device usable by

the average computer user, we wanted an operating system that would could run efficiently on a

variety of small devices. We used a micro SD card to install and configure Linux, as it was easier

to format and install than the NAND memory embedded in the device itself. It should be noted,

however, that the NAND memory can still be written with an image from the SD card, making

the device more user-friendly and more cost-effective, should our device be productized.

For the device to capture useful and fine-granularity timestamps, we altered the kernel

configuration files to provide realtime support and create a pre-emptable kernel. Realtime kernels
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ensure the accuracy of time-sensitive processes by calculating the maximum response time to any

application event. A pre-emptable kernel allows high-priority processes to interrupt or “pre-empt”

the current running process, regardless of the current process’s task. This drastically reduces

latency, resulting in more accurate timestamps. To further reduce latency in timestamps and

improve accuracy, we further altered the configuraton files to disable all other USB debugging and

logging, which may have slowed down the response of the timestamp.

Implementing the timestamps required altering two main driver files: storage common.c

and file storage.c. In these files, the driver makes several calls to VDBG, which writes information

about the USB transactions to the syslog. In these logs, we also want a nanosecond-granularity

timestamp to be placed on each entry, giving us information about how long each event took to

be processed. We changed the definition of the VDBG macro to include a call to the kernel-space

do gettimeofday() routine in a print statement. This marked each entry with a date in Unix time

from which to base our analysis.

To compile and install the new Linux kernel for the Gumstix, the Bitbake build tool

was employed to streamline the cross-compilation process. In Bitbake, small files called recipes

determine the files and configurations needed for each build. To include the desired functionality

into our version of the Linux kernel, we wrote a new recipe indicating the kernel version, patch

files, and configurations that we needed.

When compiling the kernel, numerous errors occured which required altering the Bitbake

code itself. Most errors were resolved by simply adding include directives or removing debugging

code. With the bug fixes in place, the bitbake cross-compiler gave no issue, and thus our changes

remained in the bitbake codebase.

Setting up the Gumstix as a mass storage device

The Gumstix could be configured to appear to hosts as a variety of USB devices. Our

initial tests showed that a USB mass storage device was the best choice, as the traces from its

interactions with the host were far more stable than devices with high I/O, such as USB webcams

and mice.
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Using the Gumstix COM, we are able to emulate manual device insertions and removals

with a simple script by using the modprobe command to insert and remove the g file storage

module 50 times per trial.

A Mass Storage Gadget (MSG), such as our Gumstix COM, can be configured to appear

to hosts as up to 8 SCSI disk drives, or Logical Units (LUNs). The gadget stores information

on its LUNs in either a file or a block device called the backing store. Since we are only using a

single device and only need a single LUN, and because the Gumstix has its own filesystem, we

chose to use a backing storage file for the device. This file needed to be created, formatted, and

partitioned on the Gumstix as a one-time setup step before modprobe could be turn on the file

storage module.

The backing storage file was created to represent a simple 64MB device using the following

command:

dd bs=1M count=64 if=/dev/zero of=/root/data/backing\_file

The file was then partitioned and given a filesystem with a series of commands given to

the fdisk tool. The disk was given 8 sectors, 16 heads, and 1024 cylinders. A new partition was

created to span the entire disk, and Windows FAT32 file system was installed. We chose FAT32

because the device would be used on Windows hosts, as well as Macs and Linux, and FAT32 is

recognized by all three operating systems.

With the backing store created, the g mass storage module that controls the mass storage

functionality could be interted using the modprobe command; the path to the backing store file is

passed to the modprobe command:

modprobe g\_mass\_storage file=/root/data/backing\_file

After this initial setup, a small bash script installed on the Gumstix ran the modprobe

insertion command, followed by a modprobe -r to remove the mass storage module in a loop. A

5-second sleep period was inserted between the insertion and removal to ensure that all data was

recorded properly. Each time the device was inserted into a host, this script would be run, which

would collect the 50 traces in the device’s syslog.
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CHAPTER VI

DATA CORPUS

The data we are using is a series of files containing Linux system log messages detailing the

communication between an operating system and the Gumstix COM. As described in Section 5.1,

the Gumstix timestamped messages from its USB drivers and saved them to its system log. We

then offloaded the collected syslogs from the device and concatenated them together. These large

files made up our data corpus.

We gathered data from machines of three different operating system types: Windows,

Linux, and Mac. Due to issues described in Section VIII, we were able to get significantly more

data from Mac machines than from Windows and Linux, which did impact our results. Table 1

shows the distribution of machines from which we collected USB trace data.

OS Host Count
Linux 7
OSX 51
Windows 17
TOTAL: 75

TABLE 1 Number of machines included in data corpus.

Data Preprocessing

As with most data mining tasks, the majority of the time and effort of this project

was spent performing pre-processing on the data. Throughout the project, we often needed to

iterate back through the knowledge discovery and data mining (KDD) process and return to the

pre-processing stage when unsatisfactory classification results were obtained. By altering the way

in which the data was formatted and preprocessed, we were able to refine our classification and

association results, thus increasing their respective accuracies.

Since the original data was in a system log format, it was inappropriate for data mining

in its original form. Not only was it formatted incorrectly for Weka, but it also contained

extraneous information that is not needed for classification. Furthermore, since we wanted to

focus on the timing of each event, we needed to obtain each event’s duration. The original text

files only contained the absolute starting time of the event, so the duration attribute needed to
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be calculated. All of these factors required a number of pre-processing steps to be done first to

reformat the data, remove unwanted attributes, and synthesize the desired attributes.

Reformatting

The original data is stored in numerous text files in the form of a Linux system log, with a

single entry per line. The data entries are in the following format:

Month day hour:minute:second device_name gadget_name: seconds microseconds event

An example is:

Mar 9 15:27:05 overo g_file_storage gadget: 1299684425 200698 get device descriptor

The first and most important step was to get the data into a CSV format for use as input

to Weka. To accomplish this, we wrote a script in Perl to extract the relevant information from

the text file, and output it in a CSV format. Specifically, we extract each event’s name, and

determined the machine the event came from by extracting its name from the file name. Using

the machine type, the script can then easily determine the make (Mac or Dell) and use that in

place of the model number. The script also calculates the duration of each event by subtracting

the event’s absolute starting time from the following event’s absolute starting time.

Some of the event names have numeric parameters that differ slightly from instance to

instance, such as thread PIDs and buffer sizes. To create a smaller decision tree and a more

effective classification, the script was modified to strip the parameters out of the event name,

and to place the events into categories. These categories are used as the event name in the final

CSV file.

The new CSV file is generated in the following format:

Machine Type, Event Name, Duration (in microseconds)

In all classification methods, “Machine Type” is used as the class attribute.

Corruption Removal

In a small subset of the original Dell data files, some of the system log messages

appear to have been corrupted. Some of the single-line events seemed to have overflowed and are

combined with others. In other cases, the event name is completely corrupted beyond recognition
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and is incomprehensible. To remedy this, we modified our Perl script to identify and remove these

corrupted instances by only matching valid events.

Since the percentage of corrupted instances was very low, this removal did not affect

the accuracy or integrity of results. Dealing with the corruption is a large problem, however,

when attempting to take event sequence into consideration as a classification attribute, because

removing, ignoring, or trying to pull apart the events can alter the sequencing and lead to false

results. However, for this iteration of the project, we am mainly focusing on considering timing as

an attribute.

Resizing Dell Files

We began classifying data from Mac and Dell machines using decision trees, but found

that data files for the Dells were significantly longer than for Macs. This extra data per file, in

combination with the larger corpus of Dell machines compared to Macs, contributed to overfitting

of the decision trees for Dells, drastically affecting the classification accuracy. When trained with

cross-validation, the classifier model was very good at classifying the Dell instances and the overall

accuracy for the tree was decent, since most of the cross-validated training data contained Dell

instances. However, the classification accuracy of Mac instances was below 50% and the tree was

not representative of the data we would use as a test set in the future.

Since these results were unsatisfactory, we went back in the KDD process and returned

to the preprocessing stage. By cutting out many of the entries in the Dell files, we ensured that

both types of files were the same length. From a visual inspection of the Dell files, the removed

data did not add significant information to aid in classification, and was thus safe to remove;

however, in future iterations we will try to formulate a more effective method to even out the data

files, as the removed data could have possibly contained some significant pattern to help train the

classifier. In future iterations, we plan to simply gather more Mac data to even out the file sizes.

Another method would be to possibly take in file length as another attribute that may help in

identifying a machine, since it has been observed that all Dell files are significantly longer than

those of the Macs.
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Reducing Granularity of the Class Variable

For the initial classification tests, we tried identifying the individual model of each machine,

and thus the machine type attribute had 6 possible values (see Table 1 for the model types). The

decision trees resulting from this classification displayed poor accuracy. This was due to the fact

that the class attribute had too many possible values, and that we were only considering a single

attribute for classification purposes.

Since we were unable to increase the number of attributes in the limited time frame we had,

we chose to instead reduce the granularity of the class variable and only considered the make of

the machine (a Dell or a Mac), instead of the individual model. By doing so, the machine type

attribute had only 2 possible values, giving the classifier better accuracy. The accuracy was also

increased due to the fact that the Macs and Dells were reasonably distinct from one another.
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CHAPTER VII

ANALYSIS

For this iteration of the work, there are two main aspects of a machine that we aim to

identify with our fingerpringing scheme: operating system, and the individual machine identity

itself. With the current dataset, we have found success with identifying the first case with

reasonably high accuracy. Identifying a completely unique machine, however, is a more difficult

problem. Not only does the granularity of data play a large part in identification accuracy, but the

problem itself must be treated as an anomaly detection problem. We later discuss the reasons why

our scheme had less success in this area and the steps we will take in future efforts.

For the first scenario, we focused on operating system identification, using J48 and

Boosted Decision Stumps with a 66/33 percentage split for test and train data. Operating system

identification was successful using this classification model, as we identified Linux, Windows,

and Apple traces with 79.7% accuracy. The higher numbers along the diagonal in the confusion

matrix in Table 2 demonstrate the feasibility of this approach. We note that there is significant

misclassification of Linux machines as Macs. We attribute this to the discrepancy between the

amount of Mac and Linux data we had available.

Actual\Predicted a b c
a = Mac 44365 711 351
b = Dell 9361 16308 302
c = Linux 4699 959 3027

TABLE 2 Confusion matrix for our machine operating system under strafied 10-fold cross-
validation. The diagonal represents correct classifications.

We found that were unable to identify a unique machine with reasonable accuracy,

obtaining only around 9% correct classifications. The confusion matrix for this classification is not

shown, as it is too large to fit on a page. However, the values on the diagonals of the matrix are

very low, indicating that approaching this problem similarly to the operating system identification

is not effective with our current data.

We attribute this significant drop in accuracy to a combination of two factors: too few

features and a rough granularity of data measurements. Another possible issue is the fact that

this problem may be better treated as an anomaly detection problem. We may be able to obtain
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better results with a semi-supervised learning algorithm, which use both labeled and unlabeled

data instances for training. In such an algorithm, we could focus on identifying a “target”

machine against any number of “outlier” machines.

These limitations and our proposals for overcoming them are further discussed in Section

VIII.
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CHAPTER VIII

LIMITATIONS AND FUTURE WORK

Granularity of Events

One limitation of this work is the low granularity of USB messages captured by the

Gumstix device. The modifications to the kernel caused USB messages to be logged directly from

the driver, where the messages are significantly compressed. Ideally, we would like to capture USB

events on a per-transaction level, where transactions are bundles of packets comprising the middle

layer of the USB protocol. Interrupt requests (IRQs) are sent at the end of each transaction,

and give significant information about a system’s USB stack. Using IRQs as features in our

classification, we would be able to ascertain the make and model of a machine with significantly

higher accuracy.

Number of Attributes

Using only a single attribute is not the most effective way to classify data, as has

been shown in the low accuracy of my preliminary tests that attempted to classify individual

models of machines. Since the original data from this project was collected last year, was difficult

to correctly obtain data on the same machines used in the original trials. Furthermore, during the

span of this project, the Gumstix device used for data collection was not set up with our modified

Linux kernel and therefore could not be employed for data retrieval.

Data Gathering

When gathering data on Windows machines in the EMU computer lab, we encountered an

issue that prevented data from being collected from many Windows OS machines. The Gumstix’s

continuous module insertion and removal caused conflicting behavior between the Deep Freeze

system restore software [16] installed on all the lab’s systems. This resulted in a Windows blue

screen and automatic restart of the host. All public lab Windows machines were installed with

this software, and we were unable to obtain permission to temporarily ”thaw” the machine to

further investigate and remedy this error. In future work, we will seek out a solution to this

conflict, or seek more Windows machines without Deep Freeze installed.
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CHAPTER IX

CONCLUSION

This chapter contains co-authored material.

USB Fingerprinting is a technique that can allow for differentiation of machine make,

model, and OS with over 79% accuracy. We showed that a commodity embedded USB flash drive

is sufficient for collecting data, thus obviating the need for expensive dedicated USB analyzers to

perform these operations.

Ultimately, we have discovered that host fingerprinting using variance in USB

communications is plausible, and we have supported this claim through experimentation with

decision tree classifiers. We are able to identify machines of the same operating system with a

high level of accuracy, and we strongly believe that with some slight modifications of approach,

be it via pre-processing or a different choice of classifier, we will be able to identify individual

machine models with a similar technique.

This work opens an intriguing avenue for future investigation, particularly for developing

distance bounding schemes to determine a possible attackers distance. Additionally, our technique

has great potential to be expanded as a protection mechanism for the embedded device itself,

thus acting as a self-monitoring mass storage device. With more data and feature extraction

techniques, we hope to further improve classification accuracy and make our fingerprinting scheme

more flexible for other applications.
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