
Using SQLite to Manage a 16S RNA

Sequencing Analysis Pipeline

Xu Junjie, Kevin

June 2014

Abstract

16S Ribosomal RNA Sequencing is used extensively in analzying

bacterial phylogeny and taxonomy. This project attempts to streamline

the 16S sequencing pipeline using local file databases to replace multiple

flat sequence files used in the pipeline, to ease logistical burdens on the

researcher and enable greater metadata analysis and accountability of

experiments.

Contents

1 Introduction 2

1.1 Reduction in intermediate work products 5

1.2 Reduction in overall disk usage 5

1

1.3 Faster pipeline runs . 6

1.4 Improving reproducibility . 6

1.5 Easier organization and collaboration 6

2 Data Management 7

2.1 Semantic Database Structure 8

2.2 Data Compression . 10

2.3 Data Transformation & Flow 10

3 Results 12

4 Conclusion 15

1 Introduction

The 16S small subunit of bacterial ribosomes are gene sequences found in

all bacteria, which means that the di↵erences within the 16S RNA profiles

can be used as an analogue for species identity. Since the 16S gene contains

both highly conserved and highly variable regions all interspersed together,

the highly conserved regions cut, while the variable regions are amplified

using PCR (Polymerase chain reaction) to classify the organism. HTS (High

Throughput Sequencing) using Illumina sequencers are then used to sequence

the PCR products from the prior step.

The output from HTS forms the start of the computational pipeline. In the

preprocessing stage, poor quality reads are filtered and trimmed. Non-bacterial

2

sequences and other contaminants are then removed. The pipeline then

attempts to produce phylogenetic classification based on sequence similarity

(i.e. OTU Analysis). By comparing the filtered output from HTS against the

already existing taxonomies of over 2 million species, the genus, family, and

order of the sample can be determined.

The majority of the pipeline is executed on the University of Oregon’s

ACISS High-Performance Supercomputer Cluster, and utilizes PBS scripts

(normal shell scripts with extra variables defined to manage job resources) to

execute the di↵erent stages of the pipeline. Figure 1 illustrates the stages in

the pipeline. The FASTQ output produced by the Illumina sequencer is run

through the preprocessing stage of filtering, trimming, and demultiplexing.

The PBS script for the preprocessing stage calls on the Demultiplexer, a

Python script written by Rodger Voelker, which removes the primer attached

to the sequences during the amplification process, and attaches barcodes

(signifying sample origin) to both ends of the paired-end reads in the FASTQ

file. After demultiplexing, the pipeline proceeds to use Trimmomatic v0.32,

an open source tool to trim poor quality feeds from the reads. It uses sliding

window trimming to cut out sequences when the average quality within a

window falls below a certain threshold. Programs in the QIIME package are

then used for clustering and taxonomic classification stages.

Every stage within a pipeline consumes a set of input files and produces a

set of output files, so a single run of an experiment through the pipeline will

produce a large number of work products, which must be managed manually

3

Figure 1: 16S pipeline stages

by the user of the pipeline. Table 1 shows the number of files that will

accumulate through running through the stages in a pipeline.

Stage # of Input Files # of Output Files

Trimmomatic 2 5
Bowtie2 3 7

QIIME (Assign multiplex reads) 3 3

Table 1: Number of files involved in 16S pipeline stages

PIPPING was developed as an extension to PIP[6] (P ipeline Interface

4

Program), a tool that manages bioinformatics pipelines using MySQL databases.

The project focused on the preprocessing (primer splitting, trimming, quality

filtering) stages of the pipeline, preparing the work products from the raw

sequencing data produced by the Illumina NGS machines to be fed into the

analysis (clustering, alignment, phylogenic inference) stages. Instead of using

MySQL databases, PIPPING explored the feasibility of storing work products

in a SQLite database, with the following goals.

1.1 Reduction in intermediate work products

Every stage in a 16S pipeline requires a set of input and output files, which

increases the organizational workload for the user running the pipeline. By

feeding inputs and consuming outputs of stages, a PIPPING database can

contain all data within a pipeline in a single file, reducing the amount of file

management required of the user.

1.2 Reduction in overall disk usage

Reducing the number of intermediate work products in a pipeline also serves to

reduce the amount of disk space consumed by running a pipeline. Temporary

work products produced by converting between one file format to another can

be reduced or eliminated by performing data transformations in PIPPING

and feeding the output to the next stage directly.

5

1.3 Faster pipeline runs

For programs such as Trimmomatic (which requires only one pass over input

data) there is a minor increase in processing speed due to reduced disk access.

Additionally, since format conversions can be performed on-the-fly without

disk access, conversion stages within a pipeline can be skipped, reducing the

overall number of stages in a pipeline.

1.4 Improving reproducibility

A PIPPING database is a container that holds not just the original sequences

from the Illumina Sequencer, but also results of transformations performed

by stages in the pipeline, and the parameters used in those transformations.

Since OTU clustering strategies are sensitive to length and quality filtering

parameters upstream, preserving settings used in earlier stages can aid analysis

in later stages.

1.5 Easier organization and collaboration

With all the data on an experiment contained in a single file, users can easily

share PIPPING databases with collaborators without needing to manage

dozens of files for every experiment. The semantic structure of the SQLite

tables inside the database provide an open platform for developers to extend

Pip, such as streaming adapters for currently unsupported programs.

6

2 Data Management

Management of data in a pipeline is conceptually divided into four tasks:

creating semantic structure within the database; storing sequence data in

compressed form; transforming stored data into formats required by tools in

the pipeline; logging settings and parameters of transformations and related

metadata.

As the first stage in a 16S pipeline, PIPPING reads in a configuration

file, primer sequences, barcodes, o↵sets, and raw Illumina NGS (Next-Gen

Sequencing) FASTQ files and uses them to initialize its database structure.

PIPPING encapsulates the data with adapters to transform the compressed

data into usable input for subsequent stages, and provides metadata logging.

Typically, an Illumina NGS machine uses Paired-End Sequencing [3] to produce

a pair of FASTQ files where each read is saved in the following format:

@HWI-ST0747:277:D1M96ACXX:6:1101:1232:2090 1:N:0:

GGATAGTACTAGGGTATCTAATCCTGTTTGCTCCCCACGCT...

+

ACCCFFDDFH#FHHIGIJJFJJJJJJJJJJJIIJJJGIJJG...

Line 1 is the defline containing information about the Illumina Sequencer

which produced the sequence, line 2 contains all the bases in the sequence, line

3 is the separator between the sequence and quality scores, and line 4 contains

the corresponding quality score for each of the bases in the sequence. Each

character in the file ias an ASCII character taking up 8 bits. The format uses

five characters to represent the four DNA-bases (A - adenine, T - thymine, C

7

- cytosine, G - guanine) and N to represent an errorneous read. Each base is

paired with a quality score that has 42 values (0 to 41).

2.1 Semantic Database Structure

Instead of juggling multiple input files such as raw Illumina FASTQ sequences,

barcodes, and o↵sets, PIPPING creates several SQLite tables which impart a

well-defined semantic structure to the data and contains them within a single

file.

Figure 2: PIPPING database structure

Figure 2 shows the structure of a PIPPING database, initialized with six

tables:

primer holds all primer sequences used in the experiment

o↵set randomized o↵sets to aid 16S sequencing

barcode experiment identifier

8

log stores all metadata related to data, experiment, or pipeline

read1 stores the first part of paired-end sequence data

read2 stores the second part of paired-end sequence data

The primer, o↵set, and barcode tables link information about the exper-

iment to the actual sequences to be stored in the read1 and read2 tables.

Each sequence in the FASTQ input is stored as a row in the read tables, with

the bases and quality scores compressed into a binary BLOB.

The log table stores metadata about every operation done in Pip. The

settings used in the operation, along with the time and sequences a↵ected

are stored in the log table. Since the results of OTU Analysis can be a↵ected

by parameters used by the stages upstream in a pipeline, having a reliable

record of operations and transformations to the data will aid in analysis stages

downstream.

Sequence data stored in read1 and read2 tables in the database are fed

as input to later stages in the pipeline. Correspondingly, output from those

stages are normalized into new tables in the database. For example, running

Trimmomatic with PIPPING trimmed1 and trimmed2 tables which stores

the coordinates of trimmed bases from the results of trimming and filtering

operations performed by Trimmomatic. This prevents unnecessary data

duplication and reduces the file size of a PIPPING database.

9

2.2 Data Compression

Compression works by representing each base with an integer range (A: 0

to 49, T: 50-99, C: 100-149, G: 150-199, N: 200-255) and adding the quality

score to the beginning of that range. Thus, base ‘A’ with a quality score of

‘#’ (value 0) can be represented by the value 0, while base ‘G’ with a quality

score of ‘J’ (value 41) can be represented by 191 (150 + 41). The resulting

values fit within an 8-bit character, which is a 50% reduction in space usage.

Since both compression and decompression require only addition operators,

the scheme is fast and lossless. However, the overall size of a PIPPING file is

slightly more than 50% of the size of the original FASTQ file due to table

index structures and other database overhead.

2.3 Data Transformation & Flow

A central part of managing the sequence data in the 16S pipeline is the

manipulation and transferring of sequences between the various tools. There

is often a need to modify the structure or format of the data to fit the varying

input requirements of those tools. Table 2 shows the various input formats

that tools in the pipeline require.

Traditionally, the way to manage data in the pipeline was to store distinct

sets of input and output files for every stage. For example, the first stage of

the pipeline usually involves using Trimmomatic to filter poor quality reads

and to trim all the reads to a certain length. Doing this requires the user to

10

Tool Expected input format

Trimmomatic FASTQ/Gzipped FASTQ
Bowtie2 FASTQ/FASTA
QIIME 454-FASTA/454-Quality Scores

Table 2: Expected input formats for various tools

provide 2 paired-end FASTQ sequence files to Trimmomatic, which will then

produce 5 output files: unpaired and paired sequences 1 and 2, and a trimming

log. The output files have sizes similar to the input, which results in the space

usage nearly doubling after the first stage in the pipeline. Subsequent stages

will then take the output of the first stage and create more output. Thus,

both the number of files and their file size will increase very quickly due to

the number of stages within the 16S pipeline. Additionally, certain stages in

a pipeline only exist to convert sequences from one format to another (i.e.

the need to convert Illumina FASTQ to 454-FASTA and 454-Quality formats

required by QIIME), increasing the length of the pipeline and the number of

intermediate work products.

Using a plug-in architecture, PIPPING can “stream” sequence data to tools

in the pipeline without writing to disk. PIPPING uses UNIX Named Pipes

to feed data to external programs such as Trimmomatic and Bowtie2 while

simultaneously consuming the output they produce back into the database.

UNIX Named Pipes allows programs to transfer data through memory instead

of disk, and therefore do not require reading and writing to disk. However,

named pipes appear as size zero, regular files on a filesystem, thus tools

11

can read and write from those files without needing any changes to the

software. In the case of Trimmomatic, PIPPING provides a named pipe

to capture the contents of the trimming log, and uses the details within it

(sequence number, position of trim, number of characters trimmed) and stores

them in a “trimmed” table. Since this table only stores the sequences which

were operated on, instead of entire copies of the original sequences, the size

increase of the PIPPING database after the first stage is almost negligible.

Additionally, instead of needing to manage multiple output files and their

naming, the data is now ready for the next stage of the pipeline.

3 Results

PIPPING was benchmarked on a 2.7 GHz Intel Core i7 processor with 16GB

of RAM, running OS X 10.9. Table 3 shows the time taken for the specified

number of sequence inserts into a new PIPPING database. Figure 3 plots

the number of actual raw inserts per second into SQLite, showing consistent

insertion rates between 96,000 and 102,000 raw inserts per second.

12

Number of sequences (paired-end) Time taken (seconds)

500,000 10.35
1,000,000 19.57
2,000,000 39.22
4,000,000 78.67
8,000,000 160.84
16,000,000 319.38
32,000,000 644.90
64,000,000 1,286.26

Table 3: Insertion speeds into SQLite using Pip

Figure 3: Inserts per second into SQLite using PIPPING

Table 4 shows the size of the raw FASTQ sequence file compared to the

resulting database file after inserts. Figure 4 shows that PIPPING databases

are consistently 55% of the size of the original FASTQ input.

Table 5 shows runtime reductions in a stage in the test pipeline, as a

13

Number of sequences (paired-end) Input FASTQ size (MB) PIPPING database (MB)

500,000 371.40 206.90
1,000,000 743.00 413.90
2,000,000 1,486.00 828.00
4,000,000 3,051.52 1,699.84
8,000,000 6,082.56 3,389.44
16,000,000 12,165.12 6,789.12
32,000,000 24,350.72 13,568.00
64,000,000 48,701.44 27,146.20
91,000,000 69,754.88 35,061.76

Table 4: Comparison of input file sizes against PIPPING database sizes

Figure 4: File sizes of PIPPING database against original FASTQ files

14

Kevin Xu
Text

result of streaming data directly from PIPPING to Trimmomatic, instead of

accessing the disk.

Pipeline Stage Raw time (seconds) PIPPING time (seconds)

Trimmomatic 46.43 22.89

Table 5: Time needed to process 500,000 sequences through 16S pipeline
stages with and without PIPPING

4 Conclusion

The use of PIPPING within the 16S pipeline shows promise in reducing the

logistical e↵ort of researcher and interoperability headaches of multiple tools.

PIPPING currently operates on the preprocessing stages of a 16S pipeline

and can be extended to later stages in the pipeline easily through a plug-in

architecture. The number of intermediate work products in a pipeline has

been reduced to a single PIPPING database file, and there are measurable

reductions in pipeline run times. There appears to be negligible overhead

in streaming data compared to transferring data over the filesystem using

intermediate files, and the underlying SQLite implementation is able to deal

with datasets of almost 100 million rows without slowdowns.

However, PIPPING currently does not perform complex queries such as

subtable queries in its current pipeline so we do not have data on possible

scalability issues. SQLite itself might also be a limiting factor due to its single-

access model[2], so it might not work well for distributed or parallel workflow

15

projects such as PaPy[5] or Parallel-META[8]. Additionally, programs that

require multiple passes over input data or utilize memory-mapped I/O would

not work with PIPPING due to the First-In-First-Out nature of UNIX Named

Pipes.

Future work on PIPPING include extending the streaming adapters to

support other pipelines such as UPARSE[7] or QIIME[1]. A fully-developed

version of PIPPING can potentially encompass an entire 16S sequencing

pipeline, completely eliminating unwanted intermediate work products. As

sequencing datasets get bigger, SQLite may fail to scale as well as expected,

thus exploration into alternative backend systems such as Parallel HDF5[4]

may be beneficial.

References

[1] 454 overview tutorial: de novo otu picking and diversity analyses using 454

data. http://qiime.org/tutorials/tutorial.html. Accessed: 2014-

06-13.

[2] Appropriate uses for sqlite. http://www.sqlite.org/whentouse.html.

Accessed: 2014-06-13.

[3] Paired-end sequencing assay. http://www.illumina.com/technology/

next-generation-sequencing/paired-end-sequencing_assay.ilmn.

Accessed: 2014-06-13.

16

http://qiime.org/tutorials/tutorial.html
http://www.sqlite.org/whentouse.html
http://www.illumina.com/technology/next-generation-sequencing/paired-end-sequencing_assay.ilmn
http://www.illumina.com/technology/next-generation-sequencing/paired-end-sequencing_assay.ilmn

[4] Parallel hdf5. http://www.hdfgroup.org/HDF5/PHDF5/. Accessed: 2014-

06-13.

[5] Marcin Cieslik and Cameron Mura. A lightweight, flow-based toolkit for

parallel and distributed bioinformatics pipelines. BMC Bioinformatics,

12(1):61, 2011.

[6] S. Conery, M. Catchen, and Michael Lynch. Rule-based workflow manage-

ment for bioinformatics. The VLDB Journal, 14(3):318–329, September

2005.

[7] Robert Edgar. Uparse pipeline. http://www.drive5.com/usearch/

manual/uparse_pipeline.html. Accessed: 2014-06-13.

[8] Xiaoquan Su, Jian Xu, and Kang Ning. Parallel-meta: e�cient metage-

nomic data analysis based on high-performance computation. BMC

Systems Biology, 6(Suppl 1):S16, 2012.

17

http://www.hdfgroup.org/HDF5/PHDF5/
http://www.drive5.com/usearch/manual/uparse_pipeline.html
http://www.drive5.com/usearch/manual/uparse_pipeline.html

	Introduction
	Reduction in intermediate work products
	Reduction in overall disk usage
	Faster pipeline runs
	Improving reproducibility
	Easier organization and collaboration

	Data Management
	Semantic Database Structure
	Data Compression
	Data Transformation & Flow

	Results
	Conclusion

