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ABSTRACT
Heterogeneous parallel systems using GPU devices for ap-
plication acceleration have garnered significant attention in
the supercomputing community. However, to realize the full
potential of GPU computing, application developers will re-
quire tools to measure and analyze accelerator performance
with respect to the parallel execution as a whole. A per-
formance measurement technology for the NVIDIA CUDA
platform has been developed and integrated with the TAU
parallel performance system. The design of the TAUcuda
package is based on an experimental NVIDIA CUDA driver
and associated runtime and device libraries. In any envi-
ronment where the CUDA experimental driver is installed,
TAUcuda can provide detailed performance information re-
garding the execution of GPU kernels and the interactions
with the parallel program without any modification to the
program source or executable code. The paper describes the
TAUcuda technology and how it is integrated with the TAU
measurement framework to provide integrated performance
views. Various examples of TAUcuda use are presented, in-
cluding CUDA SDK examples, a GPU version of the Linpack
benchmark, and a scalable molecular dynamics application,
NAMD.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—performance
measures
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Measurement, Performance
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1. INTRODUCTION
There is growing interest in heterogeneous computing

platforms based on multi-core accelerators to improve the
performance of parallel applications. However, achieving
the full potential of these machines will be challenging due
to complexity of the multi-core hardware, the few hetero-
geneous programming tools available, and the multiple fac-
tors involved in optimizing performance overall. Significant
promise has been shown in the use of general purpose GPUs
(GPGPUs) for application acceleration. The CUDA sys-
tem was created to support the programming of GPU-based
accelerators from NVIDIA and is now being touted as a
key component for a heterogeneous architecture. However,
few tools exist to help the parallel application developer
measure and understand accelerator performance. Perfor-
mance analysis tools for GPGPU developers to date have
been largely oriented towards aiding developers on indi-
vidual workstation-class machines with limited parallelism
present within the GPU host. However, when used in large-
scale parallel environments, it is important to understand
the performance of accelerators, such as CUDA-programmed
GPUs, in the context of the whole parallel program’s exe-
cution. This will require the integration of GPU accelerator
measurements with existing scalable performance tool in-
frastructures.

This paper describes an experimental approach to CUDA
performance measurement and its integration in a paral-
lel performance toolkit. The approach is experimental be-
cause it is based on a non-production version of the NVIDIA
CUDA driver. This particular driver implements a callback
API specifically to support tool use. We have developed a
package called TAUcuda that builds on the NVIDIA driver
library and callback interface to enable the capture of CUDA
performance events in profile and trace forms. TAUcuda is
merged with the TAU Performance System R©[16] to allow
events from the CUDA system and GPU operation to be
measured and analyzed in the context of the parallel appli-
cation as a whole.

Several challenges had to be overcome in TAUcuda de-
velopment, mainly due to the concurrent, asynchronous ex-
ecution model supported by the CUDA system. The de-
tailed design and implementation of TAUcuda is presented
in Section 2. How TAUcuda is integrated with the TAU
performance measurement and analysis environment is dis-
cussed in Section 3. Several experiments were conducted to
evaluate TAUcuda’s capabilities, from simple CUDA SDK
examples to scientific applications running on GPU clusters.



Results from these experiments are shown in Section 4. Re-
lated work is covered in Section 5. We conclude the paper
with a discussion of future directions.

2. TAUCUDA DESIGN AND
IMPLEMENTATION

The CUDA system architecture supported by NVIDIA
consists of a CUDA driver library and a device library. The
driver library implements the CUDA execution model and
provides an API for application software to interface with
the CUDA system. The driver library routines are named
with a “cu” prefix and enable the launching of GPU kernels,
copying of memory between the host and device, and other
driver operations. The device library is responsible for low-
level interfacing with the GPU device and is mainly called
within the CUDA system.

In addition to the CUDA driver and device libaries,
NVIDIA also provides the CUDA runtime library that func-
tions as a higher-level programming API. The runtime li-
brary routines are prefixed with “cuda” and support thread,
stream, device, control, memory, and error operations, as
well as interoperability with graphics interfaces. A C-style
and C++-style interface is available.

The fundamental challenge for the TAUcuda design is to
be able to observe GPU memory and kernel operations and
to associate the GPU performance information with the ap-
plication running on the CPUs. This is complicated by the
fact that GPU operation occurs asynchronously from CPU
activity. Furthermore mechanisms different from CPU per-
formance measurement must be used for the GPU. Funda-
mentally, the CUDA system has to provide some support to
observe GPU operation. The role of TAUcuda then is to use
this support and integrate GPU performance measurement
with the TAU measurement infrastructure running as part
of the application on the CPU. Figure 1 shows the archi-
tecture of the TAUcuda design and its integration with the
CUDA system and TAU.
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Figure 1: TAUcuda architecture design.

2.1 Using the experimental NVIDIA
CUDA driver

NVIDIA created a version of the Linux CUDA driver li-
brary (R190.36) that supports an experimental interface for
tools. The interface implements a callback mechanism that
allows all driver routines to be monitored. The interface also
exposes functions that enable GPU measurements to be re-
trieved from the CUDA system. With this support, together
with driver header files provided by NVIDIA, TAUcuda is
implemented as follows:

The CUDA driver library contains a routine (cuDriver-
GetExportTable()) which returns handles to interface tables
based on a global unique identifier (GUID). These interface
tables are used for different purposes. The CUDA version
supporting a callback interface for tools defines a table which
can be seen by supplying GUID cuToolsApi ETID Core.
The core table returned exposes all the interfaces neces-
sary to control the callback setup. At startup, TAUcuda
first calls a construct member function of the core table to
initialize it. After the construct call, TAUCuda then regis-
ters the callback handler by calling the SubscribeCallbacks()
function and passing its callback handler function.

After callback setup, CUDA driver routines are routed
through the callback handler. TAUCuda then intercepts
only the routines of interest using GUIDs filtering, such as:

cuToolsApi CBID EnterGeneric
cuToolsApi CBID ExitGeneric
cuToolsApi CBID ProfileLaunch
cuToolsApi CBID ProfileMemcpy

The callback handler dispatched with:

cuToolsApi CBID EnterGeneric
cuToolsApi CBID ExitGeneric

enables TAUCuda to intercept the driver API routines for
TAU instrumentation at the entry/exit points of the call.
Section §2.2 discusses this in more detail. The Profile call-
back interfaces relate to the recording of GPU measurements
and are delivered at CUDA context synchronization or when
the GPU measurement buffer is full. (The term “profile” is
used in the CUDA system to refer to GPU measurements it
makes internally.) In this way, TAUcuda gains access to the
GPU measurements. Section §2.3.1 describes how TAUcuda
processes this data.

It is important to understand that callbacks execute in the
application thread calling the driver library. For each thread
receiving a CUDA driver EnterGeneric callback for the first
time, the TAUcuda Event Handler will initialize data struc-
tures for managing CUDA performance measurements with
respect to that application thread.

2.2 TAU instrumentation of CUDA
driver and runtime libraries

Through the use of the CUDA driver ToolsApi inteface,
TAUcuda is able to translate EnterGeneric and ExitGeneric
callbacks into TAU entry/exit performance events. This is
accomplished by calling the TAU event creation and mea-
surement routines (start/stop) for the particular CUDA
driver routine (cuXXX()) identified in the callback. While it
is possible to create a TAU event for every cuXXX() routine,
only a subset may be of interest. The routines instrumented
in our experimental version of TAUcuda are listed in Table 1.



cuLaunch(); cuLaunchGrid();
cuLaunchGridAsync(); cuMemcpyHtoD();
cuMemcpyHtoDAsync(); cuMemcpy2D();
cuMemcpy2DUnaligned(); cuMemcpy2DAsync();
cuMemcpy3D(); cuMemcpy3DAsync();
cuMemcpyAtoA(); cuMemcpyAtoD();
cuMemcpyAtoH(); cuMemcpyAtoHAsync();
cuMemcpyDtoA(); cuMemcpyDtoD();
cuMemcpyDtoH(); cuMemcpyDtoHAsync();
cuMemcpyHtoA(); cuMemcpyHtoAAsync()

Table 1: CUDA driver routines instrumented by
TAUcuda to produce TAU events.

In addition to instrumenting CUDA driver routines, we
wanted to generate TAU events for the CUDA runtime li-
brary (cudaYYY()). However, NVIDIA does not implement
callback support for these routines. Instead, TAU’s library
wrapping utility, tau wrap, was used to generate a TAU-
instrumented CUDA runtime wrapper that could be inter-
posed with the actual library. Because NVIDIA provides
only the CUDA runtime library header files, the source code
can not be instrumented directly. Instead, tau wrap read the
library’s interface by parsing the header files, and automat-
ically generating a library that redefines the routines speci-
fied. Internally, each routine in the wrapper library searches
for the corresponding call from the CUDA runtime library
and calls the routine with the appropriate arguments. The
wrappers are instrumented to make calls to the TAU library
before and after calling the wrapped runtme library rou-
tines. In this way, when a CUDA runtime routine is called
during execution, the TAU instrumentation is invoked at en-
try and exit to generate performance measurements for the
associated routine. (Note, this mechanism to instrument
the CUDA runtime library and generate TAU events dur-
ing execution requires the wrapper library to gain control at
startup.) TAU’s event selection methods can be used to fil-
ter which of the CUDA runtime library routines are actually
instrumented.

For the TAU events created for both CUDA driver and
runtime routines, the TAU measurement system is respon-
sible for generating performance profile or trace data. TAU
can collect the number of calls, CPU timing information,
and CPU performance counters for each event on every CPU
thread where they occur.

2.3 Instrumentation and measurement
of CUDA GPU operations

While the wrapping of the CUDA runtime and the call-
back support in the Linux CUDA (R190.36) driver makes it
possible for entry and exit of CUDA library routines to be
seen by the TAU system, the challenge for TAUcuda is to
capture performance events and measurements for the GPU
kernal execution and memory transfer operations. These
GPU operations take place asynchronously to execution of
the application code on the CPU. TAUcuda works with the
CUDA system to address this complexity.

The cuToolsApi CBID EnterGeneric callback occurs for
cuXXX() driver routines that invoke GPU kernel launch and
memory transfer operations. The CUDA system manages
these operations and uses the device layer to coordinate their
execution on the GPU. It also collects performance measure-

ments for each operation. The TAUcuda Event Handler will
create an call record for every operation occurrence in which
it will record the event name, call ID, operation type, API
routine name, TAU context, CUDA context, GPU device,
and GPU stream. Most of the call record fields are retrieved
from the CUDA driver routine reflected in the callback. The
event name is the cuMem() API name for memory transfers
or the GPU kernel name in the cuLaunch() routine. The call
ID is a monotonically increasing value incremented for each
cuXXX() routine invocation. The GPU device is extracted
by using the CtxGetDevice interface of the context table and
the CUDA context.

To associate the GPU operation to the application code
that invokes the CUDA driver routine, the TAUcuda Event
Handler call into the TAU system to retrieve the current
TAU event stack during the EnterGeneric callback. The
TAU event stack essentially represents the nested applica-
tion events that TAU is currently measuring. This is the
TAU context and is stored in the call record as a string of
concatenated TAU event names.

There can be several concurrently active GPU operations
for different CUDA contexts. Thus, TAUcuda can be han-
dling multiple outstanding call records at any time. When
any GPU operation completes, the CUDA system will cap-
ture performance data for the operation. However, it is
not until the CUDA system initiates a Profile callback that
TAUcuda will have the opportunity to see this data and
create a TAU performance measurement. Profile callbacks
are dispatched some time after the actual cuLaunch() or
cuMem() APIs are called. The callback delivers performance
counters associated with a particular call ID and CUDA con-
text. The list of call records is then scanned by TAUcuda
to match the unique (call ID, CUDA context) pair.

2.3.1 TAUcuda profiling
If TAUcuda is in profiling mode, it invokes the TAUcuda

Profiler to create a profile event for any unique tuple com-
bination defined by (event name, TAU context, GPU de-
vice, stream ID). Every encounter of the same tuple reuses
the profile event for that tuple. The performance values re-
turned by the Profile callback are used to calculate profile
statistics by the TAUcuda Profiler. Once this is done, the
Event Handler is informed to delete the call record.

The TAUcuda Profiler calculates multiple metrics for pro-
file events. The elapsed time metric is valid for both ker-
nel launch and memory transfer activities of the GPU. The
CUDA system returns the GPU time and the elapsed time
which is a sum of GPU time for all instances of the same
profile event. For memory transfers, a memory transfer size
metric is computed as the accumulated amount of bytes
transferred. There are different GPU counters associated to
every kernel execution event. TAUCuda currently supports
only the default counters, including shared memory usage,
registers per thread, and core occupancy. These metrics are
generated for kernel events only. TAUcuda writes out the
profiles in TAU profile format when the CUDA application
exits. A separate profile is created with the different profile
metrics for every GPU device and stream on which GPU op-
eration occurred. The proile writer routine for the elapsed
time metric automatically adds a top level event by com-
puting the sum of all the time elapsed in the entire GPU
computation.



2.3.2 TAUcuda tracing
Implementing tracing in TAUCuda is more complex. For

each GPU operation, two trace events need to be generated:
one for when the operation begins and one for when the op-
eration ends. Both events are generated when the TAUcuda
Tracer handles the Profiler callback. The same TAUcuda
data structures described above are used for keeping track of
the GPU operations. The TAUcuda traces are generated for
memory transfer and kernel operations. Information from
the call record about the operation is placed in the trace
event records and is used during trace post-processing to
match TAU trace events from the application.

One difficulty is in generating the timestamp to put in
the trace records. The timestamps generated for the TAU-
Cuda trace events must be from the TAU time reference,
which comes from the CPU. However, the time information
from CUDA is from the GPU. Thus, the CPU and GPU
clocks must be synchronized. To do this, TAUcuda per-
forms two experiments on startup. First, it captures start
and end time values for all active GPU devices for a known
interval. The DeviceGetTimestamp interface exposed by the
device table is used to extract the device timestamp. Sec-
ond, it repeats the experiment for the TAU clock on the
CPU device 0 (the reference GPU). With a table containing
TAU start/end time, reference GPU start/end time, and
other GPU start/end time, TAUcuda can create a TAU-
synchronized timestamp for each GPU operation on any
GPU device during trace event generation.

TAUCuda tracing also produces special trace events for
GPU memory transfers. It is desirable to see the memory
transfer actions in both the CPU and GPU traces. Thus,
memory transfers from CPU to GPU are represented by
a pair of events related by the unique tuple (CUDA con-
text, call ID). The CPU-side event would represent when
the memory transfer started and the GPU-side event when
the transfer ended. The CPU-side event must be placed
in the TAU application trace, but it is impossible to do so
at runtime. Why? This is because TAUcuda does not get
the necessary information about the GPU operation perfor-
mance until after the operation completes! Although TAU-
cuda has all the data to generate the trace event, it can not
be properly put in the TAU trace until trace post-processing.
Similarly, memory transfer from the GPU to the CPU is also
represented by a pair of trace events, one in each CPU and
GPU trace stream. In this case, TAUcuda must produce an
event representing when the memory transfer completed in
the TAU CPU trace. Presently, the timestamp used for this
event is assigned the timestamp when context synchroniza-
tion occurs. Our primary goal in doing so was to represent
the data receive from the perspective of the earliest point of
synchronization in the application after which the memory
might be used. Further improvements to reflect the actual
timeline of memory transfer can be made.

TAUCuda event traces are written out in the TAU trace
format with the help of the TAU trace writing API. TAU
trace writer keeps a buffer for the trace events and writes
out to the file only when the buffer is full or the trace writer
handle is closed. A separate trace file is created for each
device and stream. In addition to the events described, other
user defined events corresponding to grid dimension, block
dimension, shared memory size and registers are created and
triggered at runtime.

3. ENVIRONMENT INTEGRATION
The TAUcuda design and development, as well as how it is

used in practice, is determined by the experimental CUDA
callback API for tools implemented in the NVIDIA R190.36
CUDA driver. One practical consequence is that TAUcuda
will not work on a GPU machine unless this particular driver
library is installed. The callback architecture and lack of ac-
cess to the CUDA runtime source code also constrains how
TAUcuda is applied. In general, TAUcuda must be inte-
grated in a performance measurement and analysis environ-
ment that includes the CUDA platform, TAU system, and
other tools.

3.1 Measurement activation
For a performance measurement with TAUcuda to take

place, several libraries are required. TAUcuda is built as
a dynamic library that will be preloaded at application
startup, linking to CUDA driver and device library inter-
faces and registering to receive driver callbacks. TAUcuda’s
use of the TAU measurement library requires its loading,
which also takes place dynamically. Furthermore, the TAU
wrapper library must be loaded to generate events for the
CUDA runtime routines, if desired.

Figure 2: Dependencies between libraries under dif-
ferent measurement scenarios.

Figure2 shows how library dependences are resolved at
runtime under different measurement scenarios. If neither
TAU nor TAUcuda is enabled, the CUDA application links
with the driver, device, and runtime libaries, plus any nec-
essary application libraries, by default (as shown with the
dotted lines). If the application is instrumented with TAU,
either through source, compiler, or MPI library wrapping,
there are dependencies to the TAU core library. In this case,
the CUDA application will execute and produce only TAU
performance data for the application events that are instru-
mented. A third case is when TAUcuda is preloaded and
additional dependencies (solid lines) involving all libraries
arise. Calls made to the CUDA runtime library are inter-
cepted by the TAUcuda runtime wrapper library and the
TAUcuda callback library is registered by the CUDA driver
and called when GPU operations take place. (Note, it is pos-
sible to wrap the CUDA runtime library to get TAU events
without linking in TAUcuda. In this case, the entry and exit
of the CUDA runtime routines will be seen as TAU events
in the profile or trace.)



Figure 3: CUDA SDK transpose CPU (top) and GPU (bottom) profile.

3.2 Running with TAUcuda
To run an CUDA application with TAUcuda, all of the

necessary libraries must be dynamically linked. The advan-
tage is that TAUcuda can be used on unmodified CUDA ap-
plication binaries. To simplify the different TAUcuda mea-
surement options, we developed scripts to hide the linking
complexities for different scenarios:

Profiling: taucuda profiler.sh / taucuda mpirun.sh
Tracing: taucuda tracer.sh / taucuda mpirun tracer.sh

TAUcuda produces profiles or traces in the current work-
ing directory in sub-folders to distinguish them from TAU
performance output. TAUCuda profiles are populated in
different metric sub-folders, such as:

gpu elapsed time
gpu memory transfer
gpu shared memory

3.3 Trace post-processing and translation
Trace output from TAUcuda is generally similar to

standard TAU trace output. The exceptions lie in the
node/thread ID numbering and the representation of com-
munication events. To address both of these issues it is
necessary to perform post-processing on the TAUcuda trace
output. Once the traces are processed and merged, the fi-
nal output can be translated to the standard trace formats
supported by TAU, allowing trace analysis and visualization
tools such as Jumpshot [18] (slog2 format) and Vampir [4]
(OTF [10] format) to be used.

A TAU trace for any given thread consists of two files. A
.trc file is a binary file containing the time stamped events
(e.g., entry, exit, send, receive). A .edf file is a text file
mapping the actual event names to the numeric identifiers
used in the .trc file. Each thread of execution produces a .trc
file, but there is only one .edf file per node. It is assumed
that the same event IDs will be used for every thread on

the same node. However, this assumption does not apply to
TAUcuda trace output.

The file formats for TAUcuda traces are the same as stan-
dard TAU traces, however .trc and .edf files are produced for
each context and stream pair. Because each CUDA device
is distinct in its initialization it is impossible to assign the
same event ID’s to different CUDA devices accessed from
the same CPU node. In this respect each CUDA device
acts as a single self contained process. However, they may
also be analogous to threads in the case that a CUDA de-
vice is invoked by and subordinate to a single CPU process.
To represent this relationship in a merged TAUcuda trace,
the CUDA traces are treated as their own processes, but
the trace IDs are reordered so that any given node’s trace
output is followed by its thread trace output and then by
its CUDA device trace output. This makes it necessary to
remap the default assigned node IDs to account for the in-
serted CUDA nodes, by incrementing the index of each node
after a CUDA trace insertion. For example, given trace out-
put for an application with two MPI processes, each access-
ing one CUDA device, the CPU trace output would initially
be assigned node ID’s 0 and 1 respectively. The trace post-
processor would insert each associated TAUcuda trace after
its CPU process, so the new ordering would be CPU trace
0 (Node ID 0), CUDA trace 0 (Node ID 1), CPU trace 1
(Node ID 2), CUDA trace 1 (Node ID 3).

Part of the problem here is in getting the traces in a
form that can be translated to formats that trace analy-
sis and visualization tools can read. This can be seen in
the special consideration required for TAUcuda communi-
cation (i.e., message transfer) events. Messaging events in
trace formats use node IDs to designate source (sender) and
destination (receiver). At the time of measurement, TAU-
cuda has no information on the node ID of its host process.
Message transfer events between the device and the CPU are
instead identified by values unique to the device, stream, and
source call site. It is necessary to map the unique TAUcuda



Figure 4: Performance profile and trace of the CUDA SDK ocean simulation.

message IDs to their respective nodes in the post-processing
step. Once this mapping is complete, the local and remote
node IDs are available for each CUDA communication event
as it is encountered in the final pass of the trace translator.

4. TAUCUDA EXPERIMENTS
Using the TAUcuda environment described above for

CUDA performance measurements on Linux systems with
NVIDIA GPUs, we conducted several experiments to assess
the TAUcuda profiling and tracing capabilities. The only
system requirement was that the NVIDIA R190.36 Linux
CUDA driver library be installed. While this limited the
platforms available to us due to administrative control, we
were able to test TAUcuda on three systems:

• Linux workstation
– dual quadcore Intel Xeon
– GTX 280 GPU

• University of Oregon’s GPU cluster (Mist)
– 4 dual quadcore Intel Xeon server nodes
– 2 S1070 Tesla servers (4 Tesla GPUs per S1070)

• Argonne National Lab GPU cluster (Eureka)
– 100 dual quadcore NVIDIA Quadro Plex S4
– 200 Quadro FX5600 GPUs per S4

The experiments ranged from example programs dis-
tributed with the NVIDIA CUDA SDK to scalable scien-
tific applications run on multi-GPU clusters. The results
reported below are mainly from Mist and Eureka.

4.1 CUDA SDK examples
TAUcuda can be used to generate CUDA performance

measurements with any CUDA application binary. Thus, we
were able to easily test TAUcuda on several of the CUDA
SDK example codes, including:

matrixmul, transpose, oceanFFT, gaussian

Figure 3 show the CPU and GPU performance results from
the transpose example run on a 256 x 4096 matrix. Two
profiles are shown from TAU’s ParaProf [2] tool: one for the
CPU and one for the GPU. In the CPU profile we see all
CUDA driver callback events (cuXXX) and runtime library
events (cudaYYY) invoked during the execution. In the GPU
profile we see the two GPU kernels and the memory transfer,
host-to-device (HtoD) and device-to-host (DtoH).

The profile and trace of the ocean simulation (oceanFFT)
example is shown in Figures 4. The profile display merges
CPU and GPU performance data. Notice the cuGL routines
used for the interactive graphics. The Jumpshot [18] tool
was used to generate the trace display with the CPU trace



above and GPU trace below. It shows a memory transfer
early on, followed by a series of kernels as the simulation
repeats.

4.2 Linpack
Our primary interest in developing TAUcuda was to mea-

sure the performance of scalable heterogeneous parallel ap-
plications using GPUs for acceleration. To demonstrate this
capability, we obtained an GPU-accelerated Linpack bench-
mark whose performance was reported by Fatica [11] and
ran it on the Mist cluster1. This provided us with an excel-
lent opportunity to evaluate TAUcuda against a well-known
cluster benchmark. The ParaProf profile for a four-process
Linpack run on Mist is shown in Figure 5. This shows mean
execution time values across the processes for all events. The
corresponding Jumpshot trace is shown in Figure 62. The
profile shows TAU source instrumentation of the Linpack
routines and MPI communication events, in addition to the
CUDA driver, CUDA runtime, and GPU and memory trans-
fer events.

The trace display emphasizes the temporal performance
behavior of the Linpack execution. The yellow lines show
the MPI message communication occuring between the CPU
nodes. The white lines highlight the CUDA message trans-
fers taking place. What is interesting to see here is the effect
of our algorithm to determine the timestamp of the DtoH
message receive event in the CPU trace. This point is set to
the time of the next context synchronization based on the
rationale that this is the earliest time when the results can
be used, from the perspective of the application program.

4.3 NAMD
To demonstrate TAUcuda with a realistic parallel appli-

cation that is utilizing GPGPU acceleration, we considered
the NAMD [7] application. NAMD is a parallel molecular
dynamics simulation designed for high-performance simula-
tion of large bimolecular systems. NAMD is developed with
the Charm++ [9] framework. Recently, the TAU measure-
ment system has been integrated with Charm++ to enable
profiling of Charm++ events [3] and NAMD was used as
an evalution testcase. The addition of GPGPU acceleration
using CUDA in NAMD makes it also an interesting testcase
for TAUcuda.

The computationally intensive part of NAMD involves
computing interactions between atoms. Two GPU ker-
nels, dev nonbonded and dev sum forces, are applied to these
computations. These two events map to two different CUDA
kernels and both kernels are launched from the same CPU
function context WorkDistrib::enqueCUDA.

We ran NAMD on a medium sized benchmark on four
processes with four Tesla GPUs on Mist. The parallel profile
obtained with TAU/TAUcuda is shown in Figure 7. The
performance of the two kernels are shown in the GPU device
profiles, along with the memory copy driver routines and
other distributed work routines in the CPU profiles. The
magenta hashed lines are navigational aids in the ParaProf
3D display.

We moved to the Eureka cluster to run NAMD with a
larger number of GPUS. Performance experiments were con-

1It was not possible to run the Linpack program on Eureka
because it did not support DGEMM.
2We can also generate TAUcuda traces for visualization us-
ing Vampir [4].

ducted with 4 to 64 GPUs to see the effects of strong scaling.
Figure 8 presents the results of the scaling study, showing
the relative efficiency of the kernel operations and memory
transfers. We chose to plot the performance of four GPUs
used in the NAMD execution to indicate how the their ef-
ficiencies vary for each kernel. The nonbounded calcula-
tions have reasonably good scaling for this model bench-
mark. The sumforces kernel less so. The memory transfer
line is based on the mean value and reflects increasing over-
heads for smaller data sizes transferred.

Figure 8: Scaling of GPU kernels and memory trans-
fers in NAMD.

4.4 SHOC Benchmarks
Scalable heterogeneous computing systems are composed

of a mix of general multicore processors, application acceler-
ators, and possibly special-purpose devices. The integration
of TAUcuda in TAU targets performance measurement for
heterogeneous systems with CUDA acceleration. We have
already seen this demonstrated with the Linpack experi-
ments. Another opportunity recently presented itself in the
form of Oak Ridge National Laboratory’s Scalable HeterO-
geneous Computing benchmark suite (SHOC) [6]. SHOC
is a spectrum of programs that test the performance and
stability of scalable heterogeneous platforms. Low-level mi-
crobenchmarks are used to assess architectural features, and
SHOC uses application kernels at higher levels to determine
system-wide performance such as intranode and internode
communication among devices. Benchmark implementa-
tions are in both OpenCL and CUDA in order to compare
programming models.

We selected the SHOC Stencil2D benchmark to try with
TAUcuda since it contained an interesting combination of
MPI, memory transfer, kernel execution, and other events
to measure. Stencil2D is a standard two-dimensional nine-
point stencil calculation. Shown in 9 is a trace of the ap-
plication showing the parallel execution of four CPUs along
with four GPUs.

5. RELATED WORK
The features in TAUcuda and its integration in a parallel

performance system are unique in the heterogeneous com-
puting space where CUDA and GPUs are involved. Earlier
research work has pursued similar objectives in computing
environments where the IBM Cell Broadband Engine is ap-
plied. Trace measurement and analysis of the Cell BE was
implemented in the Vampir tracing system and shown to
be effective in understanding the runtime behavior of Cell
applications [8]. The Paraver [1] performance systems can



Figure 5: Mean profile of a four-process execution of Linpack with GPU acceleration.
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Figure 6: Trace of a four-process execution of Linpack with GPU acceleration.

also measure Cell BE performance as part of a sophisticated
parallel programming environment.

The differences with TAUcuda mainly come from work-
ing with GPUs and CUDA. We initially considered the use
of NVIDIA profiling tools to address the performance mea-
surement problems. NVIDIA has a rich performance SDK
known as PerfKit [13] for profiling the GPU driver inter-
face. It provides access to low-level performance counters
inside the driver and hardware counters inside the GPU it-
self. However, PerfKit is limited for use with the CUDA
programming environment. Also, we need different mea-
surement semantics to capture the CUDA program per-
formance and integrate the data with parallel application
performance. NVIDIA also provides the CUDA Profiler
[14] which includes performance measurement in the CUDA
runtime system and a visual profile analysis tool. While
the CUDA Profiler provides extensive stream-level measure-
ments, it collects the data in a trace and does not provide
access until after the program terminates. We want to be

able to produce profiles that show the distribution of accel-
erator performance with respect to application events. This
performance view is difficult to produce with the CUDA
Profiler trace data.

Recently, NVIDIA launched Nexus [15], a tool to debug,
profile, and analyze GPU code using the standard workflow
and tools of Visual Studio 2008. Nexus is a very power-
ful tool that utilizes the same underlying capabilities in the
CUDA driver that TAUcuda does. However, it is available
only on Windows. Also, Nexus is not intended for use with
heterogeneous parallel applications written using MPI.

An earlier version of TAUcuda was developed based on the
CUDA Event interface [12]. Defined as part of the CUDA
specification and implemented in the runtime library, the
Event interface can be used to obtain performance data for
a particular GPU stream’s execution, including each ker-
nel’s precise timing. The performance data is measured by
the CUDA runtime system and returned through the CUDA
performance measurement library we developed. The main
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Figure 7: Four process NAMD integrated profile showing GPU kernel and driver events.

Figure 9: SHOC Stencil2D benchmark, 512 iteration on four cpus and four Tesla GPUs. The pink bars
represent GPU execution and the lines show memory transfers from the Device to Host.

problem with this approach was that it required the CUDA
application to be instrumented with calls to the Event in-
terface. In addition, it only provided a runtime library view
of performance. Although detailed information would be
returned about kernel execution, it was in a high level ap-
plication context. No access to driver-level operation was
available and it was not possible to observe memory trans-
fers as a result.

6. CONCLUSION
The TAUcuda design and implementation demonstrates

the power of a callback interface to make visible internal
CUDA routines and provide a means to build an infrastruc-
ture for GPU performance measurement. Its integration in
the TAU performance system further leverages the technol-
ogy for use in heterogeneous parallel systems. A variety of
examples of TAUcuda application are given in the paper to
highlight the level of detail about GPU performance it can

provide and the incorporation of this information in whole
application performance views.

That said, it is clear the TAUcuda system described in this
paper would not have been possible without access to the
experimental Linux CUDA driver from NVIDIA. Further-
more, the prospects forward for practical use of TAUcuda
depend significantly on NVIDIA’s plans for tools support in
a future Linux production version. We are working closely
with NVIDIA to help them in this endeavor through the
reporting of our experiences in the TAUcuda development
and testing3. For instance, there are several areas where
TAUcuda can be made more efficient with additional func-
tionality in the callback interfaces and internal support in
the CUDA system. Our hope is that this feedback will even-
tually translate to support that any performance tool which

3It is hoped that a production version of the Linux NVIDIA
CUDA driver will be available by the time of the ICS con-
ference.



wants to observe GPU performance can benefit from in the
future.

Additionally we would like to have TAUcuda fully sup-
port other GPGPU programing paradigms. A good exam-
ple is the PGI Accelerator compilers[17] and HMPP compil-
ers[5] both of which provide an alternative method for GPU
based acceleration on CUDA compatible hardware. They
work on the principle of automated code generation by first
performing analysis of the unaccelerated code followed by
optimization and remapping of loops to available hardware
accelerators. Fine tuning may be accomplished via pragma
statements, but CUDA level coding is not necessary.

Currently the TAUcuda system inter-operates transpar-
ently with applications compiled with PGI’s or HMPP’s
GPU acceleration4. It provides the same GPU-level per-
formance data and uses the same operating procedure as
with typical CUDA applications. As TAUcuda evolves, a
tighter integration between TAUcuda and these compilers is
imagined.
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