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Abstract. In this paper, we present an update on the scalable online
support for performance data analysis and monitoring in TAU. Extend-
ing on our prior work with TAUoverSupermon and TAUoverMRNet, we
show how online analysis operations can also be supported directly and
scalably using the parallel infrastructure provided by an MPI application
instrumented with TAU. We also report on efforts to streamline and up-
date TAUoverMRNet. Together, these approaches form the basis for the
investigation of online analysis capabilities in a TAU monitoring frame-
work TAUmon. We discuss various analysis operations and capabilities
enabled by online monitoring and how operations like event unification
enable merged profiles to be produced with greatly reduced data vol-
ume just prior to the end of application execution. Scaling results with
PFLOTRAN on the Cray XT5 and BG/P are presented along with a
look at some initial performance information generated from FLASH
and PFLOTRAN through our TAUmon prototype frameworks.

1 Introduction

As the level of parallelism increases in large-scale systems, performance
measurement of parallel applications will be affected by the size of the per-
formance data being maintained per process/thread, the effects of mea-
surement overhead, and the cost of output, both during and at the end
of execution. The traditional approach of post-mortem (offline) analysis
of performance experiments will come under increasing pressure as the
sheer volume and dimensionality of performance information drives up
I/O and analysis complexity. Enhancing performance measurement sys-
tems with online monitoring support is a necessary step to address both
challenges. In our prior research, we have explored extensions to the TAU
performance system [9] that allow access to the parallel performance data
measurement for an application at runtime. The TAUoverSupermon [13]
(ToS) and TAUoverMRNet [12] (ToM) prototypes leveraged the online
monitoring infrastructures, Supermon [15] and MRNet [1], respectively.
While ToS and ToM demonstrate monitoring functionality, it is becoming



increasing clear that we need to push forward on the scalable algorithms
for performance analysis and evaluate their efficiency in real application
scenarios.

In this paper, we reconsider the approaches and capabilities of online
performance monitoring from a perspective of the online operations nec-
essary to support scalable performance measurement and runtime analy-
sis requirements. We describe changes to ToM to support operations on
very large machines enabled by the latest MRNet versions that will soon
be released. In addition, we investigate the approach of directly using
the parallel infrastructure provided by MPI as an alternative monitoring
framework, complementary to ToS / ToM. Together these different ap-
proaches for operations via different transports form the foundation of a
framework for TAU performance monitoring we call TAUmon.

We will structure the rest of the paper as follows. In section 2, we
discuss related literature for online monitoring. In section 3, we describe
the two transport implementations of TAUmon and the statistical anal-
ysis operations that make use of them. Section 4 presents scaling re-
sults for analysis operations implemented using MPI and ToM for the
PFLOTRAN [11] application and FLASH [4]. These experiments were
conducted on Jaguar, Oak Ridge National Lab’s Cray XT5 and Intrepid,
Argonne National Lab’s IBM BlueGene/P. We will then make our con-
cluding remarks.

2 Related Work

The Online Monitoring Interface Specification (OMIS) [8] project pro-
vided a general interface between tools and a monitoring system. An
event-action paradigm mapped events to requests and responses to ac-
tions as part of that interface. J-OMIS [2] was built on top of this inter-
face to provide extensible monitoring facilities for the support of tools for
Java applications. Specific target tools were performance characterization
and debugging tools. Lee [7] explored the effectiveness of asynchronously
collecting profile data transformed from performance traces generated
within a running Charm++ application. The work demonstrated how an
adaptive runtime system like Charm++ was able to serve as an effective
transport medium for such purposes. Periscope [5] made use of hierarchi-
cal monitor agents working with applications and an external client in
order to address scalability issues with transport. The Distributed Per-
formance Consultant [10] in Paradyn made use of MRNet to support
introspective online performance diagnosis. There are also a number of



Fig. 1. Time series visualization of basic statistics (on the left) and histograms for
cumulative exclusive FLASH events using ToM.

computation steering frameworks [6, 14, 16, 3] where performance infor-
mation is collected, analyzed and fed through parameter-modifying in-
terfaces in order to change an application’s behavior. Compared with the
literature above, what distinguishes TAUmon is the attempt to design
as abstract as possible TAU’s interface to the transport layer in order to
provide maximum flexibility in that choice for delivering and processing
performance data.

3 Online Performance Monitoring

Our efforts to build monitoring support have grown out of more general
concerns of reducing the size, time, and number of files needed to offload
parallel profile data at the end of the application execution. For several
years, we have been extending the TAU measurement infrastructure with
scalable capabilities to access performance data online via different trans-
ports, what we call performance monitoring. There are several benefits
to performance monitoring including offloading of performance data, on-
the-fly analysis, and performance feedback. We took advantage of the
opportunity to explore these benefits.

Tree-based transports enable scalable aggregation and broadcast of
performance information in analysis operations. We have currently pro-
vided a basic collective call TAU ONLINE DUMP() which can be invoked
at the end of execution or around synchronous points during an applica-
tion’s lifetime.

With performance data offload, it becomes possible to capture a run-
ning time-series snapshots of event statistics, histograms and cluster-
averages. Presentation of these snapshots as they appear permits on-
the-fly analysis, possibly on a remote client while the application is still



executing. Figure 1 shows two such visualization schemes supported by
an older implementation of ToM. They both show how the application
evolves as more iterations are executed. The leftmost figure shows the cu-
mulative mean values of events’ execution time as a function of iteration
steps along the x-axis. The rightmost figure shows the corresponding his-
togram of a selected function, in this case MPI Alltoall. One can observe
an interesting and sudden change in not just the time range of the bins,
but the distribution of processors across those bins as evidenced by the
change in the color intensity. We now describe the monitoring operations
currently supported as a part of the TAUmon framework.

Profile Merging By default, TAU creates a file for every thread of execu-
tion in the parallel program. In this case, the number of files required to
save the full parallel profile grows as an application scales. We have added
to the monitoring framework an operation that merges profile streams in
order to reduce the number of files required. The operation is a concate-
nation operation which should only be used at the end of the run. In our
implementation, the root processor requests for the profiles of the other
processors piecemeal and in order. On receipt of these profiles, the data
is immediately concatenated to a single file by the root processor. This
permits the root processor to request more profiles without running out
of memory. As we will discuss later in section 4, when profile merging is
coupled with and preceded by event unification, there are significant gains
in overall data volume when compared with the traditional approach of
profile output.

Event Unification In TAU, because events are instantiated locally, each
thread assigns a unique event identifier. This results in full event maps
that need to be stored for each thread. Event unification begins by sorting
each processor’s events by name. The information is propagated up the
transport’s reduction tree, where at each stage, the output to the next
level of the tree is the unified and sorted by the list of events from the set
of inputs. At the same time, each intermediate node in the tree maintains
the reverse event maps. When the fully-unified event information arrives
at the root, it is broadcast back through the tree during which the full
event map for each processor can be constructed using the local maps
maintained at each intermediate node. It is important to note that event
unification is the pre-requisite to all other monitoring operations that
do not involve simple concatenation. This is because the result of any
monitoring operation arriving at the root has to be globally consistent.
Without per-processor event maps available, this is impossible.



Mean Profile Generation The mean profile is one that represents the
averaged values for all events and metrics across all processors of the ap-
plication. We take advantage of the simplicity of the operation to also
piggy-back basic statistics of the execution like the minimum, maximum
values of events and their standard deviation across processors. The latter
values, while not part of this operation’s output, are useful for support-
ing other operations like histogramming, which would otherwise have to
calculate its own minimum and maximum values first. The mean pro-
file is useful as a summary from which additional statistical information
can be sought via other operations. As time-series data, it is capable of
highlighting the relative significance of events and their relative rate of
growth.

Histogramming We compute histograms by making use of the minimum
and maximum values for each event previously calculated in the mean
profile operation. Together with a specified bin size, each processor can
determine which bin its event metric values fall into. Once determined, the
bins for each event are simply propagated up the transport network tree
and accumulated. Histograms are useful for highlighting work distribution
across processors for events which cannot be captured by mean profiles.

3.1 Updates to TAUoverMRNet

Our original ToM instantiation scheme was designed to allow additional
MRNet resources to be initialized flexibly and semi-transparently to both
the application and job scheduling system. This was achieved to a reason-
able degree through the splitting of MPI communicators as described in
[12]. This instantiation scheme, however, did not foresee other flexibility
problems in the way MRNet trees may have to be set up. For example,
because of the way MRNet trees are currently implemented, intermediate
tree nodes may only be allocated on the service nodes of BG/P.

As a result, we have updated ToM to make use of new versions of
MRNet with the latter’s support for much larger machines like the Cray
XT5 and BG/P platforms and specialized batch environments. The user is
now expected to allocate sufficient nodes for both the application and the
desired MRNet transport tree. An independent code or script determines
the topology of the MRNet tree given desired parameters. We currently
use the mrnet topgen utility provided by the developers of MRNet for
generating the network’s topology configuration. In particular, we have
found it most convenient to allow mrnet topgen to generate a tree given
a fanout factor and the number of processor cores participating in the



tree network as input. This makes it easy for users to decide how much
computing resources to allocate to the network relative to the resources
allocated to the application while retaining some control over fanout fac-
tors. Once a topology configuration is generated, a machine-dependent
launch mechanism can be started to launch the MRNet front-end, the
application which serves as the MRNet backends, and the intermediate
nodes of the tree.

On the Cray XT5 and most linux systems, this is relatively simple.
The MRNet front-end is started first and uses the resulting topology file
to instantiate the tree and create the intermediate nodes. Once ready,
the front-end will write out connection information to the leaf nodes the
backends are supposed to connect to. Meanwhile, the TAU-instrumented
application is simultaneously started. Rank 0 of the TAU-instrumented
application back-ends now probe for a flag-file to be written to disk by the
MRNet front-end. Once created, Rank 0 is then allowed to read the neces-
sary connection information for each of the other application ranks. Once
the front-end has received notice that every application back-end has con-
nected to the MRNet tree, it broadcasts a signal to each application rank
allowing them to proceed with the application code past MPI Init().

On the BG/P, this process becomes more involved. Restrictions in the
machine design force intermediate tree nodes to have to reside either on
the head nodes or the service nodes while the leaf nodes of the tree must
reside on the service nodes. Unlike the XT5 where the front-end knows
where the leaf nodes reside, on the BG/P the application backends are
the ones responsible for discovering their associated service nodes. The
backends have to then inform the launching mechanism as to which service
nodes the MRNet leaf nodes may be started. This information is also to
be used by the front-end to connect itself to the rest of the tree. We
currently do not have this capability ready for ToM.
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Fig. 2. ToM design.

Figure 2 illustrates the
structure of ToM after the
three components are launched,
successfully connected and com-
municating.

3.2 MPI-based
Monitoring

Our interest in using MPI as
an online monitoring transport
came from our work to reduce



the overheads associated with
end-of-execution profile output and analysis. As discussed above, it is
necessary to deal with a large number of profile files and with efficient
profile representation. We had separately implemented parallel event uni-
fication, profile merging, and profile data analysis (average, min, max
and histogramming) using MPI for use at the end of the execution, and
considered how these solutions could be applied to other monitoring op-
erations. The monitoring operations were implemented in parallel using a
binomial reduction tree based on the algorithms used in MPI reduction.
Enabling them for online monitoring was a simple matter.

4 Experiments and Results

For our experiments with TAUmon, we targeted two applications: PFLO-
TRAN [11], a 3-D reservoir simulator that models subsurface reactive
flows, and FLASH [4], a multi-physics multi-scale simulation code that
has been used to simulate type Ia supernovae explosions. The input data
set used for PFLOTRAN modeled a large 2 billion degree-of-freedom river
simulation. This data set was used for both our preliminary experiments
as well as our strong scaling experiments above 4,096 processor cores on
the Cray XT5 and BG/P machines. For FLASH, we employed the Sod
2d input dataset with varying maximum refinement levels.

Initial PFLOTRAN Experiments Our preliminary TAUmon experiments
were focused on the “end of execution” collection of parallel profiles and
processing them to unify the event identifiers and merge them into a single
output file. Initial experiments on PFLOTRAN used the MPI transport
with 16,380 and 131,040 cores of the Cray XT5. Two levels of TAU in-
strumentation were enabled. Full instrumentation resulted in 1,131 events
for measurement. Leaving fine-grained events uninstrumented, selective
instrumentation reduced the measured events to 68. Each profiled event
included six hardware counter values (FP OPS, TOT IN, L1 DCA/DCM,
L2 TCA/TCM, RES STL) plus execution time (TOT CYC). With no
event unification and profile merging, approximately 1.5 GB (16K cores)
and 27 GB (131K cores) of parallel profile output were generated for full
instrumentation; approximately 80MB was generated for partial instru-
mentation on 16K cores. When event unification was enabled along with
profile merging, these sizes were reduced to 300 MB and 600 MB, respec-
tively. Profile merging at the end of the run with 16K cores took 1.208
seconds and 12.96 seconds with 131K cores. I/O time was included in
both results.



Fig. 3. Online profile snapshots, of 12 to 21 frames from top to bottom, of PFLOTRAN
execution on 12K processes.

Based on these results, we experimented with online monitoring of
a PFLOTRAN execution, concentrating on analysis operations to reduce
the amount of parallel profile data. At each PFLOTRAN major iteration,
event unification followed by per-event averaging and histogramming op-
erations were performed. Figure 3 shows three average event profiles from
a live online experiment between the NCIS Cray XT5 at the University of
Tennessee and a laptop located in Dagstuhl, Germany1. The PFLOTRAN
execution used 12K cores and the mean profile snapshots (frames) shown
are those after 12, 17, and 21 iterations. The events are ordered and col-
ored according to their normalized percent exclusive execution time. As a
result, the event colors change from average profile snapshot to snapshot
as evidenced by the transition from iteration 17 to iteration 21. We can
see the exclusive execution time increasing for some of the events, but
constant for others. Those with unchanging size incurred their execution
time earlier in the computation.

1 Our presentation was part of the Dagstuhl Seminar 10181 on “Program Development
for Extreme-Scale Computing,” http://www.dagstuhl.de/10181/.



Fig. 4. Time taken for PFLOTRAN monitoring op-
erations on the XT5 using ToM as the transport
layer.

Scaling Studies with PFLO-
TRAN Monitoring Hav-
ing validated online mon-
itoring functionality, we
conducted scaling experi-
ments for TAUmon with
both MPI transport and
MRNet (ToM). The goal
was to measure the time
taken by event unification
and each statistical analy-
sis operation (per-event av-
eraging and histogramming
(20 bins)). In the case of
ToM, this is measured by
the front-end process which
marks the beginning and
end of the operation’s communication protocol. For MPI transport, the
root process of our reduction tree takes responsibility for measuring when
the collective operation was begun and when the performance data was
finally gathered at the root. When executed without selective instrumen-
tation, our input dataset for the strong scaling of PFLOTRAN generated
756 function events. With selective instrumentation, this number was re-
duced to 57 events.

Fig. 5. Time taken for PFLOTRAN monitoring op-
erations on the XT5 using MPI as the transport
layer.

Figure 4 shows the scal-
ing results for the Cray
XT5 using ToM. Since
event unification has not
yet been implemented with
MRNet, we used MPI event
unification results for the
other analyses. Two lev-
els of instrumentation were
tested (57 and 758 events)
from 4K to 12K cores. All
times are less than 0.7 sec-
onds, with histogramming
taking longer than averag-
ing. Times increase with
larger cores counts. Both of these results were expected. We are inves-



tigating performance in more detail to determine if optimizations are
possible.

In contrast, Figure 5 shows the scaling results for the Cray XT5 us-
ing the MPI transport for 4K to 24K cores. Except for histogramming
on 758 events, MPI analysis operations are all less than 0.06 seconds.
Compared to ToM, this is significantly faster. Furthermore, there is little
effect of scaling on these times. Clearly, the anomaly is the histogram-
ming results for 758 events. More investigation is needed to uncover the
poor performance here. Our suspicions are that there is an interaction
between the histogramming algorithm and the core locality boundaries
that disrupt performance. In addition to being high, the execution times
have the weird behavior of declining at larger scale.

Fig. 6. Time taken for PFLOTRAN monitoring opera-
tions on the BG/P using MPI as the transport layer.

Moving to the IBM
BG/P, Figure 6 shows
the scaling results us-
ing MPI transport for
4K to 16K cores and 57
events2. Again, the exe-
cution times are all less
than 0.06 seconds. The
interesting effect is the
larger event unification
time relative to mean
and histogram analysis.
This is also represented
in the XT5 results for
57 events, keeping in
mind that Figure 5 is
a log-log plot. As be-
fore, monitoring analy-
ses with MPI transport appears to be minimally affected by scaling.

FLASH Experiments Our work with FLASH returned to online monitor-
ing experiments to demonstrate how analysis of parallel profile snapshots
taken during execution can highlight performance effects that would oth-
erwise be missed in an aggregate profile. Figure 7 shows 34 frames of
the mean profile from 1,536 processes running FLASH on the Cray XT5.
The most significant five events are labeled. The particular frames were

2 The 758 event experiments were not completed by the time of submission. Also,
ToM is still being implemented on the BG/P.
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Fig. 7. Online profile snapshots of FLASH execution on 1,536 Cray XT5 processes.

chosen because they show the step-like behavior in the events associated
with AMR operations. These are highlighted in the figure.

5 Conclusions and Future Work

The TAU project is developing a scalable parallel monitoring framework
called TAUmon, based on past research prototypes, but with an eye
toward leveraging current scalable infrastructure like MRNet and high-
performance MPI libraries. The results from initial experiments reported
here give confidence that end-of-execution and online monitoring capabil-
ities will provide opportunities for large-scale performance analysis. The
parallel performance of the TAU event, merging, and reduction (mean,
histogram) operations are good for both MRNet and MPI transport de-
signs. We are currently developing other analysis operations, such as clus-
tering and wavelet analysis, as well as tuning the monitoring analysis for
higher efficiency. Long term, we hope to provide a monitoring interface
for parallel applications to interrogate performance online from TAUmon,
for purposes of adaptive performance optimization.
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