
An Approach to Creating Performance

Visualizations in a Parallel Profile Analysis Tool

Wyatt Spear, Allen D. Malony, Chee Wai Lee, Scott Biersdorff, Sameer Shende

Department Computer and Information Science,
University Oregon, Eugene, Oregon, 97403

Abstract. With increases in the scale of parallelism the dimensionality
and complexity of parallel performance measurements has placed greater
challenges on analysis tools. Performance visualization can assist in un-
derstanding performance properties and relationships. However, the cre-
ation of new visualizations in practice is not supported by existing par-
allel profiling tools. Users must work with presentation types provided
by a tool and have limited means to change its design. Here we present
an approach for creating new performance visualizations within an ex-
isting parallel profile analysis tool. The approach separates visual layout
design from the underlying performance data model, making custom vi-
sualizations such as performance over system topologies straightforward
to implement and adjust for various use cases.

1 Introduction

The performance measurement and analysis of large-scale parallel applications
requires means for understanding the features within the multi-dimensional per-
formance datasets and their relation to the computational and operational as-
pects of the application and its execution. While automatic analysis of perfor-
mance behavior and diagnosis of performance problems is desired, performance
tools today invariably involve the user for performance results interpretation.
Presentation of performance information has been regarded as an opportunity for
conveying visually characteristics and traits in the data. However, it has always
been challenging to create new performance visualizations, for three reasons.
First, it requires a design process that integrates properties of the performance
data (as understood by the user) with the graphical aspects for good visual form.
This is not easy, if one wants effective outcomes. Second, unlike visualization of
physical phenomena, performance information does not have a natural semantic
visual basis. It could utilize a variety of graphical forms and visualization types
(e.g., statistical, informational, physical, abstract). Third, with increasing ap-
plication concurrency, performance visualization must deal with the problem of
scale. The use of interactive three-dimensional (3D) graphics clearly helps, but
the visualization design challenge is still present.

In addition to these challenges, there are also practical considerations. Be-
cause of the richness of parallel performance information and the different rela-
tionships to the underlying application semantics, it is unreasonable to expect

just a few performance visualizations to satisfy all needs. Where visualization of
large performance information does exist, it is generally embedded as “canned”
displays in a profile or trace analysis tool. If a user has a different concept in
mind, they have very limited ability to make changes. There are ways around
the dilemma. One approach might be to use a visualization environment (e.g.,
VisIt [3] or ParaView [2]) which provides robust support for building and pro-
ducing visualizations. These environments have a targeted user group, and it is
not parallel performance analysts.

An alternate approach is to work within a performance analysis tool and
build capabilities for visualization that allow more user design input and inter-
action. This could be accomplished simply by an interface to query performance
data from within the tool, and passing it over to a component implemented with
a visualization library that the user programs directly (e.g. VTK [4]). Unfor-
tunately, few users would have the expertise to take advantage of this. Instead,
we took a path to constrain how visual layout and user interface components
are specified. The tool then constructs a performance visualization from the
specifications.

2 Design Approach

The approach we followed for performance visualization design was motivated by
our experience with the 3D visualization in the ParaProf profile analysis tool [16]
provided by the TAU performance system [17]. ParaProf’s primary visualization
mode presents 2D charts of a metric for each event measured in profiled ap-
plication. Metrics can be execution time (inclusive, exclusive), event count, or
hardware counters. The 2D charts include bar plots, histograms, communication
“heat maps,” among others. In addition, ParaProf presently provides two types
of 3D performance views:

– Full profile : A landscape visualization is used to show the entire parallel
profile for all events and threads of execution for a single performance metric.
The view is drawn as a triangle mesh or bar plot with events on the X-axis,
threads on the Y-axis, and (event,thread) metric value on the Z-axis.

– Event correlation : A scatter plot visualization is used to show the re-
lationship between four events (each with its own performance metric) for
all threads of execution. The first three event/metric pairs set the spatial
coordinates for each thread with the fourth determining color.

For both visualizations, the UI allows the user to select how the performance
event/metric pair is displayed. Both visualizations are implemented in JOGL,
Java’s interface to OpenGL, and interactive rotation and zooming are provided.

Both of these 3D views were developed to target specific use cases. Without
any additional support, any new visualization would also be implemented that
way. Thus, when we wanted to develop a new visualization for a single event and
metric that was based on a layout of threads according to topological informa-
tion, it became clear that a more general methodology was required; otherwise,
a separate implementation would be needed for each different layout.

To move towards a more general method of creating 3D visualizations, we
considered the salient components of the existing versions and the need to specify
aspects of a 3D design in a more flexible manner. Two ideas resulted: 1) separate
the visualization layout design from visualization user interface (UI) design, and
2) allow the properties of each to be specified by the user. The new design
methodology is shown in Figure 1.

Fig. 1. Visualization architecture.

Visualization layout design is concerned with how the visualization will ap-
pear. Our approach allows the visual presentation to be specified with respect to
the parallel profile data model (events, metrics, metadata) and possible analysis
of this information. Two basic layout approaches we support are mapping to
cartesian coordinates provided by MPI and filling a space of user-defined dimen-
sionsions in order of MPI rank. We have also worked to develop a specification
language for describing more complex layouts of thread performance in a 3D
space. In our initial implementation of these custom layouts, mathematical for-
mulae define the coordinates and color value of each thread in the layout. The
formulae are based on variables provided by the profile data model. These input
variables include event and metric values for the current thread being processed
as well as global values such as the total number of threads in the profile. The
specification is applied successively to each thread in the profile to determine X,
Y and Z coordinate values and color values which are used to generate the vi-
sualization graphics. Our initial implementation for expression analysis uses the
MESP expression parser library[5]. MESP provides a simple syntax for express-
ing mathematical formulae but is powerful enough to allow visualization layouts
based on archetecturally relevant geometries or the mathematical relationship
of multiple performance variables.

Visualization UI design is concerned with how the visualization will be con-
trolled. The key insight here is to have the UI play a role in “binding” data
model variables used in the layout specification. This approach implements the
functionality present in the current ParaProf views, where the user is free to
select events and metrics to be applied in the visualization as inputs to layout

formulae. However, for large performance profiles of many threads/processes,
the specified layout can result in a dense visualization that obscures internal
structures. The current ability to zoom and rotate the the topology in the UI
partially ameliorates this issue. Our model for visualization UI further allows
more sophisticated filtering techniques.

3 Examples

The performance visualization design approach is being developed in the Para-
Prof profile analysis tool. Here we demonstrate our current prototype for three
applications: Sweep3D, S3D and GCRM/ZGrd. Our initial focus is on topol-
ogy visualization. In addition, we illustrate the flexibility of these techniques by
recreating ParaProf’s event correlation view.

3.1 Sweep3D

For development and testing of our 3D visualization approach we used data from
the Sweep3D[6] particle transport code. The Sweep3D performance data set we
used was generated from a 16k core run on an IBM Blue Gene/L system and
contains Cartesian coordinates of each MPI rank from the MPI system [19].
The most obvious topology mapping scheme is to take the rank-to-coordinate
mapping and use it to lay out the points representing the ranks in a 3D space.
Figure 2 shows this performance view for the exclusive time in MPI Barrier.
The layout specification is defined with respect to MPI ranks while event and
metric variables are selected in the UI.

Fig. 2. Sweep 3d BG/L 16k-core map-
ping as provided by MPI.

Fig. 3. Sweep 3d BG/L 16k-core user-
defined mapping.

When information about the physical layout of a system is provided, it is
straightforward to write the layout expression and to interpret the results. How-
ever there are a number of cases where basic MPI provided coordinate mapping
will not suffice. Just as mapping schemes vary between MPI implementations,
the means of accessing topology mapping data is also variable. The relevant

mapping information may not be available in performance data from which a
topological display is desired. Even when coordinate data is available there are
potential issues which may render it inappropriate for the performance analysis
task at hand. For example, the underlying, machine-level topology may not be
the topology of interest. Higher level topologies, relating to how work is allocated
may have different or no ready means of programatically associating ranks with
topological coordinates. Another issue that can arise is the need to incorporate
another dimension, such as thread (core) ID, in the display. In such situations it
is necessary to find other means of rank mapping. In general, greater flexibility
in how ranks are visualized allows for more complete analysis of an application
with respect to topology.

Figure 3 shows a user-specified visualization defining a topology with mean-
ingful spatial context for performance data based on a block-wise layout of MPI
ranks, in this case in two dimensions. This show that even a basic linear stacking
with respect to rank id can produce valuable interpretive effects.

More general topological renderings produced by mathematical expressions
can serve a number of purposes, including defining more complex hardware
topologies and other spatial representations of computational activity. To demon-
strate the power of the layout specification, Figure 4 illustrates a spherical visu-
alization of the same Sweep3D performance data.

Fig. 4. Sweep 3D 16k-core mapping
with spherical topology.

Listing 1.1. Topology configuration file for
sphere transformation.

BEGIN VIZ=sphere
rootRanks=sq r t (maxRank)
theta=2∗pi () /

rootRanks∗mod(rank , rootRanks)
phi=pi () /

rootRanks ∗(f l o o r (rank/ rootRanks))
x=cos (theta)∗ s i n (phi)∗100
y=s in (theta)∗ s i n (phi)∗100
z=cos (phi)∗100
END VIZ

Listing 1.1 shows the expressions mapping ranks to points on the surface of
a sphere. The X, Y, and Z formulae are required, but additional helper func-
tions may be provided to simplify the expressions. Several variables, such as
maxRank and rank are provided internally. The topology formulae are defined in
a standard text file using MESP’s syntax. The file may be loaded and refreshed
from within ParaProf, allowing rapid development and adjustment of application
or purpose specific topologies, as well as easy sharing of topological definitions
between collaborators.

Once a visual layout is defined, the UI can control selection and filtering.
A particularly effective setting defines a displayable range based on minimum
and maximum values. Thread points are not displayed if the value of the metric
event combination representing color exceeds the maximum or is less than the
minimum. If the minimum is set above the maximum, only threads with values
above the minimum and below the maximum are shown, meaning only high and
low values are displayed. This is very important for identifying the topological
patterns of performance outliers, and is shown for Sweep3D in Figure 5.

Fig. 5. Sweep 3d Topology with middle
values excised.

Fig. 6. Sweep 3d topology slice along x
axis.

The UI also allows exclusion by locality. For example, if a value along the X
axis is selected, only points appearing along that “slice” will be visible. Excluding
by one, two or three axes results in the visualization of a plane, line or point
respectively. The average value of the metric for the ranks in a selected area will
be displayed in each case, with three selected axes displaying the actual value
for the single selected rank. This is demonstrated in Figure 6 for Sweep3D.

3.2 S3D Use Case

The S3D application [8] is a massively parallel turbulent combustion simulator
developed by Sandia National Laboratories. The core DNS (Direct Numerical
Simulation) solver code of S3D is parallelized using three dimensional domain
decomposition over a Cartesian mesh. We examined data collected by TAU from
several scaling runs of S3D on the Intrepid IBM Blue Gene P system. Previous
performance analysis of S3D [15] has suggested topology dependent performance
behavior centered around MPI communication. The communication-topology
dependent nature of the code made it a strong candidate for re-analysis with
topological performance visualization.

The Cartesian topology coordinates provided by MPI for the S3D run on
intrepid cover the three spatial dimensions of nodes within the system’s layout.
However, on BG/P, each node contains two processors with two cores per pro-
cessor. The default behavior of the topology view, given pre-defined coordinates
with a 4th thread or core-level dimension, is to take the average of the thread or
core values on each node and display that value in the 3D node level topology.

Fig. 7. Time in MPI Allreduce for S3D
4K-core run on BGP with core-based
topological layout.

Listing 1.2. Topology configuration
file for processor blocks

BEGIN VIZ=4Px16Block
xdim=8,ydim=8,zdim=16
x=mod(rank , xdim)+16∗ f l o o r (rank /1024)
y=mod(f l o o r (rank/xdim) , ydim)
z=mod(f l o o r (rank/xdim/ydim) , zdim)
END VIZ

We wanted to break down the visualization further to display core level ac-
tivity. We elected to use the mathematical expression topology definition system
to display each of the four cores as its own point in a distinct node level topology.
The result is shown in figure 7. Each of the four blocks represents the activity
one of the four core ids laid out in the specified node level topology.

Discussing the internal topologies of each block is outside the scope of this
paper. However an interesting high level phenomenon is immediately visible. In
each node, overall, the cores are operating in pairs of high and low utilization.
That is, for each chip, one core is spending significantly more time in the routine
under observation (MPI Allreduce) than the other. This core wise breakdown is
likely related to the way individual cores are assigned to handle communication.

The formulae used to distinguish the topology by core is defined in listing 2.
Note that this topology definition is only applicable to topologies in which the
thread rank is the last to repeat.

There are numerous alternative thread-conscious, four dimensional layouts.
The ideal layout will vary by the application selected and the topological be-
havior being observed. For example, we have also had success with grouping the
threads or cores that comprise a single node and arranging each of these groups
in the context of the greater node-level system topology.

By opening the node and thread layout to formulaic definition we have ex-
panded the scope of topological performance visualization from machine dictated
layouts to arbitrary node configurations. This is especially useful for mapping
ranks to program domain decompositions which may have no direct relationship
with the hardware topology.

3.3 GCRM/ZGrd Use Case: 3D Correlation Plot

The Global Cloud Resolving Model (GCRM) [1] is an atmospheric circulation
simulator. We selected a 10240 core run of its ZGrd sub-application to demon-

strate our visualization system’s flexibility by duplicating ParaProf’s existing
3D scatter plot functionality, which shows the correlation of four event/metric
combinations specified in the UI. Three value are shown spatially and one using
color.

The spatial dimensions and color of each rank are set by distinct event/metric
pairs. For example in Figure 8 the values used to calculate the Y axis position
of each point are determined by the exclusive time spent in MPI Allreduce. As
shown in Listing 1.3 the three spatial dimensions are associated with internally
defined values. The event/metric pairs used to populate these values are specified
by the user in the ParaProf UI. The restrictDim value set to 1 causes the 3D
visualization to normalize dimensions, ensuring a cubic rendering space even if
the different event/metric pairs use values with different orders of magnitude.

Fig. 8. 3D Correlation plot of 10240
core ZGrd run.

Listing 1.3. Topology configuration
file for scatterplot

BEGIN VIZ=Scat te rTes t
r e s t r i c tD im=1
x=(event0 . val−event0 . min)/

(event0 .max−event0 . min)
y=(event1 . val−event1 . min)/

(event1 .max−event1 . min)
z=(event2 . val−event2 . min)/

(event2 .max−event2 . min)
END VIZ

4 Related Work

The interest in parallel performance visualization truly began as parallel systems
began to scale. The classic ParaGraph [12] used network topology to display per-
formance of message passing programming. The Prism [18] programming envi-
ronment for the CM-5 demonstrated the benefits of topological layout for display
of debugging, data, and performance information for data parallel programs. Pre-
viously studied concepts and methods for parallel performance visualization [9,
13, 14] emphasize the importance of using various forms of semantics in effective
presentation. Three-dimensional graphics techniques have also proven useful for
scalable performance visualization [11, 10], again with structural elements pro-
viding a necessary context for interpretation.

As the scale of parallel systems grew, the challenges of performance data size,
analysis complexity, and presentation intensified. The Cube application provided

by the Scalasca project is a performance analysis tool the features of which
include visualization of performance data in a Cartesian topology layout. Cube
populates this view based on the coordinates provided by Scalasca, collected
from the MPI system at runtime.

The aforementioned tools, where topology based visualization is provided at
all, generally support topological displays mediated by communication patterns
or literal hardware layouts. In contrast ParaProf’s 3d topology visualization sys-
tem introduces a number of novel features to increase the scope of topological
layouts which can be applied to performance data inputs, including site and
application specific topologies. Unlike proprietary or architecture-specific tools
the ParaProf 3d topology visualizer provides a consistent, portable interface for
topological analysis regardless of platforms and programming models that pro-
duced the data. Additionally, the scope of the performance data made available
by the TAU framework allows for topological analysis with respect to a wide
array of metrics and program decompositions.

Significant work has been done by the Charm++ project[7] among others
on topology mapping algorithms. These solutions generally focus on selection
of ideal layouts for a given application and are complimented by diagnostic
performance analysis with respect to the topological configuration.

There are some similarities in graphical presentation between our topological
performance display and systems for configuring and monitoring HPC clusters.
These management tools are often focused on a specific subset of hardware and
generally are more concerned with static evaluation of system topologies than
post-mortem analysis. Such applications include XT3D[20] which presents 3d
visualizations of system topologies on Cray clusters.

5 Conclusion

Parallel performance visualization can be a useful technique for better under-
standing performance phenomena. However, it is important to integrate the
capabilities within a performance analysis framework. This paper describes a
performance visualization design methodology and its incorporation in the TAU
ParaProf tool. Its initial implementation concentrates on topology-oriented lay-
out and examples are given for the Sweep3D and S3D applications.

However, the methods we present for visual layout and UI design are more
broadly applicable. To demonstrate their versatility, we have recently recreated
ParaProf’s event correlation view. In general, our goal is to allow the user the
full benefit of incorporating their concepts of visual presentation and semantics
to improve performance understanding.

Acknowledgements

This research is support by the U.S. Department of Energy, Office of Science,
under contract DE-SC0001777. Resources of the Argonne Leadership Computing
Facility at Argonne National Laboratory were utilized in the work.

References

1. Global cloud resolving model (gcrm), https://svn.pnl.gov/gcrm
2. Paraview, http://www.paraview.org/
3. Visit, https://wci.llnl.gov/codes/visit/
4. Visualization toolkit (vtk), http://expression-tree.sourceforge.net/
5. Math expression string parser (mesp) (2004), http://expression-tree.

sourceforge.net/

6. The ascii sweep3d code (October 2006), http://www.llnl.gov/ascibenchmarks/
asci/limited/Sweep3D/asciSweep3D.html

7. Bell, R., Malony, A.D., Shende, S.: A portable, extensible, and scalable tool for
parallel performance profile analysis. Proc. EUROPAR 2003 conference pp. 17–26
(2003)

8. Bhatele, A., Kale, L.V., Chen, N., Johnson, R.E.: A Pattern Language for Topology
Aware Mapping. In: Workshop on Parallel Programming Patterns (ParaPLOP
2009) (June 2009)

9. Chen, J., et al.: Terascale direct numerical simulations of turbulent combustion
using S3D. Computational Science and Discovery 2(1), 015001 (2009)

10. Couch, A.: Categories and Context in Scalable Execution Visualization. Journal of
Parallel and Distributed Computing 18(2), 195–204 (June 1993)

11. De Rose, L., Pantano, M., Aydt, R., Shaffer, E., Schaeffer, B., Whitmore, S., Reed,
D.: An approach to immersive performance visualization of parallel and wide-
area distributed applications. In: High Performance Distributed Computing, 1999.
Proceedings. The Eighth International Symposium on. pp. 247 –254 (1999)

12. Hackstadt, S., Malony, A., Mohr, B.: Scalable Performance Visualization of Data-
Parallel Programs. Scalable High-Performance Computing Conference pp. 342–349
(May 1994)

13. Heath, M., Etheridge, J.: Visualizing the Performance of Parallel Programs. IEEE
Software 8(5), 29–39 (September 1991)

14. Heath, M., Malony, A., Rover, D.: Parallel Performance Visualization: From Prac-
tice to Theory. IEEE Parallel and Distributed Technology: Systems and Technology
3(4), 44–60 (December 1995)

15. Heath, M., Malony, A., Rover, D.: The Visual Display of Parallel Performance
Data. Computer 28(4), 21–28 (November 1995)

16. Jagode, H., Dongarra, J., Alam, S., Vetter, J., Spear, W., Malony, A.D.: A Holistic
Approach for Performance Measurement and Analysis for Petascale Applications.
In: Proceedings of the 9th International Conference on Computational Science. pp.
686–695. ICCS 2009, Springer-Verlag, Berlin, Heidelberg (2009), http://dx.doi.
org/10.1007/978-3-642-01973-9_77

17. Shende, S., Malony, A.D.: The TAU Parallel Performance System. SAGE Publica-
tions (2006)

18. Sistare, S., Allen, D., Bowker, R., Jourdenais, K., Simons, J., Title, R.: A scalable
debugger for massively parallel message-passing programs. Parallel and Distributed
Technology: Systems and Applications Distributed Technology: Systems and Ap-
plications, IEEE 2(2), 50–56 (Summer 1994)

19. Traff, J.: Implementing the mpi process topology mechanism. SC Conference p. 28
(2002)

20. Yanovich, J., Budden, R., Simmel, D.: Xt3dmon 3d visual system monitor for psc’s
cray xt3 (2006), http://www.psc.edu/~yanovich/xt3dmon

