Monadic Effects

Nick Benton
Microsoft Research

Monad madness
Product Details -|

‘ORUMS | C

\

1992-08 Monads
1995 Monadic 10
1999-02 What the
1999 Monads for
2002 Yet Another
2003-08 All about
2004-07 A Schemé
2004-07 Monads :
2004-08 Monads i
2005-07 Monads i
2005-11 Of monac
2006-03 Understa oo

2006-07 The Mon 2

2006-08 You could T-Shl PtS
2006-09 Meet Bok 4 -

2006-10 Monad T v
2006-11There's a
2006-12 Maybe
2007-01 Think of
2007-02 Understa
2007-02 Crash Co DWh In a dark
2007-04 The Real cither, butanii
2007-03 Monads i utes, using ba
2007-07 Monads!
2007-08 Monads : entation of m(
2007-08 Understa
2007-08 Monad (s
2008-06 Monads
2008 Monads, Chz
2009-01 Abstracti
2009-03 A Monad i ERERa=e oro e A
2009-11 What a Monad is not A desperate attempt to end the eternal chain
2010-07 | come from Java and want to know what monads are in Haskell - T arstens A exampie sHOwWIng Now a
2010-08 A Fistful of Monads from Learn You a Haskell An introduction to monads that builds on applicative functors
2010-08 Yet Another Monad Tutorial An ongoing sequence of extremely detailed tutorials deriving monads from first principles.

Monads Nonad

amre e

http://homepages.inf.ed.ac.uk/wadler/papers/marktoberdorf/baastad.pdf
http://www-fp.dcs.st-and.ac.uk/~kh/papers/io-tutorial/io-tutorial.html
http://www-users.mat.uni.torun.pl/~fly/materialy/fp/haskell-doc/Monads.html
http://www.engr.mun.ca/~theo/Misc/haskell_and_monads.htm
http://en.wikibooks.org/wiki/Haskell/YAHT
http://www.haskell.org/haskellwiki/All_About_Monads
http://www.ccs.neu.edu/home/dherman/research/tutorials/monads-for-schemers.txt
http://www.haskell.org/haskellwiki/Monads_as_Containers
http://sleepingsquirrel.org/monads/monads.html
http://moonbase.rydia.net/mental/writings/programming/monads-in-ruby/00introduction.html
http://www.loria.fr/~kow/monads
http://en.wikibooks.org/w/index.php?title=Haskell/Understanding_monads&oldid=933545
http://www.haskell.org/haskellwiki/The_Monadic_Way
http://sigfpe.blogspot.com/2006/08/you-could-have-invented-monads-and.html
http://www.haskell.org/haskellwiki/Meet_Bob_The_Monadic_Lover
http://www.grabmueller.de/martin/www/pub/Transformers.en.html
http://www.haskell.org/pipermail/haskell-cafe/2006-November/019190.html
http://blog.tmorris.net/maybe-monad-in-java/
http://koweycode.blogspot.com/2007/01/think-of-monad.html
http://kawagner.blogspot.com/2007/02/understanding-monads-for-real.html
http://patryshev.com/monad/m-intro.html
http://saxophone.jpberlin.de/MonadTransformer?source=http://www.haskell.org/haskellwiki/Category:Monad&language=English
http://www.randomhacks.net/articles/2007/03/12/monads-in-15-minutes
http://ahamsandwich.wordpress.com/2007/07/26/monads-and-why-monad-tutorials-are-all-awful/
http://www.haskell.org/haskellwiki/Monads_as_computation
http://en.wikibooks.org/wiki/Haskell/Understanding monads
http://www.haskell.org/haskellwiki/Monad_(sans_metaphors)
http://spbhug.folding-maps.org/wiki/Monads
http://spbhug.folding-maps.org/wiki/MonadsEn
http://book.realworldhaskell.org/read/monads.html
http://byorgey.wordpress.com/2009/01/12/abstraction-intuition-and-the-monad-tutorial-fallacy/
http://onclojure.com/2009/03/05/a-monad-tutorial-for-clojure-programmers-part-1/
http://onclojure.com/2009/03/05/a-monad-tutorial-for-clojure-programmers-part-1/
http://onclojure.com/2009/03/05/a-monad-tutorial-for-clojure-programmers-part-1/
http://onclojure.com/2009/03/05/a-monad-tutorial-for-clojure-programmers-part-1/
http://www.haskell.org/haskellwiki/What_a_Monad_is_not
https://intoverflow.wordpress.com/2010/07/20/i-come-from-java-and-want-to-know-what-monads-are-in-haskell/
http://learnyouahaskell.com/a-fistful-of-monads
http://mvanier.livejournal.com/3917.html

Programming Language Semantics

* Operational
— (¢,s5)Us or (C,S)—(C’S")
— (Ax.M) V> M[V/X]

* Denotational

— Compositional interpretation of syntactic phrases as more abstract
mathematical objects

— What sort of objects affected by
* syntactic category, or type, of the phrase

* thelanguage as a whole
* which aspects of the behaviour of programs we decide to observe

— Compositionality
* Denotation has to encode all possible observations arising from placing that
phrase in a larger context

* But want to abstract away from non-observable behaviours; ideally having equal
denotations for observationally equivalent things

* Finding collections of values that have enough information content and structure
to interpret phrases, yet do not make too many spurious distinctions, can be hard

* A good choice embodies a great deal of metatheory about the language before we
even consider particular programs

While programs

c :==skip|z:=e|c;c|ifnz e then c else ¢ | while e do ¢

Semantics using (partial) functions

Store < Var — 7
le] : Store — Z
[c] : Store — Store

z:=¢|(s) = s[z — [e] (s)]

co; c1] = [e1] o [eo]

ifnz e then ¢ else ¢1](s) = { [[c(l)]](s) %f le](s) 7 0
while e do] = fiz® = |, (D)

where
® : (Store — Store) — (Store — Store)

_J f(el(s)) if [e](s) # 0
2(£)(s) —{ 5 if [e](s) = 0

Operational and Denotational:

/

(e, 8) =™ (skip, ') <= (¢, s) || &' < [c](s) =s
Contextual Equivalence:
Cr ¢ < VO[]ss, (Cld, s) | s < (C[c], s) | ¢
Justifies equations:

(x:=3;y:=5) 2z (y:=5;2:=3)
(ifnz 0 then cq else ¢1) ¢z €1
((ifnz e then cq else ¢1);¢) >~ (ifnz e then (cg;c) else (c1;¢))

Variations

Using w-cpos instead of sets and partial functions

e Either [c] a strict (continuous) map Store | — Store
e Or [c]: Store — Store

In latter case, note [co;c1] = ([e1])* o [eo], where if f: X — Y,

f*:XL—>Y_]_
. | fx ifa=|z]
f"’_{L ifa=1

Adding non-determinism, (cgMecy, S) — (co, s) and (coMey, §) — (c1, s). Take
[c] € Rel(Store, Store), i.e. [c] C (Store x Store), with sequential composition
interpreted by relational composition

e There’s a choice here: [c] = [¢M (while 1 do skip)]

e Equivalently, [c]: Store — P(Store), then [co;c1] = ([e1])* o [co] where if
FiX > B(Y), f*:P(X) > B(Y) given by f*(z5) = U,ey f(2)

Simple Types

AB:=int|unit| AxB|A—B|A+B

_ _ '-M:A '-N:B
rz:AFx: A I'Fn:int ' ():unit

TF(M,N):AxB

I'M:AxB I'FM:AxB '-M:A— B 'FN:A

'FfstM:A I'FsndM:B I'-MN:B
I'Nz:AFM:B I'-M:A I'-N:B

'-(A:AM):A— B I'inlM:A+ B '+inrN:A+ B

I'-M:A+ B I'z:AFN:C I'Ny:BFP:C
I't-case M of inlx = N |inry= P:C

E=M:int EFM':int
E+F M+ M :int

Operational semantics

Vi=z|de:AM|(V,V)|n|inlV]|inrV

Call by value:

M{yXz:AM NV M[V/z] 4V’ MV NyV
MN |V’ (M,N) | (V,V')
M| (Vi,Va) MUV M | inlV N[V/z] |} V'
fst M || V; inl M | inlV case M of inlz = N |inry = N || V'

Mim Nin
M+ N Im+n

VIV

Call by name:
W:=Xx:AM|(M,M)|n|inlM |inr M

MyAz:AM M[N/z|| W MU (Ni,No) N UW
MNJW fst M |} W
M{inlM N[M/z] W M{ym Nin

case M of inlz = N |inry= N | W M+N{m+n

Semantics in Set
[int] = Z [unit] = 1 [A x B] = [A] x [B]

[A — B] = [4] — [B] (= [B]'Y) A+ B] = [A] + [B]

[6:: A F2i:Adp=m(p) [CFniintlp=n [IF():unitfp=
L+ (M,N):Ax Blp= ([T~ M:A]p, [T+ N:B]p)
[T Ffst M:Alp=m ([T - M: A x Blp)
[CFMN:B]p=([T+M:A— Blp)([T+ N:A]p)

[TFXx:AM:A— Blp=Xxac< [A].([I',x:AF M:B](p,a))

Equations

'-M~y, N:A <= VC[|:(T'FA)>int, C[M]|n < C[N]|n
beta:
(Az: A.M) N = M[N/z] fst (M, N) = M snd (M, N) = N
case inl M of inlz = N |inry = N' = N[M/z]
case inf M of inlz = N |inry = N' = N'[M/y] M+N=N+M

n+m=n+m

eta:
M= () M=Xe:AMzx (a & fo(M)) M = (fst M,snd M)
case M of inlz = inlz | inry = inry =M

(better: case M of inlz = Nlinlz/z] | inry = Nlinry/z| = N[M/z])

Recursion (hence divergence) in CBV

I'Nz:A, f:A—-BFM:B
I'-(recf:rA—- Bx=M):A— B

M (recfz =M NV’ M'V'/x, (recfoe=M)/flIV

MNJ|V
V= (rec fz = fz)()
(Ax.M)N #, M|N/zx] consider (Ax.()) (2 (AxM)V =, M|V /x|
fst (Ml,Mg) 7&'0 M, fst (Vl, VQ) = V1

M #£, Ax.M x V=,Az.Vx

Recursion in CBN

Le:AFM:A M|(recx.M) /x| | W
' (recx: AM): A (recz.M) | W

2 = (recz.x)
PCF - observation at ground type(Az.M) N = M|N/x|
fst (M, M) = M,
(Ax.M z) = M in particular, Azx.Q2 =)
(fst M,snd M) = M
Haskell - observation at all types
(Az.Mx) # M

(fst M,snd M) # M

Denotational Semantics CBV

Use pointed w-cpos and strict maps

[int] =Z, [A— B] =[A] — [B] [Ax B] =[A] ®[B]

[A+B] =[Al o [B] [: Ai] = Q[A] [T = M:A]:[T] — [A4]

" z-

Use w-cpos and explicit lifting

[int] =Z [A— B] =[A] — ([B]). [A x B] = [A] x [B]

[A+ Bl =[A]+[B] [&i:A]= H[[Ai]] [T = M:A]:[T] = ([A]) L

1

CFaxeM:A—» B =T M 4By Y 4sB)),

mrFMN:B] =17 LY 4 By x4, — (4= B)xA), <% B,

Denotational Semantics: CBN

For PCEF': Pointed cpos and continuous maps
lint] =7, [A — B] =[A] — [B] [A x B] = [A] x [B]
[A+B] = ([Al+[B]).
For Haskell: Pointed cpos and continuous maps, more lifting
[int] =7, [A— B] = ([A] = [B])+ [Ax B] = ([A] x [B]).

[A+ Bl = (Al +[B]).

CBV with global store

[I'=M:int

[HIX :int _
' (X:=M):unit

(s, M) | (s, n)

(s, 1X) I (s, s(X)) (s, X:= M) | (S[X = n], ()

(s, M) (s', Ae.M") (s', Ny (s", V) (", M'[V/z]) |} (s, V")

(s, M N) | (s, V')
Further inequations
Mz Ay (z,9)) M N £ OyAa.(z,y)) N M
(M2.(z,2)) M # Oz y.(z,y)) M M

plas various equations involving the new operations.

Denotational
[int] = Z [unit] = 1 [A x B] = [A] x [B]

[A — B] = [A] x Store — [B] x Store [A = [[[4:]
[M:A]:[I'] x Store — [A] x Store

[CH(M,N):Ax B](p,s) =
((z,y),s") where [N](p,s") = (s",y) where [M](p,s) = (z,s')

xS 2 xS XMl rgaxs 2L axrxs B AxBxs

Moggi’s brilliant idea

The extra structure we add to models of the pure language
to deal with these, and many other, notions of side effect
always has the same “shape”

And there are common patterns for just how we use that
structure to modify the interpretations of types

And corresponding patterns apply to the interpretation of
terms

We can capture this commonality by factoring our
semantics via a new, generic, computational metalanguage

Doing things this way saves repeated work, modularizes,
explains, cleans up reasoning by moving side-conditions
into the type system, sets us up for further generalizations

The structure

Separate values A from computations TA, which may
have observable behaviour other than producing a
value of type A

T is functor T:C— C, so can lift f:A— B to Tf: TA—>TB,
and this preserves identity and composition

There’s a natural transformation with components
n 4:A—TA which expresses how values may be
(uniformly) viewed as trivial computations

There’s a natural transformation p, : TTA—>TA that lets
us (uniformly) combine effectful behaviours, so we can
see a computation of a computation as a computation

Satisfying some conditions

Monad conditions

T
T3 A HTA | 72y TA i/ — Y
Tpa pa nra ud pa
Y] Y Y
T? A ~-TA T2 A -TA

HA HA

Strength

7AaB:ARTB - T(A® B)

I®TA T 7led) AeB—2" . ieTB
l T(1) U] T
TA T(A® B)
(A® B)®TC T ~-T(A® B)®C)
o T(a)

Y

A@(BV®TC)—»A@T(B@O)—T»T(A@)(B@C))

1®7
ASTE—T . T(AeTB) —) . 124 ¢ B)
1®p 17
A®RTB - T(A® B)

Examples
Lifting over w-cpo. TX = X |, n(z) = |z|, pu([z]) =z, u(L) = L
Nondeterminism. TX = P(X), n(z) = {z}, u(H) = Ugey S

Exceptions. TX = X + FE, n(x) = inl (x), u(w) = case w of inlw’ = w' |
inre = inre

State. TX =S — X xS, n(z) = As.(x,s), u(M) = As. f s’ where M s =
(fs)

Read-only state. TX =5 — X, n(z) = As.x, u(M) = As.M s s

Output. TX = X x M for M a monoid. n(z) = (x,€), u((x,m),m') =
(x,m-m')

Resumptions. TX = X +TX, n(z) =inlx, u(M) = case M of inlc = ¢ |
int M’ = inr u(M")

Continuations. TX = (X — R) — R, n(z) = M.z x, u(M) = Ak. M (Ac.ck)

CBV interpretations
lint] =Z [A — B] =[A] — T(][B]) [A x B] = [A] x [B]
[A+B]=[4]+[B] [&:A]=[[lA] I0FM:AJ: (0] - (4]

TFXzM:A— B =T <M 4 5 7B) s T(4 = TB)

[C+MN:B] =

r 2erxr Z2M pyra - TB) 2o T(T x (A = TB))

2% 1A = TB) x 1) T poca L TR) x TA)

2
I T2((A TB)x A) Y m3p T 2 M, TR

Kleisli presentation of monads

T:C—C na:A—TA f*:TA—TBforeach f:A—TB

such that ny = 174 and

A" L 7p

£ (f59%)"
f
|
TB — TC
g
The formulations are equivalent:
(f:A=-TB)* = TA L 71°B 5. TB
T(f:A—B) = (A_Ls B 2 TB)"
ua = (TA ZZA TA)

Parameterized f:I' x A - TB, f*:I' x TA — T B. Precompose with 7.

The computational metalanguage

Extend simple types

A::=...|TA
I'-M:A I'-M:TA I'z:AFN:TB
I'-valM:TA I'Flete=MinN:THB

Interpret in CCC with strong monad/parameterized Kleisli triple

[M]

[CFvalM:TA] =T 225 [A] > TA

[CFletz < MinN:TB] =T 2> xT XM pyra B 7p

Equations

Full 8 and 7 for simple type constructors, plus
letz <= valMin N = N|M/x] letx <= Minvalz = M

letx < (lety <= MinN)inP =lety < Minletx < NinP

Effectful : :
Categorical

programming bommmmd 5
language

Semantics

Effectful

programming
language

CBV translation into AML;

)1-

(X x Y)*
(X = Y)*

OF¢t: X)*

)

)

)

(0,2: X F 2: X)*
CR

(OF (s,1): X xY)*
(O F fst s: X)*
(@ F snds:Y)*

)*

)

OFA:X.5:X Y
(OFst:Y)*

1
X*xY*
X* > TY*

O* F ¢*: TX*

0%, x: X*F [z]: TX*

O*+I[()]:T1

O*Flet x + s*in let y « t* in [(z,y)]: T(X* x Y*)
O* I-let z ¢ s* in [fst z]: T X*

O* k- let z ¢+ s* in [snd z|: TY™

O* I [(Az: X*. s*)]: T(X* — TY¥)

O©*Flet z ¢ s*inlet x < t* in z 2:TY™

Lifted CBN translation

1T =1
(X x V)t = (TXxtx7TY"h
(X —-Y)I = TXT5TY?
OFt: X)I = TOTHT:TXT
O, z: X Fz: X)) = TONz:TXTF z:TXT
OF(O):1D" = TOTH[)]:T1
OF (s,t): X xY)T = TOTF [(sT,t)]:T(TXT x TYT)
(@Ffsts X)T = TOVFlet z+ s'infst 2: TXT
(O Fsnds:Y)T = TOTFletz+ s'insnd2:TYT
OFA:X.5: X = Y) = TO'F[Ae:TXT.sH]:T(TXT - TYT)
OFst:Y) = TOTFlet 2+ sTin ztT:TYT

CPS translations

Treating CBN and CBYV via different translations into common language, rather
than via different evaluation orders, already familiar. E.g. for CBV

(M N)* = \e.M* A\f.N* Dz.fzk))
With types
(A—-B)*=A"—-(B*—+R)—-R) =Z(B*"—>R)— (A" = R)

Operational behaviour of transformed terms matches source, independent of
evaluation strategy of target. Full 8n on target proves source equations missed

by A,.

If we take TX = (X — R) — R then monadic translations are just the familiar
CPS transformations. Plus get a nicer account of ‘administrative’ reductions.

Kleisli category

Given Kleisli triple (T, n,-*) over C, Kleisli category Cr has
e Objects: same as C
e Morphisms: Cr(A,B) = C(A,TB)
e Identities: Identity on Ain Cprisng: A —TA

e Composition: Given f € Cr(A,B), g € Cr(B,C), f;9 € Cr(A,C) is
fig"r:A—>TC

The conditions on Kleisli triples are just what we need to make this a category.
So the CBYV interpretation of effectful programs lives in the Kleisli category.

Eilenberg-Moore category

Given monad (T,n,u) on C, Eilenberg-Moore category C! has objects T-

algebras av: T'A — A st | .
724 M4 1A A A
T o o
idA
TA - A A
o
Morphism (a:TA — A) to (8:TB — B)in C' is f: A— Bin C st
TA s TB
Q 3
A » B

Algebras

Given single-sorted signature 3, monad Ty on set given by Tx(X) = the set of
>. terms with variables in X. Then

e 17: X — T'X includes variables as terms

e A function f: X — TY is a substitution, assigning a Y-term to each X-
variable. The Kleisli lifting f*:TX — TY applies the substitution. Can
see this as building a term with variables in 7Y and then flattening.

C?1' is just -algebras and homomorphisms. This extends to single-sorted theo-
ries

Resolutions

F*CU Ula:TA— A)= A the carrier of «

T FA=A Ff=/Ffn
PA=py:T?A— TA the free T-algebra on A

F:4U and F A4A®;U

Both adjunctions induce the original monad T

Relationship with linear logic

 LNL model is symmetric monoidal adjunction
between CCC C and SMCC L with F:C—L left
adjoint to G:L—>C

* Comonad ! on L gives model of linear logic,
monad on C model of AML_T with
commutative monad

* |n such a situation the three translations into
the metalanguage correspond exactly to three
translations into linear logic

Computational Trinitarianism

Proofs of Propositions (Logic)
Programs (Terms) of Types (Language)
Mappings between Structures (Categories)

So what’s the logical reading of the
metalanguage?

— Take the typing rules and throw away the terms

— Leaving natural deduction formulation of an
intuitionistic modal logic

Natural deduction

——— Identity —(T2)
I'AF A LT
A+ B I'rADB ' A
(D1) (D¢)
I'HADB I'-RB
' A '+B I'-AAB I'HFAAB
(AZ) (Ag) (Ag)
I'HAAB ' A '+ B
A I'+B 'L
(Vz) (Vz) — (Le¢)
'HAv B '-Av B ' A
I'HAV B I'ArC I'BFC
(Ve)
'C
' A <A ['AF OB
(¢z) (Ce)

I'F<CA I'-oB

Normalization

* Proof theory of logic forces the equations

OO

[A] .
A : . : [A]
— (¢1) : which normalises to -
OA OB :
57 (Ce) OB.
4]
: : B]
OA OB o))
op ¢ oC .
oC (Ce)
commutes to
4] (B
: OB &C o0
OA oC ;
(Ce).

Sequent calculus

—— Identity
AR A

I AF OB
T, OAF OB

T'+B B,T+C
T'+C

Cut

Hilbert System

e Usual stuff plus
—ADOA
— oA D ((AD ¢B)D ¢B)
* Alternatively
—AD CA
— OO0A D OA
— (A D B)D (¢AD ¢B)
* |Independently discovered by Fairtlough &
Mendler (95), who called this Lax Logic

— Originally motivated by a range of “true up to
constraints” notions in hardware verification

Curry 1952

“The referee has pointed out that for
certain kinds of modality it [intro for ¢] is
not acceptable ... because it allows the
proof of

o A,0B F o(AAB).

He has proposed a theory of possibility
more strictly dual to that of necessity.
Although this theory looks promising it will
not be developed here.”

Models

* CCC plus strong monad, obviously

* Butif only interested in proveability, this
degenerates to Heyting algebra with a closure
operator (inflationary and idempotent)

* Also sound and complete for Kripke models
with two relations

w = CA iff Vo > w.du.vRu and u = A.

Monad morphisms

Monad morphism o : (T,n,—*) — (17,71, —*,) is family 04 : TA — T’ A st

A" L 7a a4 _ 1 .78
/ OA O A OB
Uy
Y | Y
T'A T' A T'B
(f;08)*

(In bijection with carrier preserving functors V : CT’

for f:A—TB

— CT)

Monad transformers

Function F mapping monads to monads

With a monad morphism in:T— FT for each
monad T

Think of F as adding a new effect to yield T’
New monad will come with its own operations

Old operations, general form

— op: YV X.A— (B> TX)—> TX

must be lifted to the new monad
—op”: VX. A> (B> T'X)> T'X

Structure on the Kleisli category

Has coproducts if C does (F left adjoint)
Premonoidal structure functorial in each arg
Monoidal iff monad is commutative

Morphisms F(f) commute with anything, they’re
central

Premon cat has distinguish SM centre M and id
on objects J into premon K, pres prod strcuture

When M cartesian call it Frey cat

Wadler’s brilliant idea

Functional programmers had been writing messy
programs for a decade or so, doing explicitly what
imperative programmers did implicitly

— Passing around name supplies

— Passing around states

— Propagating errors

Had already come up with list comprehensions along
the lines of set comprehensions

Then saw Moggi’s work and realized that there was a
new abstraction that could be used to refactor all
these kinds of programs

And we could pretty much express it in the languages
we already had

Comprehending Monads LFP’90
The Essence of Functional Programming POPL'92

Monads in Haskell

In Kleisli triple style, take T : * -> * to be a Haskell type constructor

return :: a > T a
(>>=) :: Ta->@->Tb) ->Thbo

So letz <= €1 in e; becomes
el >>= \x -> e2
For example

data Maybe a = Just a | Nothing
return a = Just a
m >>= f = case m of

Just a -=> f a

Nothing -> Nothing

failure = Nothing

Failure is an option —
using the Maybe monad

divide :: Maybe Int -> Maybe Int -> Maybe Int
divide a b = a >>= \m >

b >>= \n ->

if n==0 then failure

else return (a ‘div‘ Db)

State

Three possibilities

type State s a = s -> (s,a) —- type synonym
newtype State s a = State (s -> (s,a)) -- nominal, unlifted
data State s a = State (s -> (s,a)) -- lazy constructor, lifted

return a = State (\s -> (s,a))

State m >>= f = State (\s -> let (s’,a) = m s
State m’ = f a
in m’> s’)

readState :: State s s
readState = State (\s -> (s,s))

writeState :: s -> State s ()
writeState s = State (_ -> (s,(0)))

increment :: State Int ()
increment = readState >>= \s ->
writeState (s+1)

class Monad m where Type Classes

return :: a -> m a
(>>=) ::ma->(a->mb) ->mb

instance Monad Maybe where
return a = Just a
m >>= f = case m of
Just a > f a
Nothing -> Nothing

instance Monad (State s) where
return a = State (\s -> (s,a))
State m >>= f = State (\s -> let (s’,a) = m s
State m’ = f a
in m’ s’)

addM a b = a >>= \m ->
b >>= \n —>
return (m+n)
addM :: (Monad m) => m Int -> m Int -> m Int

Working with monads

1iftM :: Monad m => (a -> b) ->ma ->mb
1iftM2 :: Monad m => (a > b ->c) ->ma ->mb->mc
sequence :: Monad m => [m a] -> m [a]

addM = 1liftM2 (+)

addM a b = do m <- a
n <-b
return (m+n)

do e = e

do x <— e = e >>= (\x -> do ¢)
C

do e = e >>= (_ -> do ¢)

data Tree a = Leaf a | Bin (Tree a) (Tree a) deriving Show
unique :: Tree a -> Tree (a,Int)
unique’ :: Tree a -> State Int (Tree (a,Int))
tick :: State Int Int
tick = do n <- readState

writeState (n+1)

return n
unique’ (Leaf a) = do n <- tick

return (Leaf (a,n))

unique’ (Bin t1 t2) = 1liftM2 Bin (unique’ t1) (unique’ t2)
unique t = runState 1 (unique’ t)
runState s (State f) = snd (f s)

test3 = unique (Bin (Bin (Leaf ’a’) (Leaf ’b’)) (Leaf ’c’))

>Bin (Bin (Leaf (’a’,1)) (Leaf (°b’,2))) (Leaf (’°c’,3))

Peyton Jones and
Wadler’s brilliant idea

Lazy functional programmers had been struggling for ages with 1/0

Fundamentally impure — depends on and modifies the state of the world —
so breaks all your lovely reasoning principles

Can’t just stick it in and hope for the best like the CBV guys did —
evaluation order seriously unpredictable

— Call by need predicated on the assumption that multiple evaluations always
return the same result

Stream 10, Continuation-based 10, linear types
Imperative functional programming POPL'93

We know how to model I/O within the language — basically its State
Universe

But within the language we could duplicate, roll back, discard the universe

BUT if we make the monad abstract and only provide primitives that treat
the universe linearly

— It looks like a functional program to the programmer

— But can mutate the universe “in place” under the hood

The 10 monad

result::a

World in — IO a —» World out
getChar :: IO Char
putChar :: Char -> IO ()
data IORef a -- An abstract type
newIORef ::a -> IO (IORef a)
readIORef :: IORef a -> IO a
writeIORef :: IORef a -> a -> IO ()
openFile :: String -> IOMode -> IO Handle
hPutStr :: Handle -> [Char] -> IO ()
hGetLine :: Handle -> IO [Char]
hClose :: Handle -> IO ()

ST monad

Purely functional code can be asymptotically less
efficient than “equivalent” imperative code

Can use IORefs, but then no way out

Sometimes want to encapsulate imperative
computation within a term that will behave
purely functionally

ST a is like State -> (State,a) except

— State can hold dynamically allocated typed references
— It’s abstract and can be implemented destructively

— |ts uses can be encapsulated

runST

newSTRef :: a -> ST s (STRef s a)
readSTRef :: STRef s a -> ST s a
writeSTRef :: STRef s a -> a -> ST s ()

s is a dummy type variable,or region, that can be used to
tag references and effects living in different States

runST :: (forall s. ST s a) -> a

This rank-2 polymorphic type is the thing that lets us get
out of the monad. We can only apply it to computations
that are parametric in their region, so they cannot import

references from the outside or leak them through their
result value

Examples
This is OK

impure = do x <- newSTRef O
y <- readSTRef x
writeSTRef x (y+1)
z <- readSTRef x
return z

test4 = runST impure
But these are not

runST (newSTRef 0)

runST (do r<-newSTRef 0
return (runST (readSTRef r)))

Monad transformers

Often want to combine monads, which we do by
layering them on top of each other

Instead of individual monads, work with monad
transformers that extend an existing monad with
a new effect

Will be of kind (*—>*) —> (*->%*)

Use type class trickery to try to infer as much as
possible

MaybeT

newtype MaybeT m a = MaybeT (m (Maybe a))

instance Monad m => Monad (MaybeT m) where
return x = MaybeT (return (Just x))
MaybeT mm >>= f =
MaybeT (do x <- mm —— desugars into m’s >>=
case x of
Nothing -> return Nothing
Just a -> let MaybeT m’ = f a in m’)

A class for monad transformers

class (Monad m, Monad (t m)) => MonadTransformer t m where
1lift :: ma -> t m a

instance Monad m => MonadTransformer MaybeT m where
lift m = MaybeT (do x <- m
return (Just x))

Now need to add operations. The following isn’t good enough:

failure :: MaybeT m a
handle :: MaybeT m a -> MaybeT m a -> MaybeT m a x

Maybe-like monads

class Monad m => MaybeMonad m where
failure :: m a
handle :: ma ->ma ->m a

Now anything we get by applying the MaybeT transformer
is a MaybeMonad, but later there’ll be others too

instance Monad m => MaybeMonad (MaybeT m) where
failure = MaybeT (return Nothing)
MaybeT m ‘handle‘ MaybeT m’ =
MaybeT (do x <- m
case x of
Nothing -> m’
Just a -> return (Just a))

Recipe

We define a type to represent the transformer. say TransT. with two param-
eters, the first of which should be a monad.

We declare TransT m to be a Monad, under the assumption that m already
1S,

We declare TransT to be an instance of class MonadTransformer, thus defin-
ing how computations are lifted from m to TransT m.

We define a class TransMonad of ‘Trans-like monads’. containing the opeh‘a—
tions that TransT provides.

We declare TransT m to be an instance of TransMonad, thus implementing
these operations..

Examples

newtype StateT s m a = StateT (s -> m (s, a))

class Monad m => StateMonad s m | m -> s where
readState :: m s
writeState :: s -=> m ()

newtype ContT ans m a = ContT ((a -> m ans) -> m ans)

class Monad m => ContMonad m where
callcc :: ((a->mb) -=>ma) ->m a

Building it up

newtype Id a = Id a

instance MaybeMonad m => MaybeMonad (StateT s m) where
failure = 1lift failure
StateT m ‘handle‘ StateT m’ = StateT (\s -> m s ‘handle m’ s)

type Parser a = StateT String (MaybeT Id) a

