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• 1992-08 Monads for Functional Programming - Phil Wadler "Shall I be pure or impure?" One of the earliest papers on monads by the man hiself.  
• 1995 Monadic IO in Haskell 1.3, Andrew D. Gordon and Kevin Hammond.  
• 1999-02 What the hell are Monads? Noel Winstanley Written when 'what is a monad' started becoming an FAQ. Very short and sweet, advertised as more examples than theory. " 
• 1999 Monads for the working Haskell Programmer - Theodore S. Norvell One of the original tutorials, originally written for Gofer and eventually "updated for Haskell98"  
• 2002 Yet Another Haskell Tutorial - Hal Daumé III The most recommended Haskell tutorial ever. Not a monad tutorial per se, but it does address the topic  
• 2003-08 All about Monads - Jeff Newbern A comprehensive introduction to monads, covering also "advanced" topics like monad transformers and use of some common monads.  
• 2004-07 A Schemer's Introduction to Monads "This will be an introduction to monads from a Lisp/Scheme perspective, with the assumption that the reader is comfortable with continuations..” 
• 2004-07 Monads as Containers - Cale Gibbard Presents monads as boxes. Uses fmap and join 
• 2004-08 Monads in Perl - Greg Buchholz Written in the spirit of TMTOWTDI  
• 2005-07 Monads in Ruby - MenTaLguY Presents monads in a friendly language, starting from Identity and building on up  
• 2005-11 Of monads and space suits - Eric Kow Functions are space stations, parameters are astronauts and monads are space suits that let us safely travel from one function to another.  
• 2006-03 Understanding Monads - Eric Kow Monads as nuclear waste containers, an adaptation of monads as space suits with a new metaphor suggested by Paul Johnson  
• 2006-07 The Monadic Way - Andrea Rossato A two-part tutorial.  
• 2006-08 You could have invented monads! (and maybe you already have) - Dan Piponi "Writing introductions to monads seems to have developed into an industry," 
• 2006-09 Meet Bob The Monadic Lover - Andrea Rossato Bob embarks upon a series of romantic conquests... bind bind bind, Paula, Luisa, Antonia  
• 2006-10 Monad Transformers Step by Step - Martin Grabmüller  
• 2006-11 There's a Monster in my Haskell! Andrew Pimlott This delightful "tutorial" presents monads as monsters which devour values, use them to feed other monsters 
• 2006-12 Maybe Monad in Java - Tony Morris Monads can also be useful in Java!  
• 2007-01 Think of a monad - Don Stewart (reposted on Eric Kow's blog) Don integrates some pre-existing monadic metaphors, shedding light on monads in a truly comprehensive manner  
• 2007-02 Understanding Monads. For Real - Karsten Wagner A monad is like a macro  
• 2007-02 Crash Course in Monads Monads for Mathematicians …Then I lie down in a dark room with a warm wet cloth over my eyes.  
• 2007-04 The Real Monad Transformer - Henning Thielemann Not a tutorial either, but an important aid in demystifying monads  
• 2007-03 Monads in 15 Minutes - Eric Kidd Eric boils monads down to 15 minutes, using backtracking and Maybe as motivating examples.  
• 2007-07 Monads! (and why monad tutorials are all awful) - Colin Gordon?  
• 2007-08 Monads as computation - Cale Gibbard A very straightforward presentation of monads. Notable for its "The whole point" section 
• 2007-08 Understanding Monads (2) - Apfelmus Wikibook rewrite of the original monads tutorial. Less fluff, more pedagogy. [In progress at the time of this writing].  
• 2007-08 Monad (sans metaphors) - Claus Reinke From a discussion about monad tutorials on Haskell Café (the name is due to haskellwiki user 'Green tea').  
• 2008-06 Monads (in Russian) and Monads (in English) - Yet another monad tutorial, by Eugene Kirpichov 
• 2008 Monads, Chapter 14 of "Real World Haskell".  
• 2009-01 Abstraction, intuition, and the “monad tutorial fallacy” Not a monad tutorial itself, but a comment on monad tutorials and why many of them are so unhelpful.  
• 2009-03 A Monad Tutorial for Clojure Programmers An interesting perspective on monads .  
• 2009-11 What a Monad is not A desperate attempt to end the eternal chain of monad tutorials  
• 2010-07 I come from Java and want to know what monads are in Haskell - Tim Carstens An example showing how a simple Java class is translated into a stack of monad transformers.  
• 2010-08 A Fistful of Monads from Learn You a Haskell An introduction to monads that builds on applicative functors  
• 2010-08 Yet Another Monad Tutorial An ongoing sequence of extremely detailed tutorials deriving monads from first principles.  

 

Monad madness 

LINQ is based on monadic 
principles, and the success of LINQ 
proves that the world does not fear 
the monads. 

Computation expressions are the F# 
equivalent of monadic syntax in the 
programming language Haskell. 

Monads are 
• like burritos 
• not metaphors 
• trees with grafting 
• not scary! 
• elephants 
• promiscuous 
• a class of hard drugs 
• easy 
• monoids 
• red herrings 
• too much for me 
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Programming Language Semantics 
• Operational 

– hC,SiS’ or hC,SihC’,S’i  
– (¸x.M) V  M[V/x] 

• Denotational 
– Compositional interpretation of syntactic phrases as more abstract 

mathematical objects 
– What sort of objects affected by 

• syntactic category, or type, of the phrase 
• the language as a whole 
• which aspects of the behaviour of programs we decide to observe 

– Compositionality 
• Denotation has to encode all possible observations arising from placing that 

phrase in a larger context 
• But want to abstract away from non-observable behaviours; ideally having equal 

denotations for observationally equivalent things 
• Finding collections of values that have enough information content and structure 

to interpret phrases, yet do not make too many spurious distinctions, can be hard 
• A good choice embodies a great deal of metatheory about the language before we 

even consider particular programs 
 
 

 

 



While programs 
c ::= skip j x := e j c; c j ifnz e then c else c j while e do c

Semantics using (partial) functions

Store
def
= Var ! Z

[[e]] : Store ! Z

[[c]] : Store * Store

[[x : = e]](s) = s[x 7! [[e]](s)]

[[c0; c1]] = [[c1]] ± [[c0]]

[[ifnz e then c0 else c1]](s) =

½
[[c0]](s) if [[e]](s) 6= 0

[[c1]](s) if [[e]](s) = 0

[[while e do c]] = fix© =
S
i©

i(;)
where

© : (Store * Store)! (Store * Store)

©(f)(s) =

½
f([[c]](s)) if [[e]](s) 6= 0

s if [[e]](s) = 0



Operational and Denotational:

hc; si 7!¤ hskip; s0i () hc; si + s0 () [[c]](s) = s0

Contextual Equivalence:

c 'ctx c0 () 8C[¢] s s0; hC[c]; si + s0 () hC[c0]; si + s0

Justi¯es equations:

(x : = 3; y : = 5) 'ctx (y : = 5;x : = 3)

(ifnz 0 then c0 else c1) 'ctx c1
((ifnz e then c0 else c1); c) 'ctx (ifnz e then (c0; c) else (c1; c))



Variations 
Using !-cpos instead of sets and partial functions

² Either [[c]] a strict (continuous) map Store? ! Store?

² Or [[c]] : Store ! Store?

In latter case, note [[c0; c1]] = ([[c1]])
¤ ± [[c0]], where if f :X ! Y?,

f¤ :X? ! Y?

f¤ a =

½
f x if a = [x]

? if a = ?

Adding non-determinism, hc0 u c1; si 7! hc0; si and hc0 u c1; si 7! hc1; si. Take
[[c]] 2 Rel(Store;Store), i.e. [[c]] µ (Store £ Store), with sequential composition

interpreted by relational composition

² There's a choice here: [[c]] = [[c u (while 1 do skip)]]

² Equivalently, [[c]] :Store ! P(Store), then [[c0; c1]] = ([[c1]])
¤ ± [[c0]] where if

f :X ! P(Y ), f¤ :P(X)! P(Y ) given by f¤(xs) =
S
x2xs f(x)

x [x] 

? 



Simple Types 

A; B : = int j unit j A£B j A ! B j A + B

¡; x :A ` x :A ¡ ` n : int ¡ ` () : unit
¡ ` M :A ¡ ` N :B

¡ ` (M; N) :A£B

¡ ` M :A£B

¡ ` fstM :A

¡ ` M :A£B

¡ ` sndM :B

¡ ` M :A ! B ¡ ` N :A

¡ ` MN :B

¡; x :A ` M :B

¡ ` (¸x :A:M) :A ! B

¡ ` M :A

¡ ` inlM :A + B

¡ ` N :B

¡ ` inrN :A + B

¡ ` M :A + B ¡; x :A ` N :C ¡; y :B ` P :C

¡ ` case M of inlx ) N j inr y ) P :C

E ` M : int E ` M 0 : int

E ` M + M 0 : int



Operational semantics 
Call by value:

V : = x j ¸x :A:M j (V; V ) j n j inlV j inr V

M + ¸x :A:M 0 N + V M 0[V=x] + V 0

M N + V 0
M + V N + V 0

(M; N) + (V; V 0)

M + (V1; V2)

fstM + V1

M + V

inlM + inlV

M + inlV N [V=x] + V 0

case M of inlx ) N j inr y ) N 0 + V 0

V + V
M +m N + n

M + N +m + n

Call by name:

W : = ¸x :A:M j (M; M) j n j inlM j inrM

M + ¸x :A:M 0 M 0[N=x] +W

M N +W

M + (N1; N2) N1 +W

fstM +W

M + inlM 0 N [M 0=x] +W

case M of inlx ) N j inr y ) N 0 +W

M +m N + n

M + N +m + n



Semantics in Set 
[[int]] = Z [[unit]] = 1 [[A£B]] = [[A]]£ [[B]]

[[A ! B]] = [[A]]! [[B]] (= [[B]][[A]]) [[A + B]] = [[A]] + [[B]]

[[x1 :A1; : : : ; xn :An]] = [[A1]]£ ¢ ¢ ¢ [[An]]

[[~xi : ~Ai ` xi :Ai]]½ = ¼i(½) [[¡ ` n : int]]½ = n [[¡ ` () : unit]]½ = ¤

[[¡ ` (M; N) :A£B]]½ = ([[¡ ` M :A]]½; [[¡ ` N :B]]½)

[[¡ ` fstM :A]]½ = ¼1([[¡ ` M :A£B]]½)

[[¡ ` M N :B]]½ = ([[¡ ` M :A ! B]]½) ([[¡ ` N :A]]½)

[[¡ ` ¸x :A:M :A ! B]]½ = ¸a 2 [[A]]:([[¡; x :A ` M :B]](½; a)) . . .



Equations 

¡ ` M 'ctx N :A () 8C[¢] : (¡ ` A) . int; C[M ] + n () C[N ] + n

beta:

(¸x :A:M)N = M [N=x] fst (M; N) = M snd (M; N) = N

case inlM of inlx ) N j inr y ) N 0 = N [M=x]

case inrM of inlx ) N j inr y ) N 0 = N 0[M=y] M + N = N + M

n + m = n + m : : :

eta:

M = () M = ¸x :A:M x (a 62 fv(M)) M = (fstM; sndM)

case M of inlx ) inlx j inr y ) inr y = M

(better: case M of inlx ) N [inl x=z] j inr y ) N [inr y=z] = N [M=z])



Recursion (hence divergence) in CBV 
¡; x :A; f :A ! B ` M :B

¡ ` (rec f :A ! B x = M) :A ! B

M + (rec f x = M 0) N + V 0 M 0[V 0=x; (rec f x = M 0)=f ] + V

M N + V

­ = (rec f x = f x)()

(¸x:M)N 6=v M [N=x] consider (¸x:()) ­ (¸xM)V =v M [V=x]

fst (M1; M2) 6=v M1 fst (V1; V2) =v V1

M 6=v ¸x:M x V =v ¸x:V x



Recursion in CBN 
¡; x :A ` M :A

¡ ` (recx :A:M) :A

M [(recx:M)=x] +W

(recx:M) +W

­ = (recx:x)

PCF - observation at ground type(¸x:M)N = M [N=x]

fst (M1; M2) = M1

(¸x:M x) = M in particular, ¸x:­ = ­

(fstM; sndM) = M

Haskell - observation at all types

(¸x:M x) 6= M

(fstM; sndM) 6= M



Denotational Semantics CBV 
Use pointed !-cpos and strict maps

[[int]] = Z? [[A ! B]] = [[A]] ¡± [[B]] [[A£B]] = [[A]]­ [[B]]

[[A +B]] = [[A]]© [[B]] [[~xi : ~Ai]] =
O

i

[[Ai]] [[¡ ` M :A]] : [[¡]]! [[A]]

Use !-cpos and explicit lifting

[[int]] = Z [[A ! B]] = [[A]]! ([[B]])? [[A£B]] = [[A]]£ [[B]]

[[A + B]] = [[A]] + [[B]] [[~xi : ~Ai]] =
Y

i

[[Ai]] [[¡ ` M :A]] : [[¡]]! ([[A]])?

[[¡ ` ¸x:M :A ! B]] = ¡
cur[[M ]]- (A ! B?)

[¢]- (A ! B?)?

[[¡ ` M N :B]] = ¡
h[[M ]];[[N ]]i- (A ! B?)?£A? - ((A ! B?)£A)?

ev¤- B?



Denotational Semantics: CBN 

For PCF: Pointed cpos and continuous maps

[[int]] = Z? [[A ! B]] = [[A]]! [[B]] [[A£B]] = [[A]]£ [[B]]

[[A + B]] = ([[A]] + [[B]])?

For Haskell: Pointed cpos and continuous maps, more lifting

[[int]] = Z? [[A ! B]] = ([[A]]! [[B]])? [[A£B]] = ([[A]]£ [[B]])?

[[A + B]] = ([[A]] + [[B]])?



CBV with global store 

¡ `!X : int
¡ ` M : int

¡ ` (X : = M) : unit

hs; !Xi + hs; s(X)i hs; Mi + hs0; ni
hs; X : = Mi + hs0[X 7! n]; ()i

hs; Mi + hs0; ¸x:M 0i hs0; Ni + hs00; V i hs00; M 0[V=x]i + hs000; V 0i
hs; M Ni + hs000; V 0i

Further inequations

(¸x:¸y:(x; y))M N 6= (¸y:¸x:(x; y))N M

(¸x:(x; x))M 6= (¸x:¸y:(x; y))M M

plas various equations involving the new operations.



Denotational 
[[int]] = Z [[unit]] = 1 [[A£B]] = [[A]]£ [[B]]

[[A ! B]] = [[A]]£ Store ! [[B]]£ Store [[~xi : ~Ai]] =
Y

i

[[Ai]]

[[¡ ` M :A]] : [[¡]]£ Store ! [[A]]£ Store

[[¡ ` (M; N) :A£B]] (½; s) =

((x; y); s00) where [[N ]](½; s0) = (s00; y) where [[M ]](½; s) = (x; s0)

¡£ S
¢£1- ¡£ ¡£ S

1£[[M ]]- ¡£A£ S
¾£1- A£ ¡£ S

1£[[N ]]- A£B £ S



Moggi’s brilliant idea 

• The extra structure we add to models of the pure language 
to deal with these, and many other, notions of side effect 
always has the same “shape” 

• And there are common patterns for just how we use that 
structure to modify the interpretations of types 

• And corresponding patterns apply to the interpretation of 
terms 

• We can capture this commonality by factoring our 
semantics via a new, generic, computational metalanguage 

• Doing things this way saves repeated work, modularizes,  
explains, cleans up reasoning by moving side-conditions 
into the type system, sets us up for further generalizations 



The structure  
• Separate values A from computations TA, which may 

have observable behaviour other than producing a 
value of type A 

• T is functor T:C C, so can lift f:A B to Tf:TATB, 
and this preserves identity and composition 

• There’s a natural transformation with components 
´A:ATA which expresses how values may be 
(uniformly) viewed as trivial computations 

• There’s a natural transformation ¹A : TTATA that lets 
us (uniformly) combine effectful behaviours, so we can 
see a computation of a computation as a computation 

• Satisfying some conditions 



Monad conditions 



Strength 



Examples 
² Lifting over !-cpo. TX = X?, ´(x) = [x], ¹([x]) = x; ¹(?) = ?

² Nondeterminism. TX = P(X), ´(x) = fxg, ¹(H) =
S
S2H S

² Exceptions. TX = X + E, ´(x) = inl (x), ¹(w) = case w of inlw0 ) w0 j
inr e ) inr e

² State. TX = S ! X £ S, ´(x) = ¸s:(x; s), ¹(M) = ¸s: f s0 where M s =

(f; s0)

² Read-only state. TX = S ! X, ´(x) = ¸s:x, ¹(M) = ¸s:M s s

² Output. TX = X £ M for M a monoid. ´(x) = (x; ²), ¹((x; m); m0) =
(x; m ¢m0)

² Resumptions. TX = X + TX, ´(x) = inlx, ¹(M) = case M of inl c ) c j
inrM 0 ) inr¹(M 0)

² Continuations. TX = (X ! R)! R, ´(x) = ¸k:x x, ¹(M) = ¸k: M (¸c:c k)



CBV interpretations 
[[int]] = Z [[A ! B]] = [[A]]! T ([[B]]) [[A£B]] = [[A]]£ [[B]]

[[A + B]] = [[A]] + [[B]] [[~xi : ~Ai]] =
Y

i

[[Ai]] [[¡ ` M :A]] : [[¡]]! T ([[A]])

[[¡ ` ¸x:M :A ! B]] = ¡
cur[[M ]]- (A ! TB)

´- T (A ! TB)

[[¡ ` M N :B]] =

¡
¢- ¡£ ¡

1£[[M ]]- ¡£ T (A ! TB)
¿- T (¡£ (A ! TB))

:
T¾- T ((A ! TB)£ ¡)

T (1£[[N ]])- T ((A ! TB)£ TA)

:
T¿- T 2((A ! TB)£ A)

T 2ev- T 3B
T¹- T 2B

¹- TB



Kleisli presentation of monads 
T :C ! C ´A :A ! TA f¤ :TA ! TB for each f :A ! TB

such that ´¤A = 1TA and

A
´A - TA

@
@
@
@
@

f
R

@
@
@
@
@

(f ; g¤)¤

R
TB

f¤

?

g¤
- TC

The formulations are equivalent:

(f :A ! TB)¤ = TA
Tf- T 2B

¹B- TB

T (f :A ! B) = (A
f- B

´B- TB)¤

¹A = (TA
1TA- TA)¤

Parameterized f : ¡£ A ! TB, f¤ : ¡£ TA ! TB. Precompose with ¿ .



The computational metalanguage 
Extend simple types

A : : = : : : j TA

¡ ` M :A

¡ ` valM :TA

¡ ` M :TA ¡; x :A ` N :TB

¡ ` letx ( M inN :TB

Interpret in CCC with strong monad/parameterized Kleisli triple

[[¡ ` valM :TA]] = ¡
[[M ]]- [[A]]

´- TA

[[¡ ` letx ( M inN :TB]] = ¡
¢- ¡£ ¡

1£[[M ]]- ¡£ TA
[[N ]]¤- TB



Equations 

Full ¯ and ´ for simple type constructors, plus

letx ( valM inN = N [M=x] letx ( M in valx = M

letx ( (let y ( M inN) inP = let y ( M in letx ( N inP

Effectful 
programming 

language 
¸MLT 

Categorical 
Semantics 

« . ¬ 

Effectful 
programming 

language 



CBV translation into ¸MLT 



Lifted CBN translation 



CPS translations 
Treating CBN and CBV via di®erent translations into common language, rather

than via di®erent evaluation orders, already familiar. E.g. for CBV

(M N)¤ = ¸k:M¤ (¸f:N¤ (¸x:f x k))

With types

(A ! B)¤ = A¤ ! ((B¤ ! R)! R) »= (B¤ ! R)! (A¤ ! R)

Operational behaviour of transformed terms matches source, independent of

evaluation strategy of target. Full ¯´ on target proves source equations missed

by ¸v.

If we take TX = (X ! R)! R then monadic translations are just the familiar

CPS transformations. Plus get a nicer account of `administrative' reductions.



Kleisli category 

Given Kleisli triple (T; ´; ¢¤) over C, Kleisli category CT has

² Objects: same as C

² Morphisms: CT (A; B) = C(A; TB)

² Identities: Identity on A in CT is ´A :A ! TA

² Composition: Given f 2 CT (A; B), g 2 CT (B; C), f ; g 2 CT (A; C) is

f ; g¤ :A ! TC

The conditions on Kleisli triples are just what we need to make this a category.

So the CBV interpretation of e®ectful programs lives in the Kleisli category.



Eilenberg-Moore category 

Given monad (T; ´; ¹) on C, Eilenberg-Moore category CT has objects T -

algebras ® :TA ! A st

Morphism (® :TA!A) to (¯ :TB !B) in CT is f :A!B in C st



Algebras 

Given single-sorted signature §, monad T§ on set given by T§(X) = the set of

§ terms with variables in X. Then

² ´ :X ! TX includes variables as terms

² A function f :X ! TY is a substitution, assigning a Y -term to each X-

variable. The Kleisli lifting f¤ :TX ! TY applies the substitution. Can

see this as building a term with variables in TY and then °attening.

CT is just §-algebras and homomorphisms. This extends to single-sorted theo-

ries



Resolutions 

C 

CT 

CT F 

U 

© 

U(® : TA ! A) = A the carrier of ®

FA = A Ff = f ; ´

©A = ¹A : T 2A ! TA the free T -algebra on A

F ; © a U and F a ©;U

Both adjunctions induce the original monad T



Relationship with linear logic 

• LNL model is symmetric monoidal adjunction 
between CCC C and SMCC L with F:CL left 
adjoint to G:LC 

• Comonad ! on L gives model of linear logic, 
monad on C model of ¸ML_T with 
commutative monad 

• In such a situation the three translations into 
the metalanguage correspond exactly to three 
translations into linear logic 



Computational Trinitarianism 

• Proofs of Propositions (Logic) 

• Programs (Terms) of Types (Language) 

• Mappings between Structures (Categories) 

 

• So what’s the logical reading of the 
metalanguage?  
– Take the typing rules and throw away the terms 

– Leaving natural deduction formulation of an 
intuitionistic modal logic 



Natural deduction 



Normalization 
• Proof theory of logic forces the equations 



Sequent calculus 



Hilbert System 
• Usual stuff plus 

– A ¾ ¦ A 
– ¦A ¾ ((A¾ ¦B)¾ ¦B) 

• Alternatively 
– A ¾ ¦A 
–  ¦¦A ¾ ¦A 
– (A ¾ B)¾ (¦A¾ ¦B) 

• Independently discovered by Fairtlough & 
Mendler (95), who called this Lax Logic 
– Originally motivated by a range of “true up to 

constraints” notions in hardware verification 

 



Curry 1952 
“The referee has pointed out that for 
certain kinds of modality it [intro for ¦] is 
not acceptable … because it allows the 
proof of  

           ¦ A,¦B ` ¦(AÆB).  

He has proposed a theory of possibility 
more strictly dual to that of necessity. 
Although this theory looks promising it will 
not be developed here.” 



Models 

• CCC plus strong monad, obviously 

• But if only interested in proveability, this 
degenerates to Heyting algebra with a closure 
operator (inflationary and idempotent) 

• Also sound and complete for Kripke models 
with two relations 

 



Monad morphisms 
Monad morphism ¾ : (T; ´;¡¤)! (T 0; ´0;¡¤0) is family ¾A :TA ! T 0A st

A
´A - TA

@
@
@
@
@

´0A
R

T 0A

¾A

?

TA
f¤ - TB

T 0A

¾A

?

(f ;¾B)
¤0
- T 0B

¾B

?

for f :A ! TB

(In bijection with carrier preserving functors V :CT 0 ! CT .)



Monad transformers 
• Function F mapping monads to monads 

• With a monad morphism inT:T FT for each 
monad T 

• Think of F as adding a new effect to yield T’ 

• New monad will come with its own operations 

• Old operations, general form  
– op: 8 X.A (B TX) TX  

• must be lifted to the new monad  
– op’: 8 X. A (B T’X) T’X 



Structure on the Kleisli category 

• Has coproducts if C does (F left adjoint) 

• Premonoidal structure functorial in each arg 

• Monoidal iff monad is commutative 

• Morphisms F(f) commute with anything, they’re 
central 

• Premon cat has distinguish SM centre M and id 
on objects J into premon K, pres prod strcuture 

• When M cartesian call it Frey cat 

 

 



Wadler’s brilliant idea 
• Functional programmers had been writing messy 

programs for a decade or so, doing explicitly what 
imperative programmers did implicitly 
– Passing around name supplies 
– Passing around states 
– Propagating errors 

• Had already come up with list comprehensions along 
the lines of set comprehensions 

• Then saw Moggi’s work and realized that there was a 
new abstraction that could be used to refactor all 
these kinds of programs 

• And we could pretty much express it in the languages 
we already had 

• Comprehending Monads LFP’90 
• The Essence of Functional Programming POPL’92 



Monads in Haskell 
In Kleisli triple style, take T : * -> * to be a Haskell type constructor

return :: a -> T a

(>>=) :: T a -> (a -> T b) -> T b

So letx ( e1 in e2 becomes

e1 >>= \x -> e2

For example

data Maybe a = Just a | Nothing

return a = Just a

m >>= f = case m of

Just a -> f a

Nothing -> Nothing

failure = Nothing



Failure is an option –  
using the Maybe monad 

divide :: Maybe Int -> Maybe Int -> Maybe Int

divide a b = a >>= \m ->

b >>= \n ->

if n==0 then failure

else return (a `div` b)



State 
Three possibilities

type State s a = s -> (s,a) -- type synonym

newtype State s a = State (s -> (s,a)) -- nominal, unlifted

data State s a = State (s -> (s,a)) -- lazy constructor, lifted

return a = State (\s -> (s,a))

State m >>= f = State (\s -> let (s',a) = m s

State m' = f a

in m' s')

readState :: State s s

readState = State (\s -> (s,s))

writeState :: s -> State s ()

writeState s = State (\_ -> (s,()))

increment :: State Int ()

increment = readState >>= \s ->

writeState (s+1)



Type classes class Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

instance Monad Maybe where

return a = Just a

m >>= f = case m of

Just a -> f a

Nothing -> Nothing

instance Monad (State s) where

return a = State (\s -> (s,a))

State m >>= f = State (\s -> let (s',a) = m s

State m' = f a

in m' s')

addM a b = a >>= \m ->

b >>= \n ->

return (m+n)

addM :: (Monad m) => m Int -> m Int -> m Int



Working with monads 
liftM :: Monad m => (a -> b) -> m a -> m b

liftM2 :: Monad m => (a -> b -> c) -> m a -> m b -> m c

sequence :: Monad m => [m a] -> m [a]

addM = liftM2 (+)

addM a b = do m <- a

n <- b

return (m+n)

do e = e

do x <- e = e >>= (\x -> do c)

c

do e = e >>= (\_ -> do c)

c



data Tree a = Leaf a | Bin (Tree a) (Tree a) deriving Show

unique :: Tree a -> Tree (a,Int)

unique' :: Tree a -> State Int (Tree (a,Int))

tick :: State Int Int

tick = do n <- readState

writeState (n+1)

return n

unique' (Leaf a) = do n <- tick

return (Leaf (a,n))

unique' (Bin t1 t2) = liftM2 Bin (unique' t1) (unique' t2)

unique t = runState 1 (unique' t)

runState s (State f) = snd (f s)

test3 = unique (Bin (Bin (Leaf 'a') (Leaf 'b')) (Leaf 'c'))

>Bin (Bin (Leaf ('a',1)) (Leaf ('b',2))) (Leaf ('c',3))



Peyton Jones and  
Wadler’s brilliant idea 

• Lazy functional programmers had been struggling for ages with I/O 
• Fundamentally impure – depends on and modifies the state of the world – 

so breaks all your lovely reasoning principles 
• Can’t just stick it in and hope for the best like the CBV guys did – 

evaluation order seriously unpredictable 
– Call by need predicated on the assumption that multiple evaluations always 

return the same result 

• Stream IO, Continuation-based IO, linear types 
• Imperative functional programming POPL’93 
• We know how to model I/O within the language – basically its State 

Universe 
• But within the language we could duplicate, roll back, discard the universe 
• BUT if we make the monad abstract and only provide primitives that treat 

the universe linearly 
– It looks like a functional program to the programmer 
– But can mutate the universe “in place” under the hood 

• The IO monad 





ST monad 

• Purely functional code can be asymptotically less 
efficient than “equivalent” imperative code 

• Can use IORefs, but then no way out 

• Sometimes want to encapsulate imperative 
computation within a term that will behave 
purely functionally 

• ST a is like State -> (State,a) except 
– State can hold dynamically allocated typed references 

– It’s abstract and can be implemented destructively 

– Its uses can be encapsulated 



s is a dummy type variable,or region, that can be used to 
tag references and effects living in different States 

runST 

This rank-2 polymorphic type is the thing that lets us get 
out of the monad. We can only apply it to computations 
that are parametric in their region, so they cannot import 
references from the outside or leak them through their 
result value 



Examples 
This is OK

impure = do x <- newSTRef 0

y <- readSTRef x

writeSTRef x (y+1)

z <- readSTRef x

return z

test4 = runST impure

But these are not

runST (newSTRef 0)

runST (do r<-newSTRef 0

return (runST (readSTRef r)))



Monad transformers 
• Often want to combine monads, which we do by 

layering them on top of each other 

• Instead of individual monads, work with monad 
transformers that extend an existing monad with 
a new effect 

• Will be of kind (*->*)->(*->*)  

• Use type class trickery to try to infer as much as 
possible 



MaybeT 

newtype MaybeT m a = MaybeT (m (Maybe a))

instance Monad m => Monad (MaybeT m) where

return x = MaybeT (return (Just x))

MaybeT mm >>= f =

MaybeT (do x <- mm -- desugars into m's >>=

case x of

Nothing -> return Nothing

Just a -> let MaybeT m' = f a in m')



A class for monad transformers 

Now need to add operations. The following isn’t good enough: 



Maybe-like monads 

Now anything we get by applying the MaybeT transformer 
is a MaybeMonad, but later there’ll be others too 



Recipe 



Examples 



Building it up 


