Refining Effects with Relations

Refined Monads and Effect Systems

- Gifford and Lucassen $(86,88)$. Expressions get both a type and an effect - a safe, static overapproximation of possible side effects
- CBV translation

$$
\begin{aligned}
& A, B::=\text { int }|A \rightarrow B| T_{\varepsilon} A \\
& (\Gamma \vdash M: \sigma)^{*}=\Gamma^{*} \vdash M^{*}: T_{\varepsilon} \sigma^{*} \\
& (\sigma \rightarrow \tau)^{*}=\sigma \rightarrow T_{\varepsilon} \tau^{*}
\end{aligned}
$$

$$
\left(\frac{\Gamma, x: \tau \vdash M: \sigma}{\Gamma \vdash(\lambda x: \tau \cdot M): \tau \rightarrow \sigma}\right)^{*}=\frac{\Gamma^{*}, x: \tau^{*} \vdash M^{*}: T_{\varepsilon} \sigma^{*}}{\frac{\Gamma^{*} \vdash\left(\lambda x: \tau^{*} \cdot M^{*}\right): \tau^{*} \rightarrow T_{\varepsilon} \sigma^{*}}{\Gamma^{*} \vdash \operatorname{val}\left(\lambda x: \tau^{*} \cdot M^{*}\right): T_{\ell}\left(\tau^{*} \rightarrow T_{\varepsilon} \sigma^{*}\right)}}
$$

$$
\sigma, \tau::=\operatorname{int} \mid \sigma \xrightarrow{\varepsilon} \tau
$$

$$
\Gamma \vdash M: \sigma, \varepsilon
$$

$$
\frac{\Gamma, x: \tau \vdash M: \sigma, \varepsilon}{\Gamma \vdash(\lambda x: \tau . M): \tau \xrightarrow{\varepsilon} \sigma, \varnothing}
$$

Monads vs. Effect Systems

Monads:

$$
\frac{\Gamma^{*} \vdash M^{*}: T_{\varepsilon}\left(\tau^{*} \rightarrow T_{\varepsilon} \cdot \sigma^{*}\right) \quad \frac{\Gamma^{*} \vdash N^{*}: T_{\varepsilon^{\prime}} \tau^{*}}{\left.\Gamma^{*}, f: \tau^{*} \rightarrow T_{\varepsilon} \cdot \sigma^{*}, x: \tau^{*} \vdash f x: T_{\varepsilon} \cdot \sigma^{*}\right)}}{\Gamma^{*}, f: \tau^{*} \rightarrow T_{\varepsilon} \sigma^{*} \vdash \text { let } x \Leftarrow N \text { in } f x: T_{\varepsilon^{*} \cup \varepsilon^{*}} \sigma^{*}}
$$

Effect system:

$$
\frac{\Gamma \vdash M: \tau \xrightarrow{\varepsilon^{\prime}} \sigma, \varepsilon \quad \Gamma \vdash N: \tau, \varepsilon^{\prime \prime}}{\Gamma \vdash(M N): \sigma, \varepsilon \cup \varepsilon^{\prime} \cup \varepsilon^{\prime \prime}}
$$

Effect-Refined Monadic Intermediate Languages

- Tolmach 98
- Wadler 98
- B, Kennedy, Russell 98
- Implemented in MLJ Standard ML to Java bytecode compiler
- Tracks reading, writing, allocating, exceptions, divergence
- First go at (extensional) correctness in HOOTS'99
- Heavy operational techniques (Howe's method)
- Based on sets of tests expressed in the language
- Worked, but pretty icky

Tracking exceptions

Framework

Base type system $\Gamma \vdash \mathrm{M}: \mathrm{A}$	Base semantics (sets and functions)
"erases to"	
$\Theta \vdash \mathrm{M}: \mathrm{A} \rrbracket$	

Store Effects

- What does it actually mean to "read" or "write"? Let f be the denotation of a command i.e. $f \in \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z}$.
- Suppose C does not write to the first location. Extensionally: there is some $g: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ such that $f(x, y)=(x, g(x, y))$
- Suppose C does not read or write the first location.

Extensionally: there is some $g: \mathbb{Z} \rightarrow \mathbb{Z}$ such that $f(x, y)=(x, g(y))$

- Suppose C does not read from the first location.

Extensionally: there is some $h: \mathbb{Z} \rightarrow \mathbb{B}, g_{1}, g_{2}: \mathbb{Z} \rightarrow \mathbb{Z}$ such that

$$
f(x, y)=\left(h(y) ? x: g_{l}(y), g_{2}(y)\right)
$$

Observation

- Move to a relational interpretation, and things look much slicker, if slightly mysterious:
Δ = diagonal relation , \times and \rightarrow usual constructions on relations
$f: R$ shorthand for $(f, f) \in R$
- C does not write to the first location:

$$
\forall R \subseteq \Delta . f: R \times \Delta \rightarrow R \times \Delta .
$$

- C does not read or write the first location:

$$
\forall \text { R. } f: \mathrm{R} \times \Delta \rightarrow \mathrm{R} \times \Delta .
$$

- C does not read from the first location:

$$
\forall R \supseteq \Delta . f: R \times \Delta \rightarrow R \times \Delta .
$$

Framework

Base type system $\Gamma \vdash \mathrm{M}: \mathrm{A}$	Base semantics (sets and functions)
"erases to"	
$\Theta \vdash \mathrm{M}: \mathrm{A} \rrbracket$	

Base language

- Types

$$
\begin{aligned}
A, B & :=\text { unit } \mid \text { int } \mid \text { bool }|A \times B| A \rightarrow T B \\
\Gamma & :=x_{1}: A_{1}, \ldots, x_{n}: A_{n}
\end{aligned}
$$

- Terms

$$
\begin{aligned}
V, W:= & ()|n| b|(V, W)| \lambda X: A \cdot M|V+W| \pi_{i} V \mid \ldots \\
M, N:= & \operatorname{val} V \mid \operatorname{let} x \Leftarrow M \text { in } N \mid V W \\
& \mid \text { if } V \text { then } M \text { else } N|\operatorname{read} \ell| \text { write }(\ell, V)
\end{aligned}
$$

Standard typing rules

$\frac{\Gamma \vdash V_{1}: A \quad \Gamma \vdash V_{2}: B}{\Gamma \vdash\left(V_{1}, V_{2}\right): A \times B} \quad \frac{\Gamma \vdash V: A_{1} \times A_{2}}{\Gamma \vdash \pi_{i} V: A_{i}}$
$\frac{\Gamma, x: A \vdash M: T B}{\Gamma \vdash \lambda x: A \cdot M: A \rightarrow T B} \quad \frac{\Gamma \vdash V_{1}: A \rightarrow T B \quad \Gamma \vdash V_{2}: A}{\Gamma \vdash V_{1} V_{2}: T B}$
$\frac{\Gamma \vdash V: A}{\Gamma \vdash \operatorname{val} V: T A} \quad \frac{\Gamma \vdash M: T A \quad \Gamma, x: A \vdash N: T B}{\Gamma \vdash \operatorname{let} x \Leftarrow M \text { in } N: T B}$
$\frac{\Gamma \vdash V: \text { bool }}{\Gamma \vdash \text { if } V \text { then } M \text { else } N: T A}$
$\frac{\Gamma \vdash M: T A \quad \Gamma \vdash N: T A}{\Gamma \vdash \operatorname{read}(\ell): T \text { int }} \quad \frac{\Gamma \vdash V: \text { int }}{\Gamma \vdash \text { write }(\ell, V): T \text { unit }}$

Base semantics in Set

$$
\begin{aligned}
S & =\text { Locs } \rightarrow \mathbb{Z} \\
\llbracket \mathrm{unit} \rrbracket & =1 \\
\llbracket \mathrm{int} \rrbracket & =\mathbb{Z} \\
\llbracket \mathrm{bool} \rrbracket & =\mathbb{B} \\
\llbracket A \times B \rrbracket & =\llbracket A \rrbracket \times \llbracket B \rrbracket \\
\llbracket A \rightarrow T B \rrbracket & =\llbracket A \rrbracket \rightarrow \llbracket T B \rrbracket \\
\llbracket T A \rrbracket & =S \rightarrow S \times \llbracket A \rrbracket
\end{aligned}
$$

Refined types and subtyping

- Types

$$
\begin{aligned}
X, Y & :=\text { unit } \mid \text { int } \mid \text { bool }|X \times Y| X \rightarrow T_{\varepsilon} Y \\
\Theta & :=x_{1}: X_{1}, \ldots, x_{n}: X_{n} \\
\varepsilon & \subseteq \bigcup_{\ell \in \mathcal{L}}\left\{\mathrm{r}_{\ell}, \mathrm{w}_{\ell}\right\}
\end{aligned}
$$

- Subtyping

$$
\begin{array}{ccl}
\overline{X \leq X} & \frac{X \leq Y \quad Y \leq Z}{X \leq Z} & \\
\frac{X \leq X^{\prime} \quad Y \leq Y^{\prime}}{X \times Y \leq X^{\prime} \times Y^{\prime}} \\
\frac{X^{\prime} \leq X}{\left(X \rightarrow T_{\varepsilon} Y\right) \leq\left(X^{\prime} \rightarrow T_{\varepsilon^{\prime}} Y^{\prime}\right)} & \frac{\varepsilon \subseteq \varepsilon^{\prime} \quad X \leq X^{\prime}}{T_{\varepsilon} X \leq T_{\varepsilon^{\prime}} X^{\prime}}
\end{array}
$$

Selected typing rules for refined types

$$
\begin{array}{cc}
\frac{\Theta, x: X \vdash M: T_{\varepsilon} Y}{\Theta \vdash \lambda x: U(X) . M: X \rightarrow T_{\varepsilon} Y} & \frac{\Theta \vdash V_{1}: X \rightarrow T_{\varepsilon} Y \quad \Theta \vdash V_{2}: X}{\Theta \vdash V_{1} V_{2}: T_{\varepsilon} Y} \\
\frac{\Theta \vdash V: X}{\Theta \vdash \operatorname{val} V: T_{\emptyset} X} & \frac{\Theta \vdash M: T_{\varepsilon} X \quad \Theta, x: X \vdash N: T_{\varepsilon^{\prime}} Y}{\Theta \vdash \operatorname{let} x \Leftarrow M \text { in } N: T_{\varepsilon \cup \varepsilon^{\prime}} Y} \\
\frac{\Theta \vdash V: \text { bool }}{\Theta \vdash \text { if } V \text { then } M \text { else } N: T_{\varepsilon} X} \\
\frac{\Theta \vdash M: T_{\varepsilon} X \quad \Theta \vdash N: T_{\varepsilon} X}{\Theta \vdash \operatorname{read}(\ell): T_{\left\{\mathrm{r}_{\ell}\right\}}(\text { int })} \\
\frac{\Theta \vdash V: X \quad X \leq X^{\prime}}{\Theta \vdash V: X^{\prime}} & \frac{\Theta \vdash M: \text { int }}{\Theta \vdash i t e(\ell, V): T_{\left\{\mathrm{w}_{\ell}\right\}}(\text { unit })} \\
\frac{\Theta \vdash M: T_{\varepsilon} X \quad T_{\varepsilon} X \leq T_{\varepsilon^{\prime}} X^{\prime}}{(}
\end{array}
$$

Semantics of refined types

$$
\begin{aligned}
& \llbracket X \rrbracket \subseteq \llbracket U(X) \rrbracket \times \llbracket U(X) \rrbracket \\
& \llbracket \mathrm{int}=\Delta_{\mathbb{Z}} \\
& \llbracket \mathrm{bool} \rrbracket=\Delta_{\mathbb{B}} \\
& \llbracket \mathrm{unit} \rrbracket=\Delta_{1} \\
& \begin{array}{c}
\text { Values of base type are related just to } \\
\text { themselves (diagonal relation) }
\end{array} \\
& \llbracket X \times Y \rrbracket=\llbracket X \rrbracket \times \llbracket Y \rrbracket \\
& \begin{aligned}
\text { Functions are related in the } \\
\text { usual "logical" fashion: related } \\
\text { arguments } \rightarrow \text { related results }
\end{aligned} \\
& \llbracket T_{\varepsilon} Y \rrbracket=\llbracket X \rrbracket \rightarrow \llbracket T_{\varepsilon} Y \rrbracket
\end{aligned}
$$

Results

- Soundness of subtyping: If $X \leq Y$ then $\llbracket X \rrbracket \subseteq \llbracket Y \rrbracket$.
- Fundamental theorem:

$$
\begin{aligned}
& \text { If } \Theta \vdash V: X,\left(\rho, \rho^{\prime}\right) \in \llbracket \Theta \rrbracket \\
& \text { then }\left(\llbracket U(\Theta) \vdash V: U(X) \rrbracket \rho, \llbracket U(\Theta) \vdash V: U(X) \rrbracket \rho^{\prime}\right) \in \llbracket X \rrbracket .
\end{aligned}
$$

- Meaning of top effect: $\llbracket G(A) \rrbracket=\Delta_{\llbracket A \rrbracket}$.
- Equivalences
- Effect-independent: congruence rules, β, η rules, commuting conversions
- Effect-dependent: dead computation, duplicated computation, commuting computations, pure lambda hoist
- Reasoning is quite intricate, involving construction of specific effect-respecting relations.

Effect-dependent equivalences (I)

Dead Computation:

$$
\frac{\Theta \vdash M: T_{\varepsilon} X \quad \Theta \vdash N: T_{\varepsilon^{\prime}} Y}{\Theta \vdash \operatorname{let} x \Leftarrow M \text { in } N=N: T_{\varepsilon^{\prime}} Y} x \notin \Theta, \operatorname{wrs}(\varepsilon)=\emptyset
$$

Duplicated Computation:

$$
\begin{aligned}
& \Theta \vdash M: T_{\varepsilon} X \quad \Theta, x: X, y: X \vdash N: T_{\varepsilon^{\prime}} Y \\
& \hline \Theta \vdash \quad \text { let } x \Leftarrow M \text { in let } y \Leftarrow M \text { in } N: T_{\varepsilon \cup \varepsilon^{\prime}} Y
\end{aligned}
$$

Effect-dependent equivalences (2)

Commuting Computations:

Pure Lambda Hoist:

$$
\frac{\Theta \vdash M: T_{\{ \}} Z \quad \Theta, x: X, y: Z \vdash N: T_{\varepsilon} Y}{\Theta \vdash \quad} \frac{\operatorname{val}(\lambda x: U(X) \cdot \operatorname{let} y \Leftarrow M \operatorname{in} N)}{=} \quad \operatorname{let} y \Leftarrow M \operatorname{inval}(\lambda x: U(X) \cdot N) \quad T_{\{ \}}\left(X \rightarrow T_{\varepsilon} Y\right)
$$

A language with dynamic allocation

- Axiomatic (abstract) treatment of state equipped with dom, lookup, update and new
- Set of regions Regs, refined types include ref r
- $\epsilon \subseteq\left\{r d_{r}, w r_{r}, a l_{r} \mid r \in \operatorname{Regs}\right\}$

$$
\frac{\Gamma(x)=\text { int }}{\Gamma \vdash \operatorname{ref}(x): \operatorname{ref}_{\mathrm{r}}:\left\{a l_{\mathrm{r}}\right\}} \frac{\Gamma(x)=\operatorname{ref}_{\mathrm{r}} \quad \Gamma(y)=\text { int }}{\Gamma \vdash x:=y: \text { unit, }\left\{w r_{\mathrm{r}}\right\}}
$$

$$
\frac{\Gamma \vdash e: A, \varepsilon \quad \mathrm{r} \text { does not occur in } \Gamma \text { or } A}{\Gamma \vdash e: A, \varepsilon \backslash\left\{w r_{\mathrm{r}}, r d_{\mathrm{r}}, a l_{\mathrm{r}}\right\}}
$$

Parametric Logical Relation

- A parameter φ assigns every $r \in \operatorname{Regs} \cup\{\tau\}$ a finite partial bijection on \mathbb{L} (all disjoint)
- State relation on $L, L^{\prime} \subseteq \mathbb{L}$ is $R \subseteq S \times S$ st. $s R s^{\prime}, s \sim_{L} s_{1}, s^{\prime} \sim_{\mathcal{L}^{\prime}}$ $\mathrm{s}_{1}{ }^{\prime} \Rightarrow \mathrm{s}_{1} \mathrm{Rs}_{1}{ }^{\prime}$
- If R state relation on $\operatorname{dom}(\varphi), \operatorname{dom}^{\prime}(\varphi)$ then
$-R$ respects $\left\{r r_{r}\right\}$ at φ if $s R s^{\prime} \Rightarrow s . I=s^{\prime} . I^{\prime} \forall\left(I, I^{\prime}\right) \in \varphi(r)$
$-R$ respects $\left\{w r_{r}\right\}$ at φ if $s R s^{\prime},\left(I, I^{\prime}\right) \in \varphi(r), v \in \mathbb{Z} \Rightarrow s[l \mapsto v] R s\left[l^{\prime}\right.$ $\mapsto \mathrm{v}$]
$-R$ respects $\left\{\left.a\right|_{r}\right\}$ always
- $\mathcal{R}_{\epsilon}(\varphi)=\left\{R \in \operatorname{StRel}\left(\operatorname{dom}(\varphi), \operatorname{dom}^{\prime}(\varphi)\right)\right.$ st. $\forall \mathrm{e} \in \epsilon$, R resp. e at φ \}
- $\llbracket A \rrbracket_{\varphi}$ will be a QPER on $\llbracket|A| \rrbracket$
- Relation R such that $R ; R^{-1} ; R=R$

$$
\begin{aligned}
\llbracket A \rrbracket_{\varphi} \equiv & \{(v, v)|v \in \llbracket| A \mid \rrbracket\} \text { when } A \in\{\text { int, bool, unit }\} \\
\llbracket r e f_{r} \rrbracket_{\varphi} \equiv & \varphi(\mathrm{r}) \\
\llbracket A \times B \rrbracket_{\varphi} \equiv & \llbracket A \rrbracket_{\varphi} \times \llbracket B \rrbracket_{\varphi} \\
\llbracket A \stackrel{\varepsilon}{\rightarrow} B \rrbracket_{\varphi} \equiv & \left\{\left(f, f^{\prime}\right) \mid \forall \varphi^{\prime} \geq \varphi \cdot \forall\left(x, x^{\prime}\right) \in \llbracket A \rrbracket_{\varphi^{\prime}} .\right. \\
& \left.\left(f(x), f^{\prime}\left(x^{\prime}\right)\right) \in\left(T_{\varepsilon} \llbracket B \rrbracket\right)_{\varphi^{\prime}}\right\} \\
\left(T_{\varepsilon} Q\right)_{\varphi} \equiv & Q P E R\left(\left\{\left(f, f^{\prime}\right) \mid s, s^{\prime} \models \varphi \Rightarrow\right.\right. \\
& \forall R \in \mathcal{R}_{\varepsilon}(\varphi) . s R s^{\prime} \Rightarrow s_{1} R s_{1}^{\prime} \wedge \\
& \exists \psi \cdot(\psi(\mathrm{r}) \neq \emptyset \Rightarrow \mathrm{r} \in \operatorname{als}(\varepsilon)) \wedge s_{1}, s_{1}^{\prime} \models \varphi \otimes \psi \wedge \\
& s_{1} \sim_{\psi} s_{1}^{\prime} \wedge\left(v, v^{\prime}\right) \in Q_{\varphi \otimes \psi} \\
& \text { where } \left.\left.\left(s_{1}, v\right)=f s \text { and }\left(s_{1}^{\prime}, v^{\prime}\right)=f^{\prime} s^{\prime}\right\}\right)
\end{aligned}
$$

- Monotonicity: $\varphi^{\prime} \geq \varphi \Rightarrow \llbracket A \rrbracket_{\varphi^{\prime}} \supseteq \llbracket A \rrbracket_{\varphi}$
- Masking: If r not in $A, \llbracket A \rrbracket_{\varphi}=\llbracket A \rrbracket_{\varphi-r}$ where φ r moves $\varphi(r)$ into the silent region τ
- Fundamental theorem
- Semantic equality, quantifying over parameters, is PER and yields same equations except duplicated computations requires no allocations as well as disjoint reads and writes

Conclusion

- Relational parametricity can give elegant, useful extensional semantics to effect systems
- Related
- Fancier system for exceptions
- Global higher order
- Abstract regions
- Can be (should be) extended to regular effects or other transition systems
- Note emphasis on operations. In retrospect this is what we were doing all along.

Extensional Semantics for Program Analyses and Optimising Transformations

- Program analysis and optimising transformations ought to be a killer app for semantics
- "An assignment $[x:=a]^{\prime}$ may reach a certain program point if there is an execution of the program where x was last assigned a value at I when the program point is reached."
- "...by the standard technique of proving preservation and progress"
- "denotational and operational methods seem ill-suited to validating transformations that involve a program's computational future or computational past"
- This seems wrong
- Confusion of semantics of analysis results (true precondition for transformation) with syntactic, approximate technique used to obtain them
- Original and transformed programs equal in standard, extensional semantics; surely the reason why is expressible in those terms too
- Instrumented semantics both a cheat and a poor basis for equational reasoning
- Doesn't go through abstraction levels (machine code programs don't go wrong)

Relational Semantics for Traditional Dataflow and Transformations

Type system mapping variables to the total relation, the diagonal or singleton $\{(\mathrm{n}, \mathrm{n})\}$, interpreted as pre- and post-relations on stores, captures constant propagation, dead code elimination, slicing and Smith/Volpano style secure information flow.

Generalizes to "Relational Hoare Logic", which can deal with code motion, available expressions and other flow-sensitive analyses

$$
\left.\begin{array}{cc}
\text { while } \mathrm{I}<\mathrm{N} \text { do } & \mathrm{X}:=\mathrm{Y}+1 ; \\
\mathrm{X}:=\mathrm{Y}+1 ; & \text { while } \mathrm{I}<\mathrm{N} \text { do } \\
\mathrm{I}:=\mathrm{I}+\mathrm{X} ; & \mathrm{I}:=\mathrm{I}+\mathrm{X} ;
\end{array}\right] \begin{aligned}
& \text { at type } \Phi \Rightarrow \Phi \text { where } \Phi \text { is } I\langle 1\rangle=I\langle 2\rangle \wedge N\langle 1\rangle=N\langle 2\rangle \wedge Y\langle 1\rangle=Y\langle 2\rangle
\end{aligned}
$$

Separation logic version of this idea used in establishing semantic type safety of a compiler. Probabilistic version (CertiCrypt) by Barthe, Zanella et al used to establish impressive results on correctness of crypto protocols

