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BACKGROUND: A countably based Scott-Ershov domain can be 
characterized as the "completion" by proper ideals of a 
countable semilattice. (This will all be explained below.)  
Different semilattices give differently structured domains, 
and there are several kinds of "universal" domains which 
enable us to realize a variety of structures among their 
subdomains.
   

The purpose of this report is to axiomatize the construction 
of one kind of universal domain in order to show how its 
subdomains can be found via choosing subsemilattices of a 
master semilattice by very elementary definitions and via 
easy solutions to "domain equations".

CHAPTER I. SEMILATTICES

DISCUSSION: A semilattice is a system〈S,0,1,≦,∨〉(with a 
set of elements and with special elements, relations, and 
operations) which can be defined in words as a bounded 
partial ordering where any pair of elements has a least 
upper bound.
   

Intuitively, a semilattice should be interpreted as giving 
"finite" amounts of "information" encoded in each of its 
elements.  The element 0 stands for "no information"; the
element 1 stands for "too much information" (i.e., "broken"
or "inconsistent" information).  

Last edited on 06/20/2011

Page 1



   

A relationship p ≦ q stands for the information in p being 
"contained in" the information in q, or, as we shall 
sometimes say, p "approximates" q.  Finally p ∨ q stands for
the "join" or "union" of the information of p with that of q. 
   

The extra, defined relationship p < q stands for p having 
"strictly less" information than q.  By convention we suppose 
0 < 1 in order to avoid trivial structures.
   

Symbolically, the axioms can be presented in various
equivalent ways.  The first is our preferred version.
   

DEFINITION: Structures satisfying the following axiom set are 
called semilattices.  (The conditions are assumed to hold for 
all elements of the semilattice.  The symbol ¬ means "not".)
   

AXIOM I: Approximating
   

0 < 1 
   

0 ≦ p ≦ 1
   

p ≦ p
   

p ≦ q & q ≦ r ⇒ p ≦ r
   

p ≦ q & q ≦ p ⇒ p = q 
   

p < q ⇔ p ≦ q & ¬ q ≦ p
      

p ∨ q ≦ r ⇔ p ≦ r & q ≦ r
   

--------------------------------------------------------
EXERCISE: Prove that the axiom set below is equivalent to 
the one above:
   

0 < 1
   

0 ∨ p = p
   

1 ∨ p = 1
   

p ∨ p = p
   

p ∨ q = q ∨ p
   

p ∨ (q ∨ r) = (p ∨ q) ∨ r
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p ≦ q ⇔ p ∨ q = q
   

p < q ⇔ p ≦ q & ¬ q ≦ p
   

--------------------------------------------------------
EXERCISE: (i) Show that semilattices can also be axiomatized
in first-order logic using ≦ as the only non-logical symbol. 
(ii) What is different in this approach from the first two 
axiom sets above?
   

--------------------------------------------------------
EXERCISE: (i) Give an example of an infinite structure that
is a semilattice with respect to ≦ and the converse relation 
≧ at the same time. (Such structures are called lattices.)
(ii) Give an example that is not.  (iii) Show that a finite 
semilattice, however, is always a lattice.
   

--------------------------------------------------------
DISCUSSION:  Sometimes "broken" elements need to be looked 
at and computed with.  Now any semilattice can have an 
"extra" 1 joined "at the top" of the partial ordering.  
In our universal semilattice which we will construct below,
we make the adjunction by "lowering" a copy of the whole 
semilattice with the aid of a new unary operation.
   

--------------------------------------------------------
AXIOM II: Lowering
   

p* < 1
   

0* = 0
   

(p ∨ q)* = p* ∨ q*
   

p* = q* ⇒ p = q
   

--------------------------------------------------------
EXERCISE: What is the simplest example of a semilattice that
has a lowering operation?
  

--------------------------------------------------------
EXERCISE: Let S be the set of all infinite sequences p of 
0's and 1's (that is, p = ⟨ pi | i ∈ N ⟩, where each pi = 0 or 1, 

and N is the set of non-negative integers). Define 
   

           p ∨ q = ⟨ pi ∨ qi | i ∈ N ⟩. 
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(i) Show S is a semilattice.  (ii) Is S a lattice? 
(iii) Would S always be a lattice even if the pi are chosen 

from a given semilattice A instead of just from {0,1}?
(iv) Does S have a lowering operations?
   

--------------------------------------------------------
DEFINITION: If P and Q are two semilattices, their cartesian 
product is defined as the set (P × Q) of all ordered pairs 
(p,q) with p ∈ P and q∈ Q.  We then define on (P × Q):
   

0 = (0,0)
   

1 = (1,1)
   

(p,q) ≦ (p',q') ⇔ p ≦ p' & q ≦ q'
   

(p,q) ∨ (p',q') = (p ∨ p', q ∨ q')
   

--------------------------------------------------------
EXERCISE: (i) Show that (P × Q) is indeed a semilattice if 
P and Q are. (ii) Does a similar result hold for lattices?
(iii) Recall the definition of a Boolean algebra. Does a 
similar result hold for such algebras?
   

--------------------------------------------------------
DISCUSSION:  The above notion of product is unsatisfactory 
from the "informational" point of view, because the two 
elements (1,0) and (0,1) are different from the 1 of the 
product, but conceptually they are "partly broken".  In
order to remedy this we have to define a product where all 
partly broken elements are identified with the single top 
element 1 of the product.
   

It is easy to make this repair, but we shall go further and 
assume that the universal semilattice we want to construct 
is closed under the appropriate pairing.  This means that it 
contains among its subsemilattices many such products.  Thus, 
in the next axiom set we allow the pairing to be iterated to 
form elements such as ⟪⟪p0,p1⟫,⟪⟪p2,p3⟫,⟪p4,p5⟫⟫⟫, etc.  We 
also decree that non-zero lowered elements are inconsistent 
with non-zero pairs.
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AXIOM III: Pairing
   

⟪0,0⟫ = 0
   

⟪p,q⟫ = 1 ⇔ p = 1 or q = 1
   

⟪p,q⟫ ∨ ⟪p',q'⟫ = ⟪p ∨ p', q ∨ q'⟫
   

      p'< 1 & q'< 1  ⇒ 
[ ⟪p,q⟫ ≦ ⟪p',q'⟫ ⇔ p ≦ p' & q ≦ q']

   

p* > 0 & ⟪q,r⟫ > 0 ⇒ p* ∨ ⟪q,r⟫ = 1
   

--------------------------------------------------------
EXERCISE: Let S/E be the quotient of the S defined above by 
the equivalence relation E that identifies two infinite
sequences if they both contain infinitely many 1's. (i) Show
S/E is a semilattice. Is it a lattice? (ii) Show that S/E has 
a paring operation which satisfies all but the last of the 
conditions above. 
   

--------------------------------------------------------
EXERCISE: (i) Show that the semilattice S/E does not have a 
pair of elements p and q satisfying p < 1 & q < 1 & p ∨ q = 1.
(ii) Show that any Boolean algebra with more than two 
elements does have such a pair.
      

--------------------------------------------------------
EXERCISE: Show, on the basis of our axioms, that by iterating 
pairing we can obtain a copy of the set N of non-negative 
integers using this definition:
   

        [0] = 1*  and  [n+1] = ⟪[n],0⟫
   

and satisfying these conditions for all n,m ∈ N:
   

0 < [n] < 1, and
   

[n] ∨ [m] < 1 ⇒ n = m.
   

--------------------------------------------------------
EXERCISE: (i) Find a primitive recursive operation (n,m) of
two variables that puts the Cartesian square N × N of the set
N of integers into a one-one correspondence with the whole 
set N itself. In this way we can consider N × N = N. 
(ii) We may then define
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⟪P,Q⟫ = {(n,m) | n ∈ P or m ∈ Q } 
 

for sets P,Q ⊆ N. (Note the use of "or" here.) Prove that 
the countable Boolean algebra Rec of all recursive sets of 
integers is closed under this pairing operation and 
satisfies all but the last of the conditions of Axiom III. 
(iii) Give a modification of this definition so that, with a 
suitable lowering operation, Rec satisfies all of Axioms II 
and III.
 

--------------------------------------------------------

CHAPTER II. COMPLETION

DEFINITION: Finitely repeated joining is defined by a 
recursive definition, where for k ∈ N we set:
   

⋁{ti| i < 0 } = 0
   

⋁{ti| i < k+1 } = ⋁{ti| i < k } ∨ tk
   

--------------------------------------------------------
EXERCISE: Prove that in any semilattice and for any integer 
k ∈ N we have:  ⋁{ti| i < k } ≦ u ⇔ ∀ i < k. ti ≦ u .
   

--------------------------------------------------------
DEFINITION: A semilattice is complete if, and only if for 
all families {ti| i ∈ I } of elements of any size I, there is 

an element ⋁{ti| i ∈ I } where we have:
   

⋁{ti|i ∈ I} ≦ u ⇔ ∀ i ∈ I. ti ≦ u 
   

--------------------------------------------------------
EXERCISE: Prove that the element ⋁{ti| i ∈ I } above is 

uniquely determined.
   

--------------------------------------------------------
EXERCISE: (i) Prove that any finite semilattice is complete.  
(ii) Is a complete semilattice always a lattice?
   

--------------------------------------------------------
EXERCISE: (i) Show that the powerset  Pow(N) of any non-empty 
set is a complete semilattice.  (ii) But show that the 
countable semilattice of finite and cofinite subsets of N is 
not complete. (iii) Is the unit interval [0,1] of real 
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numbers with the usual meaning of ≦ a complete semilattice?  
A lattice?
   

--------------------------------------------------------
DISCUSSION:  In order to create a complete semilattice from 
a given semilattice S, we want to adjoin to S "limits" of 
systems of elements from S.  In the case of a countable S, 
a limit can be thought of the join of an infinite chain:
   

    p0 ≦ p1 ≦ p2 ≦ p3 ≦ … ≦ pn ≦ p(n+1) ≦ ….
   

In other words, we can think of collecting "more and more" 
information ad infinitum.  Now, if we have another infinite 
chain:
   

    q0 ≦ q1 ≦ q2 ≦ q3 ≦ … ≦ qn ≦ q(n+1) ≦ …,
   

when are their limits equal?  Thinking in terms of 
approximations, having equal limits can be defined as:
   

      ∀ i ∃ j. pi ≦ qj & ∀ j ∃ i. qj ≦ pi.
   

This means that any approximation in one tower is "bettered" 
by an approximation in the other.
   

The difficulty with this approach is that the "limit" has to
be identified with "equivalence classes" of towers.  To avoid 
having multiple representations of limits, we note that the 
two towers above are equivalent in that sense if, and only 
if, these two sets are identical:
   

      {r ∈ S | ∃ i. r ≦ pi } = {r ∈ S | ∃ j. r ≦ qj }.
   

In the case of a countable semilattice S, these sets are 
arbitrary "ideals" of S according to the next definition.  We 
use the word "ideal" in the sense of imagining a limit 
corresponding to the join of all the bits of information in 
all the elements of the ideal.
   

DEFINITION: Given a semilattice S, the ideal completion of S 
(or completion by ideals), in symbols Id(S), consists of all 
subsets X ⊆ S where we have:
   

        0 ∈ X & ∀ p,q ∈ S [(p ∨ q) ∈ X ⇔ p ∈ X & q ∈ X ].
   

The domain determined by S is defined by:
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      Dom(S) = {X ∈ Id(S) | 1 ∉ X }.
   

COMMENT: Not containing 1 is what we mean by a "proper" 
ideal.  Note that there is only one improper ideal and so
Id(S) = Dom(S) ∪ {S}.
   

DEFINITION: The downset of an element p of a semilattice S 
is defined as: ↓p = {q | q ≦ p }. For X ⊆ S we also define:
   

      ↓X = {q | ∃ p ∈ X. q ≦ p }.
   

--------------------------------------------------------
EXERCISE: (i) Prove that Id(S) is a complete semilattice 
under the relation of set inclusion. (ii) Show that for 
X,Y ∈ Id(S) we have X ∨ Y = ↓{p ∨ q | p ∈ X & q ∈ Y }. (iii) Show 

for all X ∈ Id(S) we have X = ⋃{↓p | p ∈ X } = ⋁{↓p | p ∈ X }.

(iv) Show that the mapping p ⟶ ↓p embeds S isomorphically 
into Id(S) as a semilattice embedding.
   

--------------------------------------------------------
EXERCISE: Id(S) is, as we know, a complete lattice. Show 
that the greatest lower bound in Id(S) has a very simple 
set-theoretical meaning.
   

--------------------------------------------------------
EXERCISE: (i) Show that every bounded subset of Dom(S) has 
a least upper bound in Dom(S). (ii) Show that every subset 
of Dom(S) that is directed (in the sense of having an upper 
bound in the set for every pair of elements of the set) has 
a least upper bound in Dom(S).
   

--------------------------------------------------------
DEFINITION: A mapping F: Dom(S) ⟶ Dom(T) of one domain onto
another is said to be an isomorphism if, and only if, for all
P0,P1 ∈ Dom(S), we have: P0 ⊆ P1 ⇔ F(P0) ⊆ F(P1).  

   

--------------------------------------------------------
EXERCISE: If a mapping F: Dom(S) ⟶ Dom(T) is an isomorphism,

then show so is the inverse function F-1: Dom(T) ⟶ Dom(S).
   

--------------------------------------------------------
EXERCISE: Let S = F ∪ {N}, where F is the set of all finite 
subsets of the set of integers N. S is a semilattice under 
set inclusion.  Show Dom(S) is isomorphic to the powerset 
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Pow(N) of N. 
   

--------------------------------------------------------
EXERCISE: A partial function from N into N can be identified 
with a set f of ordered pairs where whenever (n,m),(n,k) ∈ f,
then m = k (i.e., function values are unique). Let Part be 
the set of all partial functions and let S = Part ∪ {N×N}. 
(i) Prove S is a complete semilattice under set inclusion. 
(ii) Let F be the set of all finite elements of Part.  Show 
that S can be regarded as the completion of F ∪ {N×N}.  
(iii) Show that Part is isomorphic to Dom(F ∪ {N×N}).
   

--------------------------------------------------------
DEFINITION: Let S be any complete semilattice. Define the 
(abstractly) finite elements of S as being those elements p 
such that whenever {qi | i ∈ I } is a family of elements such 

that p ≦ ⋁{qi | i ∈ I }, then p ≦ ⋁{qi | i ∈ J } for some finite 

J ⊆ I.  Let Fin(S) be the set of all finite elements of S.
   

--------------------------------------------------------
EXERCISE: Prove that Fin(S) ∪ {1} is always a subsemilattice 
of a given complete semilattice S.
   

--------------------------------------------------------
EXERCISE: Determine the finite elements of (i) Pow(N), 
(ii) the complete semilattice Part ∪ {N×N} made from partial 
functions, and (iii) the complete lattice Id(S) for a given 
semilattice S.
   

--------------------------------------------------------
EXERCISE: Let S be a given semilattice, and let Sub(S) be 
the collection of all subsemilattices of S. (i) Explain 
what this means. (ii) Show Sub(S) is a complete semilattice 
under set inclusion.  (iii) Assuming S is countable, find
a countable semilattice of which Sub(S) can be regarded as 
the domain completion.
   

--------------------------------------------------------
EXERCISE: In general, under what conditions is a given 
complete lattice the ideal completion of some semilattice?
   

--------------------------------------------------------
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CHAPTER III. CONTINUOUS FUNCTIONS

DISCUSSION:  The powerset Pow(N) of the set of integers has 
infinite elements (of course, as N is an infinite set), but 
among the mappings (or operations) F: Pow(N) ⟶ Pow(N) there 
is a rich collection which work by "finite approximation".  
This means that taking any P ∈ Pow(N), then a finite subset 
R ⊆ F(P) is already a subset of F(Q), where Q is some finite 
subset of P, and conversely.  In symbols we can say for all
P ∈ Pow(N):
   

∀ R ∈ Fin(Pow(N))[ R ⊆ F(P) ⇔ ∃ Q ∈ Fin(Pow(P)). R ⊆ F(Q) ]
   

Note that X ∈ Fin(Pow(Y)) means that X is a finite subset of 
the set Y.
   

As a "slogan" we can say concerning such operations:
   

A finite amount of information about an output 
is already exactly determined by a finite amount 
of information about the input.

   

We call these operations continuous, because as you 
approximate the input, you have some means of approximating 
the output "little by little".
   

--------------------------------------------------------
EXERCISE: Show that continuous F: Pow(N) ⟶ Pow(N) are
always monotone in the sense that whenever P0 ⊆ P1 ∈ Pow(N), 
then F(P0) ⊆ F(P1).
   

--------------------------------------------------------
EXERCISE: Generalize the idea of continuity to operations 
of two variables (or inputs):
   

G: Pow(N) × Pow(N) ⟶ Pow(N).
   

--------------------------------------------------------
EXERCISE: (i) Suppose f: N⟶N is a function from integers 
to integers.  Prove that both these operations (called
image and inverse image) on P ∈ Pow(N) are continuous:
   

 f(P) = {f(n) | n ∈ P } and f-1(P) = {n | f(n) ∈ P }.
   

(ii) Suppose R as a subset of N × N is considered as a binary
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relation.  Prove that both these operations on P ∈ Pow(N)
are continuous:
   

{m | ∃ n ∈ P. (n,m) ∈ R } and
   

{k | ∃ n,m ∈ P. n < m & (n,k) ∈ R & (m,k) ∈ R }.
   

--------------------------------------------------------
EXERCISE: (i) Prove that if F,G: Pow(N) ⟶ Pow(N) are both 
continuous operations, then so is H defined by composition:
   

H(P) = F(G(P)).
   

(ii) Does a Principle of Composition generalize to operations 
of two variables?  (iii) Prove that if the operation of two 
variables K: Pow(N) ×  Pow(N) ⟶ Pow(N) is continuous, then 
D(P) = K(P,P) is also continuous.
   

--------------------------------------------------------
DISCUSSION:  In the case of domains we can phrase the idea
of continuity in terms of the underlying semilattice — and
with the added condition that the output of an operation is 
never broken as long as the input is proper.
   

DEFINITION: Given a semilattice S, the continuous operations 
F: Dom(S) ⟶ Dom(S) are the functions where for P ∈ Dom(S) 
we have: ∀ r ∈ S[ r ∈ F(P) ⇔ ∃ q ∈ P.  r ∈ F(↓q) ].
   

--------------------------------------------------------
EXERCISE: Show that continuous F: Dom(S) ⟶ Dom(S) are
always monotone in the sense that whenever P0 ⊆ P1 ∈ Dom(S), 
then F(P0) ⊆ F(P1).  

   

--------------------------------------------------------
EXERCISE: (i) Prove if F: Dom(S) ⟶ Dom(S) is continuous, 
then for all P ∈ Dom(S), F(P) = ⋁{F(↓q) | q ∈ P }. (ii) Show 

that this condition is equivalent to being continuous.
   

--------------------------------------------------------
EXERCISE: (i) Expand these definitions to F: Dom(S) ⟶ Dom(T) 
between different domains.  (ii) Show that an isomorphism is
always continuous.
   

--------------------------------------------------------
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THE FUNCTION-SPACE THEOREM:  Given a countable semilattice S, 
the set of all continuous functions F: Dom(S) ⟶ Dom(S) under 
the partial ordering F ≦ G ⇔ ∀ P ∈ Dom(S). F(P) ≦ G(P) forms 
a domain over some countable semilattice.
   

PROOF: The idea will be to discover a countable semilattice 
derived from the function space of all functions
   

ϕ: S ⟶ Id(S).
   

This family of functions forms a complete lattice under these 
definitions:
   

0(p) = {0}
   

1(p) = ↓1 = S
   

ϕ ≦ ψ ⇔ ∀ p ∈ S. ϕ(p) ≦ ψ(p)
   

But this space is much too large for what we need to 
represent continuous functions over Dom(S).  So, let us cut 
down to the subspace FUN to where:
   

ϕ(1) = 1
   

∃ r < 1. ϕ(r) = 1 ⇒ ∀ p ∈ S. ϕ(p) = 1 
   

p ≦ q ⇒ ϕ(p) ≦ ϕ(q)
   

The intuition here is that if F: Dom(S) ⟶ Dom(S) is 
continuous, then the there is a function ϕ ∈ FUN such that 

for all p < 1, we have ϕ(q) = F(↓q).  Then for P ∈ Dom(S), 

we will also have: F(P) = ⋁{ϕ(p) | p ∈ P }. And the only 

function in FUN that does not arise in this way is the 
"broken" function 1(p) = 1.
   

So, we will now hope to have a isomorphism between the space 
of continuous F: Dom(S) ⟶ Dom(S) and the elements ϕ ∈ FUN 

with ϕ < 1.  But we will have to prove that this works out 

by a series of steps.
   

LEMMA 1: FUN is a semilattice.
   

PROOF:  Let ϕ,ψ ∈ FUN.  If there is some r < 1 with 
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ϕ(r) ∨ ψ(r) = 1 in Id(S), then the 1 ∈ FUN is the only element 

η ∈ FUN where ϕ ≦ η and, at the same time, ψ ≦ η.  Hence, 
ϕ ∨ ψ = 1 in FUN.
   

If, on the other hand, ϕ(r) ∨ ψ(r) < 1 for all r < 1, then the 

function η defined by η(p) = ϕ(p) ∨ ψ(p) is a function in 
FUN, and moreover it follows that ϕ ∨ ψ = η in FUN.     QED
   

LEMMA 2: FUN is a complete semilattice.
   

PROOF: We can argue in a way that is similar to the last 
proof.  Suppose {ϕi | i ∈ I } is a family of functions in FUN.  

There are two cases.
   

First, there may be no upper bound to the the functions in 
this family other than the broken function 1.  Hence, we have
   

⋁{ϕi | i ∈ I } = 1
   

in the sense of least upper bounds in FUN.
   

Second, there may be a function ψ < 1 in FUN such that 

∀ i ∈ I. ϕi ≦ ψ.  Now by the definition of FUN, it must be 
the case that ψ(p) ∈ Dom(S) for all p < 1. This means that 

{ϕi(p) | i ∈ I } is a subset of Dom(S).  We can then define 

a function for all p ∈ S by: η(p) = ⋁{ϕi(p) | i ∈ I }.  It is 

easy to show η ∈ FUN and so η = ⋁{ϕi | i ∈ I } in FUN.     QED
   

Now that we know FUN is a complete semilattice, we need to 
set about finding its finite elements.  It turns out we can
give explicit formulas for them.  
   

Define first for p < 1 and any q ∈ S:
   

[p￫q](r) = 1  if q = 1; otherwise if q < 1,
   

               { 0 if ¬ p ≦ r 

[p￫q](r) = { ↓q if p ≦ r < 1 

            { 1 if r = 1 
   

Such a function [p￫q] is called a step function — actually, 
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a one-step function.  The general step functions are the 
finite joins of these.  Note that it is easy to show that
[p￫q] ∈ FUN, and, hence, the finite joins are members, too.
   

LEMMA 3: The broken function 1 is a finite element of FUN.  
   

PROOF: Suppose that {ϕi | i ∈ I } is a family of elements of 

FUN such that ⋁{ϕi | i ∈ I } = 1. This implies that 

⋁{ϕi | i ∈ I } ∉ Dom(S).
   

By way of contradiction, suppose that for all J ∈ Fin(Pow(I))
we have ⋁{ϕi | i ∈ J } < 1. Hence, the family 
   

{⋁{ϕi | i ∈ J } | J ∈ Fin(Pow(I)) }
   

is a directed subset of Dom(S).  But then we know that the 
least upper bound of this family is in fact in Dom(S).  But 
the join of the family is just ⋁{ϕi | i ∈ I }, which is not 

in Dom(S) by assumption.  Therefore, there must be at least 
one J ∈ Fin(Pow(I)) where ⋁{ϕi | i ∈ J } = 1.
   

That proves the element 1 is finite in FUN.          QED
   

LEMMA 4: For p < 1 and q ∈ S, [p￫q] is finite in FUN.
   

PROOF:  Let p and q be as above. Suppose that {ϕi | i ∈ I } is

a family of elements of FUN such that [p￫q] ≦ ⋁{ϕi | i ∈ I }.
   

Case 1. ⋁{ϕi | i ∈ I } = 1.
   

By Lemma 3, [p￫q] ≦ ⋁{ϕi | i ∈ J }, for some J ∈ Fin(Pow(I)).
   

Case 2. ⋁{ϕi | i ∈ I } < 1.
   

This means that this least upper bound is in Dom(S), and so 
is [p￫q].  By definition, then [p￫q](p) = ↓q and q < 1.  We 

have ↓q ≦ ⋁{ϕi(p) | i ∈ I }.  Since ↓q is a finite element of
Id(S), we know ↓q ≦ ⋁{ϕi(p) | i ∈ J } for some J ∈ Fin(Pow(I)). 

But this implies [p￫q] ≦ ⋁{ϕi | i ∈ J }.
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And so by the two cases, [p￫q] is finite in FUN.     QED
   

COROLLARY: If k ∈ N and each pi < 1, then ⋁{[pi￫qi] | i < k } 

is a finite element of FUN.
   

LEMMA 5: For each ϕ ∈ FUN, ϕ = ⋁{[p￫q] | p < 1 & q ∈ ϕ(p) }.
   

PROOF: If p < 1 and q ∈ ϕ(p), then [p￫q] ≦ ϕ.  So, ϕ is an 
upper bound for all these [p￫q].  If ϕ is not the least 
upper bound, then there is some ψ in FUN where ψ < ϕ and 
ψ is an upper bound for all the relevant [p￫q].
   

Now, if ψ < ϕ, then for some p < 1, we have not ϕ(p) ≦ ψ(p).  
This means that there must be a q ∈ ϕ(p) where q ∉ ψ(p).  
Inasmuch as [p￫q] ≦ ϕ, we would have also [p￫q] ≦ ψ. But this
can only be so if q ∈ ψ(p).  
   

Having reached a contradiction, the lemma is proved.    QED
   

COROLLARY: The elements ⋁{[pi￫qi] | i < k }, where k ∈ N and 

each pi < 1, are all and the only finite elements of FUN.  
   

COROLLARY: FUN is the completion of the countable semilattice 
Step generated by the [p￫q] with p < 1.
   

COROLLARY: The space of continuous F: Dom(S) ⟶ Dom(S) is 
isomorphic to Dom(Step).
   

And this completes the analysis of the function space of a 
given domain.  
   

NOTE: We could have been more general and treated continuous 
functions F: Dom(S) ⟶ Dom(T) between different domains.  The
work of the next two chapters will show that the extra effort 
is not especially necessary, however, owing to the properties 
of the universal domain.
   

--------------------------------------------------------
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CHAPTER IV. A UNIVERSAL SEMILATTICE

DISCUSSION:  Axioms I-III have been closure conditions in the 
sense that the operations introduced can be iterated, one on 
top of another.  The discussion of the function space, on the 
other hand, went from one domain just one level up to the 
function-space domain.  To have a truly "universal" domain,
we also need to be able to iterate function-space formations.
   

Looking back to the proofs in Chapter III, we see the key was 
to introduce step-functions [p￫q] to get at the finite 
functions.  In our next-to-last axiom  set, we will take the 
properties we discovered above axiomatically and symbolically 
to allow for the desired iteration.
   

AXIOM IV: Mapping
   

   (p￫q) defined ⇔ p < 1
   

⋁{(pi￫qi) | i < k } = 1 ⇔ ∃ r < 1. ⋁{qi | pi ≦ r } = 1

⋁{(pi￫qi) | i < k } < 1 ⇒

(r￫s) ≦ ⋁{(pi￫qi) | i < k }  ⇔  s ≦ ⋁{qi | pi ≦ r }
    

p* > 0 & (p￫q) > 0 ⇒ p* ∨ (p￫q) = 1
    

⟪p,q⟫ > 0 & (p￫q) > 0 ⇒ ⟪p,q⟫ ∨ (p￫q) = 1
    

--------------------------------------------------------
DISCUSSION:  In summary, we now have these axiom sets:
    

AXIOM I:   Approximating
AXIOM II:  Lowering
AXIOM III: Pairing
AXIOM IV:  Mapping
    

Any semilattice (with extra operations) satisfying these 
axiom sets would be interesting, and there are many 
possibilities.  But we would like to focus on the minimal 
model.
    

DEFINITION:  The universal semilattice U is formed by 
equivalence classes of symbolic expressions generated by the 
constants 0, and 1, with the aid of one unary operation p* 
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and three binary operations (p ∨ q), ⟪p,q⟫, and (p￫q).  On the 
basis of Axioms I-IV such expressions ξ and ζ can be proved to 
be equal (ξ= ζ) and/or approximating (ξ≦ ζ) and/or strictly 
approximating (ξ< ζ). 
    

NOTE: No variables are allowed in these symbolic expressions.
Also keep in mind that before using a combination (ξ￫ζ), we 
need to have proved ξ< 1.
    

--------------------------------------------------------
THEOREM: U forms a semilattice where all the operations and 
relations are recursive and where — save when a combination is 
proved to be 0 or 1 — none of the combinations 

           ξ*, ⟪ξ,ζ⟫, and (ξ￫ζ) 
are proved equal or approximating if of different kinds.
    

PROOF SKETCH:  Observe that the Axioms of Lowering, Pairing, 
and Mapping show explicitly how to reduce any equality (or 
approximation) back to compound expressions that are simpler 
(i.e., less compound) than the given ones.  Note, too, that 
we included in the axioms conditions that make the different 
kinds of values unequal and non-approximating.  Eventually, 
then, any assessment is pushed back to the constants where 
all the possible relationships are explicitly provable.
    

This kind of reductive argument shows that the axioms taken 
together are consistent.  That means that U so constructed is 
an non-trivial semilattice.                         QED
    

--------------------------------------------------------
DISCUSSION:  Though the construction of U is done with 
equivalence classes of symbolic expressions, we will just use 
the letters p, q, r, ... for elements of U as we have done 
with all the semilattices before.
    

--------------------------------------------------------
EXERCISE: (i) Prove that [N] = {0,1} ∪ {[n] | n ∈ N } ∈ Sub(U). 
(ii) Prove that U* = {1} ∪ {p* | p ∈ U } ∈ Sub(U).  (iii) Prove 
that U × U = { ⟪p,q⟫ | p ∈ U & q ∈ U } ∈ Sub(U).  (iv) Prove that
U￫U  = {⋁{(pi￫qi) | i < k } | k ∈ N & ∀i < k. pi ∈ U\{1} & qi ∈ U } ∈ Sub(U).

(v) Prove that U is the set-theoretical union of three of its 
subsemilattices: U =  U* ∪ (U × U) ∪ (U￫U). (vi) What elements do 
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these three subsemilattices have in common (two-by-two).
   

--------------------------------------------------------
EXERCISE: Fin(Sub(U)) is the collection of all finite 
subsemilattices of S. Recall that V = Fin(Sub(U)) ∪ {U} is a 
semilattice. Show that V is isomorphic to   
     

{⋁{(pi￫pi) | i < k } | k ∈ N & ∀i < k. pi ∈ U\{1} } ∈ Sub(U).
   

(That is the subsemilattice generated by the elements (p￫p).)
   

--------------------------------------------------------
DISCUSSION:  Though we see that U has very many interesting 
subsemilattices, we will argue in the next chapter that U 
gives us a domain Dom(U) where the subdomains form a very 
rich category.  This is not the only category suitable for
Domain Theory, but it is a good one to test out ideas.
   

--------------------------------------------------------

CHAPTER V. A UNIVERSAL DOMAIN

From now on, all semilattices considered will be taken as
subsemilattices of U.  The ideal completion of U is, as we 
know, Id(U) = Dom(U) ∪ {U}, and it is a complete lattice, but 
we will concentrate on Dom(U) and its (many) subdomains.
   

If S ∈ Sub(U), then strictly speaking Dom(S) is not really a 
subcollection of Dom(U).  We will slightly change our 
definitions so it henceforth becomes a subdomain.
   

REVISED DEFINITION:  For S ∈ Sub(U), we now write
     

Dom(S) = {↓(X ∩ S) | X ∈  Dom(U) } ⊆ Dom(U).
     

The idea here is that every ideal X ∈  Dom(U) gives an ideal
(X ∩ S) ∈  Dom(S).  But then ↓(X ∩ S) ∈  Dom(U) and we can check 
that ↓(X ∩ S) ∩ S = (X ∩ S).  These comments can be used to give 
the solutions to the next exercise.
     

--------------------------------------------------------
EXERCISE: (i) Show that the new meaning of Dom(S) is
isomorphic to the old meaning of domain completion.  
(ii) Find a continuous function F: Dom(U) ⟶ Dom(U) where 
the image F(Dom(U)) =  Dom(S) (using revised definition).
     

--------------------------------------------------------
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EXERCISE: (i) For P ∈ Id(U), let P* = {p* | p ∈ P }. Show that
P* ∈ Dom(U).  (ii) Prove that Dom({1} ∪ U*) = {P* | P ∈ Id(U) }.
(iii) Prove that Dom({1} ∪ U*) is isomorphic to Id(U).
     

--------------------------------------------------------
EXERCISE: Prove that Dom([N]) = {0,1} ∪ {↓[n] | n ∈ N }.
     

--------------------------------------------------------
EXERCISE: (i) Show H = {0} ∪ {⟪p,q⟫  |   p > 0  &  q > 0  } ∈ Sub(U).
(ii) For S,T ∈ Sub(U), show 
  

S × T = { ⟪p,q⟫ | p ∈ S & q ∈ T } ∈ Sub(U).
   

(iii) Prove that Dom(S × T) is isomorphic to the product
of Dom(S) and Dom(T) as partially ordered sets. HINT:
Show that these relationships:
   

  P = {p ∈ S | ⟪p,0⟫ ∈ R } and Q = {q ∈ T | ⟪0,q⟫ ∈ R } and
             R = ↓{ ⟪p,q⟫ | p ∈ P & q ∈ Q }
   

establish a one-one correspondence between pairs of
elements of Dom(S) and Dom(T) and elements of Dom(S × T). 
(iv) Discuss the meaning of Dom((S × T)∩ H).
     

--------------------------------------------------------
EXERCISE: For S,T ∈ Sub(U), let S ￫ T the subsemilattice

generated by { (p￫q) | p ∈ S\{1} & q ∈ T }.  Prove that Dom(S ￫ T) 

is isomorphic to the domain of continuous functions 
F: Dom(S) ⟶ Dom(T).
     

--------------------------------------------------------
EXERCISE: For S,T ∈ Sub(U), let  
    

S + T = {0} ∪ { ⟪p,[0]⟫ | p ∈ S } ∪ { ⟪q,[1]⟫ | q ∈ T }.
   

Show that S + T ∈ Sub(U) and discuss the meanings of Dom(S + T) 
and Dom((S + T)∩ H). 
     

--------------------------------------------------------
EXERCISE: For S ∈ Sub(U), let S⟘  = {0} ∪ { ⟪p,[0]⟫ | p ∈ S } .
Show that S⟘  ∈ Sub(U) and discuss the meaning of Dom(S⟘). 
     

--------------------------------------------------------
EXERCISE: Show that the following operations on  Sub(U)
are continuous and preserve finiteness:
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S*, S⟘, S × T, S + T, S ￫ T, and S ∩ T.  
     

--------------------------------------------------------

CHAPTER VI. SOLVING DOMAIN EQUATIONS

The last chapter has shown us that that the domains Dom(S) 
associated with semilattices S ∈ Sub(U) can have a large 
variety of structure — especially if we iterate the many 
operations that form semilattices from given semilattices.  
The objective now is to show that this iteration can also be 
carried on ad infinitum to create recursively defined 
domains.
 

--------------------------------------------------------
EXERCISE: Show that the continuous functions 
    

  F: Dom(S) ⟶ Dom(T)
    

are exactly the same as the functions such that whenever
    

    P0 ≦ P1 ≦ P2 ≦ P3 ≦ … ≦ Pn ≦ P(n+1) ≦ … in Dom(S),
    

then F(⋁{Pn | n ∈ N }) = ⋁{F(Pn) | n ∈ N }.
 

--------------------------------------------------------
We can apply the last exercise in giving the proof of the
next very basic result.
 

THE FIXED-POINT THEOREM. Every continuous function
    

F: Dom(S) ⟶ Dom(S)
    

has a least fixed point P ∈ Dom(S) which can be found as
    

P = ⋁{Fn(0) | n ∈ N }.

PROOF:  Here Fn is the nth-iterate of the function F.  Now
0 ≦ F(0), and so it follows that Fn(0) ≦ F(n+1)(0).  Applying
the exercise we find
    

F(P) = ⋁{F(n+1)(0) | n ∈ N } = ⋁{Fn(0) | n ∈ N } = P.
    

This shows that P is a fixed point.  If Q were another
fixed point, then, because 0 ≦ Q, we would have for

all n ∈ N, Fn(0) ≦ Q.  This proves that P ≦ Q.           QED
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Inasmuch as Sub(U) is isomorphic to Dom(FSub(U) ∪ {U}), we can
apply the Fixed-Point Theorem to Sub(U) and to the many 
continuous functions we now know.  Keep in mind here that the 
zero element of Sub(U) is actually the subsemilattice {0,1}.
 

--------------------------------------------------------
EXERCISE: (i) By the Fixed-Point Theorem we know there is a 
B ∈ Sub(U), where B = B + B.  Is such a B unique?
(ii) Discuss the nature of Dom(B).
 

--------------------------------------------------------
EXERCISE: (i) By the Fixed-Point Theorem we know there is an 
M ∈ Sub(U), where M = ({0,1}⟘ + M) ∩ H. Is such an M unique? 
(ii) Are Dom([N]) and Dom(M) isomorphic?.
   

--------------------------------------------------------
EXERCISE: (i) By the Fixed-Point Theorem we know there is a 
Z ∈ Sub(U), where Z = ([N] × Z) ∩ H.  Is such a Z unique?
(ii) Discuss the nature of Dom(Z).  (iii) Is there an
element E ∈ Dom(Z) such that E = ↓{ ⟪↓[0],e⟫ |  e ∈ E }?
   

--------------------------------------------------------
EXERCISE: Is there a sequence of elements En  ∈ Dom(Z) such 
that for n ∈ N we have En  = ↓{ ⟪↓[n],e⟫ |  e ∈ E(n+1)  }?
   

--------------------------------------------------------
EXERCISE: Given two continuous functions F and G mapping
pairs of elements of  Sub(U) to Sub(U), must there exist
C,D ∈ Sub(U)  such that C  =  F(C,D)  and D  =  G(C,D)?  (This is a
Double Fixed-Point Theorem.)
   

--------------------------------------------------------
EXERCISE: Discuss why solving equations X = F(X) in Sub(U)
give us "equations" involving the domain  Dom(X) and others.
   

NOTE: Equations between domains often have to be interpreted 
as isomorphisms.
   

--------------------------------------------------------

CHAPTER VII. MODELING LAMBDA CALCULUS

By the very construction of the universal semilattice U we 
know that U ￫ U is a subsemilattice of U.  It follows that 
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Dom(U ￫ U) is a subdomain of Dom(U).  But, as we have checked,
Dom(U ￫ U) is isomorphic to the continuous function space from 
Dom(U) to Dom(U).  In other words:
     

The domain Dom(U) contains a copy of 
its own function space.

     

Generally, standard mathematical spaces, such as, say, the
unit interval [0,1] do not have this property — even when we 
restrict attention to continuous functions.
   

The possibility of this self-containment brings up the 
question: Can we make elements of Dom(U) play the roles of 
continuous functions?  The answer is Yes, and a notation for 
doing so is one way of giving a model for the so-called λ-
calculus.  
   

COMMENT: The historical reason for using the Greek letter λ 
will be explained below. 
   

--------------------------------------------------------
DEFINITION:  For V ⊆ U, the ideal generated by V is defined 

as: id(V) = ↓{⋁{pi | i < k } | k ∈ N & ∀i < k. pi ∈ V }.
    

COMMENT: We always have id(V) ∈ Id(U), but it is not always
true that id(V) ∈ Dom(U), even though 1 ∉ V.  So we have to
watch out for the cases where id(V) = U might be possible. 
    

DEFINITION:  For F,X ∈ Dom(U), functional application is
defined by: F⦅X⦆ = id({q | ∃ p ∈ X. (p￫q) ∈ F }).   

   

--------------------------------------------------------
DISCUSSION: The idea here is that F works as a "look-up
table" for mapping finite amounts of information.  When
an approximation p is found in X (and remember that we 
know X = ⋁{↓p | p ∈ X } in Dom(U)), then we look to see if

F allows us to map p to a q.  The totality of these map-
pings gives us F⦅X⦆.  (Note the value could also have been 
written as ⋁{↓q | ∃ p ∈ X. (p￫q) ∈ F }.) For this all to make 

sense, however, it must be checked that we stay in Dom(U).
    

--------------------------------------------------------
EXERCISE: (i) Prove that for F,X ∈ Dom(U), we always have
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F⦅X⦆ ∈ Dom(U).  (ii) Show that for any fixed F, the mapping 
from X to F⦅X⦆ over Dom(U) is always continuous.  (iii) Show 
that for any fixed X, the mapping from F to F⦅X⦆ over Dom(U) 
is always continuous.
    

--------------------------------------------------------
DEFINITION:  For a given continuous Φ: Dom(U) ⟶ Dom(U), let

λ-abstraction be defined by:
    

λX. Φ(X)  =  id({(p￫q) | q ∈ Φ(↓p) &  p < 1 }).
    

--------------------------------------------------------
EXERCISE: (i) Prove for continuous Φ: Dom(U) ⟶ Dom(U),

we always have λX. Φ(X) ∈ Dom(U). (ii) For all Y ∈ Dom(U),

we also have (λX. Φ(X))⦅Y⦆   =  Φ(Y).
    

--------------------------------------------------------
DISCUSSION:  These results demonstrate two points about
the universal domain: (a) every element of Dom(U) can be
used to make a continuous function; and (b) every continuous
function from Dom(U) to itself comes up in this way.  In
fact, we could show the isomorphism with the function
space with the next fact.
    

--------------------------------------------------------
EXERCISE: (i) Show for continuous Φ,Ψ: Dom(U) ⟶ Dom(U),

we have Φ ≦ Ψ ⇔ λX. Φ(X) ≦ λX. Ψ(X).  (ii) Prove that
{λX. F⦅X⦆ |  F ∈ Dom(U)} = Dom(U ￫ U).  (iii) Prove that we have

Dom(U ￫ U) = { F ∈ Dom(U) | F = λX. F⦅X⦆ }. (iv) Show that we have

λX. F⦅X⦆ ∨ λX. G⦅X⦆  = λX.(F⦅X⦆ ∨ G⦅X⦆).
    

--------------------------------------------------------
BACKGROUND:  The λ in the  λ-notation is not a "quantity" but
is rather a variable-binding operator.  Alonzo Church chose 
the Greek letter "at random" in analogy with Bertrand 
Russell's iota-operator for definite descriptions (ιx. Φ(x) 
means "the unique x satisfying Φ(x)) and David Hilbert's 
epsilon-operator for arbitrary choice (εx. Φ(x) means "an x 
satisfying Φ(x), so that Φ(εx. Φ(x)) ⇔ ∃ x. Φ(x) and
Φ(εx. ¬ Φ(x)) ⇔ ∀ x. Φ(x).)  After working with a type-free 
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system for some time, Church turned to higher-order logic and 
a calculus of typed λ-terms.  Another approach to types will 
be discussed in Chapter IX.
    

--------------------------------------------------------
EXERCISE: (i) Explain why iterated application, F⦅X⦆⦅Y⦆, gives 
us all continuous functions of two variables.  Connect this 
idea to iterated abstraction, as in λX λY. Φ(X,Y). (ii) Show 
that λY. Φ(X,Y) is always a continuous function of one 
variable X when Φ(X,Y) is a continuous function of two. 
--------------------------------------------------------
EXERCISE: Consider the binary operation on Dom(U) defined by
   

F○G = λX. F⦅G⦅X⦆⦆. (i) Is the operation continuous? (ii) Is it
associative? (iii) Is it commutative?  (iv)  Restricted to   

   

Dom(U ￫ U), does it have a two-sided unit?
--------------------------------------------------------
    

EXERCISE: Look up information on Haskell Curry and on
Combinatory Logic.  (Wikipedia does not seem all that helpful
at the moment.)  Does Dom(U) give a a model for the algebra
of combinators?  Give some examples of combinators in 
Dom(U ￫ U).
    

--------------------------------------------------------

CHAPTER VIII. ASSESSING COMPUTABILITY

Recall that the universal semilattice U is formed by using 
equivalence classes of symbolic expressions formed by the  
constants 0 and 1 with the aid of one unary operation p* and 
three binary operations (p ∨ q), ⟪p,q⟫, and (p￫q). On the basis 
of Axioms I-IV such expressions ξ and ζ can be proved to be 
equal (ξ= ζ) and/or approximating (ξ≦ ζ) and/or strictly 
approximating (ξ< ζ).  By sorting through such proofs, we can 
always effectively choose the simplest (or a canonical) 
representative in each equivalence class.

And we can thus regard the operations of lowering, joining, 
pairing, and mapping as being effectively computable 
operations on U.  In this way, the semilattice U becomes an
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example of a recursive algebra.  In any such algebra, there
is a notion of being a recursively enumerable subset of the
the set of elements of the algebra.  Such subsets can be
regarded as effective "limits" of effectively defined 
infinite sequences of finite subsets.
    

NOTE: If we had more time, we could make this discussion more 
precise by the use of Gödel numberings.
    

--------------------------------------------------------
DEFINITION:  The computable elements of Dom(U) are the
subsets in Dom(U) that are recursively enumerable.
    

--------------------------------------------------------
DEFINITION:  The computable operations Φ: Dom(U) ⟶ Dom(U)

are the continuous mappings where λX. Φ(X)  is a computable 

element of Dom(U).
   

--------------------------------------------------------
   

EXERCISE: (i) Prove that if F ∈ Dom(U) is computable, then 
the mapping from X to F⦅X⦆ is a computable operation. (ii)
And if X ∈ Dom(U) is computable, then so is F⦅X⦆.  
  

--------------------------------------------------------
EXERCISE: Prove that a continuous Φ: Dom(U) ⟶ Dom(U) 

is a computable operation on Dom(U) if, and only if, the 
set {(p￫q) | q ∈ Φ(↓p) &  p < 1 } is recursively enumerable.
   

--------------------------------------------------------
EXERCISE: If F ∈ Dom(U) is computable, will the least fixed
point of F also be computable?
   

--------------------------------------------------------
EXERCISE: Why are there non-computable elements of Dom(U)?
     

--------------------------------------------------------
EXERCISE: (i) Discuss the computable Φ: Dom([N]) ⟶ Dom([N]).

(ii) Which elements of Dom(U) represent the same mappings?
     

--------------------------------------------------------
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CHAPTER IX. MOVING TO HIGHER TYPES

DISCUSSION: Every S ∈ Sub(U) gives a subdomain Dom(S) ⊆ Dom(U).
Such subdomains can be — as we have seen — quite differently
structured.  Each represents a certain "type" of element in
Dom(U).  Moreover, the construction Dom(S ￫ T) allows us to
move to "higher types", in the sense of passing from 
individual inputs and outputs to the space of (continuous) 
operations.  But these subtypes have special properties; for 
example, each has a least element and all those operations 
have least fixed points.
     

Now there are many subsets of Dom(U) that are not subdomains.
They give us many kinds of new types.  But an even more 
flexible way of creating special types is to take quotients 
of subsets of Dom(U) by equivalence relations.  The reason
for doing so is that there could be many elements of Dom(U)
which represent a quantity we want to focus on.  Picking a
canonical example from each equivalence class might not be
easy to do, so it is in general better to keep the whole
equivalence class around.  (Previously — because it was
possible — we avoided equivalence classes and chose suitable
representatives.)
    

--------------------------------------------------------
DEFINITION:  With a slight abuse of notation we let
    

⟪P,Q⟫ = ↓{ ⟪p,q⟫ | p ∈ P & q ∈ Q } ∈ Dom(U × U)
    

denote ordered pairs of elements P,Q ∈ Dom(U).  
    

--------------------------------------------------------
EXERCISE: Show that ⟪↓ p,↓ q⟫ = ↓ ⟪p,q⟫ for p,q ∈ U\{1} in the 
two senses of pairing.
    

--------------------------------------------------------
DEFINITION:  We denote by PER(U) the collection of partial
equivalence relations over Dom(U).  These are the subsets
A ⊆ Dom(U × U) where we have
    

⟪P,Q⟫ ∈ A	 ⇒ ⟪Q,P⟫ ∈ A	 and

⟪P,Q⟫ ∈ A & ⟪Q,R⟫ ∈ A	 ⇒ ⟪P,R⟫ ∈ A	 
    

for all elements P,Q,R ∈ Dom(U).  As a shorthand we write
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P A  Q ⇔ ⟪P,Q⟫ ∈ A.
    

Additionally, let the range of A be denoted by:

Rng(A) = { P | P A  P }.
    

COMMENT: These relations A are called "partial" because they
are not equivalences over the whole of Dom(U), but only over
a subset, namely, Rng(A). If Rng(A) = Dom(U), then we would
call A a "total" equivalence relation.  We will call partial
equivalence relations PERs for short.
    

If we wanted we could take the quotient set Rng(A)/A of the
equivalence classes with respect to A.  But it not really
necessary to do so.  The equivalence relation A itself gives 
us all the information we need.  And so we let A	 be the new,
expanded kind of type.  The next task is to introduce the
typical operations on types to define additional types from
given types — in much the same way as we introduced the
subdomains.
    

--------------------------------------------------------
EXERCISE: (i) Prove that if A , B ∈ PER(U), then A	 ∩ B ∈ PER(U).
(ii) What is the Rng(A	 ∩ B)? (iii) Prove that ∅ ∈ PER(U), and
that Dom(U × U) ∈ PER(U). (iv) For any A ⊆ Dom(U), show that
{ ⟪X,X⟫ | X ∈ A } ∈ PER(U).
    

--------------------------------------------------------
DEFINITION:  The product of two PERs is defined by:
    

P0 (A	 × B)  P1 ⇔ ∃ X0,Y0,X1,Y1 [ P0 = ⟪X0,Y0⟫ & P1 = ⟪X1,Y1⟫ &

                                     X0	 A	  X1 & Y0 B	 Y1 ] 

   

--------------------------------------------------------
EXERCISE: (i) Prove that if A , B ∈ PER(U), then A	 × B ∈ PER(U).
(ii) What is the Rng(A	 × B )?  
    

--------------------------------------------------------
DEFINITION:  The sum of two PERs is defined by:
    

 P0 (A	 + B)  P1 ⇔ ∃ X0,X1[ P0 = ⟪↓ [0],X0⟫ & P1 = ⟪↓ [0],X1⟫ & X0	 A	  X1 ]

             or ∃ Y0,Y1[ P0 = ⟪↓ [1],Y0⟫ & P1 = ⟪↓ [1],Y1⟫ & Y0 B	 Y1 ] 

   

--------------------------------------------------------
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EXERCISE: (i) Prove that if A , B ∈ PER(U), then A	 + B ∈ PER(U).
(ii) What is the Rng(A	 + B )?
    

--------------------------------------------------------
DEFINITION:  The function space of two PERs is defined by:
    

F0 (A	 ￫ B)  F1 ⇔ ∀ X0,X1 [ X0	 A	  X1 ⇒ F0⦅X0⦆ B	 F1⦅X1⦆ ].
   

--------------------------------------------------------
EXERCISE: (i) Prove that if A , B ∈ PER(U), then A	 ￫ B ∈ PER(U).

(ii) What is the Rng(A	 ￫ B )?
   

--------------------------------------------------------
DEFINITION:  A mapping F: A ⟶ B between two PERs is defined 

as an element F ∈ Dom(U) where F (A	 ￫ B)  F (i.e., F ∈ Rng(A	 ￫ B )).
   

NOTE: Different F's can represent the same mapping.  
Equivalent mappings are those where F (A	 ￫ B)  G holds.
   

--------------------------------------------------------
DEFINITION:  Two PERS A  and B are said to be isomorphic  (in
symbols, A	 ≅	 B	 ) provided there are mappings 
                       F: A ⟶ B and G: B ⟶ A	 where 

      ∀ X ∈ Rng(A ).      X	 A	  G⦅F⦅X⦆⦆ & ∀ Y ∈ Rng(B ).      Y 	 B	 F⦅G⦅Y⦆⦆.
   

--------------------------------------------------------
EXERCISE: Prove that for A , B, C ∈ PER(U), we have:
   

(i)   A	 ≅	 A	 ;
(ii)  A	 ≅	 B	  ⇒  B	 ≅	 A; and
(iii) A	 ≅	 B	  & B	 ≅	 C	  ⇒  A	 ≅	 C	 .

   

--------------------------------------------------------
EXERCISE: (i) Prove that for A , B ∈ PER(U), we have:
   

       A	 × B 	 ≅	 B	 × A   and A	 + B 	 ≅	 B	 + A	 .

(ii) Is it possible there are also associative and 
distributive laws for + and × on PERs?
   

--------------------------------------------------------
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PROJECT: Give examples of several non-isomorphic D ∈ PER(U)
where D 	 ≅	 D	 + D	 .
   

--------------------------------------------------------
EXERCISE: Prove that for A , B, C ∈ PER(U), we have:
   

  (i)   ((A	 × B)	 ￫ C) 	 ≅	 (A	 	 ￫ (B	 ￫ C));  and 

  (ii)  (A	 	 ￫ (B	 ×  C)) 	 ≅	 (A	 	 ￫ B)	 × (A	 	 ￫ C);  and

  (iii) ((A	 + B)	 ￫ C) 	 ≅	 (A	 	 ￫ C)	 × (B	 	 ￫ C); 
   

--------------------------------------------------------
DEFINITION:  Let A  ∈ PER(U).  An A-indexed family of PERs
is a function B: PER(U)⟶ PER(U) where we have
    

      ∀ X0,X1 [ X0	 A	  X1 ⇒ B(X0) = B(X1) ].
    

Note that the values of B outside Rng(A ) are irrelevant.
    

--------------------------------------------------------
DEFINITION:  The dependent product of an A-indexed family of 
PERs is defined as a relation on Dom(U) by:
    

 F0 (∏X:A	 . B(X))  F1 ⇔ ∀ X0,X1 [ X0	 A	  X1 ⇒ F0⦅X0⦆ B(X0)	 F1⦅X1⦆ ].
    

--------------------------------------------------------
EXERCISE:  (i) Prove that if B is an A-indexed family of 
PERs, then ∏X:A	 . B(X) ∈ PER(U).  (ii) If B is a constant
family, how does this relate to the notion of function
space defined earlier?
   

--------------------------------------------------------
DEFINITION:  The dependent sum of an A-indexed family of 
PERs is defined as a relation on Dom(U) by:
    

 P0 (∑X:A	 . B(X))  P1 ⇔ ∃ X0,Y0,X1,Y1 [ P0 = ⟪X0,Y0⟫ & P1 = ⟪X1,Y1⟫ 

                                    & X0	 A	  X1 & Y0 B(X0)	 Y1 ]     
   

--------------------------------------------------------
EXERCISE:  (i) Prove that if B is an A-indexed family of 
PERs, then ∑X:A	 . B(X) ∈ PER(U).  (ii) If B is a constant
family, how does this relate to the notion of binary
sum and binary product (+ and ×) defined earlier?
   

--------------------------------------------------------
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DISCUSSION: We have already seen that the constructs
A	 × B , A	 + B, and A	 	 ￫ B have many properties, say under

isomorphism.  It is not surprising, then, that the more
general ∑ and ∏ constructs have even more properties.  A
full investigation of such properties would bring us to some 
fairly advanced notions of Category Theory.  A different
direction of thinking brings us to Per Martin-Löf's Theory
of Types. More precisely, PERs model Martin-Löf's Theory.
   

To understand the connections, we need to look at iterations
of ∑ and ∏.  Let us take an example.  We could say that
A, B, C, and D, form a system of dependent types if:

∀ X0,X1 [ X0	 A	  X1 ⇒ B(X0) = B(X1) ] and

∀ X0,X1,Y0,Y1 [ X0	 A	  X1 &  Y0	 B(X0)	  Y1 ⇒ C(X0,Y0) = C(X1,Y1) ] and

∀ X0,X1,Y0,Y1,Z0,Z1 [ X0	 A	  X1 &  Y0	 B(X0)	  Y1  &  Z0	 C(X0,Y0)	  Z1 ⇒ 
                       D(X0,Y0,Z0) = D(X1,Y1,Z1) ],

A ∈ PER(U), and B, C, D	 are mappings on PER(U) to PER(U) with
the indicated number of arguments.    

--------------------------------------------------------
EXERCISE: Under the above assumptions on A, B, C, and D,
prove that the following compound is indeed in PER(U):

       ∏X:A	 . ∑Y:B(X). ∏Z:C(X,Y). D(X,Y,Z).
   

--------------------------------------------------------
DEFINITION:  The identity type over A  ∈ PER(U) is defined as:
   

       Z ⦗X ≡A Y⦘ W ⇔ Z A  X A  Y A  W 

--------------------------------------------------------
EXERCISE: Show that if A  ∈ PER(U) and X,Y ∈ Dom(U), then

⦗X ≡A Y⦘∈ PER(U).
   

--------------------------------------------------------
DISCUSSION: One application of these PER types is to 
represent constructive reasoning.  The idea goes back to the
so-called Curry-Howard Correspondence.  Showing that a 
complex PER is non-empty is interpretable as a logical 
statement.  For example, if we know that F (A	 	 ￫ (A	 ￫ A)) F,
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we can think of F as a binary operation on  Rng(A ).  Then
if we can show that this PER is non-empty:
   

∏X:A	 .∏Y:A	 .∏Z:A	 .⦗F⦅X⦆⦅F⦅Y⦆⦅Z⦆⦆ ≡A F⦅F⦅X⦆⦅Y⦆⦆⦅Z⦆⦘,
   

we then have "evidence" that — up to the equivalence A — the
operation F is associative.  Of course, if F just is 
associative, then the above PER is non-empty, but finding an
element to show this might be difficult.  Compounds which
have recursive evidence are especially representative of
constructively verifiable facts.  And there are many such.
  

--------------------------------------------------------
EXERCISE:  Prove that if A  ∈ PER(U) and B is an A-indexed 
family of PERs of two arguments, then these PERS contain 
recursive elements:
  

(i)  (∏X:A	 .∏Y:A	 . B(X,Y)	 ￫ ∏Y:A	 .∏X:A	 . B(X,Y))
  

(ii) (∏F:(A	 ￫ A).	 ∏X:A	 .∏Y:A	 .(⦗X ≡A Y⦘	 ￫ ⦗F⦅X⦆ ≡A F⦅Y⦆⦘))
  

(iii) (∏F:(A	 ￫ A).	 ∏X:A	 .∑Y:A	 .⦗F⦅X⦆ ≡A Y⦘)
  

NOTE: In giving an informal reading to these compounds,
read ∏ as a universal quantifier and ∑ as an existential 
quantifier. Read the ￫ as if ... then. How should + and × 
be read?
   

--------------------------------------------------------
PROJECT: Look up details on the (extensional) Martin-Löf 
Theory and check out further properties of this PER-based
modeling. 
  

--------------------------------------------------------

CHAPTER X. ALTERNATIVE LAMBDA MODELS

As we have shown every S ∈ Sub(U) gives a subdomain 
Dom(S) ⊆ Dom(U), which can also be regarded as a PER.
  

--------------------------------------------------------
EXERCISE:  Prove that if S ∈ Sub(U) then we have:
  

{ ⟪X,X⟫ | X ∈ Dom(S) }	 ≅	 { ⟪X,Y⟫ | X,Y ∈ Dom(U)  &  X ∩ S = Y ∩ S  }
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NOTE: One of these is a PER and the other is total.  But we
have to regard isomorphic PERs as giving is the same type.
 

--------------------------------------------------------
 

One key difference between subdomains and PERs is that the
construct (Dom(S)	 ￫ Dom(T)) comes from a continuous operation

(S	 ￫ T) on subsemilattices.  For PERs, (A	 	 ￫ B) fails to have

any simple monotone property in the variable A.  For the 
subsemilattices, we can take advantage of the Fixed-Point 
Theorem.  So we now do this to give some steps to obtain a 
more "tidy" λ-calculus model.  In the following we will write 
S	 ≅	 T to mean Dom(S)	 ≅	 Dom(T). 

 

--------------------------------------------------------
EXERCISE:  Let V ∈ Sub(U) satisfy V = V × (U × V).  Let C = (U × V).

Prove that C	 ≅	 (C × C).
 

--------------------------------------------------------
EXERCISE:  Let D = (D	 ￫ C). Prove that D	 ≅	 (D × D).
 

--------------------------------------------------------
EXERCISE:  Prove that D ≅ (D	 ￫ D). 
 

--------------------------------------------------------
EXERCISE:  Prove that Dom(U) is isomorphic to a subdomain
of Dom(D).
 

--------------------------------------------------------
 

As a λ-calculus model, the application and abstraction 

constructs on Dom(D) can be redefined so that we have:
 

F = λX. F⦅X⦆.
 

Whether that is important enough to go to the trouble (of
tracing through several isomorphism) is a question.  It would
make Dom(D) a semigroup with identity under the operation
F○G = λX. F⦅G⦅X⦆⦆ we studied earlier.  And that is nice.
The other domain equation would mean we can redefine ordered 
pairs so that all elements of Dom(D) are uniquely pairs in 
such a way all possible pairs are so obtained.  With more 
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work we could assure that ⟪F,G⟫ = λX. ⟪F⦅X⦆,G⦅X⦆⟫. That's a 
very "cute" identification, but in the longer run it probably 
does not save us essential work.
   

--------------------------------------------------------
EXERCISE: As a temporary notation write: S ⨁ T = (S + T) ∩ H.
Prove that for S,T,R ∈ Dom(U): 

   

  (i)   S ⨁ {0,1} 	 ≅	 S;  and 

  (ii)  S ⨁ T 	 ≅	 T ⨁ S;  and

  (iii) (R ⨁ S) ⨁ T 	 ≅	 R ⨁ (S ⨁ T); and

  (iv)   Sub(U) has many non-isomorphic B 	 ≅	 B ⨁ B; and

(v)   U 	 ≅	  U* ⨁ ((U × U) ⨁ (U ￫ U)).
   

--------------------------------------------------------
 

A different alternative to the "universal" domain Dom(U) is
to find a super-semilattice L which has all semilattices as
subsemilattices (up to isomorphism, of course).  Our 
especially constructed U has only certain kinds of
subsemilattices — though the number and complexity is high
owing to the use of the Fixed-Point Theorem to gives us
recursive domain equations.
 

It turns out we do not have to search far for L, as it is a
very well known semilattice.  The L we need is just the
Boolean algebra of propositional formulae in a denumerable
number of variables.  It is also called the free Boolean
algebra on a denumerable number of generators.  For the
purposes of semilattices we use only a portion of the 
structure: 0 = False, 1 = True, and ∨ = Or.

There are many connections between semilattices and Boolean
algebras.  First, we see that any semilattice is a 
subsemilattice of a Boolean algebra.
 
 

--------------------------------------------------------
EXERCISE:  Let S be a semilattice and let P = Pow(S\{1}),
regarded as a Boolean algebra in the normal way.  Consider
the function ρ: S ⟶ P defined by:

Last edited on 06/20/2011

Page 33



      ρ(p) = { q ∈ S | p ≰ q }.
 

(i)   Show that ρ is a one-one mapping of S into P; and
 

(ii)  ρ(1) = S\{1}; and
 

(iii) ρ(0) = ∅; and
 

(iv)  ρ(p ∨ q) = ρ(p) ∪ ρ(q).
 

--------------------------------------------------------
 

If S is a denumerable semilattice, then the Boolean algebra
P, being a powerset, is uncountable.  That is much too large.
But we only need a subalgebra of P. 
 

--------------------------------------------------------
EXERCISE:  If S is a recursive semilattice, let Q be the
subalgebra of the Boolean algebra P = Pow(S\{1}) generated
by the range ρ(S) of the function ρ: S ⟶ P defined in the

last exercise.  Show that Q — as a Boolean algebra — can be
given a recursive structure.  (And, of course, S embedds
isomorphically into Q as a semilattice and ρ: S ⟶ Q becomes

a recursive function.)
 

--------------------------------------------------------
THE EMBEDDING THEOREM:  Every countable Boolean algebra can 
be isomorphically embedded as a Boolean subalgebra into L; 
and, moreover, if the Boolean algebra has a recursive 
structure, then the embedding can also be made recursive.
    

PROOF SKETCH:  First, recall that every finitely generated 
Boolean algebra is finite.  This follow from, for example,
the use of disjunctive normal form, inasmuch as with finitely
many generators there are only finitely many forms to write
out.  And, if the given Boolean algebra has a recursive 
structure, then the listing of all the possible elements is
recursive.
    

If A0 is a finite subalgebra of a given Boolean algebra A,  

then we must keep in mind that A0 is atomistic.  An atom is 

a minimal, non-zero element, and an easy argument shows that
all the elements of A0 are least upper bounds of the atoms

they individually contain.
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Next, if b ∈ A is a new element we want to adjoin to A0 

forming a larger finite subalgebra A1, then we remark that b 

meets each of the atoms a ∈ A0 so that
    

        a ∧ b = 0 or a ∧ b = a or 0 < a ∧ b < a.
    

In the second case, a ∧ b is the atom a.  In the third case,

b creates a possible pair of atoms for A1:  a ∧ b and a ∧ ¬ b, 

a splitting of a in A0.  If we add together the expanded set 

of new atoms, then the subalgebra A1 generated by them 

contains A as well as the new element b.  (And the procedure 
is recursive, if that is required.)
    

Remembering that the given algebra A is countable, we may
then form a tower of finite subalgebras:
    

A0 ⊆ A1 ⊆ A2 ⊆  …  ⊆ An ⊆ A(n+1) ⊆  …,
    

so that A = ⋃{ An | n ∈ N }.  Again, if A has a recursive 

structure, the construction of the tower is also recursive.
    

Turning attention now to L, we note first that L is atomless.
For, suppose 0 < p ∈ L.  Let v ∈ L be a propositional variable 
not in p.  (A formula for an element of L can contain only a
finite number of symbols.)  We see, therefore, that we have
0 < p ∧ v < p.  This means p is not and atom of L.
    

Now, suppose An has been (recursively) embedded into L.  The

passage from An to A(n+1) can be thought of as a process of 

dividing the atoms of An into several pieces.  The isomorphic

image of An in L, being finite, gives us the opportunity of

choosing new elements of L to subdivide the images of the
atoms into the same pattern of pieces.  The resulting
subalgebra of L generated by this subdivision is then
isomorphic to A(n+1).  In other words, the (recursive) 

embedding of An into L can be extended to a (recursive)

embedding of A(n+1) into L.  Continuing these expansions of

the embeddings will give us a (recursive) embedding of the
whole of A into L.                                QED
    

--------------------------------------------------------
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COROLLARY: Every countable semilattice can be isomorphically 
embedded as a subsemilattice into L; and, moreover, if the 
semilattice has a recursive structure, then the embedding can 
also be made recursive.
    

PROOF: Take a countable semilattice S.  Embed it into a
countable Boolean algebra A (as checked earlier).  Keep 
things recursive as needed.  Now embed A into L.   QED
    

DISCUSSION: This means that the domain Dom(L) is likely to
be much richer than Dom(U), because U can be taken as a
subsemilattice of L.  (PROBLEM: It is just possible that
L is isomorphic to a subsemilattice of U, but the author has 
not been able to settle this question.)  
    

Now, by analogy to what we proved for U (by construction), 
the domain (Dom(L)	 ￫ Dom(L)) can be shown to be a domain of 
the form Dom(M) for a countable semilattice.  Embedding this 
into L gives us a subsemilattice (L	 ￫ L) ⊆ L, much as we had 

(U	 ￫ U) ⊆ U.  We can then make Dom(L) into a λ-calculus model 
in the same way we did for U.  
    

By comparison, however, the construction of U is much more 
direct, since for L we have to invoke the Embedding Theorem 
which says there is some embedding without really showing it 
explicitly.
    

But passing to higher types, we can show, for example that
every countably based topological space is represented by
a PER over Dom(L).  Moreover, products and function spaces
correspond to topological products of domains and spaces of
topologically continuous functions with a fairly easy to
work with topology on the function space.  (Further higher
types with iterated function spaces are harder to analyze,
however.)
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