
The Calculus of Inductive Constructions

Hugo Herbelin

10th Oregon Programming Languages Summer School

Eugene, Oregon, June 16-July 1, 2011

1

Outline

- A bit of history, leading to the Calculus of Inductive Constructions (CIC)

- The first ingredient of the CIC: a Pure Type System with subtyping

- The second ingredient of the CIC: Martin-Löf-style inductive definitions

- The logical strength of the CIC, compared to set theory

- More advanced topics

2

A few steps of the history of logic

(from formal logic to proof theory)

Boole’s laws of thought (1854): an algebraic description of propositional reasoning (followed by
Peirce, Schröder ...)

Frege’s Begriffsschrift (1879): formal quantifiers + formal system of proofs (including an axiom-
atization of Cantor’s naive set theory)

Peano’s arithmetic (1889): formal arithmetic on top of Peirce-Schröder “predicate calculus”

Zermelo (1908), Fraenkel (1922): the stabilization of set theory as known today (ZF)

Russell and Whitehead’s Principia Mathematica (1910): type theory as a foundation of mathe-
matics alternative to set theory

Skolem’s Primitive Recursive Arithmetic (1923): the (quantifier-free) logic of primitive recursive
functions (the logic of metamathematics)

Brouwer’s intuitionism (1923): the view that proofs are “computation methods” + rejection of
excluded-middle (classical logic) because not effective as a computation method (followed by
Heyting, Kolmogorov, ...)

3

A few steps of the history of logic

(from formal logic to proof theory)

Gödel’s incompleteness of arithmetic (1931): consistency cannot be “proved”

Church’s λ-calculus (1932): a function-based model of computation

Gentzen’s Hauptsatz (1935, 1936): natural deduction + sequent calculus + consistency of arith-
metic (consistency = termination of cut-elimination by induction up to ε0)

Church’s simple theory of types (1940): higher-order logic

Kleene’s realizability (1945): extracting programs from intuitionistic proofs (followed by Kreisel)

Gödel’s functional interpretation (Dialectica) (1958): characterization of the provably total func-
tions of first-order arithmetic (system T)

Prawitz’s normalization for natural deduction (1965)

Suggested readings: van Heijenoort, From Frege to Gödel + googling

4

A few bits of the history of logic

(towards the genesis of the Coq proof assistant)

Curry’s and Howard’s proof-as-program correspondence (1958, 1969): formal systems of intu-
itionistic proofs are structurally identical to typing systems for programs

Martin-Löf’s (extensional) Intuitionistic Type Theory (1975): taking the proofs-as-programs cor-
respondence as foundational: a constructive formalism of inductive definitions that is both a logic
and a richly-typed functional programming language

Girard and Reynolds’ System F (1971): characterization of the provably total functions of second-
order arithmetic

Coquand’s Calculus of Constructions (1984): extending system F into an hybrid formalism for
both proofs and programs (consistency = termination of evaluation)

Coquand and Huet’s implementation of the Calculus of Constructions (CoC) (1985)

Coquand and Paulin-Mohring’s Calculus of Inductive Constructions (1988): mixing the Calculus
of Constructions and Intuitionistic Type Theory leading to a new version of CoC called Coq

Coq 8.0 switched to the Set-Predicative Calculus of Inductive Constructions (2004): to be com-
patible with classical choice

5

Proof assistants: a panel of formalisms

(set theory based) B too
l

Mizar

(type theory based)
HO

L
MLTT CIC

- CIC = a predicative hierarchy of functional types on top of a propositional System F + depen-
dent proofs + inductive types at all types

- how does set theory compare with CIC? (collection of arbitrary subsets of a big untyped universe
vs stratified collections of stand-alone types)

6

Pure Type Systems

7

A few elements of the history of pure type systems

De Bruijn’s Automath systems (1968)

Girard and Reynolds’ System F , Girard’s Fω, U−, U (1970)

Martin-Löf’s “Type : Type” (1971)

Coquand’s Calculus of Constructions (1984)

Harper-Honsell-Plotkin’s Edinburgh Logical Framework (1987)

Luo’s Extended Calculus of Constructions (ECC) (1989): extension with subtyping

Barendregt’s λ-cube (1989)

Berardi’s and Terlouw’s Generalized Pure Type Systems (1990): generalizing the cube

+ Pollack, Jutting, Geuvers, McKinna, Barras, Werner, Dowek, Huet, Barthe, Adams, Siles, and
many others ...

8

From λ-calculus, System F , ... to Pure Type Systems

- Generalize simply-typed λ-calculus...
terms M,N ::= x | λx : T.M | M N

types T, U ::= X | T → U

... and System F ...
terms M,N ::= x | λx : T.M | M N | λX : Prop.M | M T

types T, U ::= X | T → U | ∀X : Prop.T

... and Girard’s System Fω (= λHOL) ...

terms M,N ::= ...

type constructors ...

kinds K ::=

that now comes, as in Church’s HOL, with a conversion rule:
Γ `M : T T =β U

Γ `M : U

... the type constructors level is a mono-sorted simply-typed λ-calculus

Exercise: How strong is this system, logically speaking? Show that its consistency can be shown
by purely arithmetic means

9

From λ-calculus, System F , ... to Pure Type Systems

- Generalize simply-typed λ-calculus...
terms M,N ::= x | λx : T.M | M N

types T, U ::= X | T → U

... and System F ...
terms M,N ::= x | λx : T.M | M N | λX : K.M | M T

types T, U ::= X | T → U | ∀X : K.T

kinds K ::= Prop

... and Girard’s System Fω (= λHOL) ...

terms M,N ::= x | λx : T.M | M N | λX : K.M | M T

type constructors T, U, F,G ::= X | T → U | ∀X : K.T | λX : K.F | F G
kinds K ::= Prop | K → K

that now comes, as in Church’s HOL, with a conversion rule:
Γ `M : T T =β U

Γ `M : U

... the type constructors level is a mono-sorted simply-typed λ-calculus

Exercise: How strong is this system, logically speaking? Show that its consistency can be shown
by purely arithmetic means

10

Pure Type Systems

The previous construction can be generalized by considering a uniform notion of dependent arrow
(a.k.a. dependent product, or Π-type) and sorts of a set S for classifying types:

M,N, T, U ::= x | λx : T.M | M N

| ∀x : T.U

| s

(∀x : T.U is written T → U when x 6∈ U ; s ranges over S)

In addition to the set of sorts, parametrization is given by a set of axioms A for typing sorts:

s1 : s2 ∈ A
` s1 : s2

and a set of rules R for typing products

Γ ` T : s1 Γ, x : T ` U : s2 (s1, s2, s3) ∈ R
Γ ` ∀x : T.U : s3

11

And still the conversion rule:
Γ `M : T Γ ` U T =β U

Γ `M : U

The other rules introduce and eliminate the product type:

Γ, x : T `M : U Γ ` ∀x : T.U : s

Γ ` λx : T.M : ∀x : T.U

Γ `M : ∀x : T.U Γ ` N : T

Γ `MN : U [N/x]

+ axiom rule + weakening rule

Exercise: What are S, A and R in the case of simply-typed λ-calculus, System F , System Fω
as PTSs.

12

System U−: two levels of polymorphisms

Replace the mono-sorted simply-typed λ-calculus with a new copy of System F :

terms M,N ::= x | λx : T.M | M N | λX : K.M | M T

type constructors T, U, F,G ::= X | T → U | ∀X : K.T | λX : K.F | F G | λX : Type.F | F K
kinds K ::= Prop | X | K → K | ∀X : Type. K

... this is inconsistent (Girard’s adaptation of Burali-Forti’s paradox, Miquel’s adaptation of
Russell’s paradox, Coquand’s exploitation of Reynolds’ polymorphism-is-not-set-theoretic result,
Hurkens’ paradox)!

(and a good tool to know what to avoid to turn CIC into an inconsistent system)

Exercise: Describe the above as a Pure Type System (what are S, A and R?)

13

A predicative extension of System Fω

Replace the mono-sorted simply-typed λ-calculus with a polymorphic but predicative λ-calculus:

terms M,N ::= x | λx : T.M | M N | λX : K.M | M T

type constructors T, U, F,G ::= X | T → U | ∀X : K.T | λX : K.F | F G | λX : Type.F | F K
level 1 kinds K ::= Prop | X | K → K

level 2 kinds K2 ::= Type | ∀X : Type. K

Exercise: Describe the above as a Pure Type Systems (what are S, A and R?)

14

Generalizing the second-level of polymorphic to a polymorphic over higher-order
levels: Fω.2

terms M,N ::= x | λx : T.M | M N | λX : K.M | M T | λX : K2.M | M K

type constructors T, U, F,G ::= X | T → U | ∀X : K.T | λX : K.F | F G | λX : K2.F | F K | ∀X : K2.T

level 1 kinds K,P,Q ::= Prop | X | ∀X : K.K | λX : K.P | P T | λX : K2.P | P Q
level 2 kinds K2 ::= Type | ∀X : K2. K | ∀X : K.K2 | ∀X : K2. K2

Exercise: Describe the above as a Pure Type Systems (what are S, A and R?)

15

Adding variables at level 2 kinds: λZ

terms M,N ::= x |λx : T.M |M N |λX : K.M |M T |λX : K2.M |M K |λX2 : K3.M |M K2

type cstr. T, U, F,G ::= X |T → U | ∀X : K.T |λX : K.F |F G |λX : K2.F |F K | ∀X : K2.T | ∀X2 : K3.T

level 1 kinds K,P,Q ::= Prop | X | ∀X : K.K | λX : K.P | P T | λX : K2.P | P Q
level 2 kinds K2 ::= Type | X2 | ∀X : K2K | ∀X : KK2 | ∀X : K2K2

level 3 kinds K3 ::= Kind

Theorem (Miquel, 2001): λZ is equiconsistent with Zermelo’s set theory

Note: cardinal strength is Vω.2 (ω iterations of the power-set from the natural numbers)

16

Adding a hierarchy of universes: Fω2

terms M,N ::= x | λx : T.M | M N | λXn−1 : Kn.M | M Fn−1
type constructors T, U, F0 ::= X0 | T → U | ∀Xn−1 : Kn.T | λXn−1 : Kn.F0 | F0 Fn−1
level 1 kinds K1, F1 ::= Prop | X1 | ∀X0 : K1. K1 | λXn−1 : Kn.F1 | F1 Fn−1
level 2 kinds K2, F2 ::= Type1 | X2 | ∀Xi−1 : Ki≤2. Kj≤2 | λXn−1 : Kn.F2 | F2 Fn−1

...
level n+1 kinds Kn+1, Fn+1 ::= Typen | Xn+1 | ∀Xi−1 : Ki≤n+1. Kj≤n+1 | λXp−1 : Kp.Fn+1 | Fn+1 Fp−1

...

Further readings: H. Barendregt, H. Geuvers, A. Miquel

17

Adding dependencies

Last step: let proofs be dependent in types!

terms M,N ::= . . .

type constructors T, U, F0 ::= . . . | λX : T.F0 | F0M

level 1 kinds K1, F1 ::= . . . | ∀x : T.K | λx : T.K | KM

level 2 kinds K2, F2 ::= . . . | ∀x : T.K2 | λx : T.F2 | F2M
...

level n+1 kinds Kn+1, Fn+1 ::= . . . | ∀x : T.Kn+1 | λx : T.Fn+1 | Fn+1M
...

This adds nothing to the logical expressiveness but this allows for example to form subset types:

∀C : Type.(∀a : X,P (a)→ C)→ C

informally {a : A|P (a)}

18

The (original) Calculus of Constructions

That is Fω (one level) extended with proof dependencies

terms M,N ::= x | λx : T.M | M N | λX : K.M | M F

type constructors T, U, F,G ::= X | ∀x : T.U | ∀X : K.T | λX : K.F | F G | λx : T.F | F N
kinds K,P ::= Prop | ∀X : K.K | ∀x : T.K

Note that now, the product of T over U might be dependent and has to be written ∀x : T.U

19

Barendregt’s cube

S = {Prop, Type}
A = {(Prop : Type)}

λ→ = simply-typed λ-calculus Rst = {Prop, Prop, Prop}
λP = LF RLF = Rst ∪ {Prop, Type, Type}
λF = System F RF = Rst ∪ {Type, Prop, Prop}
λFω = System Fω RFω = RF ∪ {Type, Type, Type}
λC = Calculus of Constructions RCC = RFω ∪RLF

20

Back to the non-inductive part of Coq

21

Adding Set: an alias for Type0

Since Coq 8.0, Set behaves like a Type except that it does not contain Prop.

Before, Set was a copy, impredicative, of Prop

The distinction between Prop and Set was motivated by extraction (realizability)

In practice, it also emphasizes the difference of intended meaning: Prop is thought as “proof-
irrelevant”, Set is thought as “computationally-relevant”

22

Adding universes subtyping: CCω

One wants that if `M : Typen then `M : Typem for all m > n

The naive way: add all rules (Typen, Typep, Typeq) for q ≥ max(n, p)

↪→ it does not work

The less naive way: goes out PTSs and explicitly add inference rules
Γ `M : Typen

Γ `M : Typen+p

↪→ this lacks uniformity ...

The good solution is to replace conversion by subtyping:

T =β T
′ U ≤β U ′

∀x : T.U ≤β ∀x : T ′.U ′
p ≤ n

Typep ≤β Typen Prop ≤β Typen

T ≤β U T =β T
′ U =β U

′

T ′ ≤β U ′

23

Miscellaneous issues?

- η-conversion

- judgmental equality vs untyped conversion

- terminology: functional, full, semi-full, injective

- syntax-directed presentation and expansion postponement

- basic metatheory

24

