
Polymorphic Logic

Mark Bickford & Robert Constable

July 1, 2011

Abstract

A system where the logic is defined in type theory allows us to treat each type
constructor as a logical operator. The intersection type can be seen as a new form
of universal quantification and the subtype relation as a new form of implication.
Members of these types are witnesses for the truth of the corresponding logical
propositions. Witnesses of the intersection form of a universal and subtype form
of an implication resemble witnesses of the standard universal and implication, but
they are polymorphic with respect to their input parameters.

Theorems stated in terms of the usual universal quantifier and implication can
sometimes be restated with the corresponding polymorphic versions and given new
proofs that construct more uniform, polymorphic, witnesses that are also more ef-
ficient.

We illustrate this idea with a proof of a lemma from Smullyan’s First Order Logic.1

1 Introduction

2 Universal quantification
The standard universal quantifier ∀x : T. P (x) is defined to be the Π-type, Πx : T. P (x),
which we prefer to call the dependent function type and write as x : T → P (x). A wit-
ness f ∈ ∀x : T. P (x) is therefore a function f ∈ x : T → P (x) that maps any x ∈ T
to a witness for P (x).

In some cases, there may be a single p that is a uniform witness for P (x) for any
x ∈ T . In this case, p is a member of the intersection type,

⋂
x : T P (x). Such a p is not

a function with input x ∈ T , but is instead a witness for P (x), polymorphic or uniform
over all x ∈ T .

We define the polymorphic universal quantifier ∀[x : T]. P (x) to be
⋂

x : T P (x).
The brackets around the bound variable indicate that the witness does not “use” the
parameter x. Classically, ∀x : T. P (x) and ∀[x : T]. P (x) have the same meaning,
but constructively they differ. A witness p for the proposition with the polymorphic

1This is a draft for the 2011 Oregon Programming Languages Summer School.

quantifier is likely to be more efficient since it does not need to be given an input
x ∈ T .

In an extensional, computational type theory, like NuPrl, types are members of a
hierarchy of universes, Ui, i ∈ {0, 1, 2, . . . }. When the universe level i is unimportant
or can be inferred from context, we write Type for Ui. Since propositions are defined
to be types, we define Pi = Ui and write P when the level is unimportant or can be
inferred from context. P is the type of propositions which we can think of as truth
values. A false proposition is an empty type, so it is extensionally equal to False =
Void. A true proposition is a non-empty type and the members of the type are the
witnesses for the truth of the proposition.

3 Rules for ∀[x : T]. P (x)

The rules for proving ∀[x : T]. P (x) are the rules for proving
⋂

x : T P (x). These make
use of contexts with hidden declarations. To prove Γ ` ⋂

x : T P (x) we must prove
Γ, [x : T] ` P (x). The brackets on the declaration [x : T] added to the context Γ
indicate that it is hidden.

To prove this sequent, we use whatever rules are appropriate for proving P (x), and
no rules use hidden declarations. The hidden declarations are automatically unhidden
once the sequent is refined to one with a conclusion of the form t1 = t2 ∈ T . Because
the rules for proving an equality proposition all extract a fixed witness term Ax (be-
cause we consider equality propositions to have no constructive content) the extract of
any proof of Γ, [x : T] ` P (x) will not include the hidden parameter x.

In particular, the proposition t ∈ T is simply an abbreviation for t = t ∈ T , so
when proving a typing judgement, the hidden declarations are unhidden and may be
used.

4 An induction principle
The principle of complete induction over the natural numbers, N, can be written in
higher-order logic as

∀P : N→ P. (∀n : N. (∀m : Nn. P (m)) ⇒ P (n)) ⇒ (∀n : N. P (n))

Here, the type Nn is the set type {m : N | m < n} whose members are the natural
numbers less than n.

A witness for the induction principle is a member Ind of the corresponding depen-
dent function type

P : (N→ P) → (n : N→ (m : Nn → P (m)) → P (n)) → (n : N→ P (n))

The witness Ind will have the form λP. λG. λn. It takes inputs P , G, and n,
where G has type (n : N → (m : Nn → P (m)) → P (n)), and produces a witness,
Ind(P, G, n), for P (n).

2

If we restate the induction principle using the polymorphic universal quantifier, we
get

∀[P : N→ P]. (∀[n : N]. (∀[m : Nn]. P (m)) ⇒ P (n)) ⇒ (∀[n : N]. P (n))

Proving this is equivalent to the construction of a witness W of type
⋂

P : (N→P)
(
⋂

n : N
(

⋂

m : Nn

P (m)) → P (n)) → (
⋂

n : N
P (n))

W will have the form λF. . . . and take an F ∈ (
⋂

n : N(
⋂

m : Nn
P (m)) → P (n)) and

produce a member, W (F), of (
⋂

n : N P (n)). The input F is a function that takes an
x ∈ (

⋂
m : Nn

P (m)) and produces a witness, F (x) for P (n). The result W (F) is a
uniform witness for all the P (n), n ∈ N.

Such a W appears to be a fixed point operator, and we can, in fact, prove the
polymorphic induction principle using any fixed point combinator fix that satisfies

fix(F) ∼ F (fix(F))

The relation ∼ is the symmetric-transitive closure of 7→, where t1 7→ t2 if a single
primitive computation step such as β-reduction, expanding definitions (δ-reduction),
or reducing another primitive (+, ∗, . . . , on numbers, projections on pairs, etc.) trans-
forms t1 into t2. In computational type theory all types are closed under ∼, so we have
subject reduction :

x ∈ T, x ∼ y ` y ∈ T

Lemma 1.

∀[P : N→ P]. (∀[n : N]. (∀[m : Nn]. P (m)) ⇒ P (n)) ⇒ (∀[n : N]. P (n))

Proof. Given [P ∈ N → P] and f : ∀[n : N]. (∀[m : Nn]. P (m)) ⇒ P (n) we must
construct a member of (∀[n : N]. P (n)) (without using P).

We show that fix(f) (which is independent of P) is in (∀[n : N]. P (n)). Since this
is a proof of a typing judgement, we may now use the declarations that were formerly
hidden.

Let Γ be the context P : N → P, f :
⋂

n : N(
⋂

m : Nn
P (m)) ⇒ P (n). We must

show Γ, n : N ` fix(f) ∈ P (n) and we use the complete induction principle on n.
Thus, we show that fix(f) ∈ P (n) follows from the assumptions

Γ, n : N, ∀m : Nn. fix(f) ∈ P (m)

But this implies fix(f) ∈ (
⋂

m : Nn
P (m)), and therefore, using the polymorphic type

of f , f(fix(f)) ∈ P (n). Since f(fix(f)) ∼ fix(f), we have fix(f) ∈ P (n).

We carried out this proof in NuPrl using for the fixed point combinator the Y -
combinator,

Y = λf(λx(f(xx)))(λx(f(xx)))

The extract of the proof, computed by the system, is simply the term Y .

3

5 An application: constructing valuations
Raymond Smullyan’s “First order logic” [2] begins with a definition of propositional
logic. A key concept is the notion of a valuation of a propositional formula given an
assignment to its propositional variables, and Smullyan gives constructive proofs of the
existence and uniqueness of valuations. We would like to construct the valuations by
extraction from the proof of a proposition in our logic, and we want the extracted algo-
rithm to be efficient. We can attain these goals, while remaining faithful to Smullyan’s
proofs, by expressing an intermediate subgoal of the existence theorem using the poly-
morphic universal quantifier.

The existence of valuations is expressed in the standard way:

∀x : form. ∀v0 : Var(x) → B. ∃f : Sub(x) → B. valuation(x, v0, f)

The formal definitions are straightforward. We define a datatype for the formulas of
propositional logic by:

form := var(Atom) | not (form) | form and form | form or form| form implies form

This defines the type form together with constructors, destructors, and recognizers for
each case, and also an induction principle and an induction operator that witnesses the
induction principle.

Using the induction operator we define the sub-formula relation q ⊆ p on formulas,
and show that it is reflexive and transitive. The types Var(x) and Sub(x) are then
defined using the set type:

Sub(x) = {v : form | v ⊆ x}
Var(x) = {v : form | v ⊆ x ∧ var?(v)}

The induction operator for the type can also be used non-inductively as a simple
case operator, and we use this to define the value of a formula p given an assignment
v0 and a function g defined on the proper sub-formulas of p.

extend(v0, g, p) = case(p)
var(v) ⇒ v0(v)
not q ⇒ bnot(g(q))
q1 and q2 ⇒ band(g(q1), g(q2))
q1 or q2 ⇒ bor(g(q1), g(q2))
q1 implies q2 ⇒ bimp(g(q1), g(q2))

Here, bnot, band, bor, and bimp are the obvious functions defined on B, the Boolean
values.

For a function f of type Sub(x) → B to be a valuation of x given the assignment
v0 of type Var(x) → B it must satisfy the constraint valuation(x, v0, f) defined by

valuation(x, v0, f) ⇔ ∀p : Sub(x). f(p) = extend(v0, f, p)

This defines a valuation as a function that correctly extends itself.

4

Lemma 2.

∀x : form. ∀v0 : Var(x) → B. ∃f : Sub(x) → B. valuation(x, v0, f)

Proof. We use the induction operator on formulas to define a rank function |x| with
range N that decreases on proper sub-formulas and assigns variables rank 0. Then we
define a bounded valuation by

bddval(n, x, v0, f) ⇔ ∀p : Sub(x). |x| < n ⇒ f(p) = extend(f, v0, p)

Given the context Γ = x : form, v0 : Var(x) → B we must show Γ ` ∃f : Sub(x) →
B. valuation(x, v0, f). We use the “cut” rule to assert the (polymorphically quantified)

∀[n : N]. ∃f : Sub(x) → B. bddval(n, x, v0, f)

From the assertion we easily complete the proof by choosing n to be |x|+ 1. To prove
the assertion we use the induction principle in Lemma 1. We must then prove that from
n : N,

⋂
m : Nn

∃f : Sub(x) → B. bddval(m,x, v0, f) it follows that ∃f : Sub(x) →
B. bddval(n, x, v0, f). For this we let f be a member of the type in the induction
hypothesis, and then use λp.extend(v0, f, p).

This existence proof is essentially the proof given by Smullyan. We carried out this
proof in NuPrl and the extract of the lemma, constructed by the system, is the term

λx, v0.(Y (λf, p.extend(v0, f, p)))

.
These results extend unpublished work [1] attempting to faithfully find the compu-

tational content in Smullyan’s treatment of Boolean evaluation. The article Express-
ing and Implementing the Computational Content Implicit in Smullyan’s Account of
Boolean Valuations, is available in pdf under Publications at www.nuprl.org.

References
[1] Stuart Allen, Robert Constable, and Matthew Fluet. Expressing and implementing

the computational content implicit in Smullyan’s account of Boolean valuations.
Draft article, 2003.

[2] R. M. Smullyan. First–Order Logic. Springer-Verlag, New York, 1968.

5

