
System L syntax for sequent calculi

Pierre-Louis Curien

(based on works of or with Guillaume Munch-Maccagnoni, and nourished
by an on-going collaboration with Marcelo Fiore)

February 3, 2012, University of Bath

March 21, 2012, PPS/πr2

May 4, 2012, Ecole Polytechnique

July 2012, Oregon Programming Languages Summer School, Eugene

1

Plan

1. Some features of system L syntax
2. linear and classical logic (non focalised), with an analysis of confluence

issues
3. Focalised systems in “direct style” (no shifts) : LKfoc, LLfoc (closely related

to systems proposed in Guillaume Munch-Maccagnoni’s master thesis, cf. his CSL
2009 paper)

4. Systems in “indirect style” (with shifts) : LL↓, Melliès’ tensor logic, LK↓,
Laurent’s LLP, (a sequent calculus version of) CBPV (for LK↓, cf. Curien -
Munch-Maccagnoni’s IFIP TCS Conference 2010 paper)

5. Double shift ↓↑ as a monad (CBPV) , versus double shift as continua-
tion monad (LLP, or TL)

Asides :
A. Type-free versions / general connectives (in the style of ludics), adap-

ted from Herbelin (unpublished)
B. System L as an intermediate language / abstract machine 2

General roadmap

Linear :
Non focalised Focalised

Direct LL LLfoc
Indirect LL↓,Tensor Logic

Classical :

Non focalised Focalised

Direct LKfoc
Indirect LK↓, LLP,CBPV

3

Oregon’s roadmap (July 2012)

Linear :
Non focalised Focalised

Direct LL
Indirect

Classical :

Non focalised Focalised

Direct LKfoc
Indirect LK↓ (monolateral and bilateral)

4

I) A syntactic tool-box

for sequent calculus proofs

5

The basic kit

Consider the cut rule, classically presented as :

Γ1 ` A,∆′1 Γ′2, A `∆2

Γ1,Γ
′
2 `∆′1,∆2

But ∆1 = A,∆′1 and Γ2 = Γ′2, A might have several copies of A. One
needs to specify which A is active in both assumptions.

For term assignments to natural deduction proofs, one associates variables
to the formulas in a sequent ` Γ. Here too, contexts are lists of typed
variable declarations. In system L notation, we set :

c : (Γ1 ` α : A,∆′1)

Γ1 ` µα.c : A |∆′1

c′ : (Γ′2, x : A `∆2)

Γ′2 | µ̃x.c
′ : A `∆2

〈µα.c | µ̃x.c′〉 : (Γ1,Γ
′
2 `∆′1,∆2)

(note that µ, µ̃ are binding operators)
6

Different judgements

Therefore, we distinguish different kinds of judgements :

- commands c : (Γ `∆) with no active formula which under Curry-Howard
(and head reduction) will read as machine states

- terms Γ ` v : A |∆ which under Curry-Howard will read as programs of
type A

- contexts Γ | e : A ` ∆ which under Curry-Howard read as contexts
expecting to interact with a program of type A

In focused systems, we shall also have value and covalue judgements in
which the active formula is moreover under focus.

In monolateral systems, considered first in this talk, the context (and cova-
lue) judgements disappear (replaced with terms or values of the dual type).
But they will feature prominently at the end of the talk.

7

Pattern-matching

Logical connectives are polarised according to the rules used to introduce
them, which are irreversible=positive or reversible=negative.

We shall use constructors for denoting the irreversible rules, and structu-
red binding operations µ (and µ̃ on the left of sequents in bilateral systems)
for the reversible rules. The dual of an irreversible connective being rever-
sible, this will lead to “cut-elimination through pattern-matching” :

Irreversible Reversible
` t1 : A1 |∆1 ` t2 : A2 |∆2

` (t1, t2) : A1 ⊗A2 |∆1,∆2

c : (` x1 : A1, x2 : A2,∆)

` µ(x1, x2).c : A1OA2 |∆

〈(t1, t2) | µ(x1, x2).c〉 → c[t1/x1, t2/x2]

To make this pregnance of polarities clear, we start from linear logic, where
it is explicitly present from the beginning (even if the initial motivating divide
was rather additive versus multiplicative).

8

What is “system L” ?

Summarising, we use “system L” (“L” for Gentzen’s terminology of sequent
calculus systems) for term assignment systems for sequent calculus pre-
sentations of various logical systems that share the following features :

- different kinds of judgements, that make explicit the notion of active for-
mula (possibly under focus) and coercions between them. We have seen
activation via µ and µ̃. Deactivation is achieved via “cut with axiom” :

Γ ` v : A |∆ |α : A ` α : A

〈v | α〉 : (Γ,` α : A,∆)

This is the only form of cut that will not be evaluated in our formalism.

- structured pattern-matching for reversible rules

The first feature was put forward in Curien-Herbelin’s duality of computation
paper (ICFP 2000).

9

II) Linear and classical logic

10

Roadmap

Linear :
Non focalised Focalised

Direct LL
Indirect

Classical :
Non focalised Focalised

Direct
Indirect

11

Linear logic

` A,A
` P,Γ ` P ,∆
` Γ,∆

` A1,Γ ` A2,∆

` A1 ⊗A2,Γ,∆

` A1,Γ

` A1 ⊕A2,Γ

` A2,Γ

` A1 ⊕A2,Γ

` A1, A2,Γ

` A1OA2,Γ

` A1,Γ ` A2,Γ

` A1NA2,Γ

` A, ?Γ

` !A, ?Γ

` A,Γ
` ?A,Γ

` Γ
` ?A,Γ

` ?A, ?A,Γ

` ?A,Γ

12

The connectives of linear logic

A ::= X || X || A⊗A || AOA || A⊕A || ANA || !A || ?A

A (involutive negation) is defined by induction (De Morgan duality).

A⊗B = AOB A⊕B = A&B !A = ?A “and conversely”

Some terminology :

Multiplicatives Additives Exponentials
Irreversible ⊗ ⊕ ?
Reversible O N !

Semantic explanation for the terminology (relational model)
– Interpret formulas as sets :

[[X]] = [[X = “your choice”
[[A⊗B]] = [[AOB = [[A]]× [[B]] cartesian product
[[A⊕B]] = [[ANB]] = [[A]] + [[B]] disjoint sum
[[!A]] = [[?A]] =Mfin([[A]]) finite multisets

– Interpret a proof of ` A1, . . . , An as a subset of [[A1O · · ·OAn]] : very instructive exer-
cise, by induction on the size of the proof !

13

Syntax for linear logic

Formulas :

A ::= P || N P ::= X || A⊗A || A⊕A || !A N ::= X || AOA || ANA || ?A
We use overlining for De Morgan duality.

There are three kinds of judgements :

Commands Positive terms Negative terms
c : (` Γ) ` t+ : P |Γ ` t− : N |Γ

Terms :

c ::= 〈t+ | t−〉 which we also write if needed as 〈t− | t+〉
t ::= t+ || t−
x ::= x+ || x−
t+ ::= x+ || µx−.c || (t1, t2) || inl(t) || inr(t) || µx!.c

t− ::= x− ||µx+.c ||µ(x1, x2).c ||µ[inl(x1).c1, inr(x2).c2] || t! ||w(c) ||c
x+

1 ,x
+
2

(c)

14

Typing rules for LL

Contexts Γ consist of declarations x+ : N and x− : P :

` x : A |x : A

c : (` x : A,Γ)

` µx.c : A |Γ

` t+ : P |Γ ` t− : P |∆

〈t+ | t−〉 : (` Γ,∆)

` t1 : A1 |Γ ` t2 : A2 |∆
` (t1, t2) : A1 ⊗A2 |Γ,∆

` t1 : A1 |Γ
` inl(t1) : A1 ⊕A2 |Γ

c : (` x1 : A1, x2 : A2,Γ)

` µ(x1, x2).c : A1OA2 |Γ
c1 : (` x1 : A1,Γ) c2 : (` x2 : A2,Γ)

` µ[inl(x1).c1, inr(x2).c2] : A1NA2 |Γ

c : (` x : A, ?Γ)

` µx!.c : !A | ?Γ

` t : A |Γ

` t! : ?A |Γ
c : (` Γ)

` w(c) : ?A |Γ

c : (` x+
1 : ?A, x+

2 : ?A,Γ)

` c
x+

1 ,x
+
2

(c) : ?A |Γ

15

Illustrating activation and deactivation
The term decoration for

` N ⊕ P,A,B,Γ1

` N ⊕ P,AOB,Γ1 `M,Γ2

` (N ⊕ P)⊗M,AOB,Γ1,Γ2

is as follows

c : (` x : N ⊕ P, y1 : A, y2 : B,Γ1)

` µ(y1, y2).c : AOB |x : N ⊕ P,Γ1

〈y | µ(y1, y2).c〉 : (` y : AOB, x : N ⊕ P,Γ1)

` µx.〈y | µ(y1, y2).c〉 : N ⊕ P | y : AOB,Γ1 ` t : M |Γ2

` (µx.〈y | µ(y1, y2).c〉, t) : (N ⊕ P)⊗M | y : AOB,Γ1,Γ2

16

Reduction rules for LL

〈t+ | µx+.c〉 → c[t+/x+]
〈µx−.c | t−〉 → c[t−/x−]
〈(t1, t2) | µ(x1, x2).c〉 → c[t1/x1, t2/x2]
〈inl(t1) | µ[inl(x1).c1, inr(x2).c2]〉 → c1[t1/x1]
〈µx!.c | t!〉 → c[t/x]
〈t+ | w(c)〉 → W(c)

〈t+ | c
x+

1 ,x
+
2

(c)〉 → C(c[t+/x+
1 , t

+/x+
2])

if the free variables of t+ are in a list l = y1, . . . , yn (with each yi of type ?Bi), then
– W(c) stands for Wl(c), where Wnil(c) = c Wy+·l = 〈y+ | w(Wl(c)〉
– C(c[t+/x+

1 , t
+/x+

2]) stands for Cl(c[t+[l′/l]/x+
1 , t

+[l′′/l]/x+
2]), where

Cnil(c) = c Cy+·l = 〈y+ | cy′+,y′′+(Cl(c))〉

(by l′ we mean y′+1 , . . . , y
′+
n , and by t+[l′/l] we mean the simultaneous substitutions of

the y+
i ’s by the y′+i ’s).

17

Substitution accounts for commutative cuts

Lemma : If c :` x : A,Γ, then the unique occurrence of x in c occurs as a
deactivation : c = C[〈x | t〉].

The left hand side of the first and second computation rules codify a situa-
tion where one of the cut formulas has not been just introduced, and the
reduction commutes the cut upwards on the right (resp. on the left) to the
place where it was introduced, so that eventually a logical cut rule such as
the third or the fourth rule can be applied :

〈t+1 | µx
+.c〉 = 〈t+1 | µx

+.C[〈x+ | t−2 〉]〉
↓

c[t+1 /x
+] = C[〈t+1 | t

−
2 〉

18

On the confluence of cut elimination in linear logic

The critical pairs are 〈µx−1 .c1|µx
+
2 .c2〉 , 〈µx−1 .c1|w(c2)〉 , 〈µx−1 .c1|cx+

1 ,x
+
2

(c2)〉
Exploiting linearity (on each branch) we can set schematically

c1 = C1[〈t+1 | x
−
1 〉] and c2 = C2[〈x+

2 | t
−
2 〉]

With these notations, our critical pair sounds less desperate :

〈µx−1 .C1[〈t+1 |x
−
1 〉] | µx

+
2 .C2[〈x+

2 |t
−
2 〉]〉 → C1[〈t+1 | µx

+
2 .C2[〈x+

2 | t
−
2 〉]〉]

→ C1[C2[〈t+1 | t
−
2 〉]]

while the other branch of the critical pair reduces symmetrically :

〈µx−1 .C1[〈t+1 | x
−
1 〉] | µx

+
2 .C2[〈x+

2 | t
−
2 〉]〉 →

∗ C2[C1[〈t+1 | t
−
2 〉]]

One sees that the “space” betweenC1[C2[〈t+1 |t
−
2 〉]] andC2[C1[〈t+1 |t

−
2 〉]]

can be filled by elementary commutations.

The other critical pairs are handled similarly. The system is thus (locally)
confluent modulo commutation rules.

19

Roadmap

Linear :
Non focalised Focalised

Direct LL
Indirect

Classical :
Non focalised Focalised

Direct “LK”
Indirect

20

Linear logic versus classical logic

A syntax for (a polarised version of) classical logic is obtained from the
above by removing the exponential modalities and the term constructions
for dereliction and promotion, but keeping explicit contraction and weake-
ning, now expressed as :

c : (` Γ)

` w(c) : A |Γ
c : (` x1 : A, x2 : A,Γ)

` cx1,x2(c) : A |Γ

Note that now explicit weakenings and contractions can be either positive
or negative terms.

21

A syntax for a “polarity-aware” version of classical logic

Formulas :

A ::= P || N P ::= X || A⊗A || A⊕A N ::= X || AOA || ANA

Terms :

c ::= 〈t+ | t−〉
t ::= t+ || t−
x ::= x+ || x−
t+ ::= x+ || µx−.c || (t1, t2) || inl(t) || inr(t) || w(c) || c

x−1 ,x
−
2

(c)

t− ::= x− || µx+.c || µ(x1, x2).c || µ[inl(x1).c1, inr(x2).c2] || w(c) || c
x+

1 ,x
+
2

(c)

22

Tentative reduction rules for classical logic

〈t+ | µx+.c〉 → c[t+/x+]
〈µx−.c | t−〉 → c[t−/x−]
〈(t1, t2) | µ(x1, x2).c〉 → c[t1/x1, t2/x2]
〈inl(t1) | µ[inl(x1).c1, inr(x2).c2]〉 → c1[t1/x1]
〈t+ | w(c)〉 → W(c)
〈w(c) | t−〉 → W(c)

〈t+ | c
x+

1 ,x
+
2

(c)〉 → C(c[t+/x+
1 , t

+/x+
2])

〈c
x−1 ,x

−
2

(c) | t−〉 → C(c[t−/x−1 , t
−/x−2])

But now there are more critical pairs (known as Lafont’s critical pairs), like
the weakening/weakening pair

W(c1) ← 〈w(c1) | w(c2)〉 → W(c2)

(for arbitrary proofs c1, c2), which collapses all proofs !

23

Discussion

Under these glasses, and in retrospect, linear logic and focalisation have
provided two alternative routes to get out of Lafont’s critical pairs :

1. focalised cut elimination (see below) restricts the dynamics in such a
way that all the reduction rules are only applicable when they substitute
values for positive variables. Then the bad critical pairs (as well as the
non harmful ones) disappear, and one gets a confluent system without
the need of appealing to commutation rules. This is a constraint on the
syntax that still makes sense in an untyped setting.

2. the introduction of the modalities makes the bad critical pairs ill-typed.
This is a constraint on types.

We note a third route in between : remove the cases w(c) and c
x−1 ,x

−
2

(c)

from the syntax of positive terms. (i.e. allow all contractions and weake-
nings on negative formulas, and only on them), and keep an unconstrained
classical cut-elimination.

24

III) Focalised systems

1. LKfoc, where focalisation is badly needed for confluence

2. LLfoc

25

Focalisation

A focalised proof A non focalised proof

` N |AOB,Γ1

` N ⊕ P ; AOB,Γ1 `M |Γ2

` (N ⊕ P)⊗M ; AOB,Γ1,Γ2

` N ⊕ P,A,B,Γ1

` N ⊕ P,AOB,Γ1 `M,Γ2

` (N ⊕ P)⊗M,AOB,Γ1,Γ2

26

Roadmap

Linear :
Non focalised Focalised

Direct LL
Indirect

Classical :
Non focalised Focalised

Direct LKfoc

Indirect

27

Syntax for focalised classical logic LKfoc

A ::= P || N P ::= X || A⊗A || A⊕A N ::= X || AOA || ANA

There are now four kinds of judgements :

Commands Values Positive terms Negative terms
c : (` Γ) ` V + : P ; Γ ` t+ : P |Γ ` t− : N |Γ

We set

V ::= V + || t−
` V : A ||Γ stands for either ` V + : P ; Γ or ` t− : N |Γ

Terms :

c ::= 〈t+ | t−〉
x ::= x+ || x−
V + ::= x+ || (V1, V2) || inl(V) || inr(V)
t+ ::= V + || µx−.c || w(c) || c

x−1 ,x
−
2

(c)

t− ::= x− || µx+.c || µ(x1, x2).c || µ[inl(x1).c1, inr(x2).c2] || w(c) || c
x+

1 ,x
+
2

(c)

28

Typing rules for LKfoc

` x+ : P ; x+ : P ` x− : N |x− : N

` t+ : P |Γ ` t− : P |∆

〈t+ | t−〉 : (` Γ,∆)

` V + : P ; Γ

` V + : P |Γ
c : (` x : A,Γ)

` µx.c : A |Γ

` V1 : A1 ||Γ ` V2 : A2 ||∆
` (V1, V2) : A1 ⊗A2 ; Γ,∆

` V1 : A1 ||Γ
` inl(V1) : A1 ⊕A2 ; Γ

c : (` x1 : A1, x2 : A2,Γ)

` µ(x1, x2).c : A1OA2 |Γ
c1 : (` x1 : A1,Γ) c2 : (` x2 : A2,Γ)

` µ[inl(x1).c1, inr(x2).c2] : A1NA2 |Γ

c : (` Γ)

` w(c) : A |Γ
` x1 : A, x2 : A,Γ

` cx1,x2(c) : A |Γ
29

Reduction rules for LKfoc

〈V + | µx+.c〉 → c[V +/x+]
〈µx−.c | t−〉 → c[t−/x−]
〈(V1, V2) | µ(x1, x2).c〉 → c[V1/x1, V2/x2]
〈inl(V1) | µ[inl(x1).c1, inr(x2).c2]〉 → c1[V1/x1]
〈V + | w(c)〉 → W(c)
〈w(c) | t−〉 → W(c)

〈V + | c
x+

1 ,x
+
2

(c)〉 → C(c[V +/x+
1 , V

+/x+
2])

〈c
x−1 ,x

−
2

(c) | t−〉 → C(c[t−/x−1 , t
−/x−2])

Note that there is no critical pair anymore. We have regained consistency.
The system presented here is a (close) variant of Girard’s LC. It is also
very close to Liang and Miller’s LKF system. One can easily provide precise
system L syntax for LC or LKF.

30

Plotkin meets Andreoli

We have
– a call-by-value regime for positive variables
– a call-by-name regime for negative variables
Plotkin’s values correspond to positive phases in the focalisation discipline.

31

Removing a bit of bureaucracy

Now that we have carefully discussed the barriers to confluence, we can
keep weakening and contraction implicit in the term syntax (both for LL and
LKfoc) by defining w(c) = µx.c (with x fresh) and cx1,x2(c) = µx1.c[x2/x1].
Then the reductions rules consist only of :

〈V + | µx+.c〉 → c[V +/x+]
〈µx−.c | t−〉 → c[t−/x−]
〈(V1, V2) | µ(x1, x2).c〉 → c[V1/x1, V2/x2]
〈inl(V1) | µ[inl(x1).c1, inr(x2).c2])〉 → c1[V1/x1]

since now the dynamics of weakening and contraction is integrated in the
dynamics of (implicit) substitution. This is the choice adopted for the rest of
this talk.

32

A short perspective on focalisation

Focalisation appeared in the context of linear logic programming (Andreoli,
1992) : the goal was to reduce the search space.

Shortly before, as an independent fore-runner, appeared the notion of uni-
form (intuitionistic) proof by Miller, Nadathur, Pfenning, and Scedrov (1991),
in which however polarities were not highlighted (negative fragment !).

The work of Andreoli influenced Girard for the design of LC.

The line of work of Griffin is independent, but (negative) polarisation is im-
plicit in Felleisen’s CBN λC-calculus , and focalisation is implicit in natural
deduction (see below).

Other term syntaxes for classical logic have been given by Urban, and
Wadler. System L’s distinguishing feature is its design around the capital
notion of polarity.

33

A first type-free aside (monolateral, direct)

In the spirit of ludics, we can “define” connectives by syntax and behaviour.
In this view, a general connective is entirely defined by its arity, which is of
the form

{(ni) | i ∈ I}

where i ranges over some (finite) set I, and ni ∈ N.

V + ::= x+ || ιi(V1, . . . , Vni) || . . . (for each connective)
t+ ::= V + || µx−.c
t− ::= x− || µx+.c || µ[. . . , ιi(x

i
1, . . . , x

i
ni

).ci, . . .] || . . . (for each connective)

(adapted from Herbelin, unpublished notes)

34

Reduction rules for the syntax with general connectives

〈V + | µx+.c〉 → c[V +/x+]
〈µx−.c | t−〉 → c[t−/x−]
〈ιi(V1, . . . , Vni) | µ[. . . , ιi(x

i
1, . . . , x

i
ni

).ci, . . .]〉 → ci[V1/x
i
1, . . . , , Vni/x

i
ni

]

One recovers :

⊗/O I = {∗} , n∗ = 2 , ι∗(,) = (,)
⊕/& I = {1,2} , n1 = n2 = 1 , ι1() = inl() , ι2() = inr()

Another general connective that we shall meet later (the direct style shift
operators) :

⇓/⇑ I = {∗} , n∗ = 1 , ι∗() = ⇓

35

Roadmap

Linear :
Non focalised Focalised

Direct LL LLfoc

Indirect

Classical :
Non focalised Focalised

Direct LKfoc
Indirect

36

Syntax for LLfoc

The formulas are those of linear logic.

The judgements are the same as for LKfoc. As above, we use a common
notation V for values and negative terms.

The syntax of terms is as for LKfoc, with addtional constructs for exponen-
tials :

...
V + ::= . . . || µx!.c
...
t− ::= . . . || V !

37

Typing rules for LLfoc

c : (` x : A, ?Γ)

` µx!.c : !A ; ?Γ

` V : A ||Γ

` V ! : ?A |Γ

c : (` Γ)

c : (` x+ : ?A,Γ)

c : (` x+
1 : ?A, x+

2 : ?A,Γ)

c[x+
2 /x

+
1] : (` x+

2 : ?A,Γ)

Rest of the rules as for LKfoc

38

Reduction rules for LLfoc

...
〈µx!.c | V !〉 → c[V/x]

Again, no critical pairs anymore.

39

Completeness of LLfoc

Following a technique in Girard’s LC paper (adapted to LL in Laurent’s
notes on focalisation), we exhibit a translation from LL proofs to LLfoc proofs.
The translation is the identity on formulas and on judgements. The trans-
lation maps variables to themselves, commutes with all µ constructs, and
with the command building construct. The remaining cases are :

[[(t1, t2)]]foc = µx−.〈[[t1]]foc | µx1.〈[[t2]]foc | µx2.〈(x1, x2) | x−〉〉〉
[[inl(t1)]]foc = µx−.〈[[t1]]foc | µx1.〈inl(x1) | x−〉〉
[[t!]]foc = µy+.〈[[t]]foc | µx.〈y+ | x!〉〉

Note the (arbitrary) choice of order of evaluation in the first rule.

The translation introduces cuts, which are then eliminated by cut-elimination.
Therefore, every provable sequent of LL (possibly with cuts) admits a cut-
free focalised proof (Andreoli). The translation achieves the most important
part of the job of CPS translations, which is to fix an order of evaluation !

40

A variation : focalised reduction of non-focalised proofs

In the systems LKfoc and LLfoc presented here, we restrict both
– the space of proofs, and
– the reduction rules.
One may stay with a non-focalised syntax that does not restrict the space
of proofs. This is the choice adopted in Guillaume Munch-Maccagnoni’s
writings : One then has to add further rules, such as

〈(t1, t2) | t−〉 → 〈t1 | µx1.〈t2 | µx2.〈(x1, x2) | t−〉〉〉

that force focalisation “on the fly” (cf. translation in previous slide). We pro-
pose to reserve the subscript pol for such systems (not considered here).

41

IV) Indirect style

1. LL↓

2. Translation into (a subset TLfoc) of Melliès’ tensor logic

3. LK↓ (monolateral)

4. LK↓ (bilateral, distinguishing lazy programs from contexts of positive
type)

5. Levy’s CBPV

6. Perspective on the monadic reading of shifts

42

Focalised syntax in indirect style

We move from polarised formulas to polarised connectives : we now
force the positive connectives⊗,⊕ to have positive formulas as arguments,
and dually for the negative connectives O, &.

For achieving this, we need two new connectives, which cristallised in lu-
dics and game semantics (Girard, Laurent) : the shifts (for which one may
also have under certain circumstances a monadic reading, as we shall see,
whence the title of this slide).

We shall call the resulting linear and classical systems LL↓, LK↓.

43

Illustrating indirect versus direct

Direct Indirect

` N |Γ1 ` P ; Γ2

` N ⊗ P ; Γ1,Γ2

` N |Γ1

` ↓N ; Γ1 ` P ; Γ2

` ↓N ⊗ P ; Γ1,Γ2

Read (bottom-up) ↓ as marking explicitly the exit from the focalisation phase.

44

Roadmap

Linear :
Non focalised Focalised

Direct LL LLfoc

Indirect LL↓

Classical :
Non focalised Focalised

Direct LKfoc
Indirect

45

Syntax for LL↓

Formulas :

P ::= X || P ⊗P || P ⊕P ||!N || ↓N N ::= X || NON || NNN ||?P || ↑P

We still have the same four kinds of judgements :

Commands Values Positive terms Negative terms
c : (` Γ) ` V + : P ; Γ ` t+ : P |Γ ` t− : N |Γ

Terms :

c ::= 〈t+ | t−〉
V + ::= x+ || (V +

1 , V +
2) || inl(V +) || inr(V +) || µ(x+)!.c || (t−)↓

t+ ::= V + || µx−.c
t− ::= x− || µx+.c || µ(x+

1 , x
+
2).c || µ[inl(x+

1).c1, inr(x+
2).c2]

|| (V +)! || µ(x−)↓.c

46

Typing rules for LL↓

` x+ : P ; x+ : P ` x− : N |x− : N

` t+ : P |Γ ` t− : P |∆

〈t+ | t−〉 : (` Γ,∆)

` V + : P ; Γ

` V + : P |Γ
c : (` x : A,Γ)

` µx.c : A |Γ

c : (` Γ)

c : (` x+ : ?A,Γ)

c : (` x+
1 : ?A, x+

2 : ?A,Γ)

c[x+
2 /x

+
1] : (` x+

2 : ?A,Γ)

` V +
1 : P1 ; Γ ` V +

2 : P2 ; ∆

` (V +
1 , V +

2) : P1 ⊗ P2 ; Γ,∆

` V +
1 : P1 ; Γ

` inl(V +
1) : P1 ⊕ P2 ; Γ

c : (` x+
1 : N1, x

+
2 : N2,Γ)

` µ(x+
1 , x

+
2).c : N1ON2 |Γ

c1 : (` x+
1 : N1,Γ) c2 : (` x+

2 : N2,Γ)

` µ[inl(x+
1).c1, inr(x+

2).c2] : N1NN2 |Γ

c : (` x+ : N,?Γ)

` µ(x+)!.c : !N ; ?Γ

` V + : P ; Γ

` (V +)! : ?P |Γ

` t− : N |Γ

` (t−)↓ : ↓N ; Γ

c : (` x− : P,Γ)

` µ(x−)↓.c : ↑P |Γ
47

Reduction rules for LL↓

〈V + | µx+.c〉 → c[V +/x+]
〈µx−.c | t−〉 → c[t−/x−]

〈(V +
1 , V +

2) | µ(x+
1 , x

+
2).c〉 → c[V +

1 /x+
1 , V

+
2 /x+

2]

〈inl(V +
1) | µ[inl(x+

1).c1, inr(x+
2).c2]〉 → c1[V +

1 /x+
1]

〈µ(x+)!.c | (V +)!〉 → c[V +/x+]
〈(t−)↓ | µ(x−)↓.c〉 → c[t−/x−]

48

Decomposing the exponentials : !N = ↓]N ...

Confronting the rules for the exponentials above with the rules for shifts,
one may be tempted by the following decomposition :

!N = ↓]N

with the following syntax of formulas : P ::= . . . || [P N ::= . . . ||]N
(with . . . as before, minus the “normal” exponentials ! and ?), and with the following rules :

c : (` x+ : N, ↑[Γ)

` µ(x+)[.c :]N | ↑[Γ

` V + : P ; Γ

` (V +)[: [P ; Γ

〈(V +)[| µ(x+)[.c〉 → c[V +/x+]

This decomposition of the exponential modality appeared also in works
on proof nets and on light linear logic (Girard and/or folklore). These rules
make good sense in terms of focalised proof search (dereliction is irrever-
sible, promotion is reversible).But the first typing rule with its side condition
involving the old ? after all does not make it really convincing.

49

... or the other way around : !N =!•e ↓N

One can also decompose “of course” (as in tensor logic) as !N = !•e ↓N :

P ::= . . . || !•eP N ::= . . . || ?•eN

with the following rules :

c : (` x− :P,?•eΓ)

` µ(x−)!•e.c : !•eP ; ?•eΓ

` t− : N |Γ

` (t−)!•e :?•eN |Γ

〈µ(x−)!•e.c | (t−)!•e〉 → c[t−/x−]

It is easy to see that conversely, if one keeps !, ? as primitive and if one
defines !•eP =! ↑P and ?•e dually, then the above rules are derivable.

50

Translating LLfoc into LL↓ (types)

Translation of types (the translation goes the same for ⊕ as for ⊗ and the
same for N as for O) :

[[X]]↓ = X [[X]]↓ = X

[[P1 ⊗ P2]]↓ = [[P1]]↓ ⊗ [[P2]]↓ [[N1ON2]]↓ = [[N1]]↓O[[N2]]↓
[[N1 ⊗ P2]]↓ = ↓[[N1]]↓ ⊗ [[P2]]↓ [[N1OP2]]↓ = [[N1]]↓O↑[[P2]]↓
[[P1 ⊗N2]]↓ = [[P1]]↓ ⊗ ↓[[N2]]↓
[[N1 ⊗N2]]↓ = ↓[[N1]]↓ ⊗ ↓[[N2]]↓

...
[[!P]]↓ = ! ↑ [[P]]↓
[[!N]]↓ = ![[N]]↓ [[?P]]↓ = ?[[P]]↓

51

Translating LLfoc into LL↓ (terms)

Variables are translated to themselves. We give only the cases where the
translation does not commute with the constructors :

[[(t−1 , V
+

2)]]↓ = (([[t−1]]↓)
↓, [[V +

2]]↓) (idem for [[(V +
1 , t−2)]]↓)

[[(t−1 , t
−
2)]]↓ = (([[t−1]]↓)

↓, ([[t−2]]↓)
↓)

[[inl(t−)]]↓ = inl(([[t−]]↓)
↓)

[[µ(x−)!.c]]↓ = µ(y+)!.〈y+ | µ(x−)↓.[[c]]↓〉

[[µ(x−1 , x
+
2).c]]↓ = µ(y+

1 , x
+
2).〈y+

1 | µ(x−1)↓.[[c]]↓〉 (idem for [[µ(x+
1 , x

−
2).c]]↓)

[[µ(x−1 , x
−
2).c]]↓ = µ(y+

1 , y
+
2).〈y+

2 | µ(x−2)↓〈y+
1 | µ(x−1)↓.[[c]]↓〉〉

[[µ[inl(x−1).c1, inr(x+
2).c2]]]↓ = µ[inl(y+

1).〈y+
1 | µ(x−1)↓.[[c1]]↓〉, inr(x+

2).c2]
...
[[(t−)!]]↓ = (([[t−]]↓)

↓)!

The translation is reduction-preserving.

52

Roadmap

Linear :
Non focalised Focalised

Direct LL LLfoc

Indirect LL↓ ⊇ TLfoc

Classical :
Non focalised Focalised

Direct LKfoc
Indirect

53

Translating into Melliès’ tensor logic

Morally, tensor logic is the intuitionistic restriction of LL↓, where sequents
admit at most one positive formula (see below for a more detailed analysis).
More precisely, we shall consider a focalised subsystem of tensor logic,
which we call TLfoc. The formulas are :

P ::= X || P⊗P || P⊕P || !•eP || ↓N N ::= X || NON || NNN || ?•eN || ↑P
There are only three kinds of judgements (Γ consists of negative formulas
only) :

Commands Values Negative terms
c : (` Γ) ` V + : P ; Γ ` t− : N |Γ

But we have to move to different rules for the shifts and (polarity-keeping)
exponentials : there is no space anymore to form µ(x−)!•e.c and µ(x−)↓.c
and (see also the discussion on syntactic adjunctions below).

The relation of LL↓ to tensor logic is the same as the relation of LK↓ to
Laurent’s LLP.

54

Syntax for TLfoc

Terms :

c ::= 〈V + | t−〉
V + ::= x+ || (V +

1 , V +
2) || inl(V +) || inr(V +) || (V +)!•e || µ(x+)↓.c

t− ::= µx+.c || µ(x+
1 , x

+
2).c || µ[inl(x+

1).c1, inr(x+
2).c2]

|| µ(x+)!•e.c || (V +)↓

55

Typing rules for TLfoc (negative contexts only !)

` x+ : P ; x+ : P

c : (` x+ : N,Γ)

` µx+.c : N |Γ

` V + : P ; Γ1 ` t− : P |Γ2

〈V + | t−〉 : (` Γ1,Γ2)

` V +
1 : P1 ; Γ1 ` V +

2 : P2 ; Γ2

` (V +
1 , V +

2) : P1 ⊗ P2 ; Γ1,Γ2

` V +
1 : P1 ; Γ

` inl(V +
1) : P1 ⊕ P2 ; Γ

c : (` x+
1 : N1, x

+
2 : N2,Γ)

` µ(x+
1 , x

+
2).c : N1ON2 |Γ

c1 : (` x+
1 : N1,Γ) c2 : (` x+

2 : N2,Γ)

` µ[inl(x+
1).c1, inr(x+

2).c2] : N1NN2 |Γ

` V + :P ; ?•eΓ

` (V +)!•e : !•eP ; ?•eΓ

c : (` x+ : N,Γ)

` µ(x+)!•e.c :?•eN |Γ

c : (` x+ :N,Γ)

` µ(x+)↓.c :↓N ; Γ

` V + :P ; Γ

` (V +)↓ :↑P |Γ and contraction and weakening
56

Reduction rules for TLfoc

〈V + | µx+.c〉 → c[V +/x+]

〈(V +
1 , V +

2) | µ(x+
1 , x

+
2).c〉 → c[V +

1 /x+
1 , V

+
2 /x+

2]

〈inl(V +
1) | µ[inl(x+

1).c1, inr(x+
2).c2]〉 → c1[V +

1 /x+
1]

〈(V +)!•e | µ(x+)!•e.c〉 → c[V +/x+]
〈µ(x+)↓.c | (V +)↓〉 → c[V +/x+]

Melliès authorises (at most) one positive formula in the non-value judge-
ments (in particular, his system is not focalised). But the target of our trans-
lation does not need this liberality.

57

Translating LL↓ to TLfoc

Expand !N as !•e ↓N .
For judgements (Γ negative, ∆ = x− : P, . . . positive, ↑∆ = k+

x− : ↑P, . . .) :

c : (` Γ,∆) ` V + : P ; Γ,∆ ` t+ : P |Γ,∆ ` t− : N |Γ,∆
[[c]]TL : (` Γ, ↑∆) ` [[V +]]TL : P ; Γ, ↑∆ ` [[t+]]TL : ↑P |Γ, ↑∆ ` [[t−]]TL : N |Γ, ↑∆

The only cases where the translation does not commute with the constructors are the
following :

[[x−]]TL = µy+.〈k+
x− | (y+)↓〉

[[〈t+ | t−〉]]TL = 〈µ(x+)↓.〈x+ | [[t−]]TL〉 | [[t+]]TL〉

[[t+]]TL =

{
[[V +]]↓TL if t+ = V +

µk+
x−.[[c]]TL si t+ = µx−.c

[[µ(x+)!.c]]TL = (µ(x+)↓.[[c]]TL)!•e

[[(V +)!]]TL = µ(y+)!•e.〈y+ | ([[V +]]TL)↓〉
[[(t−)↓]]TL = µ(y+)↓.〈y+ | [[t−]]TL〉
[[µ(x−)↓.c]]TL = µk+

x−.[[c]]TL

Note that we can optimize the translation of 〈t+ | t−〉 when t+ is a value :

[[〈V + | t−〉]]TL = 〈[[V +]]TL | [[t−]]TL〉
58

Two levels of indirection

We have that

- LL↓ is more direct than LLfoc

- TLfoc is more direct than LL↓ : the translation of sequents introduces
further shifts !

59

Roadmap

Linear :
Non focalised Focalised

Direct LL LLfoc

Indirect “Indirect LL” ⊇ TL LL↓ ⊇ TLfoc

Classical :
Non focalised Focalised

Direct LKfoc
Indirect

60

Non focalised indirect style

We could have presented LL rather than LLfoc in indirect style, and the
resulting system would genuinely have the original tensor logic as a sub-
system.

In the linear setting, focalisation and indirect style commute.

In the classical setting, translating to indirect style first a priori does not
make sense, because of the non-confluence problem, but it does make
sense if one always restricts contractions and weakening to negative for-
mulas (cf. discussion concluding part II), and one then recovers LLP as a
subsystem (in which the invariant “at most one positive formula” is enforced
by further restricting the context to be negative in the ↓ rule).

61

About natural deduction...

One may give a natural deduction presentation of (our restriction of) tensor
logic, and a corresponding λ-calculus style syntax, typing and reduction
rules, in which the new connective

¬↓P (the negation of tensor logic) stands for ↓P :

c ::= t1t2
t ::= x || (t1, t2) || inl(t) || inr(t) || t!•e || λx.c || λ(x1, x2).c || λz.case z [inl(x1) 7→ c1, inr(x2) 7→ c2)] || λx!•e.c

Γ1 ` t1 : ¬↓P Γ2 ` t2 : P

Γ ` t1t2

Γ, x : P ` c

Γ ` λx.c : ¬↓P . . .

!•eΓ ` t : P

!•eΓ ` t!•e :!•eP

. . .

Γ, x1 : P1 ` c1 Γ, x2 : P2 ` c2 : P2

Γ ` λz.case z [inl(x1) 7→ c1, inr(x2) 7→ c2)] : ¬↓(P1 ⊕ P2)

Γ, x : P ` c

Γ ` λx!•e.c : ¬↓(!•eP)

(λx.c)t→ c[t/x] (λ(x1, x2).c)(t1, t2)→ c[t1/x1, t2/x2] . . . (λx!•e.c)(t!•e)→ c[t/x]

62

... and focalisation

and design reduction-preserving translations between this natural deduc-
tion system and the sequent calculus system TLfoc.

sequent calculus natural deduction

` V + : P ; Γ
7−→←−[Γ̃ ` t : P

c : (` Γ)
7−→←−[Γ̃ ` c

` t− : N |Γ 7−→ Γ̃ ` t : ¬↓N
where Γ̃ is the variation of Γ which maps ↑P to ¬↓P .

These correspondences can be shown to be inverse, making use of η-rules
(for the third line, starting from t−, one returns to µ(x+)↓.〈x+ | t−〉).

This can be seen as an additional motivation for focalisation. We prefer to
see it as a bonus.

63

Roadmap

Linear :
Non focalised Focalised

Direct LL LLfoc
Indirect LL↓ ⊇ TLfoc

Classical :

Non focalised Focalised

Direct LKfoc

Indirect (monolateral) LK↓

64

Monolateral LK↓

This system is obtained from (monolateral) LL↓ by removing the exponen-
tial rules, and by allowing contraction rules on all formulas, like in LKfoc.

65

Encoding call-by-value and call-by-name λ-calculus (indirect style)

Call-by-value implication : P →v Q = ↓(PO(↑Q))

λ-terms are translated to positive terms (and λ-abstractions to values).

Judgements (. . . , x+ : P, . . . ` t+ : Q) are encoded as : (` t+ : Q | . . . , x+ : P , . . .)

λx+.t+

t+1 t
+
2

}
are encoded as

{
(µ(x+, (y−)↓).〈t+ | y−〉)↓
µy−.〈t+1 | µ(z−)↓.〈(t+2 , (y−)↓) | z−〉〉

where

µ(x+, (y−)↓).c = µ(x+, z+).〈z+ | µ(y−)↓.c〉 (compound pattern-matching)
(t+, V +) = µz−.〈t+ | µ(x+).〈(x+, V +) | z−〉〉 (encoding of a non-focalised proof, cf. slide 35)

Call-by-name implication : M →n N = (↑M)ON

λx−.t−

t−1 t
−
2

}
are encoded as

{
µ((x−)↓, y+).〈y+ | t−〉
µy+.〈((t−2)↓, y+)) | t−1 〉

These encodings extend straightforwardly to the CBV and CBN λµ-calculi.

66

What about direct style encodings ?

It is tempting to return to direct style. In the encodings

P →v Q = ↓(PO(↑Q)) and M →n N = (↑M)ON

the second and third shifts can be reconstructed, but not the first, which
forces hereditary positivity of the translation. Compare (omitting the shifts
that can be reconstructed, and using a new notation for the remaining
ones)

P1 →v (P2 →v P3) = ⇓(P1 O (⇓(P2 OP3))
N1 →n (N2 →n N3) = N1 ON2 ON3

Conclusion : we need also shifts in direct style !

67

Shifts in direct style

P ::= . . . || ⇓A N ::= . . . || ⇑A

` V : A ||Γ

` V ⇓ : ⇓A ; Γ

c : (` x : A,Γ)

` µx⇓.c : ⇑A |Γ

〈V ⇓ | µx⇓.c〉 → c[V/x]

68

Encoding call-by-value and call-by-name λ-calculus (direct style)

M →n N = MON P →v Q = ⇓(POQ)

λx−.t− = µ(x−, y+).〈y+ | t−〉 λx+.t+ = (µ(x+, y−).〈t+ | y−〉)⇓
t−1 t
−
2 = µy+.〈(t−2 , y+) | t−1 〉 t+1 t

+
2 = µy−.〈t+1 | µ(z−)⇓.〈(t+2 , y−) | z−〉〉

We have :

(λx−.t−)t−2 = µy+.〈(t−2 , y+)) | µ(x−, y+).〈y+ | t−〉〉
→ µy+.〈y+ | t−[t−2 /x

−]〉 (t−2 is a V !)

(λx+.t+)t+2 = µy−.〈(µ(x+, y−).〈t+ | y−〉)⇓ | µ(z−)⇓.〈(t+2 , y−) | z−〉〉
→ µy−.〈(t+2 , y−) | µ(x+, y−).〈t+ | y−〉〉 (⇓ reduction)
= µy−.〈µz−.〈t+2 | µx+.〈(x+, y−) | z−〉〉 | µ(x+, y−).〈t+ | y−〉〉
→ µy−.〈t+2 | µx+.〈(x+, y−) | µ(x+, y−).〈t+ | y−〉〉〉
→ µy−.〈t+2 | µx+.〈t+ | y−〉〉

The point is that t+2 is not a V , and that (t+2 , y
−) is a macro for µz−.〈t+2 |µx+.〈(x+, y−)|z−〉〉.

69

System L reduction as an abstract machine

System L does not only account for reduction axioms, but for reduction in
context (Felleisen) :

E[(λx.t)t2]→ E[t[t2/x]]

Using E for V +, in CBN, we can “read off"

t−1 t
−
2 = µy+.〈(t−2 , y

+) | t−1 〉 as 〈E | t−1 t
−
2 〉 → 〈(t

−
2 , E) | t−1 〉

λx−.t− = µ(x−, y+).〈y+ | t−〉 as 〈(t−2 , E) | λx−.t−〉 → 〈E | t−[t−2 /x
−]〉

Krivine abstract machine !

In CBV, setting (t+)⇑ = µ(z−)⇓.〈t+ | z−〉, and using e+ for t−, we read

t+1 t
+
2 = µy−.〈t+1 | µ(z−)⇓.〈(t+2 , y−) | z−〉〉 as 〈t+1 t

+
2 | e+〉 → 〈t+1 | (t

+
2 , e

+)⇑〉
λx+.t+ = (µ(x+, y−).〈t+ | y−〉)⇓ as 〈λx+.t+ | (t+2 , e+)⇑〉 →∗ 〈t+2 | µx+.〈t+ | e+〉〉

But it is odd to view a contextE, e+ as a term V +, t−. This will be repaired
in a bilateral system.

70

Translating to intuitionistic logic

One translates positive formulas :

Xcps = X (P ⊗Q)cps = Pcps ×Qcps P ⊕Qcps = Pcps +Qcps

↓P cps = RPcps

We set (Γ, ∆ contexts of positive formulas) :

Γcps = {x : Pcps | x : P ∈ Γ} R∆cps = {kα : RPcps | α : P ∈∆}
We have :

c : (` P,N) ` V + : P ; P,N
⇓ ⇓

N cps , RPcps ` ccps : R N cps , RPcps ` Vcps : Pcps

` t+ : P | P,N ` t− : N | P,N
⇓ ⇓

N cps , RPcps ` t+
cps

: RRPcps N cps , RPcps ` t−
cps

: RN cps

71

Roadmap

Linear :
Non focalised Focalised

Direct LL LLfoc
Indirect LL↓ ⊇ TLfoc

Classical :

Non focalised Focalised

Direct LKfoc

Indirect (monolateral) LK↓ ⊇ LLPfoc

72

(A focalised restriction of) LLP as a retract of LK↓

Just as LL↓ translates to TLfoc, LK↓ translates to a focalised fragment
LLPfoc of LLP (obtained by removing the rules for the exponentials from
TLfoc).

Conversely, one can easily embed LLPfoc as a fragment of LK↓, by expan-
ding

(V +)↓

µ(x+)↓.c

}
as
{
µ(x−)↓.〈V + | x−〉
(µx+.c)↓

so as to exhibit LLPfoc as a retract of LK↓.

(The same does not seem to hold for TLfoc with respect to LL↓ because of the different

styles of exponentials in the two systems. We cannot adopt !•eP,?•eN as primitive for the

syntax of LL↓ as this would hinder the translation to TLfoc).

73

Roadmap

Linear :
Non focalised Focalised

Direct LL LLfoc
Indirect LL↓ ⊇ TLfoc

Classical :

Non focalised Focalised

Direct LKfoc

Indirect (bilateral) LK↓

74

Two notions of symmetry

In bilateral sequents, we can account for two kinds of symmetry / duality :

the symmetry left-right corresponds to the symmetry input - output
the duality positive-negative corresponds the duality eager-lazy

We shall illustrate this later with CBPV.

75

Different flavours of negation

Bilateral sequents are not only convenient to express further symmetries,
but are also needed if we want an explicit involutive negation, rather than
an implicit one (the overlining in our notation).

We should not confuse this involutive negation (explicit or implicit) with the
negations ¬↓P = ↓P and ¬↑N = ↑N , which are the ones involved in (the
encoding of) call-by-value and call-by-name λ-calculus, and in tensor logic
and LLP, as we have seen.

76

Formulas and judgements of bilateral LK↓

P ::= X || P ⊗Q || P ⊕Q || ¬N || ↓N
N ::= X || NON || N &N || ¬P || ↑P
A ::= P || N

In sequents, Γ stands for . . . , x+ : P, . . . , x− : N, . . ., and ∆ stands for
. . . , α+ : P, . . . , α− : N, (Note that there may be positive and negative
formulas both on the left and on the right of sequents)

There are now five kinds of judgements (we’ll stop there, don’t worry !) :

Commands Values Expressions Covalues Contexts
c : (Γ `∆) Γ ` V + : P ; ∆ Γ ` v : A |∆ Γ ; E− : N ` Γ Γ | e : A ` Γ

(We could have done this bilateral extension keeping shifts implicit, cf.
Munch-Maccagnoni’s bilateral version of LKpol .)

77

Syntax for bilateral LK↓

(For the rest of the talk, we write V,E rather than V +, E−, for short)

Commands c ::= 〈v+ | e+〉 || 〈v− | e−〉
Expressions v+ ::= V || µα+.c

v− ::= x− || µα−.c || µ(α+)↑.c
|| µ[α−1 , α

−
2].c || µ(α−1 [fst].c1, α

−
2 [snd].c2) || µ(x+)¬.c

Values V ::= x+ || (V, V) || inl(V) || inr(V) || (v−)↓

Contexts e− ::= E || µ̃x−.c
e+ ::= α+ || µ̃x+.c || µ̃(x−)↓.c

|| µ̃(x+, y+).c || µ̃[inl(x+
1).c1, inr(x+

2).c2]

Covalues E ::= α− || [E,E] || E[fst] || E[snd] || (e+)
↑ || V ¬

We can factorise a few rules using the following mergings :

v ::= v+ || v− α ::= α+ || α− e ::= e+ || e− x ::= x+ || x−

78

Removing contraction and weakening rules altogether

For the rest of this talk,
– we push weakening to the axioms,
– we merge cut and contraction in an additive contraction rule, and
– we give an additive formulation of the right tensor rule.
The resulting system has no explicit weakening nor contraction rule.

79

Typing rules for bilateral LK↓

Γ, x+ : P ` x+ : P ; ∆ Γ |α+ : P ` α+ : P,∆ Γ ; α− : N ` α− : N,∆ Γ, x− : N ` x− : N |∆
Γ ` v : A |∆ Γ | e : A `∆

〈v | e〉 : (Γ `∆)

c : (Γ ` α : A , ∆)

Γ ` µα.c : A |∆

c : (Γ, x : A `∆)

Γ | µ̃x.c : A `∆

Γ ` V : P ; ∆

Γ ` V : P |∆

Γ ; E : N `∆

Γ |E : N `∆

Γ ` v− : N |∆

Γ ` (v−)↓ : ↓N ; ∆

Γ ` V1 : P1 ; ∆ Γ ` V2 : P2 ; ∆

Γ ` (V1, V2) : P1 ⊗ P2 ; ∆

Γ ` V1 : P1 ; ∆

Γ ` inl(V1) : P1 ⊕ P2 ; ∆

Γ ` V : P ; ∆

Γ ; V ¬ : ¬P `∆

c : (Γ ` α+ : P,∆)

Γ ` µ(α+)
↑
.c : ↑P |∆

c : (Γ ` α−1 : N1 , α
−
2 : N2 , ∆)

Γ ` µ[α−1 , α
−
2].c : N1ON2 |∆

c1 : (Γ ` α−1 : N1 , ∆) c2 : (Γ ` α−2 : N2 , ∆)

Γ ` µ(α−1 [fst].c1, α
−
2 [snd].c2) : N1 &N2 |∆

c : (Γ, x : P `∆)

Γ ` µ(x+)¬.c : ¬P |∆
Γ | e+ : P `∆

Γ ; (e+)↑ : ↑P `∆

Γ ; E1 : N1 `∆ Γ ; E2 : N2 `∆

Γ ; [E1, E2] : N1ON2 `∆

Γ ; E1 : N1 `∆

Γ ; E1[fst] : N1 &N2 `∆

Γ ; E : N `∆

Γ ` E¬ : ¬N ; ∆

c : (Γ, x− : N `∆)

Γ | µ̃(x−)↓.c : ↓N `∆

c : (Γ, x+
1 : P1, x

+
2 : P2 `∆)

Γ | µ̃(x+
1 , x

+
2).c : P1 ⊗ P2 `∆

c1 : (Γ, x+
1 : P1 `∆) c2 : (Γ, x+

2 : P2 `∆)

Γ | µ̃[inl(x+
1).c1, inr(x+

2).c2] : P1 ⊕ P2 `∆

c : (Γ ` α− : N,∆)

Γ |µ(α−)¬.c : ¬N `∆

80

Reduction rules for bilateral LK↓

〈V | µ̃x+.c〉 → c[V/x+]
〈µα−.c | E〉 → c[E/α−]
〈v− | µ̃x−.c〉 → c[v−/x−]
〈µα+.c | e+〉 → c[e+/α+]

〈(V1, V2) | µ̃(x+
1 , x

+
2).c〉 → c[V1/x

+
1 , V2/x

+
2]

〈µ[α−1 , α
−
2].c | [E1, E2]〉 → c[E1/α

−
1 , E2/α

−
2]

〈inl(V1) | µ̃[inl(x+
1).c1, inr(x+

2).c2]〉 → c1[V1/x
+
1]

〈µ(α−1 [fst].c1, α
−
2 [snd].c2)) | E1[fst]〉 → c1[E1/α

−
1]

〈(v−)↓ | µ̃(x−)↓.c〉 → c[v−/x−]

〈µ(α+)
↑
.c | (e+)↑〉 → c[e+/α+]

〈µ̃(x+)¬.c | V ¬〉 → c[V/x+]

81

Involutive negation is ... involutive !
First we exhibit

x+ : P ` V : ¬¬P ; and | e : ¬¬P ` α+ : P
V = (x+)¬¬ e = µ(β−)¬.〈µ(x+)¬.〈x+ | α+〉 | β−〉

It is easily seen that 〈V | e〉 →∗ 〈x+ |α+〉. The converse direction is a bit trickier. We have
to check that

〈µα+.〈z+ | e〉 | µ̃x+.〈V | γ+〉〉 = 〈z+ | γ+〉
The left-hand side reduces to 〈z+ |µ(β−)¬.c〉, where c = 〈µ(x+)¬.〈((x+)¬¬ | γ+〉 | β−〉.
We have to show µ(β−)¬.c = γ+. After η-expanding γ+, this goal rephrases as c =
〈(β−)¬ | γ+〉. Indeed, we have :

〈(β−)¬ | γ+〉 ← 〈µβ−.〈(β−)¬ | γ+〉 | β−〉
=η 〈µ(x+)¬.〈µβ−.〈(β−)¬ | γ+〉 | (x+)¬〉 | β−〉 → c

(Reference : annex A.2 of Munch-Maccagnoni’s long version of “Focalisation and classical

realisability”)

82

Full deployment of CBV and CBN implications

We can now revisit CBV and CBN implications as compound connectives,
exploiting bilaterality. (cf. Curien-Herbelin 2000)

P →v Q = ↓((¬P)O(↑Q)) M →n N = (↑(¬M))ON

Γ ` V : P ; ∆ Γ | e+ : Q `∆

Γ |V · e+ : P →v Q `

Γ ` v− : M |∆ Γ ; E : N `∆

Γ ; v− · E : M →n N `

Γ, x+ : P ` v+ : Q |∆

Γ ` λx+.v+ : P →v Q ; ∆

Γ, x− : M ` v− : N |∆

Γ ` λx−.v− : M →n N |∆

〈λx+.v+ | V2 · e+〉 → 〈v+[V2/x+] | e+〉 〈λx−.v− | v−2 · E〉 → 〈v−[v−2 /x
−] | E〉

One encodes v− ·E and V ·e+ as [(µ(α−)¬.〈v− |α−〉)↑, E] and µ(x−)↓.〈x− |[V ¬, (e+)↑]〉,
respectively.

83

A second type-free aside (bilateral, indirect)

A general connective is defined as

a pair ({(si1, . . . , s
i
ni

) | i ∈ I}, s), where all s, sik range over {R+, R−, L+, L−}
We let S ::= V || v− || e+ || E, and

SR
+
, SR

−
, SL

+
, SL

−
stand for V , v− , e+ , E

κR
+
, κR

−
, κL

+
, κL

−
stand for x+ , x− , α+ , α−

tR
+
, tR

−
, tL

+
, tL

−
stand for v+ , v− , e+ , e−

With the connective we associate terms :

– Ss ::= . . . || ιi(S
si1
1 , . . . , S

sini
ni) || . . ., for each i ∈ I (constructor),

– ts ::= . . . || µ(. . . , ιi(κ
si1
1 , . . . , κ

sini
ni).ci, . . .) || . . . (co-constructor) (if we

care, in fact µ or µ̃ depending on whether s is a L or a R)

(where s is the dual of s : R+ = L−, etc. . .), and the reduction rules

〈ιi(S1, . . . , Sni)|µ(. . . , ιi(κ1, . . . , κni).ci, . . .)〉 → ci[S1/κ1, . . . , Sni/κni]

84

Dotted connectives

To accommodate, say CBV and CBN implications in their usual formuation,
we can “customise” connectives, by “dotting” at most one element in each
list (si1, . . . , s

i
ni

).
– The constructor associated with (si1, . . . , ṡ

i
j, . . . , s

i
ni

) is

ιi(S1, . . . , Sni)

– The co-constructor is

µ(. . . , ιi(κ1, . . . , κj−1, κj+1, . . . , κni).t
s
j
i
i , . . .)

And the corresponding customised reduction rule is

〈ιi(S1, . . . , Sj, . . . Sni) | µ(. . . , ιi(κ1, . . . , κj−1, κj+1, . . . , κni).ti, . . .)〉
→ 〈Sj | ti[S1/κ1, . . . , Sj−1/κj−1, Sj+1/κj+1, . . . , Sni/κni]〉

(we tolerate 〈e+ | v+〉 and 〈e− | v−〉, meaning 〈v+ | e+〉 and 〈v− | e−〉)

(adapted from unpublished notes of Herbelin)
85

Classifying the bestiary of connectives

⊗ {(R+, R+)}R+

⊕ {(R+), (R+)}R+

↓ {(R−)}R+

O {(L−, L−)}L−
& {(L−), (L−)}L−
↑ {(L+)}L−
P 7→ ¬P {(R+)}L−
N 7→ ¬N {(L−)}R

→v {(R+, L̇+)}L+

→n {(R−, L̇−)}L−

86

A third type-free aside (bilateral, non polarised/focalised)

Herbelin had in fact something a bit different in mind, following the original
philosophy of the duality of computation paper.

A general connective in his sense is not polarised, but only lateralised. The
connectives (dotted or not) have the same form, but with s, sik now ranging
over {R,L} (we simplify the syntactic categories Ss, κs, ts accordingly).
Herbelin’s computation rule is

〈ιi(S1, . . . , Sni) | µ(. . . , ιi(κ1, . . . , κni).ci, . . .)〉
→ 〈S1 | µκ1. . . . 〈Sni | µκni.ci〉〉

where µκs reads as µα when s = R and and µ̃x when s = L.
And similarly in the dotted case.
This yields a non-deterministic, non-confluent system, which has two well-
behaved strategies obtained by giving priority to µ̃ (CBN) or to µ (CBV).
In the typed setting, we are back to three judgements only :

c : (Γ `∆) Γ ` v : A |∆ Γ | e : A `∆

87

A unique non polarised/focalised implication

Applying the “forgetful” map that retains only laterality, the two implications
→v= {(R+, L̇+)}L+ and→n= {(R−, L̇−)}L− merge into

→= {(R, L̇)}L , with the rule 〈λx.v | v2 · e〉 → 〈v2 | µ̃x.〈v | e〉〉
This is the rule in Curien-Herbelin 2000, which depending on the µ/µ̃ prio-
rity discipline yields the respective rules above for→v and→n.

Conversely, every non polarised general connective γ gives rise to two
connectives γ−+ (resp. γ−) in the polarised sense, by replacing eve-
rywhere L,R with L+, R+, (resp. with L−, R−). Accordingly, in the +
case (resp. − case), we have the syntactic categories c, v+, e+, V (resp.
c, v−, e−, E). This results in respective subsyntaxes of the unpolarised
syntax, which are stable under the respective reduction strategies (next
slide).

Note that the polarised world is much richer, leaving space for mixed +/−.
88

Polarised syntax as subsyntax of unpolarised one

Let Σ = {γ1, . . .} be a signature of unpolarised general connectives, à
la Herbelin. Let Σ− = {γ−1 , . . .} be its negative polarisation (cf. previous
slide). Then Σ, Σ− induce sets of terms (commands, etc...) TΣ and TΣ−.
The latter can be considered a (strict) subsyntax of the former (e.g., in the
case of implication, v+ · e+ is in TΣ− only if v+ is a V).

Proposition : TΣ−, as a subset of TΣ, is closed under CBN reduction (prio-
rity to µ̃ in all redexes of the form 〈µα−.c | µ̃x−.c′〉).

Idem for Σ+ and CBV reduction

89

Different versions of general connectives

– bilateral, indirect : s, sij ::= R+ || R− || L+ || L− (our preferred one !)
– bilateral, direct : s := R+ || R− || L+ || L− , sij ::= L || R
– monolateral, indirect : s, sij ::= + || −
– monolateral, direct : s ::= + || − (and (si1, . . . , s

i
ni

) replaced by ni)
(slightly more expressive than in our first aside, where s was +)

– forgetting signs, i.e. forgetting focalisation : s ::= R || L : preserves the
elegance of CBV / CBN as orientation of a critical pair (Herbelin)

90

Two syntactic adjunctions

We have, in (bilateral) LL↓ as well as in LK↓ :

↓ a ↑ at the level of positive contexts and negative terms
↑ a ↓ at the level of covalues and values

The adjunctions are mediated by command judgements :

Γ, N ` ↑P |∆ ∼= Γ, N ` P,∆ ∼= Γ | ↓N ` P,∆

Γ, P ` ↓N ; ∆ ∼= Γ, P ` N,∆ ∼= Γ ; ↑P ` N,∆

We exhibit the inverse syntactic isomorphisms. We need two η-rules (which
express invertibility) :

v− = µα+↑.〈v− | α+↑〉 (for Γ ` v− : ↑P |∆)
e+ = µ̃x−↓.〈x−↓ | e+〉 (for Γ | e+ : ↓N `∆)

As we shall see, the first adjunction is “more primitive” than the second.
91

The first syntactic adjunction

We have

Γ ` v− : ↑P |∆ v− µα+↑.c
l ↓ ↑

c : (Γ ` α+ : P,∆) 〈v− | α+↑〉 c

and
Γ | e+ : ↓N `∆ e+ µ̃x−↓.c

l ↓ ↑
c : (Γ, x− : N `∆) 〈x−↓ | e+〉 c

so that putting these isos together we obtain isos between

Γ, x− :N ` v− :↑P |∆ , c : (Γ, x− :N ` α+ :P,∆) , Γ | e+ :↓N ` α+ :P,∆

92

Preparation for the second syntactic adjunction

We define macros :

µ(α−)↓.c = (µα−.c)↓ E↓ = µ̃(x−)↓.〈x− | E〉
µ̃(x+)↑.c = (µ̃x+.c)↑ V ↑ = µ(α+)↑.〈V | α+〉

with the following derived typing rules :

c : (Γ ` α− : N,∆)

Γ ` µα−↓.c : ↓N ; ∆

Γ ; E : N `∆

Γ |E↓ : ↓N `∆

c : (Γ, x+ : P `∆)

Γ ; µ̃x+↑.c : ↑P `∆

Γ ` V : P ; ∆

Γ ` V ↑ : ↑P |∆

We need two new η-rules, which are “by value” (cf. λx.V x in CBV λ-
calculus) :

V = µα−↓.〈V | α−↓〉 (for Γ ` V : ↓N ; ∆)
E = µ̃x+↑.〈x+↑ | E〉 (for Γ ; E : ↑P `∆)

93

Second syntactic adjunction

We have

Γ ` V : ↓N ; ∆ V µα−↓.c
l ↓ ↑

c : (Γ ` α− : N,∆) 〈V | α−↓〉 c

and
Γ ; E : ↑P `∆ E µ̃x+↑.c

l ↓ ↑
c : (Γ, x+ : P `∆) 〈x+↑ | E〉 c

so that putting these isos together we obtain isos between

Γ, x+ :P ` V :↓N ; ∆ , c : (Γ, x+ :P ` α− :N,∆) , Γ ; E :↑P ` α− :N,∆

Conversely, taking the macros as primitive, we cannot recover the first
adjunction.

94

Roadmap

Linear :
Non focalised Focalised

Direct LL LLfoc
Indirect LL↓ ⊇ TLfoc

Classical :

Non focalised Focalised

Direct LKfoc

Indirect (bilateral) LK↓ ⊇ CBPV

95

From LK↓ to CBPV (in sequent calculus style)

By cutting down LK↓ to intuitionistic judgements of the respective forms
(with Γ a context of positive formulas) :

Values Expressions
Commands Γ ` V : P ; Γ ` v : N |

c : (Γ ` [.] : N) Covalues Contexts
Γ ; E : N1 ` [.];N2 Γ | e : P ` [.] : N

we arrive to a sequent calculus discussed by Pfenning in his course notes
on focalisation, and which is exactly a sequent calculus version of Levy’s
CBPV.

This raises the question of the relation between shifts and monads in ge-
neral and with the continuation monad in particular. This will be discussed
at the end of the talk.

96

System L style syntax for CBPV

Formulas :
P ::= P ⊕ P || P ⊗ P || ↓N
N ::= N &N || P → N || ↑P

Values V ::= x || (V, V) || inl(V) || inr(V) || µ[.]↓.c Γ ` V : P ;
Negative terms v := µ[.].c || µ([fst].c1, [snd].c2) || µ[x · [.]].c || V ↑ Γ ` v : N |
Covalues E ::= [.] || E[fst] || E[snd] || [V · E] || µ̃x↑.c Γ ; E : N ` [.] : N ′

Positive contexts e ::= µ̃x.c || µ̃(x, y).c || µ̃[inl(x1).c1, inr(x2).c2] || E↓ Γ | e : P ` [.] : N
Commands c ::= 〈v | E〉 || 〈V | e〉 c : (Γ ` [.] : N)

97

Dictionary wrt to P.B. Levy’s notation

value computation Σ × UN FP Π P → N
positive negative ⊕ ⊗ ↓N ↑P & P → N (= PON)

V (value) M (computation) K (stack)
V (value) v (negative term) E (covalue)

(no counterpart for e, c).

98

System L style typing rules for CBPV

Γ, x : P ` x : P ; Γ ; [.] : N ` [.] : N

Γ ` v : N | Γ ; E : N ` [.] : N ′

〈v | E〉 : (Γ ` [.] : N ′)

Γ ` V : P ; Γ | e : P ` [.] : N

〈V | e〉 : (Γ ` [.] : N)

c : (Γ ` [.] : N)

Γ ` µ[.].c : N |

c : (Γ, x : P ` [.] : N)

Γ | µ̃x.c : P ` [.] : N

c : (Γ ` [.] : N)

Γ ` µ[.]↓.c : ↓N ;

Γ ` V1 : P1 ; Γ ` V2 : P2 ;

Γ ` (V1, V2) : P1 ⊗ P2 ;

Γ ` V1 : P1 ;

Γ ` inl(V1) : P1 ⊕ P2 ;

Γ ` V : P ;

Γ ` V ↑ : ↑P |

c : (Γ, x : P ` [.] : N)

Γ ` µ[x · [.]].c : P → N |

c1 : (Γ ` [.] : N1) c2 : (Γ ` [.] : N2)

Γ ` µ([fst].c1, [snd].c2) : N1 &N2 |

Γ, x : P ` [.] : N

Γ ; µ̃x↑.c : ↑P ` [.] : N

Γ ` V : P ; Γ ; E : N ` [.] : N ′

Γ ; [V · E] : P → N ` [.] : N ′

Γ ; E1 : N1 ` [.] : N

Γ ; E1[fst] : N1 &N2 ` [.] : N

Γ ; E : N ` [.] : N ′

Γ |E↓ : ↓N ` [.] : N ′

c : (Γ, x1 : P1, x2 : P2 ` [.] : N)

Γ | µ̃(x1, x2).c : P1 ⊗ P2 ` [.] : N

c1 : (Γ, x1 : P1 ` [.] : N) c2 : (Γ, x2 : P2 ` [.] : N)

Γ | µ̃[inl(x1).c1, inr(x2).c2] : P1 ⊕ P2 ` [.] : N

99

Only the second adjunction is available for CBPV

What happens when cutting down to intuitionistic systems such as CBPV,
LLP, or, in the linear case, TL, is that there is no space to express the first
adjunction.

In the CBPV case : there are no sequents in which there is a variable x of
negative type in the (left) context, and similarly no sequents with a variable
α of positive type on the right (only [.] : N is available).

100

System L style reduction rules for CBPV

〈V | µ̃x.c〉 → c[V/x]
〈µ[.].c | E〉 → c[E/[.]]
〈(V1, V2) | µ̃(x1, x2).c〉 → c[V1/x1, V2/x2]
〈µ[x · α].c | [V,E]〉 → c[V/x,E/α]
〈inl(V1) | µ̃[inl(x1).c1, inr(x2).c2]〉 → c1[V1/x1]
〈µ([fst].c1, [snd].c2)) | E1[fst]〉 → c1[E1/[.]]
〈µ[.]↓.c | E↓〉 → c[E/[.]]
〈V ↑ | µ̃x↑.c〉 → c[V/x]

101

Translation from CBPV to L style
(read “let V (resp. v, v1, E,. . .) be the translation of V (resp M , M1, K,. . .)”)

x x
return V V ↑

thunk M µ[.]↓.〈v | [.]〉
Σ introduction inl , inr
(V, V ′) (V, V ′)
λ{1.M1,2.M2} µ([fst].〈v1 | [.]〉, [snd].〈v2 | [.]〉)
λx.M µ[x · [.]].〈v | [.]〉
let V be x.M µ[.].〈V | µ̃x.〈v | [.]〉〉
M1 to x.M2 µ[.].〈v1 | µ̃x↑.〈v2 | [.]〉〉
force V µ[.].〈V | [.]↓〉
pm V as {(1, x1).M1, (2, x2).M2} µ[.].〈V | µ̃[inl(x1).〈v1 | [.]〉, inr(x2).〈v2 | [.]〉]〉
pm V as (x, y).M µ[.].〈V | µ̃(x, y).〈v | [.]〉〉
ß̂‘M µ[.].〈v | [.][fst]〉
V ‘M µ[.].〈(v | [V · [.]]〉

nil [·]
[·] to x.M :: K µ̃x↑.〈v | E〉
1̂ :: K E[fst] (idem 2̂, snd)
V :: K [V · E]

102

Translation from L style to CBPV
The three categories e, c, v are translated to computations M , while V,E of course translate to values and
stacks. The translation of contexts e is parameterised by a variable x (the place-holder of e in the sequent).
The translation makes use of the dismantling M •K (or read-back) of a state (M,K) as a computation.

x† = x
(inl(V))† = (1̂, V †) (idem inr)
(V1, V2)† = ((V1)†, (V2)†)
(µ[.]↓.c)† = thunk c†

(µ[.].c)† = c†

(µ([fst].c1, [snd].c2))† = λ{1.(c1)†,2.(c2)†}
(µ[x · [.]].c)† = λx.c†

(V ↑)† = return V †

[.]† = nil
E[fst]† = 1̂ :: E† (idem snd)
[V · E]† = V † :: E†

(µ̃x↑.c)† = [·] to x.c† :: nil

(µ̃x.c)†x = c†

(µ̃(x1, x2).c)†x = pm x as (x1, x2).c†

(µ̃[inl(x1).c1, inr(x2).c2])†x = pm x as {(1, x1).(c1)†x, (2, x2).(c2)†x}
(E↓)†x = (force x) • E†

〈v | E〉† = v† • E†
〈V | e〉† = e†x[V/x]

103

Equivalence

One checks easily that the two systems simulate each other.

To get that the translations are inverse to each other, we need the η-rules
(cf. above).

Of course, this is the old story of inter-translating natural deduction and
sequent calculus, refined to the equivalence between natural deduction
and focused sequent calculus (cf. above), but the fact that the target of the
translation of CBPV is exactly the projection of a larger, symmetric picture
reinforces its relevance.

(Analogy : saying that a Böhm tree is a strategy is not that interesting,
what is most interesting is to characterise the strategies arising in this way
(innocence).)

104

V) Perspective

on the

monadic reading of shifts

105

Roadmap

Linear :
Non focalised Focalised

Direct
Indirect

Classical :

Non focalised Focalised

Direct
Indirect LK↓ ⊇ LLPfoc , CBPV

106

What the hell ... ?

We have two quite different (intuitionistic) fragments of LK↓ :

• LLPfoc, which is complete for the interpretation in response categories,
where ↓↑ is the double negation continuation monad

• CBPV, which is complete for Levy’s notion of adjunction models, in which
↓↑ can be any monad

Strange, but true... Why is that so ?

107

Fragments

We call GNU a fragment of system BLA if
– the formulas of GNU are derived formulas of BLA (i.e., macros, or clus-

ters),
– the sequents are BLA are sequents of GNU possibly satisfying some

restrictions (like “at most seven negative formulas in the right contexts”),
and

– the typing and reduction rules are derivable rules
We also require that a fragment of LK↓ has at least the connectives ↓ and
↑ with their rules as in LLPfoc.

108

Self-duality

A fragment of bilateral LK↓ is called self-dual if
– the sets of positive formulas and of negative formulas are exchanged by

duality (in particular, to each positive macro corresponds a dual negative
macro),

– the set of allowed sequents is closed under duality, where the dual of
(Γ `∆) is (∆ ` Γ), the dual of (Γ |A `∆) is (∆ ` A |Γ), ...

109

Folding

One may define the folding of a self-dual fragment in four different flavours :
right folding (which we shall call “folding” for short), left folding, positive
folding, and negative folding.

The right folding consists in mapping sequents Γ ` ∆ to ` Γ,∆ (note
that here the change of polarity is by duality, not by shifts). This divides the
total number of rules by two (only right introduction rules). The left folding
places all formulas on the left.

The positive folding requires in addition a precooking of the connectives :
e.g. if †(P1, N2, P3) is a ternary connective, replace it with †′(P1, P2, P3) =

†(P1, P2, P3). Then one moves negative formulas on the other side of the
` (resulting in a homogeneous bilateral sequent of positive formulas, hence
the set of formulas is also divided by two !). The negative unfolding is dual.

110

Properties and examples of folding

The target of the folding transformation is a fragment, and the transforma-
tion preserves reductions. It collapses laterality and polarity distinctions (cf.
our discussion of bilaterality above).

Examples : the folding of LK↓ is what we called monolateral LK↓, its positive
and negative foldings are known as LKQ and LKT.

111

Properties of self-dual fragments

In a self dual fragment, in a provable sequent, one may alter each formula
by introducing even blocks of ¬ anywhere inside the formula (including the
top level), and odd blocks of ¬ at the top level of a formula but then moving
it on the other side of the sequent, without altering provability and the status
of formulas (by status, we mean : in a context, active, or under focus).

Proof by a huge mutual induction...

In other words, in the right or left folding, nothing is lost, apart from the
information on laterality, and in the positive or negative folding, nothing is
lost, apart from the information on polarity.

112

↓↑ is the continuation monad in LK↓

Recall the notation ¬↓P = ↓P . To exhibit ↓↑ = ¬↓¬↓ as the continua-
tion monad, we just have to show that there is one-to-one correspondence
between

x+ : P ` V : ¬↓Q ; and | e : P ⊗Q `

which thanks to the (first half of) the second adjunction and the reversibility
of ⊗ rephrases as a one-to-one correspondence between

c : (x+ : P ` α− : Q) and c′ : (x : P, y : Q `)

This holds in fact in all self-dual fragments of LK↓ (and their foldings).

Note that the syntax of CBPV formulas is not self-dual. It does not even
make sense to write ¬↓P as there is no such thing as P ! It is this breaking
of the symmetry that frees ↓↑ from being the continuation monad !

113

↓↑ is the continuation monad in LLPfoc

LLPfoc can be seen as the folded version of a self-dual bilateral system (the
union with its “dual intuitionistic” mirror), whence the result.

The direct proof is simpler, since in the (positive) bilateral presentation of
LLPfoc, there is a one-to-one correspondence between

x+ : P ` V : ¬↓Q ; and c : (x : P, y : Q `)

114

↓↑ in CBPV

As noticed above, the symmetry (i.e., the duality between the positive and
negative formulas) is broken :

P ::= P ⊕ P || P ⊗ P || P ⊕ P || ↓N
N ::= N &N || P → N || ↑P

See Levy’s book and papers for a wealth of examples of concrete monads
that fit into the CBPV framework.

115

LLPfoc as a fragment in CBPV

We have identified CBPV as a non-symmetric fragment of a large self-dual
system. One can also go “the other way around”, and recover the folded
system LLPfoc (for which Levy gives a natural deduction style presentation
JWA) as a fragment of CBPV. For this, pick an arbitrary, fixed, negative
formula N and define

¬↓P as ↓(P → N)

Then the expected adjunction holds, i.e., there is a one-to-one correspon-
dence between

x : P ⊗Q ` v : N | and y : P ` V : ¬↓Q ;

116

Summary

Linear :

Non focalised Focalised

Direct LL LLfoc
Indirect “Indirect LL” ⊇ TL LL↓ ⊇ TLfoc , LCBPV

Classical :

Non focalised Focalised

Direct “LK” LKfoc
Indirect “Indirect LK” ⊇ LLP LK↓ ⊇ LLPfoc , CBPV

where LCBPV is a linear version of CBPV, and where the systems within
quotes have been only suggested here (slide 53).

117

What else ?

Adding delimited control : see Guillaume’s paper From delimited CPS to
polarisation (available from http://www.pps.jussieu.fr/~munch).

What next ?

We just ask one question : what is the categorical structure of which Sys-
tem L would be the internal language ? (We started to work on this with
Marcelo Fiore, taking LCBPV as test-bed.)

118

