
Oregon Summer School 2011, complementary notes

Pierre-Louis Curien

Abstract. These notes are meant as complements to the paper [5] which served as backbone for most of the mate-
rial covered in my lectures delivered at the Oregon Programming Languages Summer School 2011 “Types, Seman-
tics and Verification” (videos should be soon available at http://www.cs.uoregon.edu/Activities/
summerschool/summer11/). In particular, we give a brief account of Munch-Maccagnoni’s polarised classi-
cal realisability [17].

1 Plan of the lectures

1.1 Lectures 1–3

1. Recapitulate Frank’s course, and set up the objectives of this course: emphasis on sequent calculus as a “typing
system for abstract machines”, and on classical logic, because sequent calculus is more natural in a classical
setting, and of course also because there is a nice computational interpretation of classical logic.

2. Typing Krivine abstract machine: left implication introduction as “putting the argument on the stack”.
3. Introduce classical sequent calculus, discussing choices of reversible versus irreversible rules. Settle on a choice

of presentation where both conjunction and disjunction are positive.
4. Introduce a syntax for these classical proofs (no focalisation yet!), using the syntactic kit of “system L” : µ, µ̃, and

three different kinds of judgements: v, e, c.
5. Discuss the slogan “commutative cut rules as explicit substitutions”.
6. Exercise. implication can be encoded as

¬A ∨B
¬(A ∧ ¬B)

}
inducing respectively

{
〈λx.M |N · E〉 → 〈M [N/x] | E〉
〈λx.M |N · E〉 → 〈N | µ̃x.〈M | E〉〉

7. Lafont’s critical pair.
8. Krivine abstract machine continued, with Felleisen’s C, and a call-by-value machine (see also [4]).
9. Reflection on the advantages of sequent calculus with respect to natural deduction when it comes to classical logic:

no need to introduce new axioms, just relax the existing rules by allowing several formulas on the right (which
amounts to allow contraction on the right).

10. Focalised proofs.
11. Counter-example: a non-focalised proof exhibiting, say inl(µα.c).
12. Syntax for focalised proofs.
13. Dynamics: critical pair resolved!
14. An example: a focused proof of (` P ∨ ¬P |) (not of (` P ∨ ¬P ;)!)
15. Encoding call-by-value λ-calculus in LKQ.
16. Meta-theoretical properties: confluence and strong normalisation hold for LKQ.
17. Completeness of the focused system can be proved by translating non-focused proofs into focused proofs with

cuts and then eliminating them (see also exercise in lecture 5).

1.2 Lecture 4

1. For intuitionistic minds: what is the meaning of µ and µ̃? Anticipating CPS (lecture 5):
(a) read c : (Γ ` . . . , α : P, . . .) as Γ, . . . , k : P ⊃ R, . . . ` c : R;
(b) read Γ | e : P ` . . . , α : P, . . . as Γ, . . . , k : P ⊃ R, . . . ` e : P ⊃ R. In particular, µ̃x.c reads as λx.c;
(c) finally, considering (a), one is naturally led to read µα.c as Γ, . . . , k : P ⊃ R, . . . ` λk.c : (P ⊃ R) ⊃ R.

2. Dual system LKT: encoding of call-by-name λ-calculus (section 2 of these notes).

3. For intuitionistic minds again: by opening the space to the classical world, we could synthesise call-by-name and
call-by-value from a unique, more basic system (classical sequent calculus based on conjunction, disjunction and
negation).

4. Discussion on positive / negative and left / right (anticipating item 4 of lecture 5). We have respectively

LKQ LKT monolateral

. . . , P, . . . ` . . . , Q, , N, . . . ` . . . , N, . . . ` . . . , N, . . . , P, . . .

In the first case we do have terms and contexts, but only for CBV languages / positive connectives. In the second
case, we also have terms and contexts, but only for CBN languages / negative connectives. In the third case, we
can mix CBN and CBV, but we have lost the division into contexts and terms, i.e., we cannot distinguish a context
of negative type from a term of positive type.

5. Monolateral presentation of focalising system L (section 3 of these notes).
6. Classical polarised realisability (section 4 of these notes).

1.3 Lecture 5

1. Classical polarised realisability (continued).
2. Illustrating classical polarised realisability.
3. Exercise. Revisit the proof of completeness of focalisation given by Frank (Theorem 1 of [18]) to unveil its

underlying reducibility flavour (there is an orthogonal implicit in case (ii) of this statement).
4. “mixed call by name and call-by-value”, i.e., restoring bilaterality: negative on the left, negative on the right, etc...

Illustration: Frank’s focused intuitionistic calculus with a positive disjunction, a negative implication, and both a
positive and a negative conjunction (section 5 of these notes).

5. Synthetic connectives (cf. “big-step derived rules” in [18]).
6. Translation of focalised system L to intuitionistic logic: almost textual! The double negation is only introduced at

the root of terms v.
7. Reflection: focalisation as “CPS in direct style”. All the work on encoding the order of evaluation has been done

in the process of translating your favourite functional programming language (possibly with control operators)
in focalised sequent calculus. This provides a factoring of CPS, where the second step, from focalised sequent
calculus to intuitionistic logic, hurts more than anything else, blurring distinctions such as ordinary variables and
continuation variables. Why not taking focalising system L as the target of CPS?

8. A short primer in linear logic (LL).
9. Perspective: LL versus focalised classical logic (section 7 of these notes).

2 System LKT

Note. that in the lectures, for the syntax of LKQ, we have used e↓ and µ̃α↓.c in place of the notation orginally used in
[5]. We also gave up on marking explicitly the coercion from values V to terms (V ♦).

The rationale for the different syntaxes that follow is that structured µ and µ̃ are for “absolute” negative introduc-
tions, and that more precisely µ̃ (resp. µ) is for introduction of a positive on the left (resp. negative on the right).

System LKT is defined by duality from LKQ:

N ::= X || NON || NNN || ¬−N

Commands c ::= 〈v | e〉 || c[σ]
Expressions v ::= x || µα.c || µx↑.c || µ[α1, α2].c || µ(α1[fst].c1, α2[snd].c2) || v[σ]
Contexts e := E || µ̃x.c || e[σ]
Covalues E ::= x || [E,E] || E[fst] || E[snd] || v↑ || E[σ]

2

Γ , x : N ` x : N |∆ Γ ; α : P ` α : P , ∆

Γ ` v : N |∆ Γ | e : N ` ∆

〈v | e〉 : (Γ ` ∆)

c : (Γ , x : N ` ∆)

Γ | µ̃x.c : N ` ∆

c : (Γ ` α : N , ∆)

Γ ` µα.c : N |∆

Γ ; E : N ` ∆

Γ |E : N ` ∆
Γ ` v : N |∆

Γ ; v↑ : ¬−N ` ∆

Γ ; E1 : N1 ` ∆ Γ ; E2 : N2 ` ∆

Γ ; [E1, E2] : N1ON2 ` ∆

Γ ; E1 : N1 ` ∆

Γ ; E1[fst] : N1NN2 ` ∆
c : (Γ , x : N ` ∆)

Γ ` µx↑.c : ¬−N |∆

c : (Γ ` α1 : N1, α2 : N2, ∆)

Γ ` µ[α1, α2].c : N1ON2 |∆

c1 : (Γ ` α1 : N1 , ∆) c2 : (Γ ` α2 : N2 , ∆)

Γ ` µ(α1[fst].c1, α2[snd].c2) : N1NN2 |∆
. . . Γ ` V : P ; ∆ . . . Γ | e : Q ` ∆ . . . c : (Γ . . . , q : P, . . . ` ∆, . . . , α : Q, . . .)

c[. . . , V/q, . . . , e/α] : (Γ ` ∆) (idem v[σ], V [σ], e[σ])

The operational semantics is left to you (mirror image of LKQ).

3 Monolateral presentation of focalising system L

The following monolateral presentation is yet another isomorphic copy of LKQ, where the sequents are folded on the
right, the positive formulas on the left becoming negative. This change of point of view leads us to recognise that ¬+P
decomposes as ↓P , where P is the involutive de Morgan duality, and where the ↓ operator, together with its dual ↑, is
an explicit “modality” governing the changes of phase in the focalised proofs. (There are connections with Paul-André
Melliès’ tensorial logic, yet to be explored.)

P ::= X || P ⊗Q || P ⊕Q || ↓N
N ::= X || NON || NNN || ↑P

Commands c ::= 〈t+ | t−〉 || c[σ]
Positive terms t+ ::= T || µα.c || t+[σ]
Values T ::= x || (T, T) || inl(T) || inr(T) || (t−)↓ || T [σ]
Negative terms t− ::= α || µx.c || µα↑.c || µ[x1, x2].c || µ(x1[fst].c1, x2[snd].c2) || t−[σ]

` x : P ; x : P ,∆ ` α : N |α : N , ∆

` t+1 : P |∆ ` t2 : P |∆

〈t+1 | t2〉 : (` ∆)

c : (` x : N , ∆)

` µx.c : N |∆

c : (` α : P , ∆)

` µα.c : P |∆

` V : P ; ∆

` V : P |∆
` t : N |∆

` t↓ : ↓N ; ∆

` T1 : P1 ; ∆ ` T2 : P2 ; ∆

` (T1, T2) : P1 ⊗ P2 ; ∆

` T1 : P1 ; ∆

` inl(T1) : P1 ⊕ P2 ; ∆

c : (` α : P,∆)

` µα↑.c : ↑P |∆

c : (` x1 : N1 , x2 : N2 , ∆)

` µ[x1, x2].c : N1ON2 |∆

c1 : (` x1 : N1 , ∆) c2 : (` x2 : N2 , ∆)

` µ(x1[fst].c1, x2[snd].c2) : N1NN2 |∆
. . . ` V : P ; ∆ . . . | e : Q ` ∆ . . . c : (. . . , q : P, . . . ` ∆, . . . , α : Q, . . .)

c[. . . , V/q, . . . , e/α] : (` ∆) (idem v[σ], V [σ], e[σ])

3

Operational semantics:
〈µα.c | t−〉 → c[t−/α]
〈T | µx.c〉 → c[T/x]
〈(T1, T2) | µ[x1, x2].c〉 → c[T1/x1, T2/x2]
〈inl(T1) | µ(x1[fst].c1, x2[snd].c2)〉 → c1[T1/x1]
〈(t−)↓ | µα↑.c〉 → c[α/t−]

4 Polarised classical realisability

Classical realisability is due to Krivine [12]. Here I present its polarised version, due to Guillaume Munch [17]. The
formulation below is adapted to the presentation of focalising system L adopted for these lectures (and taken from the
joint paper of Guillaume and myself [5]).

Notation: X ⊆ {t+} means: X is a set of positive terms, etc... These terms are not typed, and not necessarily closed.
(Note that in the absence of base inhabited type constants or of second-order quantification, there are no closed types
and a fortiori no closed terms of closed types.)

One chooses a fixed set⊥⊥ ⊆ {c} of commands, closed under backward reduction: if c ∈ ⊥⊥ and c′ → c, then c′ ∈ ⊥⊥.

we say that t+ is orthogonal to t− (and may use the notation t+⊥t− for this) when 〈t+ | t−〉 ∈ ⊥⊥. One then defines:

for any X ⊆ {t+}, X⊥ = {t− | ∀ t+ ∈ X 〈t+ | t−〉 ∈ ⊥⊥}
for any Y ⊆ {t−}, X⊥ = {t+ | ∀ t− ∈ X 〈t+ | t−〉 ∈ ⊥⊥}

We have the usual properties. Let Z ⊆ {t+} or Z ⊆ {t−}:

Z ⊆ Z⊥⊥ Z⊥ = Z⊥⊥⊥

(the lattter following from antimonotonicity of Z 7→ Z⊥). We say that Z ⊆ {t+} (resp. Z ⊆ {t−}) is a positive (resp.
negative) behaviour if Z = Z⊥⊥ (this terminology comes from [10]). Note that any Z⊥ is a behaviour.

We then associate with each positive type P a set (not a behaviour) V[[P]] ⊆ {T} (parameterised by an environ-
ment), as follows, by induction on the syntax of positive formulas:

V[[X]]ρ = ρ(X)
V[[P ⊗Q]]ρ = {(V1, V2) | V1 ∈ V[[P]]ρ and V2 ∈ V[[Q]]ρ}
V[[P ⊕Q]]ρ = {inl(V1) | V1 ∈ V[[P]]ρ} ∪ {inr(V2) | V2 ∈ V[[Q]]ρ}
V[[↓N]] = {(t−)↓ | t− ∈ [[N]]ρ}

One then sets:
[[P]] = V[[P]]⊥⊥ [[N]] = [[N]]⊥

In other words, the V[[P]]’s determine the interpretations [[P]] ⊆ {t+} and [[N]] ⊆ {t−}, for all positive and negative
formulas. (If you are worried by the occurrence of [[N]] in the definition of V[[↓N]], replace it with V[[N]]⊥.) We have:

[[P]] = [[P]]⊥⊥ and [[N]] = [[N]]⊥⊥ i.e., [[P]] and [[N]] are behaviours
[[P]] = [[P]]⊥ and [[N]] = [[N]]⊥

[[N]]ρ = V[[N]]⊥

(We omit ρ in what follows for keeping light notations. Also, think in this section in terms of implicit substitutions)

Fundamental lemma: Let

∆ = . . . , x : N, . . . , α : P, , T ∈ V[[N]], . . . , t− ∈ [[P]], . . .

Then:
c : (` ∆
` T ′ : P ; ∆
` t+ : P |∆
` t′− : N |∆

⇒

c[. . . , T/x, . . . , t−/α, . . .] ∈ ⊥⊥
T ′[. . . , T/x, . . . , t−/α, . . .] ∈ V[[P]]
t+[. . . , T/x, . . . , t−/α, . . .] ∈ [[P]]
t′−[. . . , T/x, . . . , t−/α, . . .] ∈ [[N]]

4

The proof is elementary, by induction on terms. Note that, say, for the case µ[x, y].c, we need to use that ⊥⊥ is closed
under backward reduction.

Illustration: If Γ ` t+ : P ⊕ Q | and α is fresh, then either 〈t+ | α〉 →∗ 〈inl(T1) | α〉 for some T1 or 〈t+ | α〉 →∗
〈inr(T2) | α〉 for some T2.

Proof: Take ⊥⊥ = {t+ | ∃T1 〈t+ | α〉 →∗ 〈inl(T1) | α〉 or ∃T2 〈t+ | α〉 →∗ 〈inl(T2) | α〉}. We have to check
that 〈t+ | α〉 ∈ ⊥⊥. But by the fundamental lemma we have t+ ∈ V[[P ⊕ Q]]⊥⊥. We then conclude noticing that
α ∈ V[[P ⊕Q]]⊥.

5 A language for a polarised intuitionistic system

Here is a term assignment for the polarised focusing logic presented in Frank’s last lecture at this school [18]. Because
intuitionistic logic has a positive disjunction and a negative conjunction, we are lead to bilateral sequents that have
both positive and negative formulas on the left and on the right. More precisely, Frank has three kinds of judgements
(which become five in system L style).

Frank’s notation Focalising system L notation
Γ+ −→ B− c : (Γ+ ` B−) Γ+ ` v : B− | Γ+ | e : A+ ` B−
Γ+ −→ [B+] Γ+ ` V : B+ ;

Γ+; [A−] −→ B− Γ+ ; E : A− ` B−

A− ::= X− || A+ ⊃ A− || A− ∧A− || ↑A+

A+ = A+ ∨A+ || A+ ∧A+ || ↓A−

c ::= 〈x | e〉 || 〈v | []〉
v ::= λx.c || µ([fst].c1 , [snd].c2) || V ↑
V ::= x || (V, V) || inl(V) || inr(V) || v↓
e ::= µ̃[inl(x1).c1, inr(x2).c2] || µ̃(x, y).c || E↓
E ::= [] || [V,E] || E[fst] || E[snd] || e↑

Negative rules
c : (Γ+, x : A+ ` B−)

Γ+ ` λx.c : A+ ⊃ B− |

c1 : (Γ+ ` A−) c2 : (Γ+ ` B−)

Γ+ ` µ([fst].c1 , [snd].c2) : A− ∧ B− |

c1 : (Γ+, x1 : A+ ` C−) c2 : (Γ+, x2 : B+ ` C−)

Γ+ | µ̃[inl(x1).c1, inr(x2).c2] : A+ ∨B+ ` C−

c : (Γ+, x : A+, y : B+ ` C−)

Γ+ | µ̃(x, y).c : A+ ∧B+ ` C−

Ending a negative proof-search phase:

Γ+ ; E : A− ` C−

Γ+ |E↓ : ↓A− ` C−

Γ+ ` V : C+ ;

Γ+ ` V ↑ : ↑C+ |

Positive rules

Γ+ ` V : A+ ; Γ+ ; E : B− ` C−

Γ+ ; [V,E] : A+ ⊃ B− ` C−

Γ+ ; E : A− ` C−

Γ+ ; E[fst] : A− ∧B− ` C− idem E[snd]

Γ+ ` V1 : A+ ; Γ+ ` V2 : B+ ;

Γ+ ` (V1, V2) : A
+ ∧B+ ;

Γ+ ` V : A+ ;

Γ+ ` inl(V) : A+ ∨B+ ;

5

Getting out of a positive phase:

Γ+ ` v : A− |

Γ+ ` v↓ : ↓A− ;

Γ+ | e : A+ ` C−

Γ+ ; e↑ : ↑A+ ` C−

Deactivation (needed to chain the negative rules)

Γ+ | e : A+ ` C−

〈x | e〉 : (Γ+, x+ : A+ ` C−)

Γ+ ` v : C− |

〈v | []〉 : (Γ+ ` C−)

Exercise. Unroll the definitions of V[[P → Q]] and [[P → Q]] (for the CBV encoding of implication). Revisit Amal
Ahmed’s first lectures in this perspective, and exhibit the double orthogonal implicitly lying there.

6 Focalising system L in full bilateral form

P ::= X || P ⊗Q || P ⊕Q || ¬N || ↓N
N ::= X || NON || NNN || ¬P || ↑P
A ::= P || N

In sequents, Γ stands for . . . , x+ : P, . . . , x− : N, . . ., and ∆ stands for . . . , α+ : P, . . . , α− : N,

Commands c ::= 〈v+ | e+〉 || 〈v− | e−〉
Expressions v+ ::= V || µα+.c || e−→

v− ::= x− || µα−.c || µα+↑.c || µ[α−1 , α
−
2].c || µ(α

−
1 [fst].c1, α

−
2 [snd].c2) || e+

→

Values V ::= x+ || (V, V) || inl(V) || inr(V) || v−↓ || E→
Contexts e− ::= E || µ̃x−.c || v+←

e+ ::= α+ || µ̃x+ || µ̃x−↓.c || µ̃(x+, y+).c || µ̃[inl(x+1).c1, inr(x
+
2).c2] || v−

←

Covalues E ::= α− || [E,E] || E[fst] || E[snd] || e+↑ || V←

We can factorise a few rules using the following mergings:

v ::= v+ || v− α ::= α+ || α− e ::= e+ || e− x ::= x+ || x−

Γ, x+ : P ` x+ : P ; ∆ Γ |α+ : P ` α+ : P,∆ Γ ; α− : N ` α− : N,∆ Γ, x− : N ` x− : N |∆

Γ ` v : A |∆ Γ | e : A ` ∆

〈v | e〉 : (Γ ` ∆)

c : (Γ ` α : A , ∆)

Γ ` µα.c : A |∆

c : (Γ, x : A ` ∆)

Γ | µ̃x.c : A ` ∆

Γ ` V : P ; ∆

Γ ` V : P |∆

Γ ; E : N ` ∆

Γ |E : N ` ∆
Γ ` v : N |∆

Γ ` v↓ : ↓N ; ∆

Γ ` V1 : P1 ; ∆ Γ ` V2 : P2 ; ∆

Γ ` (V1, V2) : P1 ⊗ P2 ; ∆

Γ ` V1 : P1 ; ∆

Γ ` inl(V1) : P1 ⊕ P2 ; ∆

c : (Γ ` α+ : P,∆)

Γ ` µα+↑.c : ↑P |∆

c : (Γ ` α−1 : N1 , α
−
2 : N2 , ∆)

Γ ` µ[α−1 , α
−
2].c : N1ON2 |∆

c1 : (Γ ` α−1 : N1 , ∆) c2 : (Γ ` α−2 : N2 , ∆)

Γ ` µ(α−1 [fst].c1, α
−
2 [snd].c2) : N1NN2 |∆

6

Γ | e : A ` ∆

Γ ` e→ : ¬A |∆

Γ ` v : A |∆

Γ | v← : ¬A ` ∆

Γ ` V : P ; ∆

Γ ; V← : ¬P ` ∆

Γ ; E : N ` ∆

Γ ` E→ : ¬N ; ∆

Γ | e : P ` ∆

Γ ; e↑ : ↑P ` ∆

Γ ; E1 : N1 ` ∆ Γ ; E2 : N2 ` ∆

Γ ; [E1, E2] : N1ON2 ` ∆

Γ ; E1 : N1 ` ∆

Γ ; E1[fst] : N1NN2 ` ∆
c : (Γ, x− : N ` ∆)

Γ | µ̃x−↓ : ↓N ` ∆

c : (Γ, x+1 : P1, x
+
2 : P2 ` ∆)

Γ | µ̃(x+1 , x
+
2).c : P1 ⊗ P2 ` ∆

c1 : (Γ, x+1 : P1 ` ∆) c2 : (Γ, x+2 : P2 ` ∆)

Γ | µ̃[inl(x+1).c1, inr(x
+
2).c2] : P1 ⊕ P2 ` ∆

Operational semantics:
〈V | µ̃x+.c〉 → c[V/x+]
〈µα−.c | E〉 → c[E/α−]
〈v− | µ̃x−.c〉 → c[v−/x−]
〈µα+.c | e+〉 → c[e+/α+]
〈(V1, V2) | µ̃(x+1 , x

+
2).c〉 → c[V1/x

+
1 , V2/x

+
2]

〈µ[α−1 , α
−
2].c | [E1, E2]〉 → c[E1/α

−
1 , V2/α

−
2]

〈inl(V1) | µ̃[inl(x+1).c1, inr(x
+
2).c2])〉 → c1[V1/x

+
1]

〈µ(α−1 [fst].c1, α
−
2 [snd].c2)) | E1[fst]〉 → c1[E1/α

−
1]

〈v−↓ | µ̃x−↓.c〉 → c[v−/x−]

〈µα+↑.c | e+↑〉 → c[e+/α+]
〈e−→ | v−←〉 → 〈v− | e−〉
〈e+→ | v+←〉 → 〈v+ | e+〉

7 Linear logic

I briefly place focalised classical logic and linear logic in perspective, recalling the rules of LL here for your conve-
nience.

A ::= X || X || A⊗A || A⊕A || AOA || ANA ||!A ||?A

AXIOM CUT

` A,A⊥

` A,Γ1 ` A⊥, Γ2

` Γ1, Γ2

MULTIPLICATIVES
` A,B, Γ

` AOB,Γ

` A,Γ1 ` B,Γ2

` A⊗B,Γ1, Γ2

ADDITIVES
` A,Γ

` A⊕B,Γ

` B,Γ

` A⊕B,Γ

` A,Γ ` B,Γ

` ANB,Γ

EXPONENTIALS

Dereliction
` Γ,A

` Γ, ?A Promotion
`?Γ,A

`?Γ, !A

` Γ,A

`?Γ, !A

`??A,Γ

`?A,Γ
Notice in particular that the axioms, the cut, and tne tensor rules are significantly different from the rules we have
given for LKQ. But we could of course have given them in this form, adding (unrestricted) weakening and contraction
as explicit rules. The LL formulation of the tensor rule puts forward its irreversible nature.

Both systems share having two conjunctions and disjunctions, and having an involutive defined negation.

7

– Linear logic is primarily (or at least originally) organised around the opposition additive / multiplicative (see table
below), and around resource-sensitivity (and the analysis of the complexity of cut-elimination / reduction). The
exponentials !, ? control the use of resources.

– Focalising logic is primarily organised around the opposition reversible / irreversible (which is related to input /
output, lazy / eager), and around “flow-sensitivity”: the shift operators ↑ and ↓ control the proof-search process
and the direction of cut-elimination (or the CBV vs CBN strategies of reduction).

irreversible reversible

multiplicative ⊗ O

additive ⊕ N

8 Further readings and background references on polarisation, Curry-Howard for
classical logic, and abstract machines

For your convenience, these references are extracted from [5, 18] and supplemented by a few more. Feel free to contact
me (curien@pps.jussieu.fr) for any questions, corrections, remarks!

References

1. J.-M. Andreoli, Logic programming with focusing proofs in linear logic, Journal of Logic and Computation 2(3) , 297-347
(1992).

2. Iliano Cervesato and Frank Pfenning, A linear spine calculus, Journal of Logic and Computation, 13(5):639688, 2003.
3. P.-L. Curien and H. Herbelin, The duality of computation, Proc. Int. Conf. on Functional Programming 2000.
4. P.-L. Curien, Abstract machines, control, and sequents, in Applied Semantics, Advance Lectures Series, Springer Verlag (2002)

(Proceedings of APPSEM Summer School on Applied Semantics, Caminha, Portugal, Sept. 2000).
5. P.-L. Curien and G. Munch-Maccagnoni, The duality of computation under focus, Proceedings of IFIP TCS Conference 2010,

Brisbane, IFIP Advances in Information and Communication Technology, vol. 323, Springer (2010).
6. V. Danos, J.-B. Joinet, H. Schellinx, A new deconstructive logic: linear logic, Journal of Symbolic Logic 62(3) (1997).
7. O. Danvy, Back to direct style, Science of Computer Programming, 22(3),183-195 (1994).
8. M. Felleisen and D. Friedman, Control operators, the SECD machine, and the λ-calculus, in Formal Description of Program-

ming Concepts III, 193-217, North Holland (1986).
9. J.-Y. Girard, A new constructive logic: classical logic, Mathematical Structures in Computer Science 1, 255-296 (1991).

10. J.-Y. Girard, Locus solum: from the rules of logic to the logic of rules, Mathematical Structures in Computer Science 11(3),
301-506 (2001).

11. T. Griffin, A formulae-as-types notion of control, Proc. Principles of Programming Languages 1990.
12. J.-L. Krivine, A call-by-name lambda-calculus machine, Higher Order and Symbolic Computation 20, 199-207 (2007).
13. O. Laurent, Etude de la polarisation en logique, Thèse de Doctorat, Univ. Aix-Marseille II (2002).
14. O. Laurent, M. Quatrini, and L. Tortora de Falco, Polarised and focalised linear and classical proofs, Ann. of Pure and Appl.

Logic, 134, no 2-3,217–264 (2005).
15. Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov, Uniform proofs as a foundation for logic programming,

Annals of Pure and Applied Logic 51, 125157 (1991).
16. Chuck Liang and Dale Miller, Focusing and polarization in linear, intuitionistic, and classical logics, Theoretical Computer

Science, 410(46):47474768, November 2009.
17. G. Munch-Maccagnoni, Focalisation and classical realisability, Proc. CSL 2009 LNCS 5771, 409–423, Springer (long version

available from http://perso.ens-lyon.fr/guillaume.munch/articles).
18. Frank Pfenning, Lecture notes on focusing, available from http://www.cs.uoregon.edu/Activities/

summerschool/summer11/curriculum.html.
19. Noam Zeilberger, The Logical Basis of Evaluation Order and Pattern-Matching, PhD thesis, Department of Computer Science,

Carnegie Mellon University, May 2009 (available as Technical Report CMU-CS-09-122). (see also the paper quoted in [5]

8

