
1 A core language

a, b, A,B ::= x variable
λx .a abstraction
a b application
(x :A)→ B function type
Typei type
(x : A) annotation

Γ ::= · empty
Γ, x : A variable assumption

1.1 Initial Specification

This system specifies when expressions are well typed, but is not syntax directed. We can’t read an algorithm
for type checking from these rules.

(x : A) ∈ Γ ` Γ

Γ ` x : A
T Var

Γ, x : A ` a : B
Γ ` A : Typei

Γ ` λx .a : (x :A)→ B
T ILam

Γ ` b : (x :A)→ B
Γ ` a : A

Γ ` b a : [a/x ]B
T App

` Γ

Γ ` Typei : Type(1+i)

T Star

Γ ` A : Typei Γ, x : A ` B : Typej
Γ ` (x :A)→ B : Type(iuj )

T Arrow

Γ ` a : A
Γ ` A = B
Γ ` B : Typei

Γ ` a : B
T Conv

(Rules for equality and context checking omitted.)

1.2 Syntax-directed system

One way to make the system syntax directed is to remove the conversion rule (which could apply at any
time) and modify the rules T ILam (annotating the type of the variable) and T App (inlining a use of
conversion).

We also drop context checking judgment. We’ll do it incrementally. We’ll start with the empty context
and make sure that we check everything as we add it to the context.

(x : A) ∈ Γ

Γ ` x ⇒ A
I Var

Γ, x : A ` a ⇒ B
Γ ` A⇒ A′

Γ ` A′ = Typei
Γ ` λx : A.a ⇒ (x :A)→ B

I Lam

1



Γ ` b ⇒ B
Γ ` B = (x :A1)→ B ′

Γ ` a ⇒ A2

Γ ` A1 = A2

Γ ` b a ⇒ [a/x ]B ′ I AppSD

Γ ` Typei ⇒ Type(1+i)

I Star

Γ ` A⇒ A′

Γ ` A′ = Typei
Γ, x : A ` B : B ′

Γ ` B ′ = Typej
Γ ` (x :A)→ B ⇒ Type(iuj )

I Arrow

1.3 Bidirectional system

Alternatively, we could make the system bidirectional, where the type system is composed of two different
modes: type inference and type checking. We assume that the type provided to the checking judgment is a
well-formed type.

(x : A) ∈ Γ

Γ ` x ⇒ A
I Var

Γ ` b ⇒ (x :A)→ B
Γ ` a ⇐ A

Γ ` b a ⇒ [a/x ]B
I App

Γ ` Typei ⇒ Type(1+i)

I Star

Γ ` A⇒ A′

Γ ` A′ = Typei
Γ, x : A ` B : B ′

Γ ` B ′ = Typej
Γ ` (x :A)→ B ⇒ Type(iuj )

I Arrow

Γ ` a ⇐ A

Γ ` (a : A)⇒ A
I Ann

Γ, x : A ` a ⇐ B

Γ ` λx .a ⇐ (x :A)→ B
C Lam

Γ ` a ⇒ A
Γ ` A = B

Γ ` a ⇐ B
C Conv

1.4 Discussion

• Type annotations (a : A) are never necessary in the syntax directed system.

• The bidirectional system reduces the number of necessary type annotations. Particularly if the types
of top-level functions are already known. (Even more so with the addition of new language features.)

• The bidirectional system is not closed under (normal) substitution. Variables are always checked in
inference mode, that means that they cannot be simply substituted by pure lambda expressions (or
other terms that must be validated in checking mode.)

2



• The bidirectional system requires type annotations to switch from inference mode to checking mode.
These annotations cannot be eliminated. Yet at the same time, they may interfere with equality.

• We can add extra rules to the bidirectional system for flexibility. In this little language, we might add
back the inference mode rule for annotated lambda expressions.

Γ, x : A ` a ⇒ B
Γ ` A⇒ A′

Γ ` A′ = Typei
Γ ` λx : A.a ⇒ (x :A)→ B

I Lam

The upshot is that bidirectionality makes sense for a surface language, but perhaps we should elaborate
it to an annotated internal language where everything can be checked in inference mode.

2 Equivalence

What does it mean for two terms to be equivalent. I wrote it suggestively as Γ ` A = B , but some systems
judge equivalence without using the context.

In this version, we will use the context to retrieve variable definitions only. In fact, we will be able to
show that: Γ ` x = A when x = A is in the context.

3 Additional forms for homework 1

We can add a number of standard forms to this language. These are the non-syntax directed rules. You’ll
need to figure out how to turn them into an algorithm.

Γ ` Unit : Type0
T TyUnit

Γ ` tt : Unit
T LitUnit

Γ ` Bool : Type0
T Bool

Γ ` true : Bool
T True

Γ ` false : Bool
T False

Γ ` a : Bool
Γ ` b : A
Γ ` c : A

Γ ` if a then b else c : A
T If

Γ ` a : A
Γ, x : A, x = a ` b : B
Γ ` B : Typei
Γ ` let x = a in b : B

T Let

Notes:

1. Let expressions add a definition of the variable to the context as well as the type. The result type of
the let expression is not allowed to mention the bound variable.

3



2. When the scrutinee of an if-expression is a variable, we can do refinement: i.e. add an equation to the
context that witnesses the pattern match.

Γ ` x : Bool
Γ, x = true ` b : A
Γ, x = false ` c : A

Γ ` if x then b else c : A
T IfVar

4


