
TAU Install Guide

TAU Install Guide

Updated November 14, 2024, for use with version 2.34 or greater.

Copyright © 1997-2012 Department of Computer and Information Science, University of Oregon
Advanced Computing Laboratory, LANL, NM Research Centre Julich, ZAM, Germany

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and
without fee is hereby granted, provided that the above copyright notice appear in all copies and that both
that copyright notice and this permission notice appear in supporting documentation, and that the name
of University of Oregon (UO) Research Centre Julich, (ZAM) and Los Alamos National Laboratory
(LANL) not be used in advertising or publicity pertaining to distribution of the software without specif-
ic, written prior permission. The University of Oregon, ZAM and LANL make no representations about
the suitability of this software for any purpose. It is provided "as is" without express or implied war-
ranty.

UO, ZAM AND LANL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO
EVENT SHALL THE UNIVERSITY OF OREGON, ZAM OR LANL BE LIABLE FOR ANY SPE-
CIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RES-
ULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CON-
TRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNEC-
TION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

TAU can be found on the web at: http://www.cs.uoregon.edu/research/tau

http://www.cs.uoregon.edu/research/tau

Table of Contents
1. Installation ... 1

1.1. Installing TAU .. 1
1.1.1. Know what options you will need .. 1
1.1.2. Common configuration options ... 2
1.1.3. Configuring with external packages .. 4
1.1.4. More configuration options ... 5
1.1.5. tau_setup ... 10
1.1.6. installtau script ... 10
1.1.7. upgradetau ... 11
1.1.8. tau_validate ... 11

1.2. Platforms Supported .. 11
1.3. Software Requirements .. 12

iv

List of Figures
1.1. One sided communnication. .. 8

v

Chapter 1. Installation
TAU (Tuning and Analysis Utilities) is a portable profiling and tracing toolkit for performance analysis
of parallel programs written in Fortran, C++, C, Java and Python. The model that TAU uses to profile
parallel, multi-threaded programs maintains performance data for each thread, context, and node in use
by an application. The profiling instrumentation needed to implement the model captures data for func-
tions, methods, basic blocks, and statement execution at these levels. All C++ language features are sup-
ported in the TAU profiling instrumentation including templates and namespaces, which is available
through an API at the library or application level. The API also provides selection of profiling groups for
organizing and controlling instrumentation. The instrumentation can be inserted in the source code using
an automatic instrumentor tool based on the Program Database Toolkit (PDT), dynamically using Dyn-
instAPI, at runtime in the Java virtual machine, or manually using the instrumentation API. TAU's pro-
file visualization tool, paraprof, provides graphical displays of all the performance analysis results, in
aggregate and single node/context/thread forms. The user can quickly identify sources of performance
bottlenecks in the application using the graphical interface. In addition, TAU can generate event traces
that can be displayed with the Vampir or Paraver trace visualization tools. This chapter discusses install-
ation of the TAU portable profiling package.

Some tau options allow external resources to be automatically downloaded and built when TAU is con-
figured. To obtain these resources in a single package download http://tau.uoregon.edu/ext.tgz and un-
pack it in TAU's root directory. When you configure TAU with:

• -bfd=download

• -unwind=download

• -ompt=download

these packages will be provided by the ext.tgz package and no additional network activity will be re-
quired.

1.1. Installing TAU
1.1.1. Know what options you will need

Each TAU configuration results in a single Makefile. These Makefiles denote the configuration
that produced it and is used by the user to select the TAU libraries/scripts associated with its configura-
tion. (These makefiles are named after the configuration options, ie. TAU configured with MPI, PDT,
PGI compilers and the '-nocomm' option is named: Makefile.tau-nocomm-mpi-pdt-pgi). On
most machines several configuration of TAU will need to be built in order to take full advantage of the
many features of TAU. This section should help you decide on the smallest set of configuration you will
need to build.

The options used to configure TAU can be grouped into two categories:

• External packages: TAU will use these when instrumenting or measuring an application. Configur-
ing with these options does not force the user to use these packages, ie: configuring with PDT does
not force the user to use source code based instrumentation (they can use compiler based instrument-
ation instead). Similarly configuring with PAPI does not forces the user to select any PAPI counters
when profiling.

Note

1

The only exception is configuring with the epilog (scalasca) tracing package. This will
replace the TAU tracer with the epliog one, a single configuration cannot use both
tracers.

For this reason it is recommend that you configure with every external packages that the user might
be interested in using, letting them choose which packages to enable when they go to instrument or
measure their application.

• Compiler and MPI options: these control the behavior of TAU when it compiles the instrumented
application. TAU provides compiler wrapper scripts, these options control which compiler TAU will
wrap, These options are determinative: select only options that are compatible. For example, when
configuring with MPI use a version of MPI compatible with the compiler you select.

Since multiple compiler/MPI libraries cannot be specified for a single configuration, each set of
compiler/MPI libraries that you want to use with TAU need to be configured separately.

Note

Configurations with different compilers are given separate Makefiles automatically,
however configurations with different MPI implementations are not. Use the -tag=
option to distinguish between different MPIs, ie: -tag=mvapich or -
tag=openmpi.

The configure shell script attempts to guess correct values for various system-dependent variables
used during compilation (compilers and system architecture), other options need to be specified on the
command line.

The following are the most important command-line options are available to configure:

1.1.2. Common configuration options

1.1.2.1. Select compiler

TAU defaults to using any compilers found in the environment. To use a specific compiler use these op-
tions:

• -c++=<C++ compiler>

Specifies the name of the C++ compiler. Supported C++ compilers include KCC (from KAI/Intel),
CC (SGI, Sun), g++ (from GNU), FCC (from Fujitsu), xlC (from IBM), guidec++ (from KAI/Intel),
cxx (Tru64) and aCC (from HP), c++ (from Apple), icpc and ecpc (from Intel) and pgCC (from
PGI).

• -cc=<C Compiler>

Specifies the name of the C compiler. Supported C compilers include cc, gcc (from GNU), pgcc
(from PGI), fcc (from Fujitsu), xlc (from IBM), and KCC (from KAI/ Intel), icc and ecc (from Intel).

• -fortran=<Fortran Compiler>

Specifies the name of the Fortran90 compiler. Valid options are: gnu, sgi, ibm, ibm64, intel, cray,
pgi, absoft, fujitsu, sun, kai, nec, hitachi, compaq, nagware, g95 and hp.

Installation

2

1.1.2.2. Using MPI

To profile a program that use MPI configure TAU with these options:

• -mpi

With this option, TAU will try to guess the location of the MPI libraries if the mpirun command is in
your path. This does not always work in which case use these more detailed options:

• -mpiinc=<directory>

Specifies the directory where MPI header files reside (such as mpi.h and mpif.h). This option also
generates the TAU MPI wrapper library that instruments MPI routines using the MPI Profiling Inter-
face. See the examples/NPB2.3/config/make.def file for its usage with Fortran and MPI programs.
MPI [http://www-unix.mcs.anl.gov/mpi/]

• -mpilib=<directory>

Specifies the directory where MPI library files reside. This option should be used in conjunction
with the -mpiinc=<directory> option to generate the TAU MPI wrapper library.

• -mpilibrary=<lib>

Specifies the use of a different MPI library. By default, TAU uses -lmpi or -lmpich as the MPI lib-
rary. This option allows the user to specify another library. e.g., -mpilibrary=-lmpi_r for specifying a
thread-safe MPI library.

• -mpit

Activates MPI-T support in TAU. Use in conjunction with an MPI implementation that supports
MPI-T such as MVAPICH or MPICH. To enable collection of PVARS, set
TAU_TRACK_MPI_T_PVARS environment variable to 1. To set CVARs, use the two environment
variables below in the following fashion:

bash$export
TAU_MPI_T_CVAR_METRICS=MPIR_CVAR_VBUF_POOL_CONTROL,MPIR_CVAR_VBUF_P
OOL_REDUCED_VALUE[1]

bash$export TAU_MPI_T_CVAR_VALUES=1,1

Note that the METRICS should match exactly with the corresponding VALUES, and the name for
the CVAR should be exactly as presented in TAU profiles. Once the above variables are set, use this
feature as follows: mpirun -np 4 tau_exec -T mpi,mpit ./a.out

1.1.2.3. OpenMP

To profile programs using openmp use -openm and either OPARI option:

• -openmp

Specifies OpenMP as the threads package to be used. Open MPI [http://www.open-mpi.org/]

• -opari

The use of Opari2 source-to-source instrumentor in conjunction with TAU exposes OpenMP events
for instrumentation. See examples/opari directory. OPARI [ihttp://www.vi-hps.org/projects/score-p/]

Installation

3

http://www-unix.mcs.anl.gov/mpi/
http://www.open-mpi.org/
ihttp://www.vi-hps.org/projects/score-p/

• -opari1

Use this option for the use of the original Opari. Only use this option if -opari fails. OPARI
[http://www.fz-juelich.de/zam/kojak/opari/]

1.1.3. Configuring with external packages

• -pdt=<directory>

Specifies the location of the installed PDT (Program Database Toolkit) root directory. PDT is used
to build tau_instrumentor, a C++, C and F90 instrumentation program that automatically inserts
TAU annotations in the source code PDT [http://www.cs.uoregon.edu/research/pdt]. If PDT is con-
figured with a subdirectory option (-compdir=<opt>) then TAU can be configured with the same op-
tion.

• -pdt_c++=<C++ Compiler>

Specifies a different C++ compiler for PDT (tau_instrumentor). This is typically used when the lib-
rary is compiled with a C++ compiler (specified with -c++) and the tau_instrumentor is compiled
with a different <pdt_c++> compiler. For e.g.,

-arch=craycnl -pdt=/usr/pdtoolkit-3.17 -pdt_c++=g++ ...

uses g++ to compile the tau_instrumentor, for example on CRAY XT5 systems use this option to
build TAU any of the backend compilers.

-arch=bgp -pdt=/usr/pdtoolkit-3.17 -pdt_c++=xlC -mpi

uses PDT, MPI for IBM BG/P and specifies the use of the front-end xlC compiler for building
tau_instrumentor.

• -papi=<directory>

Specifies the location of the installed PAPI (Performance Data Standard and API) root directory.
PCL provides a common interface to access hardware performance counters and timers on modern
microprocessors. Most modern CPUs provide on-chip hardware performance counters that can re-
cord several events such as the number of instructions issued, floating point operations performed,
the number of primary and secondary data and instruction cache misses. To measure floating point
instructions, set the environment variable TAU_METRICS to PAPI_FP_INS (for example). This op-
tion (by default) specifies the use of hardware performance counters for profiling (instead of time).
PAPI [http://icl.cs.utk.edu/papi/]

• -rocm

Specifies configuration with support for AMD ROCm profiling. This option can also be submitted
with a directory (-rocm=<directory>) if ROCm is installed somewhere other than the default location
of /opt/rocm. When TAU is configured with this option tau_exec can be run with -rocm to automat-
ically capture events and metadata from the ROCm profiling API. ROCm [https://rocm.github.io/]

• -rocprofiler=<directory>

Specifies configuration with support for AMD ROCProfiler data collection. Must be used in conjuc-
tion with the -rocm option. Not compatible with the -roctracer option.

• -roctracer=<directory>

Installation

4

http://www.fz-juelich.de/zam/kojak/opari/
http://www.cs.uoregon.edu/research/pdt
http://icl.cs.utk.edu/papi/
https://rocm.github.io/

Specifies configuration with support for AMD ROCTracer data collection. Must be used in conjuc-
tion with the -rocm option. Not compatible with the -rocprofiler option.

• -level_zero

Specifies configuration with support for Intel OneAPI's Level Zero. This option can also be submit-
ted with a directory (-level_zero=<directory>). Use in conjunction with the -opencl configuration
option as needed. Level Zero [https://spec.oneapi.com/level-zero/latest/core/INTRO.html]

• -epilog=<directory>

Specifies the directory where the EPILOG tracing package EPILOG
[http://www.fz-juelich.de/zam/kojak/epilog/] is installed.This option should be used in conjunction
with the -TRACE option to generate binary EPILOG traces (instead of binary TAU traces). EPILOG
traces can then be used with other tools such as EXPERT. EPILOG comes with its own implementa-
tion of the MPI wrapper library and the POMP library used with Opari. Using option overrides
TAU's libraries for MPI, and OpenMP.

• -otf=<directory>

Specifies the location of the OTF trace libraries generation package. TAU's binary traces can be con-
verted to the OTF format using tau2otf, a tool that links with the OTF library.

• -vtf=<directory>

Specifies the location of the VTF3 trace generation package. TAU's binary traces can be converted
to the VTF3 format using tau2vtf, a tool that links with the VTF3 library. The VTF3 format is read
by Intel trace analyzer, formerly known as vampir, a commercial trace visualization tool developed
by TU. Dresden, Germany.

1.1.4. More configuration options

• -PROFILEPHASE

This option generates phase based profiles. It requires special instrumentation to mark phases in an
application (I/O, computation, etc.). Phases can be static or dynamic (different phases for each loop
iteration, for instance). See examples/phase/README for further information.

• -prefix=<directory>

Specifies the destination directory where the header, library and binary files are copied. By default,
these are copied to subdirectories <arch>/bin and <arch>/lib in the TAU root directory.

• -arch=<architecture>

Specifies the architecture. If the user does not specify this option, configure determines the architec-
ture. For IBM BGL, the user should specify bgl as the architecture. For SGI, the user can specify
either of sgi32, sgin32 or sgi64 for 32, n32 or 64 bit compilation modes respectively. The files are
installed in the <architecture>/bin and <architecture>/lib directories. Cray options are xt3, craycnl or
crayxmt.

• -tag=<Unique Name>

Specifies a tag in the name of the stub Makefile and TAU makefiles to uniquely identify the installa-
tion. This is useful when more than one MPI library may be used with different versions of com-

Installation

5

https://spec.oneapi.com/level-zero/latest/core/INTRO.html
http://www.fz-juelich.de/zam/kojak/epilog/

pilers. e.g.,

% configure -c++=icpc -cc=icc -tag=intel71-vmi \
-mpiinc=/vmi2/mpich/include

• -scalasca=<directory>

Specifies the directory where the SCALASCA [http://www.sclasca.org] package is installed.

• -pthread

Specifies pthread as the thread package to be used. In the default mode, no thread package is used.

• -opari_region

Report performance data for only OpenMP regions and not constructs. By default, both regions and
constructs are profiled with Opari.

• -opari_construct

Report performance data for only OpenMP constructs and not Regions. By default, both regions and
constructs are profiled with Opari.

• -pdtarch=<architecture>

Specifies the architecture used to build pdt, default the tau architecture.

• -papithreads

Same as papi, except uses threads to highlight how hardware performance counters may be used in a
multi-threaded application. When it is used with PAPI, TAU should be configured with -
papi=<directory> -pthread autoinstrument Shows the use of Program Database Toolkit (PDT) for
automating the insertion of TAU macros in the source code. It requires configuring TAU with the -
pdt=<directory> option. The Makefile is modified to illustrate the use of a source to source translator
(tau_instrumentor).

• -jdk=<directory>

Specifies the location of the installed Java root directory. TAU can profile or trace Java applications
without any modifications to the source code, byte-code or the Java virtual machine. See
README.JAVA on instructions on using TAU with Java 2 applications. Also the refence guide has
more information on the new tau_java tool. This option should only be used for configuring TAU to
use JVMTI for profiling and tracing of Java applications. It should not be used for configuring
paraprof, which uses Java from the user's path.

• -apex

Specifies support for the APEX framework. Requires -pthread or -openmp -
ompt=download to provide the communication layer. When running an application instrumented
with APEX set the runtime environment variable APEX_SCREEN_OUTPUT to 1 to see APEX out-
put. Set the runtime environment variable APEX_TAU to 1 to generate TAU profiles as well. See
<tau2>/examples/apex/README for more information.

• -sos=<directory> or -sos=<download>

Specify location of an existing SOS_flow or download and configure a new install automatically.

Installation

6

http://www.sclasca.org

• -soscomm=<option>

When building SOS_flow with -sos=download specifies the communication system to use. The op-
tions are sockets, mpi, or evpath. The default is mpi.

• -beacon=<directory>

Build TAU with BEACON support. BEACON allows remote monitoring of performance events and
control of program behavior through interfaces such as MPI_T.

• -dyninst=<directory> or -dyninst=<download>

Specifies the directory where the DynInst dynamic instrumentation package is installed, or instructs
TAU to download and configure a new install automatically. Using DynInst, a user can invoke
tau_run to instrument an executable program at runtime or prior to execution by rewriting it. Dynin-
stAPI [http://www.dyninst.org/]PARA-DYN [http://www.paradyn.org/].

• -vampirtrace=<directory>

Specifies the location of the Vampir Trace package. With this option TAU will generate traces in
Open Trace Format (OTF). For more information, see Technische Universitat Dresden [ht-
tp://www.tu-dresden.de/zih/vampirtrace]

• -scorep=<directory> or -scorep=<download>

Specify location of an existing Score-P package or download and configure a new install automatic-
ally. Set the enviroment varible SCOREP_PROFILING_FORMAT to TAU_SNAPHOT so that
Score-P will output Tau Snapsot profiles.

• -shmeminc=<directory>

Specifies the directory where shmem.h resides and specifies the use of the TAU SHMEM interface.

• -shmemlib=<directory>

Specifies the directory where libsma.a resides and specifies the use of the TAU SHMEM interface.

• -shmemlibrary=<lib>

By default, TAU uses -lsma as the shmem/pshmem library. This option allows the user to specify a
different shmem library.

• -nocomm

Allows the user to turn off tracking of messages (synchronous/asynchronous) in TAU's MPI wrapper
interposition library. Entry and exit events for MPI routines are still tracked. Affects both profiling
and tracing.

• -cuda=<directory>

Specifies the location of the top level CUDA SDK

• -gpi=<directory>

Specify use of TAU's GPI wrapper library.

It works well with PDT and compiler based instrumentation of the source code and there is a wrap-
per interposition library that is linked in to track the communication of GPI. It is important to specify
all TAU runtime options in the tau.conf file that must reside in the current working directory where

Installation

7

http://www.dyninst.org/
http://www.dyninst.org/
http://www.paradyn.org/
 http://www.tu-dresden.de/zih/vampirtrace

the executable is stored and launched from. This is important because the worker tasks are spawned
by the GPI daemon on remote nodes and do not inherit the user's working directory or the environ-
ment. So, options such as TAU_TRACE=1, and sampling must be specified in the tau.conf file.

Figure 1.1. One sided communnication.

• -opencl=<directory>

Specifies the location of the OpenCL package

• -armci=<directory>

Specifies the location of the ARMCI directory

• -epiloglib=<directory>

Specifies the directory of where the Epilog library is to be found. Ex: if directory structure is: /
usr/local/epilog/fe/lib/ let the install options be: -epilog=/usr/local/epilog
-epiloglib=/usr/local/epilog/fe/lib.

• -epilogbin=<directory>

Specifies the directory of where the Epilog binaries are to be found.

• -epiloginc=<directory>

Specifies the directory of where the epilog's included sources headers are to be found.

• -MPITRACE

Specifies the tracing option and generates event traces for MPI calls and routines that are ancestors
of MPI calls in the callstack. This option is useful for generating traces that are converted to the EPI-
LOG trace format. KOJAK's Expert automatic diagnosis tool needs traces with events that call MPI
routines. Do not use this option with the -TRACE option.

• -python[3][=<directory>]

Configure TAU with Python instrumentation support based on the python[3] detected in the environ-
ment. Alternatively provide a path to the location of a python interpreter to configure TAU to use
that install of Python.

• -pythoninc=<directory>

Specifies the location of the Python include directory. This is the directory where Python.h header
file is located. This option enables python bindings to be generated. The user should set the environ-
ment variable PYTHONPATH to <TAUROOT>/<ARCH>/lib/bindings-<options> to use a specific
version of the TAU Python bindings. By importing package pytau, a user can manually instrument
the source code and use the TAU API. On the other hand, by importing tau and using
tau.run(`<func>'), TAU can automatically generate instrumentation. See examples/python directory
for further information.

• -pythonlib=<directory>

Specifies the location of the Python lib directory. This is the directory where *.py and *.pyc files
(and config directory) are located. This option is mandatory for IBM when Python bindings are used.

Installation

8

For other systems, this option may not be specified (but -pythoninc=<directory> needs to be spe-
cified).

• -PROFILEMEMORY

Specifies tracking heap memory utilization for each instrumented function. When any function entry
takes place, a sample of the heap memory used is taken. This data is stored as user-defined event
data in profiles/traces.

• -PROFILECOMMUNICATORS

This option generates MPI information partitioned by communicators. TAU lists upto 8 ranks in
each communicator in the listing.

• -PROFILEHEADROOM

Specifies tracking memory available in the heap (as opposed to memory utilization tracking in -
PROFILEMEMORY). When any function entry takes place, a sample of the memory available
(headroom to grow) is taken. This data is stored as user-defined event data in profiles/traces. Please
refer to the examples/headroom/README file for a full explanation of these headroom options and
the C++/C/F90 API for evaluating the headroom.

• -COMPENSATE

Specifies online compensation of performance perturbation. When this option is used, TAU com-
putes its overhead and subtracts it from the profiles. It can be only used when profiling is chosen.
This option works with MULTIPLECOUNTERS as well, but while it is relevant for removing per-
turbation with wallclock time, it cannot accurately account for perturbation with hardware perform-
ance counts (e.g., L1 Data cache misses). See TAU Publication [Europar04] for further information
on this option.

• -PROFILECOUNTERS

Specifies use of hardware performance counters for profiling under IRIX using the SGI R10000 per-
fex counter access interface. The use of this option is deprecated in favor of the -pcl=<directory>
and -papi=<directory> options described above.

• -noex

Specifies that no exceptions be used while compiling the library. This is relevant for C++.

• -useropt=<options-list>

Specifies additional user options such as -g or -I. For multiple options, the options list should be en-
closed in a single quote. For example

%./configure -useropt='-g -I/usr/local/stl'

• -mrnet=<mrnet source root>

Base location of the MRnet package.

• -mrnetlib=<mrnet libraries>

Path to the MRnet libraries.On some cluster systems the MRnet libraries need to available to the
runtime system (ie. on the lustre filesystem.)

Installation

9

• -scorep=<scorep subsystem>

Path to the Score-P measurement system. Set the enviroment varible
SCOREP_PROFILING_FORMAT to TAU_SNAPHOT so that Score-P will output Tau Snapsot
profiles.

• -help

Lists all the available configure options and quits.

1.1.5. tau_setup
tau_setup is a GUI interface to the configure and installtau tools.

1.1.6. installtau script
To install multiple (typical) configurations of TAU at a site, you may use the script `installtau'. It takes
options similar to those described above. It invokes ./configure <opts>; make clean install; to create
multiple libraries that may be requested by the users at a site. The installtau script accepts the following
options:

% installtau -help

TAU Configuration Utility

Usage: installtau [OPTIONS]
where [OPTIONS] are:

-arch=<arch>
-fortran=<compiler>
-cc=<compiler>
-c++=<compiler>
-useropt=<options>
-pdt=<pdtdir>
-pdtcompdir=<compdir>
-pdt_c++=<C++ Compiler>
-papi=<papidir>
-vtf=<vtfdir>
-otf=<otfdir>
-dyninst=<dyninstdir>
-mpi
-mpiinc=<mpiincdir>
-mpilib=<mpilibdir>
-mpilibrary=<mpilibrary>
-perfinc=<directory>
-perflib=<directory>
-perflibrary=<library>
-mpi
-tag=<unique name>
-opari=<oparidir>
-epilog=<epilogdir>
-epiloginc=<absolute path to epilog include dir> (<epilog>/include default)
-epilogbin=<absolute path to epilog bin dir> (<epilog>/bin default)
-epiloglib=<absolute path to epilog lib dir> (<epilog>/lib default)
-prefix=<directory>
-exec-prefix=<directory>
-j=<num processes for parallel make> (just -j for full parallel)

**

Installation

10

These options are similar to the options used by the configure script.

1.1.7. upgradetau
This script is provided to rebuild all TAU configurations previously built in a different TAU source dir-
ectory. Give this command the location of a previous version of tau followed by any additional configur-
ations and it will rebuild tau with these same options.

1.1.8. tau_validate
This script will attempt to validate a tau installation. Its only argument is TAU's architecture directory.
These are some options:

• -v Verbose output

• --html Output results in HTML

• --build Only build

• --run Only run

Here is a simple example:

bash : ./tau_validate --html x86_64 &> results.html
tcsh : ./tau_validate --html x86_64 >& results.html

1.2. Platforms Supported
TAU has been tested on the following platforms:

• LINUX Clusters

On Linux based Intel x86 (32 and 64 bit) PC clusters, KAI/Intel's KCC, g++, egcs (GNU), pgCC
(PGI) [http://www.pgroup.com], FCC (Fujitsu) [http://www.fujitsu.com] and icpc/ecpc Intel
[http://www.intel.com] compilers have been tested. TAU also runs under IA-64, Opteron, ARM,
PowerPC, Alpha, Apple PowerMac, Sparc and other processors running Linux.

• Cray Compute Node Linux (XT5, XT6, XE6), X1, T3E, SV-1, XT3, and RedStorm

When using Cray CNL you need to configure tau with the option -arch=craycnlOn Cray T3E
systems, KAI KCC and Cray CC compilers have been tested with TAU. On Cray SV-1 and X1 sys-
tems, Cray CC compilers have been tested with TAU. On Cray XT3, and RedStorm systems, PGI
and GNU compilers have been tested with TAU. TAU has also been tested on Cray with KNLs and
CCE compilers.

• IBM

On IBM BlueGene (L/P/Q) SP2 and AIX systems. On IBM BG: IBM xlC, blrts_xlC, blrts_xlf90,
blrts_xlc, and gnu compilers work with TAU. SP2 and AIX: vKAI KCC, KAP/Pro, IBM xlC, xlc,
xlf90 and g++ compilers work with TAU. On IBM pSeries Linux, xlC, xlc, xlf90 and gnu compilers
work with TAU.

Installation

11

http://www.pgroup.com
http://www.pgroup.com
http://www.fujitsu.com
http://www.intel.com

• Sun Solaris

Sun compilers (CC, F90), KAI KCC, KAP/Pro and GNU g++ work with TAU.

• Apple OS X

On Apple OS X machines, c++ or g++ may be used to compile TAU. Also, IBM's xlf90, xlf and Ab-
soft Fortran 90 compilers for G4/G5 may be used with TAU.

• SGI

On IRIX 6.x based systems, including Indy, Power Challenge, Onyx, Onyx2 and Origin 200, 2000,
3000 Series, CC 7.2+, KAI [http://www.kai.com] KCC and g++ [http://www.gnu.org] compilers are
supported. On SGI Altix systems, Intel, and GNU compilers are supported.

• Accelerators

TAU performance data can be retrived from ATI, Nvidia or Intel GPUs (through OpenCL, or
CUDA). Intel Many Intergrated Cores (MIC) is supported in native execution.

• Intel

• HP HP-UX

On HP PA-RISC systems, aCC and g++ can be used.

• HP Alpha Tru64

On HP Alpha Tru64 machines, cxx and g++, and Guide compilers may be used with TAU.

• NEC SX series vector machines

On NEC SX-5 systems, NEC c++ may be used with TAU.

• On Hitachi machines, Hitachi KCC, g++ and Hitachi cc compilers may be used with TAU

• Fujitsu PRIMEPOWER

On Fujitsu Power machines, Sun and Fujitsu compilers may be used with TAU.

• Microsoft Window

On Windows, Microsoft Visual C++ 6.0 or higher and JDK 1.2+ compilers have been tested with
TAU

NOTE: TAU has been tested with JDK 1.2, 1.3, 1.4.x under Solaris, SGI, IBM, Linux, and MacOS X.

1.3. Software Requirements

• 1. Java v 1.5

TAU's GUI ParaProf and PerfExplorer require Java v1.4 or better in your path. If Java 1.4 is the only
version avaible, older version of ParaProf and PerfExplorer can be installed. To do so, simple run
either program with Java 1.4 in your path. You will guided through the installation process. ParaProf
does not require -jdk=<directory> option to be specified during configuration. (This option is used
for configuring TAU for analyzing Java applications.)

Installation

12

http://www.kai.com
http://www.gnu.org

	TAU Install Guide
	Table of Contents
	Chapter 1. Installation
	1.1. Installing TAU
	1.1.1. Know what options you will need
	1.1.2. Common configuration options
	1.1.2.1. Select compiler
	1.1.2.2. Using MPI
	1.1.2.3. OpenMP

	1.1.3. Configuring with external packages
	1.1.4. More configuration options
	1.1.5. tau_setup
	1.1.6. installtau script
	1.1.7. upgradetau
	1.1.8. tau_validate

	1.2. Platforms Supported
	1.3. Software Requirements

