Software Architecture

· During System Specification
· the concern is “what”, or “who”
· there (should be) no consideration of design
· During Architecture
· The concern shifts to “how”
· On systems that this is done well:
· Better understanding of pieces/parts and wholes
· Expanded/extended & reorganized new systesm
· Maintainable
· Testable
· It is the bridge to the actual implementation
· It’s a combination of skill and art
· The Architecture can be different in different parts of the project, or between iterations of a project
The “Macro” View

Module/Subsystem Approach

· Dividing the system into understandable/implementable pieces

· “Black Box” view

· Each unit is a functional piece in and of itself

· File management

· Error handling

· Flight model

· Free agent pool

· The “ins” and “outs” are well defined

· In: filename, error number, number of frames, collection of players to add

· Out: boolean flags, movement of plane in 3-space, reference to modified collection

· This leads to assignment of each box to a programmer or division

· If there needs to be a change, just “swap out” the black box

· Yeah, right

· Remeber “Why Number 1”: Things Change

· If you anticipate change during your design phase, then yes it becomes much easier to make those changes

· A Subsystem is usually a set of modules joined by some common functionality

· On a high-level design, subsystem interconnections are shown

Advantages

· Forces a well defined explanation of part of the problem

· The answer (hopefully) becomes understandable

· Execute parallel development

· I do my part (keeping track of the ins and outs)

· you do yours (also keeping track of the ins and outs)

· We’ll meet in the middle and everything will fit together perfectly and on time

The “Micro” View

Abstraction

· A relevant subset of reality

· What part of <item> do you need to know about and implement

· There was talk several years ago about “Software I.C.s”

· In hardware, an I.C. is Integrated Circuit

· It’s a part that does a very particular thing

· They’re easy to make, their interface is well defined

· But the theory is flawed

· What about “Chair”

· The attributes we care about depend upon the application we are building

· Number of legs

· Does it swivel

· Texture of the seat (leather, plastic)

· Model number

· Where in this room is it?

· Breakability

· Reflectivity

· So how can we sell an “software I.C.” called a “chair”

· The Standard Template Library tackles this idea somewhat

· Implements Strings, Arrays, Linked Lists, etc.

· Key to Architecture is finding and defining the “Key Abstractions” upon which the system is build

· The “Bank/ATM” problem

· The Usual suspects:

· Customer

· Waiting Line

· Teller

· Account

· Movement manager

· The missing abstraction

· Transaction

Class Responsibilities

· Think of what an object (class) is supposed to do, not how it will do it

· This is designing for interface, instead of implementation

· What functionality is beyond the scope of this class?

· What functionality should be handled by another class?

· Many authors describe this as a “contract”

· (In actuality, this is often discussed in terms of “first person”)

· What am I supposed to do when?

· I’ll pass to you…

· Responsibility is the collection of:

· Calling convention

· What is passed as parameters

· What are return values

· The setting of pre and post conditions

· The internal execution

· The calling of other objects

Information Hiding

· Other classes see only the interface I allow them to see

· How I actually get my work done is irrelevant to them

· Encourage the use of abstract base classes

· The actual implementation is left to a derived class

· A user has no idea about the implementation details

· A lot of “negative press” in C++ because of “slowness”

· It adds a level of indirection to the call

· But it really encourages a better design

· Especially for “Reason Number 1: Change”

· Example Design Pattern: Bridge

· Hides the implementation details of the object

· A Container

· Has interface:

· AddItem

· DeleteItem

· GetItem

· MergeWithOtherContainer

· All containers derive from this interface, but implement the functionality in their own way

· Linked List

· Array

· Binary Tree

· In a “Bridge” it contains a reference to an object that actually does the “dirty work”

· It’s then possible for a Linked List to become an Array, if it makes sense to do so, but the world doesn’t know this has happened

Class Interactions

· How do classes relate to one another?

· Is-A
· Class is derived from another

· Heirarchy

· Extends or Modifies the functionality of the base class

· The Classic Example

· Shape

· Draw ()

· Ellipse, Circle

· Rectangle, Square

· Again, it works really well with the Abstract Base Class idea

· Warning beware of confusing with the next one, Has-A

· Has-A
· Class contains a whole object, or a reference to it

· Big class becomes a composite or aggregate

· For Example:

· Airplane

· Collection of Wings

· Collection of Engines

· Collection of Aerodynamic properties

· Warning beware of confusing with IS-A

· An airplane IS-NOT an Aerodynamic property, or bigger wing (i.e. IS-A)

· But the temptation is there

· Poor Example:

· GUIObject

· GUIFile

· GUIRect

· x, y, w, h

· Draw ()

· Extent ()

· Merge (GUIRect &rRef)

· GUIHotSpot

· MouseOver ()

· MouseEvent ()

· DoAction ()

· What’s wrong here?

· A HotSpot is not a natural extension of a Rectangle

· Should be, contains a reference to a Shape

· Now you can have hotspots in the Shape of circle, polygon, anything

· Uses-A
· Class knows about another classes existence in the system, or more intimately, it’s interface

· Another class passed as a parameter

· This class may actually use the class

· May pass the class on to another class

· Example:

· PlayerGenerationAlgorythym

· League

· GeneratePlayers (PGA &pgaRef)

· Calls another’s method

· Instantiates a temporary (or permanent)

· The most common interaction

· Can lead to coupling that is unbreakable

· Want to use someone’s line-break mechanism

· Need to include their gui header file

· Need to include their math header file

· Which leads to other includes, and on and on

Guidelines for Interactions

· Think of the interface to the object, and not its implementation

· Try to write interfaces that don’t depend on implementation details (i.e. pass abstract base classes as parameters)

· Think of the GUI example

· HotSpot cared about (albeit only for it’s coordinates) Rectangle’s implementation. What if the implementation changed?

· Instead of x,y,w,h it became Pt1 and Pt2

· Now HotSpot’s code will have to be rewritten as well 

For your projects:

· Tempting to skip altogether and use “Uses-A”

· Think about only using an interface approach

