Again, what Is a Design Pattern?

· A core solution to a recurring problem

General structure of a design pattern solution
Four Essential Elements

· Pattern Name

· an easy to understand ‘label’ to provide a common vocabulary

· Problem

· explanation of when to apply the pattern

· Solution

· general arrangement of elements (classes and objects)

· Consequences

· results and trade-offs of the particular solution
Behavioral Design Patterns

· Concerned with algorithms and the assignment of responsibilities between objects

· The communication methods between them

· Encapsulating behavior in an object and delegating requests to it

· The conventional way

· GetName ();

· Design Pattern way

· Strategy

Strategy

· Pattern Name

· Strategy

· Problem (when to use this pattern)

· You need different variants of an algorithm

· An algorithm uses data clients shouldn’t be exposed to

· Many classes are similar, differing only in their behavior

· (allow algorithm to vary independent of clients)

Solution 1

· using C’s “typedef” for functions

typedef void eogFunction (Player *pPtrs);

extern void hhcoEOGFunc (Player *pPtrs);

void

blah (eogFunction sF, Player *pPtrs)

{

   (*sF) (pPtrs);
// call whatever sort is passed in

}

void

main ()

{

   const Int32 NUM_PLAYERS = 4;

   Players       thePlayers [NUM_PLAYERS];

   // assume thePlayers is initialized somehow here

   blah (hhcoEOGFunc, thePlayers);

}

· If hhcoEOGFunc () needs more information to determine what to do, they will have to global variables (usually a poor design decision)

· If the user decides to play by alternative rules (via the setup dialog box), how will you remember which function to call?

switch (eogType)

{

   case NORMAL:

      blah (hhcoEOGFunc);

      break;

   case QUICK:

      blah (quickEOGFunc);

      break;

   case DEBUG:

      blah (debugEOGFunc);

      break;

}

Solution 3

· Create a base class with an Execute () function

· Client keeps a reference to it
· It can be changed as needed, and client doesn’t know what its calling, only that it is calling something
· [image: image1.png]Contont Has s | Strategy

Execute)

Is A

Strategy A Strategy B Strategy C

Execute() Execute() Execute()




Data can be modified for a particular object’s functionality, by calling that objects member functions only

Key Elements of solution

· Strategy is Abstract (or at least has 1 virtual function (Execute ())

· Execute () is passed the parameters it needs, or is passed a reference to an object it can query for values

· EOGFunction objects ARE objects and can be treated as such

class EOGFunction

{

public:

   virtual void   Sort (Players *pPtrs);

};

class hhcoEOGFunc : public EOGFunction

{

public:

   virtual void   Check (pPtrs);

};

class quickEOGFunc : public EOGFunction

{

public:

   virtual void   Check (pPtrs);

   void              SomeInitFunc (int, int, int);

};

Consequences

· Advantages
· Can create FAMILIES of related algorithms. Inheritance can be used to share in functionality (i.e. You are making CLASSES, not FUNCTIONS, so they can be treated just like any other class. Passed as parameters, instantiated and destructed, etc.)
· You can use them as the ‘working half’ of another class, making the “front end” class easier to understand
· Can get rid of if-then-else and switch statements to control behavior
· Gives the client choice in which implementation to use, dynamically
· Drawbacks
· Client must be aware of some (or all) of the strategies available in order to use them
· Overhead in instantiating Strategy’s variables
· If this is a derived class, and a bunch of other stuff is initialized that this particular implementation doesn’t need, time and resources have been wasted
· Increases the number of objects in a system
Summary
· Use Stratgey to encapsulate an algorithm

· Clients keep a reference to a base class, so they don’t need to know the actual form of implementation

· This allows coding for change, because

· You can change your mind about what functionality should be executed, during execution of the program

· You can change your mind about what parameters are important when executing the function

