What Is a Design Pattern?

· A core solution to a recurring problem

Four Essential Elements

· Pattern Name

· an easy to understand ‘label’ to provide a common vocabulary

· Problem

· explanation of when to apply the pattern

· Solution

· general arrangement of elements (classes and objects)

· Consequences

· results and trade-offs of the particular solution
Creational Design Patterns

· Ways of instantiating objects

· The conventional way

· New classname;

· Design Pattern way

· Abstract Factory

· Builder

· Factory Method

· Prototype

· Singleton

Singleton

· Pattern Name

· Singleton

· Problem (when to use this pattern)

· When you need to ensure a class only has one instance, and provide a global point to access it

· i.e. NOT a global variable!

· When the sole instance should be sub-classed, and doing so does not require modification of existing code

Solution 1

· The passive/pleading approach

Graphics.h looks like the following:

class Graphics

{

public:

 Graphics ();

 ~Graphics ();

};

// in a comment, place the following:

// make sure to instantiate only one of these!

extern Graphics theGraphics;

· Of course, there can be many Graphics instantiated, the compiler can’t stop it.

· You can’t be sure someone will actually read your comments

Solution 2

· The “I’ll force them myself” approach

Graphics.h looks like this:

class Graphics

{

public:

 static void DrawRect ();

 static void DrawCircle ();

 static void DrawBitmap ();

};

and code like this:

Graphics::DrawRect ();

· How can you subclass zoo?

class WindowsGraphics : public Graphics

{

public:

 static void DrawRect (); // error!

 static void DrawCircle (); // error!

 static void DrawBitmap (); // error!

};

Solution 3

· Make the constructor inaccessible

· Make a member function that returns an instance pointer
[image: image1.png]

Graphics.h looks like this:

class Graphics

{

public:

 static Graphics *MakeInstance ();

protected:

 Graphics (); // the world can’t make them at will

 static Graphics *instance;

};

Graphics.cpp looks like this:

Graphics *Graphics::instance = 0 ;

Graphics *

Graphics::MakeInstance ()

{

 if (NULL == instance)

 instance = new Graphics;

 return instance;

}

code looks like this,

for every place that wants to use Graphics:

Graphics *gPtr = Graphics::MakeInstance ();

One Ramification

· The root class will have to know about all derived classes
Graphics

Graphics::MakeInstance ()

{

 switch (someValue)

 {

 case WINDOWS:

 instance = new WIndowsGraphics;

 break;

 default:

 instance = new Graphics;

 break;

 }

 return instance;

}
Consequences

· The Singleton class can control how, when and what actually gets instantiated

· It can decide to not return the pointer (I don’t know why, but it could)

· It’s easy to subclass when needed

· Allows for a change of mind and instantiation of many instances easily

· Ooop. It would be handy to have many of them

· Allows for polymorphism, where all static member functionality does not
· Can also be used to limit the number (greater than 1) of instantiated objects

· Keeping track of a ‘registry’ of available sub-classes can get nutty

· Since instance is a pointer, no object is actually created until MakeInstance () is called
Summary
· Use Singleton to guarantee a single instance of a class

· It defines a well-known access point for all clients

· It allows simple subclassing (without clients having to modifying their code)

· This allows coding for change, because

· You can change your mind about it being a single object

· You can change your mind about what object is actually instantiated

