Life Cycles

· Chapter 7 in Rapid Development
· Every project has one
· It encompasses the entire timeline from the concept of version 1.0 to release of documentation for version 12.7a, patch 2f
· What steps to follow, and how you know when to move on to the next step
· There are many different approaches. There are many hybrids.
· The key is picking one that is appropriate

· Then, following through
Code & Fix

· 1. Rough idea of project

· 2. Start coding and reworking

· 3. Done, eventually

· Good Aspects

· shows results immediately

· good for showing marketing and management

· Bad Aspects

· shows results immediately

· “click-boom” syndrome

· Pat Cook’s “Law of Demo failures”

· Pro Pilot

· Director in office at 9:30

· Leaves at 9:40 (nav aid dialog box)

· Artist comes in at 4:15 “Here’s your dialog boxes”

· What do you mean “plural”?

· How late did this project ship?

The Waterfall

· “Official” step-by-step with sign offs at each stage of progression

· 1. Software Concept

· 2. Requirements Analysis

· push this button, what happens

· 3. Architectural Design

· what code does what jobs

· Data-flow diagrams

· in “c”, functional decomposition

· in “c++” class organization, responsibilities

· 4. Detailed Design

· class member functions and variables

· 5. Coding and debugging – the fun stuff

· 6. System testing

· Unit testing

· System integration testing

· Good Aspects

· If staff is new or inexperienced

· Bug fix or patch revision

· Bad Aspects

· One step reveals fault in previous step

· Worse Aspects

· One step reveals fault in step several back

· Bowlervision

· What if a lane is shut down when you try to send 10 Pin bowling to it?

· D’oh! Didn’t think of that

· Based on hope and optimism

Iterative

· 1. Think a little

· 2. Design a little

· 3. Build a little

· 4. Test a little

· “Risk Based”

· Evaluate most difficult aspect, and tackle that first

· If appropriate build prototypes to test the riskiest architectural decisions first.

· “Proof of concepts”, so:

· Learn what worked

· Learn what didn’t and had to be kluged

· Throw them away

· Very tempting (especially to management and marketing) to keep them since they are so close to being done, but don’t

· Re-implement a new set of classes with the knowledge gained

· Kid Pilot

· Think – take existing game and provide a whole new user interface understandable to kids

· Design – dialog box centralizing system

· Build – pick the most complicated data path and do it first (user sign in)

· Test – Make sure it works, especially for boundary conditions (no name, duplicate name)

Why pick an approach?

· 1. Things Change
· Try to anticipate changes in the product at every step & apply mods (testing, docs, requirements, everything)

· 2. Teams need coordination
· Easier if everyone is on the same page

· Even if everyone doesn’t agree on style, the process must be maintained

· 3. Complexity
· Can be managed through careful use of discipline.

· It can make complexity manageable if you have a plan

For your projects:

· Tempting to use “Code & Fix”

· For MY sake, try another just for the sheer experience of it

· Some day, when you’re in your living room coding in your underwear, it won’t matter. So take the time now.

· Look in the book for a discussion of some of the other approaches

