
CIS 422, W01 Project 1: Map That Site 1 of 4

Project 1: Map That Site
Version 1.0 of 1/11/01 — Subject to Revision

Due Dates
The project concept document is due at the beginning of class on Thursday, 1/18/01.
The group will present an overview of the document in class on the same day.
The project is due Monday, 2/5/01, 10:00 PM.

Introduction
This is the first of two projects that you will complete as a team in CIS 422. The primary purposes
of this first project are to give you some practice in working as a team to produce a complete
software system with a deadline. You will also get some practice using existing components and
tools to accelerate your development by minimizing the amount of new code that you must write.

I have attempted to make the first project technically easy, so most of the issues you will face will
be non-technical — how to divide up and coordinate the work, how to work together and not hate
each other, how to avoid catastrophe if one person gets sick or flakes out, etc. The project is small,
but the deadline is tight.

Web Mapping

Basic requirements
You will construct a tool for building graphical maps of web sites represented as directed graphs in
which documents are nodes and links are directed edges. The input of your tool is a web site. The
output of your tool is a graphical depiction of the web site, in a form that will be useful to a
maintainer of that site. At a minimum, the graphical representation of the site should

• Distinguish html files from other web-accessible documents

• Display all links from html files to other documents

• Distinguish relative links from absolute links

• Distinguish external links (those to documents outside the site being mapped) from local
links. Broken local links should be prominently displayed.

When you are done, your project should be a high-quality freeware tool that can be distributed in
source form over the internet. It must include full documentation, including installation and
configuration instructions and examples.

Other requirements

This handout is not a complete statement of requirements for your product, because it is your job to
complete the requirements and design decisions. There are many open issues for your to resolve.
Here are a few things to think about:

• What platforms will your product run on?

• Will you map web structures that are built on-the-fly (e.g., by CGI scripts), or only static
document structures?

• Will your displays be static (e.g., a GIF graphic) or dynamic (e.g., using a Java graph-
editing applet)?

• What is the capacity of your tool? Can it display large and complex web sites in a useful
manner, or will they be depicted as an unintelligible tangle?

CIS 422, W01 Project 1: Map That Site 2 of 4

• Can the user customize the display your product produces? Must the customization be
reapplied each time the tool is run?

These issues barely scratch the surface. The bottom line is: Build a tool that people will want to
use, and that they will be able to use easily. I predict that you will find deciding what to build a
good deal harder than building it. You should identify objectives, alternatives, and constraints for
your project, as well as you are able, and begin to identify risks and the ways you will obtain more
information to assess and control those risks.

Even though in this assignment you are being given some aspects of the solution in advance, your
requirements section should start with a clear and concise one-paragraph problem statement that
explains what is the fundamental problem that your system will solve, independent of the solution.

Distributing the Work Within Your Team
You must assign responsibilities to team members. It is not a good strategy to simply share all
responsibilities. Although all team members should contribute to some extent to every aspect of the
project, it is essential to have one person with central responsibility for each major part of the task.
Among the responsibilities to be assigned include:

• Manager. This person is primarily responsible for administration of the project
schedule.

• Quality control. This person is responsible for administering the quality plan.

• System architect. This person is responsible for the overall architectural design of the
system.

• Technical documentation. This person is responsible for documents meant primarily to
be read by software developers and maintainers.

• User documentation. This person is responsible for documents meant primarily to be
read by people other than software developers, such as end users.

• User interface. This person is responsible for human factors and ensuring a good “user
experience.”

• Configuration control and product build. This person is responsible for managing the
construction of software products, including coordination of multiple developers.

The mapping of people to roles is not necessarily one-to-one. For example, it is common in small
teams for the user documentation and user interface roles to be combined. You may wish to
identify additional roles. You may also want to spell out responsibilities more clearly, e.g., shall
the user documentation or technical documentation person be in charge of the final presentation?

The person with ultimate responsibility for one of these functions does not have to do the whole
job alone. For example, the system architect does not design the whole system alone, and the
product build manager does not do all the implementation; they are managers of different aspects of
the project.

Risk control is an important part of project management. One of the largest risks to any software
project is the loss of a key person. Therefore, while it is important that a single person be
ultimately responsible for each role, it is a very good idea to assign a “backup” for each role also.
The backup person assigns the main person responsible for a role, and should be knowledgeable
enough about that role to take over responsibility if the primary person is lost or unable to fulfill his
responsibility. The backup role is also an opportunity for “cross-training” in preparation to take a
lead role in a later project.

The Mini SRS / SDS / Project Plan
The Mini SRS / SDS / Project Plan document is a small combination of elements that might appear
in several different documents in a larger project: A proposal, a feasibility study, a project plan, a

CIS 422, W01 Project 1: Map That Site 3 of 4

requirements statement, a specification and/or external design, and an architectural design
overview. This document should convince management, a client, or an investor that this project is
worth funding. The quality and content of the document will communicate the likelihood of
success of the project if it were to be approved.

Your Mini SRS / SDS / Project Plan should include at least the following:

• A clear and concise one-paragraph problem statement

• A description of the product you intend to build. This should describe the externally visible
behavior of your product as precisely as possible, but it should be concise and clear.

• An overall design description. What are the major parts of your system, and how do they fit
together? What are the main organizing principles that you used to break your system into
parts?

• A management plan. How is your team organized? How is the work divided among team
members? How does your team make decisions? How do you check progress against your
plan? How will your team meet and how will it communicate?

• A build plan. What is the sequence of steps you will take to build the system? When will
each “build” of the system take place.

• A rationale for the overall design and build plan. Why have you broken the system into these
parts, and why have you chosen these particular steps to build the system?

Each group will prepare an in-class presentation that covers each of these six topics. The
presentation, as with the document, should be intended to convince the audience that your project
is worth their support. In both the document and the presentation, solid ideas and good content
will go much further than e-marketing mumbo jumbo.

Project Management
The group should keep a record of meetings. This record should briefly note the agenda of the
meeting, the date and time, who showed up (and who showed up on time), and what was
accomplished during the meeting. It’s a good idea to set ending times for meetings to, to help you
get through the agenda items.

The group should also keep a record of each of the tasks that are assigned to each group member.
This should be in the form of a spreadsheet or table with the following columns: The task,
assigned to whom, when assigned, when due, when completed, who did it, who signed off on it.

Reuse Guidelines
The cheapest, most dependable and least risky software components are those you don’t build.
You can find graph layout and display components, web spiders, and other nifty things freely
available on the web. I strongly suggest you take advantage of them. On the other hand, you must
do so in a way that is legal and ethical, and while I won’t set an upper bound on how much of your
project code can be reused, you must certainly provide some “value added” and not merely
repackage software available elsewhere.

You may not, however, consult with students or re-use code written for previous 422/522’s.

To be legal, you must obey all copyright restrictions in software you use. Beware that a document
or file need not contain an explicit copyright statement to be protected by copyright law; you have a
right to copy or reuse something only if the author has specifically granted you that right. I am
absolutely firm on this, and will not hesitate to fail an individual or a whole team for unethical
conduct as regards intellectual property. If you have any questions about what you may or may not
do, ask me.

CIS 422, W01 Project 1: Map That Site 4 of 4

Your product must be freely distributable under the Gnu copyleft agreement. In some cases this
may mean that you cannot make use of some software which is otherwise perfect. In other cases it
may mean that your product will depend on other software packages that you cannot directly
distribute. (Be careful of such dependencies, especially on commercial software, as they can make
your product more difficult to install and use.)

To be ethical, you must clearly document the original source of all software and other documents.
Every source file must contain header comments clearly identifying its author(s). Derivative work
(e.g., code written by you but adapted from a book) must clearly cite each source used in its
creation. Falsely identifying yourself as the author of something that is actually someone else’s
work, or failing to properly cite a reference on which you based part of your work, is plagiarism
and will be dealt with very severely.

It is entirely possible to follow these guidelines, making only legal and ethical use of other people's
work, and still to avoid a lot of design and coding that would be required if you built this project
"from scratch." Sometimes you will find that, even if you cannot directly reuse code (e.g., because
it is written in a different programming language), you can still reuse design. You should properly
cite the sources of reused design as well as reused code.

Approximate Schedule
Week 1
Before you are assigned your team, start working on the project on your own. Design work and
brainstorms are usually more productive if group members first do some thinking on their own,
without the inertia of groupthink to pull everyone down one or two paths. Work on the issues that
will be in your product concept document due at the end of week 2. Browse the web looking for
products (freeware, shareware, and commercial) that do something related to the web mapper.
What is the competition? Are there “market niches” for your product? Look also for useful
components that you can reuse.

Week 2
You are going to need at least a couple of intense team meetings to agree on your product concept,
in addition to more individual research. Think seriously about the feasibility issues: How is your
team going to divide up the work and tackle the problems? Produce the product concept document
and present it to the class on Friday.

Week 3
Delivery is less than two weeks away, and deadlines that looked easy before are starting to get
scary. Don’t panic. Do make a plan that includes early production of a running prototype (no
matter how lame, it just needs to work) and frequent revisions. Make contingency plans for the
failure of anything that isn’t already running. You really, really want a running prototype before
class Friday of this week, so that you are ready to discuss any remaining problems.

Week 4
It’s crunch time. You’re on a daily build-and-smoke schedule now. You have an agreed meeting
time each day for putting together everyone’s pieces and testing the current system version. The
build-master is sweating bullets, but she has it under control so that, if it all blows up on Monday,
the Sunday build is still good to go. You schedule intense reviews of documents and outstanding
design issues. On Monday you declare victory and turn in your project.

Week 5
There’s still one more chore. You need to present and/or demonstrate your project in clas. You will
also participate in the class discussion. How did your approach to the project differ from Bob’s
group? Did you encounter some of the same problems? What seemed to work, and what didn’t?

Acknowledgments
This assignment is modeled after an assignment created by Professor Michal Young for a previous
offering of this course.

