
Slide 1

CIS 422/522
Software Methodologies

Final Overview

A. Hornof – Fall, 2000

Slide 2

The motivation for the class

l "Software is coming onto center stage as the key
empowering technology of the Information Age.
Without software, one cannot enter or exit the
information superhighway. Without software, a
Cray supercomputer is a rather expensive loveseat
and a Powerbook laptop is a rather expensive
paperweight. If their software is bungled, our cars,
radiation therapy machines, bank accounts--and we
ourselves--can get into big trouble.”
Barry Boehm, in Software Engineering, edited by Dorfman and Thayer, 1997, IEEE Press.

Slide 3

The point of the class

l Learn how to build software systems that are
adaptable, robust, reliable, and usable.

l Learn how to work effectively on a team.

l Learn and apply structured approaches for
analyzing systems requirements, specifying
software design, and managing the development
process.

Slide 4

From the Group Dynamics lecture...

What is a Great Team?

l Diverse Skills
• People skills, communication and writing skills, design skills,

implementation skills and knowledge

l Coherence
• Ability to build and maintain a shared vision

• Shared expectations

l Mutual Respect and Responsibility
• You don’t have to like each other, but you need to trust and

respect each other — and to earn your teammates trust and
respect

• Conflict can be healthy and productive, but it must be carefully
managed.

Slide 5

Group Dynamics Question

l (22.5) Question asked earlier in the term: Explain
why keeping all members of a group informed
about progress and technical decisions in a
project can improve group cohesiveness.

l Answer: There is more buy-in, better motivation,
everyone sees the big picture, you can be
convinced that others are working.

l New question: What are some specific examples
of how communication helped in your projects?

Slide 6

Project Management Question

l What is a specific example, from one of the
projects, of how you could see the benefits of
project management? The management included
assigning roles and responsibilities, devising a
work breakdown with milestones, setting up
monitoring and reporting, and analyzing risks.

Slide 7

From the Software Processes lecture...

What are the activities involved?

l General activities are requirements engineering,
design, implementation, testing, and evolution.
• Requirements engineering develops a requirements specification

• Design transforms the requirements specification into a clear
design specification that can be handed to programmers

• Implementation transforms the design specification into an
executable program

• Validation checks to make sure that the system meets its
specifications and the users’ needs

• Evolution modifies the system after it is in use

From Ian Sommerville 2000, Software Engineering, 6th edition. Modified by A.Hornof, 10/1/00 Slide 8

From the Software Processes lecture...

RAD communication structure

l Peer-to-peer communication between users and developers

l Intense user involvement (and commitment) in negotiating
requirements and testing prototypes

l Emphasis on rapid delivery and change, not on preserving
information for a longer period. Hence, reduced paper documentation

• Active, intense user participation among fixed personnel (including user
representatives) reduces need for documents as orientation and communication.

Conventional RAD

User organization Developers User organization Developers

Michal Young, 1988, adapted by A.Hornof, 2000.

Slide 9

From the lecture on

Requirements Engineering Processes

l The processes used for requirements engineering
vary widely depending on the application
domain, the people involved and the organisation
developing the requirements

l However, there are a number of generic activities
common to all processes
• Requirements elicitation

• Requirements analysis

• Requirements validation

• Requirements management

Slide 10

From the Requirements Engineering lecture...

ATM viewpoints

l Bank customers

l Representatives of other banks

l Hardware and software maintenance engineers

l Marketing department

l Bank managers and counter staff

l Database administrators and security staff

l Communications engineers

l Personnel department

Slide 11

From the lecture on

Software Requirements

l Requirements set out what the system should do and define
constraints on its operation and implementation

l User requirements are high-level statements of what the system
should do, from the user’s perspective

l System requirements communicate the system services and
constraints

• Functional requirements set out the services the system
should provide

• Non-functional requirements constrain the system being
developed or the development process

l A software requirements document or specification is an
agreed statement of the system requirements

Slide 12

From the Software Requirements lecture...

Detailed user requirement

3.5.1 Adding nodes to a design
3.5.1.1 The editor shall provide a f acility for users to add nodes of a specified type to their

design.

3.5.1.2 The sequence of actions to add a node should be as follows:

1. The user should select the type of node to be added.

2. The user should move the cursor to the approximate node position in the diagram and
indicate that the node symbol should be added at that point.

3. The user should then drag the node symbol to its final position.

Rationale: The user is the best person to decide where to position a node on the diagram.
This approach gives the user direct control over node type selection and positioning.

Specification: ECLIPSE/WS/Tools/DE/FS. Section 3.5.1

Slide 13

From the Software Architecture lecture...

High-level activities in architectural design

l Design the high-level system structure.
• Decompose the system into the principal subsystems, and

identify the communication and data flow that would be
necessary among the subsystems.

l Design the high-level control model.
• Establish a model of the control relationships among the various

subsystems.

l Further decompose each subsystem.
• Perform modular decomposition, and design the architecture of

each subsystem.

Slide 14

From the OO System Development lecture...

An object-oriented design process

l Figure out the use of the system

l Design the system architecture

l Identify the principal system objects

l Develop interaction and state-transition models

l Specify object interfaces

l (but not necessarily in that order)

Slide 15

From the OO System Development lecture...

Start with the problem statement

Weather Station
A weather station is a package of software controlled instruments
which collects data, performs some data processing and transmits
this data for further processing. The instruments include air and
ground thermometers, an anemometer, a wind vane, a barometer
and a rain gauge. Data is collected every five minutes.

When a command is issued to transmit the weather data, the
weather station processes and summarises the collected data. The
summarised data is transmitted to the mapping computer when a
request is received.

Slide 16

From the OO System Development lecture...

Design the object classes

identifier

reportWeather ()
calibrate (instruments)
test ()
startup (instruments)
shutdown (instruments)

WeatherStation

test ()
calibrate ()

Ground
thermometer

temperature

Anemometer

windSpeed
windDirection

test ()

Barometer

pressure
height

test ()
calibrate ()

WeatherData

airTemperatures
groundTemperatures
windSpeeds
windDirections
pressures
rainfall

collect ()
summarise ()

Slide 17

From the User Interface Design lecture...

User-system interaction

l The question that must be answered before the
UI design can start: What is the user’s task?

l Two problems must be addressed in interactive
systems design
• How should information from the user be provided to the

computer system?

• How should information from the computer system be
presented to the user?

l These problems persist regardless of the interface
style.

Slide 18

From the User Interface Design lecture...

Model-view-controller

Model state

Model methods

Controller state

Controller methods

View state

View methods

User inputs
view modification

messages

Model editsModel queries
and updates

• MVC design cleanly accomodates different interfaces to the same data

• View and controller are often combined into a single UI delegate

Slide 19

The point of the class

l Learn how to build software systems that are
adaptable, robust, reliable, and usable.

l Learn how to work effectively on a team.

l Learn and apply structured approaches for
analyzing systems requirements, specifying
software design, and managing the development
process.

Slide 20

Don’t Build This

The Tacoma Narrows Bridge collapsed in 1940
because it was poorly designed. (UPI Photo)

http://www.me.utexas.edu/~uer/papers/pics/figB2_jk.html

Slide 21

Build This

http://vrc.ucr.edu/tutorials/gothic/reims/reims.html

http://vrc.ucr.edu/tutorials/gothic/reims/fi/00000000.htm

Reims Cathedral (13th century)

http://www2.art.utah.edu/cathedral/reims.html

