
Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 1

Overview

♦ What is modeling?

♦ What is UML?

♦ Use case diagrams

♦ Class diagrams

♦ Sequence diagrams

♦ Activity diagrams

♦ Summary

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 2

Solution domain

Application domain

Order

Item

Ship via

Visual Modeling is
modeling
using graphical notations

What is Modeling?

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 3

Use Case Analysis is a technique to capture
application process from user s perspective

Visual Modeling Captures
Application domain processes and objects

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 4

Modeling is a Communication Tool

Use modeling to capture application objects and logic

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 5

Modeling
Manages Complexity

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 6

User Interface
(Visual Basic,

Java)
Business Logic

(C++, Java)

Database Server
(C++ & SQL)

Model your system
independent of

implementation language

Visual Modeling can use and define
Software Architecture and Design Patterns

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 7

Multiple Systems

Modeling
Promotes Reuse

Reusable
Components

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 8

What is the UML?

♦ UML stands for Unified Modeling Language

♦ The UML combines the best of the best from
w Data Modeling concepts (Entity Relationship Diagrams)

w Application Modeling (work flow)

w Object Modeling

w Component Modeling

♦ The UML is the standard language for visualizing, specifying,
constructing, and documenting the artifacts of a software
system

♦ Works best for OOD, OOP

♦ It can be used with all processes, throughout the development
life cycle, and across different implementation technologies

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 9

Software Lifecycle Activities

Application
Domain
Objects

SubSystems

class...
class...
class...

Implementat
ion Domain
Objects

Source
Code

Test
Cases

?

Expressed in
Terms Of

Structured
By

Implemente
d

 By YYRealized By XX Verified
By ZZ

System
Design

Object
Design

Implemen-
tation

Testing

class....?

Requirements
Elicitation

Use Case
Model

Requirements
Analysis

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 10

XProgramming Lifecycle Activities

Application
Domain
Objects

SubSystems

class...
class...
class...

Implementat
ion Domain
Objects

Source
Code

Test
Cases

?

Expressed in
Terms Of

Structured
By

Implemente
d

 By XXRealized By XX Tested
By XX

System
Design

Object
Design

Implemen-
tation

Testing

class....?

Requirements
Elicitation

Use Case
Model

Requirements
Analysis

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 11

Inception Elaboration Construction Transition

Iteration 1 Iteration 2 Iteration 3

Iteration Planning
Rqmts Capture

Analysis & Design
Implementation

 Test
Prepare Release

XTREME programming

Rational Unified Software Life Cycle

Use cases Use cases, class diagrams, seqvence diagrams, state diagrams, activity diagrams

Instance diagrams

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 12

Systems, Models, and Views

♦ A model is an abstraction describing system or a subset of a
system

♦ A view depicts selected aspects of a model

♦ A notation is a set of graphical or textual rules for representing
views

♦ Views and models of a single system may overlap each other

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 13

Systems, Models, and Views

System
View 1

Model 2
View 2

View 3

Model 1

Airplane

 Flightsimulator

Scale Model

Blueprints

Electrical
Wiring

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 14

Models, Views, and Systems (UML)

View
**

depicted bydescribed by

System Model

flightSimulator:ModelscaleModel:Model

blueprints:View

airplane:System

fuelSystem:View electricalWiring:View

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 15

Concepts and Phenomena

♦ Phenomenon: An object in the world of a domain as you
perceive it, for example:
w The lecture you are attending

w My black watch

♦ Concept: Describes the properties of phenomena that are
common, for example:
w Lectures on software engineering

w Black watches

♦ A concept is a 3-tuple:
w Its Name distinguishes it from other concepts.

w Its Purpose are the properties that determine if a phenomenon is a
member of a concept.

w Its Members are the phenomena which are part of the concept.

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 16

♦ Abstraction: Classification of phenomena into concepts

♦ Modeling: Development of abstractions to answer specific
questions about a set of phenomena while ignoring irrelevant
details.

MembersName

Clock

Purpose

A device that
measures time.

Concepts and Phenomena

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 17

Concepts In Software: Type and Instance

♦ Type:
w An abstraction in the context of programming languages
w Name: int, Purpose: integral number, Members: 0, -1, 1, 2,
-2, . . .

♦ Instance:
w Member of a specific type

♦ The type of a variable represents all possible instances the
variable can take.

♦ The relationship between “type” and “instance” is similar to
that of “concept” and “phenomenon.”

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 18

Class

♦ Class:
w An abstraction in the context of object-oriented languages

♦ Like an abstract data type, a class encapsulates both state
(variables) and behavior (methods)

♦ Unlike abstract data types, classes can be defined in terms of
other classes using inheritance

Watch

time
date

CalculatorWatch
SetDate(d)

EnterCalcMode()
InputNumber(n)

calculatorState

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 19

Object-Oriented Modeling

UML Package

Application Domain Solution Domain
Application Domain Model System Model

Aircraft
TrafficController

FlightPlan Airport

MapDisplay

FlightPlanDatabase

SummaryDisplay

TrafficControl

TrafficControl

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 20

Application and Solution Domain

♦ Application Domain (Requirements Analysis):
w The environment in which the system is operating

♦ Solution Domain (System Design, Object Design):
w The available technologies to build the system

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 21

What is UML?

♦ UML (Unified Modeling Language)
w A standard for modeling object-oriented software.

w Resulted from the convergence of notations from three leading
object-oriented methods:

t OMT (James Rumbaugh)
t OOSE (Ivar Jacobson)

t Booch (Grady Booch)

♦ Reference: “The Unified Modeling Language User Guide”,
Addison Wesley, 1999.

♦ Supported by several CASE tools
w Rational ROSE

w Together/J

w ...

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 22

UML and This Course

♦ You can model 80% of most problems by using about 20%
UML

♦ In this course, we teach you those 20%

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 23

UML First Pass

♦ Use case diagrams
w Describe the functional behavior of the system as seen by the user.

♦ Class diagrams
w Describe the static structure of the system: Objects, Attributes, and

Associations.

♦ Sequence diagrams
w Describe the dynamic behavior between actors and the system and

between objects of the system.

♦ Statechart diagrams
w Describe the dynamic behavior of an individual object as a finite state

machine.

♦ Activity diagrams
w Model the dynamic behavior of a system, in particular the workflow,

i.e. a flowchart.

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 24

UML First Pass: Use Case Diagrams

WatchUser WatchRepairPerson

ReadTime

SetTime

ChangeBattery

Actor

Use case

Package
SimpleWatch

Use case diagrams represent the functionality of the system
from user’s point of view

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 25

UML First Pass: Class Diagrams

Battery
load()

1

2

Time
now()

PushButton
state
push()
release()

1

1

1

1

1

2

blinkIdx
blinkSeconds()
blinkMinutes()
blinkHours()
stopBlinking()
referesh()

LCDDisplay

SimpleWatch

Class

AssociationMultiplicity

Attributes

Operations

Class diagrams represent the structure of the system

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 26

UML First Pass: Sequence Diagram

Object

Message
Activation

Sequence diagrams represent the behavior as interactions

blinkHours()

blinkMinutes()

incrementMinutes()

refresh()

commitNewTime()

stopBlinking()

pressButton1()

pressButton2()

pressButtons1And2()

pressButton1()

:WatchUser
:Time:LCDDisplay:SimpleWatch

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 27

button1&2Pressed

button1&2Pressed

button1Pressed

button2Pressed

button2Pressed

button2Pressed

button1Pressed

button1&2Pressed Increment
Minutes

Increment
Hours

Blink
Hours

Blink
Seconds

Blink
Minutes

Increment
Seconds

Stop
Blinking

UML First Pass: Statechart Diagrams

StateInitial state

Final state

Transition

Event

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 28

Other UML Notations

UML provide other notations that we will be introduced in
subsequent lectures, as needed.

♦ Implementation diagrams
w Component diagrams

w Deployment diagrams

w Introduced in lecture on System Design

♦ Object Constraint Language (OCL)
w Introduced in lecture on Object Design

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 29

UML Core Conventions

♦ Rectangles are classes or instances

♦ Ovals are functions or use cases

♦ Instances are denoted with an underlined names
w myWatch:SimpleWatch

w Joe:Firefighter

♦ Types are denoted with nonunderlined names
w SimpleWatch

w Firefighter

♦ Diagrams are graphs
w Nodes are entities

w Arcs are relationships between entities

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 30

UML Second Pass: Use Case Diagrams

Used during requirements elicitation to
represent external behavior

♦ Actors represent roles, that is, a type
of user of the system

♦ Use cases represent a sequence of
interaction for a type of functionality

♦ The use case model is the set of all
use cases. It is a complete description
of the functionality of the system and
its environment

Passenger

PurchaseTicket

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 31

Actors

♦ An actor models an external entity which
communicates with the system:
w User

w External system

w Physical environment

♦ An actor has a unique name and an optional
description.

♦ Examples:
w Passenger: A person in the train

w GPS satellite: Provides the system with GPS
coordinates

Passenger

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 32

Use Case

A use case represents a class of
functionality provided by the system as
an event flow.

A use case consists of:

♦ Unique name

♦ Participating actors

♦ Entry conditions

♦ Flow of events

♦ Exit conditions

♦ Special requirements

PurchaseTicket

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 33

Use Case Example

Name: Purchase ticket

Participating actor: Passenger

Entry condition:

♦ Passenger standing in front
of ticket distributor.

♦ Passenger has sufficient
money to purchase ticket.

Exit condition:

♦ Passenger has ticket.

Event flow:

1. Passenger selects the number
of zones to be traveled.

2. Distributor displays the amount
due.

3. Passenger inserts money, of
at least the amount due.

4. Distributor returns change.

5. Distributor issues ticket.

Anything missing?

Exceptional cases!

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 34

The <<extend>> Relationship

♦ <<extend>> relationships represent
exceptional or seldom invoked cases.

♦ The exceptional event flows are
factored out of the main event flow
for clarity.

♦ Use cases representing exceptional
flows can extend more than one use
case.

♦ The direction of a <<extend>>
relationship is to the extended use
case

Passenger

PurchaseTicket

TimeOut

<<extend>>

NoChange

<<extend>>OutOfOrder

<<extend>>

Cancel

<<extend>>

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 35

Passenger

PurchaseSingleTicket

PurchaseMultiCard

NoChange

<<extend>>

Cancel

<<extend>>

<<include>>

CollectMoney

<<include>>

The <<include>> Relationship

♦ An <<include>>
relationship represents
behavior that is factored out
of the use case.

♦ An <<include>> represents
behavior that is factored out
for reuse, not because it is an
exception.

♦ The direction of a
<<include>> relationship is
to the using use case (unlike
<<extend>> relationships).

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 36

Class Diagrams

♦ Class diagrams represent the structure of the system.

♦ Class diagrams are used
w during requirements analysis to model problem domain concepts

w during system design to model subsystems and interfaces

w during object design to model classes.

Enumeration getZones()
Price getPrice(Zone)

TariffSchedule

* *

Trip
zone:Zone
price:Price

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 37

Classes

♦ A class represent a concept.
♦ A class encapsulates state (attributes) and behavior

(operations).
♦ Each attribute has a type.
♦ Each operation has a signature.
♦ The class name is the only mandatory information.

zone2price
getZones()
getPrice()

TariffSchedule

Table zone2price
Enumeration getZones()
Price getPrice(Zone)

TariffSchedule

Name

Attributes

Operations

Signature

TariffSchedule

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 38

Instances

♦ An instance represents a phenomenon.

♦ The name of an instance is underlined and can contain the class
of the instance.

♦ The attributes are represented with their values.

zone2price = {
{ 1 , .20},
{ 2 , .40},
{ 3 , .60}}

tariff_1974:TarifSchedule

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 39

Actor vs. Instances

♦ What is the difference between an actor and a class and an
instance?

♦ Actor:
w An entity outside the system to be modeled, interacting with the

system (“Pilot”)

♦ Class:
w An abstraction modeling an entity in the problem domain, inside

the system to be modeled (“Cockpit”)

♦ Object:
w A specific instance of a class (“Joe, the inspector”).

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 40

Associations

♦ Associations denote relationships between classes.

♦ The multiplicity of an association end denotes how many
objects the source object can legitimately reference.

Enumeration getZones()
Price getPrice(Zone)

TarifSchedule

* price
zone

TripLeg

*

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 41

1-to-1 and 1-to-Many Associations

1-to-1 association

1-to-many association

*

draw()

Polygon

x:Integer
y:Integer

Point1

Has-capital

name:String

Country

name:String

City
11

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 42

Aggregation

♦ An aggregation is a special case of association denoting a
“consists of” hierarchy.

♦ The aggregate is the parent class, the components are the
children class.

1

Exhaust System

Muffler Tailpipe

0..2

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 43

Composition

♦ A solid diamond denote composition, a strong form of
aggregation where components cannot exist without the
aggregate.

3

TicketMachine

ZoneButton

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 44

Generalization

♦ Generalization relationships denote inheritance between
classes.

♦ The children classes inherit the attributes and operations of the
parent class.

♦ Generalization simplifies the model by eliminating redundancy.

Button

ZoneButtonCancelButton

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 45

From Problem Statement to Code

Problem Statement
A stock exchange lists many companies. Each company is
identified by a ticker symbol

Class Diagram

Java Code
public class StockExchange {
 public Vector m_Company = new Vector();
};
public class Company {
 public int m_tickerSymbol;
 public Vector m_StockExchange = new Vector();
};

*StockExchange

tickerSymbol

Company*

lists

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 46

UML Sequence Diagrams

♦ Used during requirements analysis
w To refine use case descriptions

w to find additional objects
(“participating objects”)

♦ Used during system design
w to refine subsystem interfaces

♦ Classes are represented by
columns

♦ Messages are represented by
arrows

♦ Activations are represented by
narrow rectangles

♦ Lifelines are represented by
dashed lines

selectZone()

pickupChange()

pickUpTicket()

insertCoins()

Passenger
TicketMachine

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 47

UML Sequence Diagrams: Nested Messages

♦ The source of an arrow indicates the activation which sent the
message

♦ An activation is as long as all nested activations

selectZone()

Passenger
ZoneButton TarifSchedule Display

lookupPrice(selection)

displayPrice(price)

price

Dataflow

…to be continued...

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 48

Sequence Diagram Observations

♦ UML sequence diagram represent behavior in terms of
interactions.

♦ Complement the class diagrams which represent structure.

♦ Useful to find participating objects.

♦ Time consuming to build but worth the investment.

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 49

Activity Diagrams

♦ An activity diagram shows flow control within a system

♦ An activity diagram is a special case of a state chart diagram in
which states are activities (“functions”)

♦ Two types of states:
w Action state:

t Cannot be decomposed any further

t Happens “instantaneously” with respect to the level of abstraction
used in the model

w Activity state:
t Can be decomposed further
t The activity is modeled by another activity diagram

Handle
Incident

Document
Incident

Archive
Incident

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 50

Activity Diagram: Modeling Decisions

Open
Incident

Notify
Police Chief

Notify
Fire Chief

Allocate
Resources

[fire & highPriority]

[not fire & highPriority]

[lowPriority]

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 51

Activity Diagrams: Modeling Concurrency

♦ Synchronization of multiple activities

♦ Splitting the flow of control into multiple threads

SynchronizationSplitting

Archive
Incident

Open
Incident

Document
Incident

Allocate
Resources

Coordinate
Resources

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 52

Activity Diagrams: Swimlanes

♦ Actions may be grouped into swimlanes to denote the object or
subsystem that implements the actions.

Archive
Incident

Dispatcher

FieldOfficer

Open
Incident

Document
Incident

Allocate
Resources

Coordinate
Resources

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 53

Extending the UML

♦ Stereotypes can be used to extend the UML notational
elements

♦ Stereotypes may be used to classify and extend associations,
inheritance relationships, classes, and components

♦ Examples:
w Class stereotypes: boundary, control, entity, utility, exception

w Inheritance stereotypes: uses and extends

w Component stereotypes: subsystem

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 54

Summary

♦ UML provides a wide variety of notations for representing
many aspects of software development
w Powerful, but complex language

w Can be misused to generate unreadable models

w Can be misunderstood when using too many exotic features

♦ We concentrate only on a few notations:
w Functional model: use case diagram

w Object model: class diagram

w Dynamic model: sequence diagrams, statechart and activity
diagrams

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 55

Inception Elaboration Construction Transition

Iteration 1 Iteration 2 Iteration 3

Iteration Planning
Rqmts Capture

Analysis & Design
Implementation

 Test
Prepare Release

XTREME programming

Rational Unified Software Life Cycle

Use cases Use cases, class diagrams, seqvence diagrams, state diagrams, activity diagrams

Instance diagrams

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 56

What the Xprogramming Iterative Life
Cycle Is Not

♦ It is not hacking

♦ It is not a playpen for developers

♦ It is not unpredictable

♦ It is not redesigning the same thing over and over until it is
perfect

♦ It is not an excuse for not planning and managing a project

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 57

What the Xprogramming Iterative Life
Cycle Is

♦ It is planned and managed

♦ It is predictable

♦ It accommodates changes to requirements with less disruption

♦ It is based on evolving executable prototypes, not
documentation

♦ It involves the user/customer throughout the process

♦ It is risk driven

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 58

Three Important Features of the Iterative
Approach

♦ Continuous integration
w Not done in one lump near the delivery date

♦ Frequent, executable releases
w Some internal; some delivered

♦ Attack risks through demonstrable progress
w Progress measured in products, not documentation or

engineering estimates

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 59

Resulting Benefits

♦ Releases are a forcing function that drives the development
team to closure at regular intervals
w Cannot have the “90% done with 90% remaining” phenomenon

♦ Can incorporate problems/issues/changes into future iterations
rather than disrupting ongoing production

♦ The project’s supporting elements (testers/ writers, toolsmiths,
QA, etc.) can better schedule their work

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 60

Risk

Transition

Inception

Elaboration

Construction

Preliminary
Iteration

Architect.
Iteration

Architect.
Iteration

Devel.
Iteration

Devel.
Iteration

Devel.
Iteration

Transition
Iteration

Transition
Iteration

Post-
deployment

Waterfall

Time

Risk Profile of an Iterative Development

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 61

Risk Management Phase-by-Phase

♦ Inception
w Bracket the project’s risks by building a proof of concept

♦ Elaboration
w Develop a common understanding of the system’s scope and desired

behavior by exploring scenarios with end users and domain experts

w Establish the system’s architecture

w Design common mechanisms to address system-wide issues

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 62

Risk Management Phase-by-Phase (cont.)

♦ Construction
w Refine the design pattern

w Risk-driven iterations

w Continuous integration

♦ Transition
w Facilitate user acceptance

w Measure user satisfaction

♦ Post-deployment cycles
w Continue evolutionary approach

w Preserve architectural integrity

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 63

Initial Project Risks
Initial Project Scope

Revise Overall
Project Plan
¥ Cost
¥ Schedule
¥ Scope/Content

Plan Iteration N
¥ Cost
¥ Schedule

Assess Iteration N

Risks Eliminated
Revise Project Risks
¥ Reprioritize

Develop Iteration N
¥ Collect cost and
quality metrics

Define scenarios to
address highest risks

Iteration N

Risk Reduction Drives Iterations

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 64

Inception Elaboration Construction Transition

Iteration 1 Iteration 2 Iteration 3

Iteration Planning
Rqmts Capture

Analysis & Design
Implementation

 Test
Prepare Release

Mini-Waterfall Process

Use Cases Drive the Iteration Process

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 65

The Iteration Life Cycle: A Mini-Waterfall

¥ Results of previous iterations
¥ Up-to-date risk assessment
¥ Controlled libraries of models,

code, and tests

Release description
Updated risk assessment
Controlled libraries

Iteration Planning

Requirements Capture

Analysis & Design

Implementation

Test

Prepare Release

Selected scenarios

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 66

Detailed Iteration Life Cycle Activities

♦ Iteration planning
w Before the iteration begins, the general objectives of the iteration

should be established based on
t Results of previous iterations (if any)
t Up-to-date risk assessment for the project

w Determine the evaluation criteria for this iteration

w Prepare detailed iteration plan for inclusion in the development
plan

t Include intermediate milestones to monitor progress
t Include walkthroughs and reviews

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 67

Detailed Iteration Life Cycle Activities
(cont.)

♦ Requirements Capture
w Select/define the use cases to be implemented in this iteration

w Update the object model to reflect additional domain classes and
associations discovered

w Develop a test plan for the iteration

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 68

Detailed Iteration Life Cycle Activities
(cont.)

♦ Analysis & Design
w Determine the classes to be developed or updated in this iteration

w Update the object model to reflect additional design classes and
associations discovered

w Update the architecture document if needed

w Begin development of test procedures

♦ Implementation
w Automatically generate code from the design pattern

w Manually generate code for operations

w Complete test procedures

w Conduct unit and integration tests

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 69

Detailed Iteration Life Cycle Activities
(cont.)

♦ Test
w Integrate and test the developed code with the rest of the system

(previous releases)

w Capture and review test results

w Evaluate test results relative to the evaluation criteria

w Conduct an iteration assessment

♦ Prepare the release description
w Synchronize code and design patterns

w Place products of the iteration in controlled libraries

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 70

Work Allocation Within an Iteration

♦ Work to be accomplished within an iteration is determined by
w The (new) use cases to be implemented

w The refactoring to be done

♦ Packages make convenient work packages for developers
w High-level packages can be assigned to teams

w Lower-level packages can be assigned to xprogrammeng pair
developers

♦ Use Cases make convenient work packages for development
and test teams

♦ Packages are also useful in determining the granularity at
which configuration management will be applied
w For example, check-in and check-out of individual packages

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 71

Iteration Assessment

♦ Assess iteration results relative to the evaluation criteria
established during iteration planning:
w Test Functionality

w Test Performance

w Test Capacity

w Test Quality measures

♦ Consider external changes that have occurred during this
iteration
w For example, changes to requirements, user needs, competitor’s

plans

♦ Determine what refactoring, if any, is required and assign it to
the remaining iterations

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 72

Selecting Iterations

♦ How many iterations do I need?
w On projects taking 6 months or less, 2 to 4 iterations are typical

♦ Are all iterations on a project the same length?
w Usually

w Iteration length may vary by phase. For example, elaboration
iterations may be shorter than construction iterations

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 73

The First Iteration

♦ The first iteration is usually the hardest
w Requires the entire development environment and most of the

development team to be in place

w Many tool integration issues, team-building issues, staffing issues,
etc. must be resolved

♦ Teams new to an iterative approach are usually overly-
optimistic

♦ Be modest regarding the amount of functionality that can be
achieved in the first iteration
w Otherwise, completion of the first iteration will be delayed,

w The total number of iterations reduced, and

w The benefits of an iterative approach reduced

Rational Software Corporation , Bernd Bruegge & Allen Dutoit, adapted and modified for CIS422 Winter 2001 74

There Is No Silver Bullet

♦ Remember the main reason for using the iterative life cycle:
w You do not have all the information you need up front

w Things will change during the development period

♦ You must expect that
w Some risks will not be eliminated as planned

w You will discover new risks along the way

w Some rework will be required; some lines of code developed for an
iteration will be thrown away

w Requirements will change along the way

