
Slide 1

Software Processes
l What are they?

l Why study them?

l What are the activities involved?

l What are some specific models?
• Waterfall

• Evolutionary

• Spiral

• The “Unified Process”

l How can CASE tools support them?

CIS 422/522, A.Hornof, Fall 2000

Slide 2

What are software processes?

l Software processes are the activities involved in
producing and evolving a software system. They
are represented in a software process model
• Generic process models describe the organisation of software

processes

• Iterative process models describe the software process as a cycle
of activities

From Ian Sommerville 2000, Software Engineering, 6th edition. Slightly modified by A.Hornof, 10/1/00

Slide 3

What are the activities involved?

l General activities are specification, design and
implementation
• Requirements engineering is the process of developing a

software specification

• Design and implementation processes transform the
specification to an executable program

• Validation involves checking that the system meets to its
specification and user needs

• Evolution is concerned with modifying the system after it is in
use

From Ian Sommerville 2000, Software Engineering, 6th edition. Slightly modified by A.Hornof, 10/1/00 Slide 4

Why study software processes?

l “This topic is a waste of time. If you want to
build a system, just build it already. Why waste
all this time talking about it?”

Slide 5

Why study software processes?

l ... besides many other good answers ...

l So that your plans will be accurate models of how
time is spent.

l So that you have a high level understanding of the
different ways to run a software project, and have
fast access to the various activities and issues
involved in running a project throughout the
entire process.

l How do you maintain fast access? Get the ideas
into your long term memory.

Slide 6

Limits to thinking

l People don’t all think the same way but everyone
is subject to some basic constraints on their
thinking due to
• Memory organisation

• Knowledge representation

• Motivation influences

l If we understand these constraints, we can
understand how they affect people participating in
the software process

From Ian Sommerville 2000, Software Engineering, 6th edition. Slightly modified by A.Hornof, 10/1/00

Slide 7

Memory organisation

Working memory

Long-term memory
(Large capacity, slow access)

Short-term
memory

From
senses

From Ian Sommerville 2000, Software Engineering, 6th edition. Slide 8

Short-term memory

l Fast access, limited capacity

l 5-7 locations

l Holds 'chunks' of information where the size of
a chunk may vary depending on its familiarity

l Fast decay time

From Ian Sommerville 2000, Software Engineering, 6th edition.

Slide 9

Working memory

l Larger capacity, longer access time

l Memory area used to integrate information from
short-term memory and long-term memory.

l Relatively fast decay time.

From Ian Sommerville 2000, Software Engineering, 6th edition. Slide 10

Long-term memory

l Slow access, very large capacity

l Unreliable retrieval mechanism

l Slow but finite decay time - information needs
reinforced

l Relatively high threshold - work has to be done
to get information into long-term memory.

From Ian Sommerville 2000, Software Engineering, 6th edition.

Slide 11

Information transfer

l Problem solving usually requires transfer
between short-term memory and working
memory

l Information may be lost or corrupted during this
transfer

l Information processing occurs in the transfer
from short-term to long-term memory

From Ian Sommerville 2000, Software Engineering, 6th edition. Slide 12

Problem solving

New knowledge

Existing knowledge

Long-term memory

Partial
solutions SolutionProblem

Working
memory

From Ian Sommerville 2000, Software Engineering, 6th edition. Slightly modified by A.Hornof, 10/1/00

Risk
analysis

Risk
analysis

Risk
analysis

Risk
analysis Proto-

type 1

Prototype 2

Prototype 3
Opera-
tional
protoype

Concept of
Operation

Simulations, models, benchmarks

S/W
requirements

Requirement
validation

Design
V&V

Product
design Detailed

design

Code
Unit test

Integration
testAcceptance

testService Develop, verify
next-level product

Evaluate alternatives
identify, resolve risks

Determine objectives
alternatives and

constraints

Plan next phase

Integration
and test plan

Development
plan

Requirements plan
Life-cycle plan

REVIEW

Requirements
definition

System and
software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenance

Slide 13

The software process

l A structured set of activities required to develop a
software system
• Requirements Analysis

• Specification

• Design

• Validation

• Evolution

l A software process model is an abstract
representation of a process. It presents a
description of a process from some particular
perspective

From Ian Sommerville 2000, Software Engineering, 6th edition. Adapted by A.Hornof, 2000. Slide 14

Software specification

l The process of establishing what services are
required and the constraints on the system’s
operation and development

l Requirements engineering process
• Feasibility study

• Requirements elicitation and analysis

• Requirements specification

• Requirements validation

©Ian Sommerville 2000, Software Engineering, 6th edition.

Slide 15

Requirements Analysis

l Produce specification of what the software must do
• User requirements; may be divided into problem analysis and solution

analysis

• Suppress the “how” until design phase

• Must be understandable to the client (if they must sign off on the
analysis), which in practice means it is necessarily somewhat informal

• To the extent possible, should be precise, complete, unambiguous, and
modifiable; Should include object acceptance tests and a system test
plan

Michal Young, 1988, adapted by A.Hornof, 2000.
Slide 16

Question

l (Sommerville 3.4) Why is it important to make a
distinction between the developing the user
requirements and developing the system
requirements in the requirements engineering
process?

Slide 17

Software design and implementation

l The process of converting the system
specification into an executable system

l Software design
• Design a software structure that realises the specification

l Implementation
• Translate this structure into an executable program

l The activities of design and implementation are
closely related and may be inter-leaved

©Ian Sommerville 2000, Software Engineering, 6th edition. Slide 18

Software validation

l Validation and verification are intended to show
that a system conforms to its specification and
meets the requirements of the system customer
• Validation: Are we building the right product?

• Verification: Are we building the product right?

l Involves checking and review processes and
system testing

l System testing involves executing the system
with test cases that are derived from the
specification of the real data to be processed by
the system

©Ian Sommerville 2000, Software Engineering, 6th edition. Adapted by A.Hornof, 2000.

Slide 19

Software evolution

l (Not the same thing as evolutionary development)

l Software is inherently flexible and can change.

l As requirements change through changing
business circumstances, the software that supports
the business must also evolve and change

l Although there has been a demarcation between
development and evolution (maintenance) this is
increasingly irrelevant as fewer and fewer
systems are completely new

©Ian Sommerville 2000, Software Engineering, 6th edition. Adapted by A.Hornof, 2000. Slide 20

Software process models

l The waterfall model
• Separate and distinct phases of specification and development

l Evolutionary development
• Specification and development are interleaved

l Spiral model

l Others...
• Formal systems development

» A mathematical system model is formally transformed to an
implementation

• Reuse-based development
» The system is assembled from existing components

From Ian Sommerville 2000, Software Engineering, 6th edition. Slightly modified by A.Hornof, 10/1/00

Slide 21

Waterfall model
Requirements

definition

System and
software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenance

©Ian Sommerville 2000, Software Engineering, 6th edition. Slide 22

Waterfall model phases

l Requirements analysis and definition

l System and software design

l Implementation and unit testing

l Integration and system testing

l Operation and maintenance

l The drawback of the waterfall model is the
difficulty of accommodating change after the
process is underway

©Ian Sommerville 2000, Software Engineering, 6th edition.

Slide 23

Waterfall model problems

l Inflexible partitioning of the project into distinct
stages

l This makes it difficult to respond to changing
customer requirements

l Therefore, this model is only appropriate when
the requirements are well-understood

©Ian Sommerville 2000, Software Engineering, 6th edition. Slide 24

Evolutionary development

l Exploratory development
• Objective is to work with customers and to evolve a final system

from an initial outline specification. Should start with well-
understood requirements

l Throw-away prototyping
• Objective is to understand the system requirements. Should start

with poorly understood requirements

l Then iteratively build the product with intense
user involvement to negotiate requirements and
test deliverables

l Two specific methodologies: Rapid Appliation Development (RAD)
and Joint Application Development (JAD).

From Ian Sommerville 2000, Software Engineering, 6th edition. Slightly modified by A.Hornof, 10/1/00

Slide 25

RAD communication structure

l Peer-to-peer communication between users and developers

l Intense user involvement (and commitment) in negotiating
requirements and testing prototypes

l Emphasis on rapid delivery and change, not on preserving information
for a longer period. Hence, reduced paper documentation

• Active, intense user participation among fixed personnel (including user
representatives) reduces need for documents as orientation and communication.

Conventional RAD

User organization Developers User organization Developers

Michal Young, 1988, adapted by A.Hornof, 2000. Slide 26

Evolutionary development

l Problems
• Lack of process visibility

• Systems are often poorly structured

• Special skills (e.g. in languages for rapid prototyping) may be
required

l Applicability
• For small or medium-size interactive systems

• For parts of large systems (e.g. the user interface)

• For short-lifetime systems

©Ian Sommerville 2000, Software Engineering, 6th edition.

Slide 27

Spiral development

l Process is represented as a spiral rather than as a
sequence of activities with backtracking

l Each loop in the spiral represents a phase in the
process.

l No fixed phases such as specification or design -
loops in the spiral are chosen depending on what
is required

l Risks are explicitly assessed and resolved
throughout the process

©Ian Sommerville 2000, Software Engineering, 6th edition. Slide 28

Spiral model of the software process

Risk
analysis

Risk
analysis

Risk
analysis

Risk
analysis Proto-

type 1

Prototype 2

Prototype 3
Opera-
tional
protoype

Concept of
Operation

Simulations, models, benchmarks

S/W
requirements

Requirement
validation

Design
V&V

Product
design Detailed

design

Code
Unit test

Integration
testAcceptance

testService Develop, verify
next-level product

Evaluate alternatives
identify, resolve risks

Determine objectives
alternatives and

constraints

Plan next phase

Integration
and test plan

Development
plan

Requirements plan
Life-cycle plan

REVIEW

©Ian Sommerville 2000, Software Engineering, 6th edition.

Slide 29

Spiral model sectors

l Objective setting
• Specific objectives for the phase are identified

l Risk assessment and reduction
• Risks are assessed and activities put in place to reduce the key

risks

l Development and validation
• A development model for the system is chosen which can be

any of the generic models

l Planning
• The project is reviewed and the next phase of the spiral is

planned

©Ian Sommerville 2000, Software Engineering, 6th edition. Slide 30

Question

l (Sommerville 3.3) How can both the waterfall
and prototyping models of software development
be accommodated in the spiral model process?

Slide 31

The Unified Software Development Process

l A process framework for transforming user
requirements into a software system.
• Use-case driven: All analyses are derived from specific user-

system interactions. The requirements analysis asks “What is the
system supposed to do for each user?”

• Architecture-centric: Emphasis on the entire design of the
system, with important characteristics made visible, and details
hidden inside.

• Iterative and incremental: In every iteration: Identify and
specify relevant use cases, create a design using the chosen
architecture as a guide, implement the design in components,
and verify that the components satisfy the use cases.

l Object-oriented, Uses the Unified Modeling Language (UML)

From Booch, Jacobsen, and Rumbaugh, 1999, The Unified Software Development Process. Slide 32

Automated process support (CASE)

l Computer-aided software engineering (CASE) is
software to support software development and
evolution processes

l Activity automation
• Graphical editors for system model development

• Data dictionary to manage design entities

• Graphical UI builder for user interface construction

• Debuggers to support program fault finding

• Automated translators to generate new versions of a program

©Ian Sommerville 2000, Software Engineering, 6th edition.

Slide 33

Case technology

l Case technology has led to significant
improvements in the software process though not
the order of magnitude improvements that were
once predicted
• Software engineering requires creative thought - this is not

readily automatable

• Software engineering is a team activity and, for large projects,
much time is spent in team interactions. CASE technology does
not really support these

©Ian Sommerville 2000, Software Engineering, 6th edition. Slide 34

CASE classification

l Classification helps us understand the different
types of CASE tools and their support for process
activities

l Functional perspective
• Tools are classified according to their specific function

l Process perspective
• Tools are classified according to process activities that are

supported

l Integration perspective
• Tools are classified according to their organisation into

integrated units

©Ian Sommerville 2000, Software Engineering, 6th edition.

Slide 35

Functional tool classification
Tool type Examples
Planning tools PERT tools, estimation tools,

spreadsheets
Editing tools Text editors, diagram editors, word

processors
Change management tools Requirements traceability tools, change

control systems
Configuration management tools Version management systems, system

building tools
Prototyping tools Very high-level languages,

user interface generators
Method-support tools Design editors, data dictionaries, code

generators
Language-processing tools Compilers, interpreters
Program analysis tools Cross reference generators, static

analysers, dynamic analysers
Testing tools Test data generators, file comparators
Debugging tools Interactive debugging systems
Documentation tools Page layout programs, image editors
Re-engineering tools Cross-reference systems, program re-

structuring systems

©Ian Sommerville 2000, Software Engineering, 6th edition. Slide 36

Summary

l Introduced software process models

l Outlined requirements engineering, software
development, testing and evolution

l Described a number of different process models
and how and when they may be used

l Introduced CASE technology, which supports
software process activities

From Ian Sommerville, 2000, Software Engineering, 6th edition. Adapted by A.Hornof, 2000.

