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The Design of Software Architecture

l What is it?

l Why study it?

l How do you do it?

• Design the high-level system structure

• Design the control model

• Perform modular decomposition

l Use a domain-specific architecture if one exists.
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What is software architecture?

l It is a description of the overall structure of the
software system

l It is a description of the sub-systems that make up
a system and the framework for sub-system
control and communication.
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What is architectural design?

l It is the process of figuring out the architecture.

l It is an early stage of the system design process.

l It involves identifying major system components
and their communications.
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Why study software architectures?

l There are several advantages to designing and
documenting an explicit software architecture....

l Stakeholder communication
• Architecture can focus discussion by system stakeholders

l System analysis
• Means that analysis of whether the system can meet its non-

functional requirements is possible (performance, reliability,
maintainability, and usability).

l Large-scale reuse
• The architecture may be reusable across a range of systems
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Three high-level activities in the
architectural design of a large system

l Design the high-level system structure.
• Decompose the system into the principal subsystems, and

identify the communication and data flow that would be
necessary among the subsystems.

l Design the high-level control model.
• Establish a model of the control relationships among the various

subsystems.

l Further decompose each subsystem.
• Perform modular decomposition, and design the architecture of

each subsystem.

l (Large systems rarely conform to a single architectural model.)
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Design the system structure

l Decompose the system identifying the various
necessary interacting sub-systems

l The architectural design is normally expressed as
a block diagram presenting an overview of the
system structure

l More specific models showing how sub-systems
share data, are distributed and interface with each
other may also be developed



From Ian Sommerville (2000) Software Engineering, 6th edition.  Adapted by A.Hornof, 10/8/00 Slide 7

The system structure of a packing
robot control system
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The system structure of a CASE toolset
that uses a data repository model

Project
repository

Design
translator

Program
editor

Design
editor

Code
generator

Design
analyser

Report
generator

From Ian Sommerville (2000) Software Engineering, 6th edition.  Adapted by A.Hornof, 10/8/00 Slide 9

The system structure of a film and picture
library that uses a client-server model
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Question

l (Sommerville 10.3)  Suggest an appropriate
structural model for the following systems:
• An automated ticket issuing system used by passengers at a

railway station

• A computer-controlled video conferencing system which allows
video, audio, and computer data to be visible to several
participants at the same time.

• A robot floor cleaner that cleans relatively clear spaces such as
corridors.  The cleaner must be able to sense walls and other
obstructions.
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Design the control model

l Identify the control flow between subsystems.
Distinct from the system decomposition model

l Centralized control
• One subsystem has overall responsibility for control and starts

and stops other sub-systems

l Event-based control
• Each subsystem can respond to externally generated events

from other subsystems or the system’s environment
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A call-return centralized control model
Top-down subroutine model where control starts at the top of a subroutine
hierarchy and moves downwards. Applicable to sequential systems.
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A “manager” centralized control model
In this model, for a real-time system. One system component controls the stopping,
starting and coordination of other system processes.
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Question

l (Sommerville 10.5)  Why is a call-return model
of control usually not suitable for real-time
systems?
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An broadcast event-based control model
Events are broadcasted to all subsystems.  Subsystems register an interest
in specific events, and receive control when those events occur.
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An interrupt-driven event-based control model
Used in real-time systems where interrupts are detected by an interrupt handler and
passed to some other component for processing
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Question

l (Sommerville 10.6)  Suggest an appropriate
control model for the following systems:
• A batch processing system which takes information about hours

worked and pay rates and prints salary slips and bank credit
transfer information

• A set of software tools which are produced by different vendors
but which must work together

• A television controller which responds to signals from a remote
control unit
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Modular decomposition

l Another structural level where subsystems are
decomposed into modules

l Two modular decomposition models will be
discussed
• An object model where the system is decomposed into

interacting objects

• A data-flow model where the system is decomposed into
functional modules which transform inputs to outputs. Also
known as the pipeline model
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Object model modular decompostion

l Structure the system into a set of loosely coupled
objects with well-defined interfaces

l Object-oriented decomposition is concerned with
identifying object classes, their attributes and
operations

l When implemented, objects are created from
these classes and from a control model used to
coordinate object operations
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Object model of an invoice
processing system
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Data-flow model modular decompostion

l Functional transformations process their inputs to
produce outputs

l May be referred to as a pipe and filter model (as
in UNIX shell)

l Variants of this approach are very common.
When transformations are sequential, this is a
batch sequential model which is extensively used
in data processing systems

l Not really suitable for interactive systems
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Data-flow model of an invoice
processing system

Read issued
invoices

Identify
payments

Issue
receipts

Find
payments

due

Receipts

Issue
payment
reminder

Reminders

Invoices Payments

This sort of diagram is also known as a data-flow diagram (DFD)
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Three high-level activities in the
architectural design of a large system

l Design the high-level system structure.

l Design the high-level control model.

l Further decompose each subsystem, performing
modular decomposition.
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Domain-specific architectures

l Architectural models which are specific to some
application domain

l Use them whenever you can

l “Generic models” are abstractions from a number
of real systems, abstractions that encapsulate the
principal characteristics of these systems.
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Generic compiler architecture
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Generic language processing system
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Summary

l The software architecture is a description of the
overall structure of the software system.

l It is an important component of system design.

l Major activities include

• Designing the system structure

• Designing the control model

• Performing further modular decomposition.

l Use domain-specific architectures when you can.


