
From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 1

The Design of Software Architecture

l What is it?

l Why study it?

l How do you do it?

• Design the high-level system structure

• Design the control model

• Perform modular decomposition

l Use a domain-specific architecture if one exists.

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 2

What is software architecture?

l It is a description of the overall structure of the
software system

l It is a description of the sub-systems that make up
a system and the framework for sub-system
control and communication.

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 3

What is architectural design?

l It is the process of figuring out the architecture.

l It is an early stage of the system design process.

l It involves identifying major system components
and their communications.

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 4

Why study software architectures?

l There are several advantages to designing and
documenting an explicit software architecture....

l Stakeholder communication
• Architecture can focus discussion by system stakeholders

l System analysis
• Means that analysis of whether the system can meet its non-

functional requirements is possible (performance, reliability,
maintainability, and usability).

l Large-scale reuse
• The architecture may be reusable across a range of systems

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 5

Three high-level activities in the
architectural design of a large system

l Design the high-level system structure.
• Decompose the system into the principal subsystems, and

identify the communication and data flow that would be
necessary among the subsystems.

l Design the high-level control model.
• Establish a model of the control relationships among the various

subsystems.

l Further decompose each subsystem.
• Perform modular decomposition, and design the architecture of

each subsystem.

l (Large systems rarely conform to a single architectural model.)

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 6

Design the system structure

l Decompose the system identifying the various
necessary interacting sub-systems

l The architectural design is normally expressed as
a block diagram presenting an overview of the
system structure

l More specific models showing how sub-systems
share data, are distributed and interface with each
other may also be developed

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 7

The system structure of a packing
robot control system

Vision
system

Object
identification

system

Arm
controller

Gripper
controller

Packaging
selection
system

Packing
system

Conveyor
controller

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 8

The system structure of a CASE toolset
that uses a data repository model

Project
repository

Design
translator

Program
editor

Design
editor

Code
generator

Design
analyser

Report
generator

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 9

The system structure of a film and picture
library that uses a client-server model

Catalogue
server

Catalogue

Video
server

Film clip
files

Picture
server

Digitized
photographs

Hypertext
server

Hypertext
web

Client 1 Client 2 Client 3 Client 4

Wide-bandwidth network

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 10

Question

l (Sommerville 10.3) Suggest an appropriate
structural model for the following systems:
• An automated ticket issuing system used by passengers at a

railway station

• A computer-controlled video conferencing system which allows
video, audio, and computer data to be visible to several
participants at the same time.

• A robot floor cleaner that cleans relatively clear spaces such as
corridors. The cleaner must be able to sense walls and other
obstructions.

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 11

Design the control model

l Identify the control flow between subsystems.
Distinct from the system decomposition model

l Centralized control
• One subsystem has overall responsibility for control and starts

and stops other sub-systems

l Event-based control
• Each subsystem can respond to externally generated events

from other subsystems or the system’s environment

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 12

A call-return centralized control model
Top-down subroutine model where control starts at the top of a subroutine
hierarchy and moves downwards. Applicable to sequential systems.

Routine 1.2Routine 1.1 Routine 3.2Routine 3.1

Routine 2 Routine 3Routine 1

Main
program

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 13

A “manager” centralized control model
In this model, for a real-time system. One system component controls the stopping,
starting and coordination of other system processes.

System
controller

User
interface

Fault
handler

Computation
processes

Actuator
processes

Sensor
processes

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 14

Question

l (Sommerville 10.5) Why is a call-return model
of control usually not suitable for real-time
systems?

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 15

An broadcast event-based control model
Events are broadcasted to all subsystems. Subsystems register an interest
in specific events, and receive control when those events occur.

Sub-system
1

Event and message handler

Sub-system
2

Sub-system
3

Sub-system
4

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 16

An interrupt-driven event-based control model
Used in real-time systems where interrupts are detected by an interrupt handler and
passed to some other component for processing

Handler
1

Handler
2

Handler
3

Handler
4

Process
1

Process
2

Process
3

Process
4

Interrupts

Interrupt
vector

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 17

Question

l (Sommerville 10.6) Suggest an appropriate
control model for the following systems:
• A batch processing system which takes information about hours

worked and pay rates and prints salary slips and bank credit
transfer information

• A set of software tools which are produced by different vendors
but which must work together

• A television controller which responds to signals from a remote
control unit

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 18

Modular decomposition

l Another structural level where subsystems are
decomposed into modules

l Two modular decomposition models will be
discussed
• An object model where the system is decomposed into

interacting objects

• A data-flow model where the system is decomposed into
functional modules which transform inputs to outputs. Also
known as the pipeline model

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 19

Object model modular decompostion

l Structure the system into a set of loosely coupled
objects with well-defined interfaces

l Object-oriented decomposition is concerned with
identifying object classes, their attributes and
operations

l When implemented, objects are created from
these classes and from a control model used to
coordinate object operations

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 20

Object model of an invoice
processing system

issue ()
sendReminder ()
acceptPayment ()
sendReceipt ()

invoice#
date
amount
customer

Invoice

invoice#
date
amount
customer#

Receipt

invoice#
date
amount
customer#

Payment

customer#
name
address
credit period

Customer

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 21

Data-flow model modular decompostion

l Functional transformations process their inputs to
produce outputs

l May be referred to as a pipe and filter model (as
in UNIX shell)

l Variants of this approach are very common.
When transformations are sequential, this is a
batch sequential model which is extensively used
in data processing systems

l Not really suitable for interactive systems

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 22

Data-flow model of an invoice
processing system

Read issued
invoices

Identify
payments

Issue
receipts

Find
payments

due

Receipts

Issue
payment
reminder

Reminders

Invoices Payments

This sort of diagram is also known as a data-flow diagram (DFD)

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 23

Three high-level activities in the
architectural design of a large system

l Design the high-level system structure.

l Design the high-level control model.

l Further decompose each subsystem, performing
modular decomposition.

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 24

Domain-specific architectures

l Architectural models which are specific to some
application domain

l Use them whenever you can

l “Generic models” are abstractions from a number
of real systems, abstractions that encapsulate the
principal characteristics of these systems.

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 25

Generic compiler architecture

Lexical
analysis

Syntactic
analysis

Semantic
analysis

Code
generation

Symbol
table

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 26

Generic language processing system

Syntax
analyser

Lexical
analyser

Semantic
analyser

Abstract
syntax tree

Grammar
definition

Symbol
table

Output
definition

Pretty-
printer

Editor

Optimizer

Code
generator

Repository

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 27

Summary

l The software architecture is a description of the
overall structure of the software system.

l It is an important component of system design.

l Major activities include

• Designing the system structure

• Designing the control model

• Performing further modular decomposition.

l Use domain-specific architectures when you can.

