
From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 1

Object-Oriented System
Development

l Overview of object-oriented design (OOD)

l Overview of object-oriented programming (OOP)

l Unified Modeling Language UML

l Object-oriented design process

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 2

Object-oriented development

l OOA, OOD, and OOP: Object-oriented analysis,
design and programming are related but distinct
• OOA (analysis) is concerned with developing an object model

of the application domain

• OOD (design) is concerned with developing an object-oriented
system model to implement requirements

• OOP (programming) is concerned with realising an OOD using
an OO programming language such as Java or C++

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 3

Advantages of OOD

l For some systems, there may be an obvious
mapping from real world entities to system
objects, and so the design is easily understood

l Objects are loosely coupled and can be built-up
independently

l Easier maintenance. Objects may be understood
as stand-alone entities

l Objects are appropriate reusable components

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 4

Disadvantages of OOD

l An object must be explicitly referenced in order
to access its services

l If an object’s interface is changed, you may need
to evaluate the effect on all users of that object

l More complex systems and entities are difficult to
represent as objects

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 5

Key contributions of OOP

l Data abstraction
• Hide the irrelevant details of the data structures. For example, the

programmer does need not need to know the data structures used inside
the stack class, as long as push and pop work correctly.

l Encapsulation (information hiding)
• The implementation details are hidden inside. Classes communicate

with well-defined interfaces. It is easier to reuse your work.

• Declare all member variables as private, and instead use accessor
functions (constructors, readers, and writers).

l Polymorphism
• An object responds appropriately to a message based on its type and

position in a class hierarchy. The same message (such as draw) sent to
different classes takes on different forms. Methods are “overloaded.”

l Inheritance...
From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 6

Inheritance

l Objects are members of classes which define
attribute types and operations

l Classes may be arranged in a class hierarchy
where one class (a super-class) is a generalisation
of one or more other classes (sub-classes)

l A sub-class inherits the attributes and
operations from its super class and may add
new methods or attributes of its own

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 7

An inheritance hierarchy
Employee

Programmer

project
progLanguage

Manager

Project
Manager

budgetsControlled

dateAppointed

projects

Dept.
Manager

Strategic
Manager

dept responsibilities

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 8

Advantages of inheritance

l It is an abstraction mechanism which may be used
to classify entities

l The inheritance graph is a source of
organisational knowledge about domains and
systems

l It is a reuse mechanism at both the design and the
programming level

l The important contribution to OOP: Well-
defined, fully-functioning, debugged source and
object code can be instantly re-used

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 9

Problems with inheritance

l Object classes are not self-contained; they cannot
be understood without reference to their super-
classes

l Designers have a tendency to reuse the
inheritance graphs created during analysis. Can
lead to significant inefficiency (???)

l The inheritance graphs of analysis, design and
implementation have different functions and
should be separately maintained (???)

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 10

The Unified Modeling Language

l A unification of OOA&D methods that appeared in the
late 80’s and early 90’s.
• It mostly unifies the methods of the three amigos: Booch, Jacobson,

and Rumbaugh (object modeling technique, OMT). The Unified
Modeling Language is an integration of these notations

l A set of (mostly graphical) notation used to express the
analysis and design of OO systems.

l A key component for communicating design ideas.

l There is also a UML process, but the language can be
used without the process.
• The diagrams and notations are meaningful and useful regardless of

whether you used the UML process.

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 11

What are the major
diagrams used in UML?

l Use case diagrams
• Depict how a user could interact with a system (scenarios) in the

process of attempting to achieve a goal.

l Class diagrams
• Descriptions of the types of objects in the system, and the

various kinds of static relationships that exist among them.

l State-transition diagrams
• Describe the behavior of a system. Show all possible states that

an object can get into as a result of events that reach that object.

l Interaction diagrams
• Describe how groups of objects collaborate in some behavior.

Show the sequence of object interactions

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 12

An object-oriented design process

l Figure out and define the context and modes of
use of the system

l Design the system architecture

l Identify the principal system objects

l Develop interaction and state-transition models

l Specify object interfaces

l (but not necessarily in that order)

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 13

The Unified Software
Development Process

l A process framework for transforming user
requirements into a software system.
• Use-case driven: All analyses are derived from specific user-

system interactions. The requirements analysis asks “What is the
system supposed to do for each user?”

• Architecture-centric: Emphasis on the entire design of the
system, with important characteristics made visible, and details
hidden inside.

• Iterative and incremental: In every iteration: Identify and
specify relevant use cases, create a design using the chosen
architecture as a guide, implement the design in components,
and verify that the components satisfy the use cases.

• Object-oriented, Uses the Unified Modeling Language (UML)

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 14

Start with the problem statement:
Weather station description

A weather station is a package of software controlled instruments
which collects data, performs some data processing and transmits
this data for further processing. The instruments include air and
ground thermometers, an anemometer, a wind vane, a barometer
and a rain gauge. Data is collected every five minutes.

When a command is issued to transmit the weather data, the
weather station processes and summarises the collected data. The
summarised data is transmitted to the mapping computer when a
request is received.

(Why is it important to have a good problem statement?)

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 15

Weather station use-case
description
System Weather station
Use-case Report
Actors Weather data collection system, Weather station
Data The weather station sends a summary of the weather data that has been

collected from the instruments in the collection period to the weather data
collection system. The data sent are the maximum minimum and average
ground and air temperatures, the maximum, minimum and average air
pressures, the maximum, minimum and average wind speeds, the total
rainfall and the wind direction as sampled at 5 minute intervals.

Stimulus The weather data collection system establishes a modem link with the
weather station and requests transmission of the data.

Response The summarised data is sent to the weather data collection system
Comments Weather stations are usually asked to report once per hour but this

frequency may differ from one station to the other and may be modified in
future.

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 16

Use-cases for the weather station

Startup

Shutdown

Report

Calibrate

Test

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 17

Architectural design

l Once interactions between the system and its
environment have been understood, you use this
information for designing the system architecture

l Layered architecture is appropriate for the
weather station
• Interface layer for handling communications

• Data collection layer for managing instruments

• Instruments layer for collecting data

l There should be no more than 7 entities in an
architectural model

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 18

Subsystem models

l Shows how the design is organised into logically
related groups of objects

l In the UML, these are shown using packages - an
encapsulation construct. This is a logical model.
The actual organisation of objects in the system
may be different.

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 19

Weather station architecture

«subsystem»
Data collection

«subsystem»
Instruments

«subsystem»
Interface

Weather station

Manages all
external

communications

Collects and
summarises
weather data

Package of
instruments for raw

data collections

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 20

Question

l How do you figure out the names of the objects
and attributes that you will use in a system?

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 21

Object identification

l Identifying objects (or object classes) is the most
difficult part of object oriented design

l There is no 'magic formula' for object
identification. It relies on the skill, experience
and domain knowledge of system designers

l Object identification is an iterative process. You
are unlikely to get it right first time

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 22

Approaches to
object identification

l Use a grammatical approach based on a natural
language description of the system (look at all of
the nouns)

l Base the identification on tangible things in the
application domain

l Use a behavioural approach and identify objects
based on what participates in what behaviour
(look at the verbs)

l Use a scenario-based analysis. The objects,
attributes and methods in each scenario are
identified

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 23

Weather station object classes

l Ground thermometer, Anemometer, Barometer
• Application domain objects that are ‘hardware’ objects related

to the instruments in the system

l Weather station
• The basic interface of the weather station to its environment. It

therefore reflects the interactions identified in the use-case
model

l Weather data
• Encapsulates the summarised data from the instruments

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 24

Weather station object classes

identifier

reportWeather ()
calibrate (instruments)
test ()
startup (instruments)
shutdown (instruments)

WeatherStation

test ()
calibrate ()

Ground
thermometer

temperature

Anemometer

windSpeed
windDirection

test ()

Barometer

pressure
height

test ()
calibrate ()

WeatherData

airTemperatures
groundTemperatures
windSpeeds
windDirections
pressures
rainfall

collect ()
summarise ()

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 25

Weather station subsystems
«subsystem»

Interface

CommsController

WeatherStation

«subsystem»
Data collection

«subsystem»
Instruments

Air
 thermometer

WeatherData

Ground
 thermometer

Anemometer

WindVane

RainGauge

Instrument
Status

Barometer

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 26

Question

l How do you figure out the names of the methods
that you will use in a system?

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 27

Dynamic models

l Describe the dynamic interactions between
objects (as opposed to the static class diagrams)

l State-transition diagrams
• Describe the behavior of a system. Show all possible states that

an object can get into as a result of events that reach that object.

l Interaction diagrams
• Describe how groups of objects collaborate in some behavior.

• Show the sequence of object interactions

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 28

Interaction Diagrams

l UML calls them “interaction diagrams.”
Sommerville calls them “sequence models”

l Interaction diagrams show the sequence of events
in which objects in the system interact
• Objects and users are arranged horizontally across the top.

• Time is represented vertically so models are read top to bottom

• Interactions are represented by labeled arrows, Different styles
of arrow represent different types of interaction

• A thin rectangle in an object lifeline represents the time when
the object is the controlling object in the system

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 29

Interaction Diagrams
:CommsController

request (report)

acknowledge ()
report ()

summarise ()

reply (report)

acknowledge ()

send (report)

:WeatherStation :WeatherData

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 30

State-transition diagrams

l Show the events that cause a transition from one
state to another, and the actions that result
• If object state is Shutdown then it responds to a Startup()

message

• In the waiting state the object is waiting for further messages

• If reportWeather () then system moves to summarising state

• If calibrate () the system moves to a calibrating state

• A collecting state is entered when a clock signal is received

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 31

Weather station state-transition diagram

Shutdown Waiting Testing

Transmitting

Collecting
Summarising

Calibrating

transmission done

calibrate ()

test ()startup ()

shutdown ()

calibration OK

test complete

weather summary
complete

clock collection
done

Operation

reportWeather ()

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 32

Object interface specification

l Object interfaces have to be specified so that the
objects and other components can be designed in
parallel

l Designers should avoid designing the interface
representation but should hide this in the object
itself

l Objects may have several interfaces which are
viewpoints on the methods provided

l Use class diagrams or just write the code.

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 33

Weather station interface
interface WeatherStation {

public void WeatherStation () ;

public void startup () ;
public void startup (Instrument i) ;

public void shutdown () ;
public void shutdown (Instrument i) ;

public void reportWeather () ;

public void test () ;
public void test (Instrument i) ;

public void calibrate (Instrument i) ;

public int getID () ;

} //WeatherStation

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 34

An object-oriented design process

l Figure out and define the context and modes of
use of the system

l Design the system architecture

l Identify the principal system objects

l Develop interaction and state-transition models

l Specify object interfaces

l (but not necessarily in that order)

From Ian Sommerville (2000) Software Engineering, 6th edition. Adapted by A.Hornof, 10/8/00 Slide 35

l OOA is a means of capturing, refining,
structuring, and describing the requirements.

l OOD is an approach to laying out the system

l OOP is a style of programming that makes key
contributions to the re-use of code

l UML provides diagrammatic models and a
structured process (set of activities) that can be
used in OOA, OOD, and OOP, to transform a
user’s requirements into a software system.

Conclusion

