
©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 1

Software Requirements

l Descriptions and specifications of
a system

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 2

Software Requirements Overview

l Requirements set out what the system should do and define constraints
on its operation and implementation

l User requirements are high-level statements of what the system should
do, from the user’s perspective

l System requirements communicate the system services and
constraints

• Functional requirements set out the services the system should
provide

• Non-functional requirements constrain the system being
developed or the development process

l A software requirements document or specification is an agreed
statement of the system requirements

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 3

Requirements engineering

l The process of establishing the services that the
customer requires from a system and the constraints
under which it operates and is developed

l The requirements themselves are the descriptions of
the system services and constraints that are generated
during the requirements engineering process

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 4

What is a requirement?

l It may range from a high-level abstract statement of a
service or of a system constraint to a detailed
mathematical functional specification

l This is inevitable as requirements may serve a dual
function
• May be the basis for a bid for a contract - therefore must be open to

interpretation

• May be the basis for the contract itself - therefore must be defined in
detail

• Both these statements may be called requirements

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 5

Requirements abstraction (Davis)

“If a company wishes to let a contract for a large software development project, it
must define its needs in a sufficiently abstract way that a solution is not pre-defined.
The requirements must be written so that several contractors can bid for the contract,
offering, perhaps, different ways of meeting the client organisation’s needs. Once a
contract has been awarded, the contractor must write a system definition for the client
in more detail so that the client understands and can validate what the software will
do. Both of these documents may be called the requirements document for the
system.”

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 6

Types of requirement

l User requirements
• Statements in natural language plus diagrams of the services the

system provides and its operational constraints. Written for customers

l System requirements
• A structured document setting out detailed descriptions of the system

services. Written as a contract between client and contractor

l Software specification
• A detailed software description which can serve as a basis for a design

or implementation. Written for developers

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 7

Definitions and specifications

1. The software must provide a means of representing and
1. accessing external files created by other tools.

1.1 The user should be provided with facilities to define the type of
1.2 external files.
1.2 Each external file type may have an associated tool which may be
1.2 applied to the file.
1.3 Each external file type may be represented as a specific icon on
1.2 the user’s display.
1.4 Facilities should be provided for the icon representing an
1.2 external file type to be defined by the user.
1.5 When a user selects an icon representing an external file, the
1.2 effect of that selection is to apply the tool associated with the type of
1.2 the external file to the file represented by the selected icon.

Requirements definition

Requirements specification

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 8

Requirements readers
Client managers
System end-users
Client engineers
Contractor managers
System architects

System end-users
Client engineers
System architects
Software developers

Client engineers (perhaps)
System architects
Software developers

User requirements

System requirements

Software design
specification

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 9

User requirements

l Should describe functional and non-functional
requirements so that they are understandable by
system users who don’t have detailed technical
knowledge

l User requirements are defined using natural language,
tables and diagrams

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 10

Problems with natural language

l Lack of clarity
• Precision is difficult without making the document difficult to read

l Requirements confusion
• Functional and non-functional requirements tend to be mixed-up

l Requirements amalgamation
• Several different requirements may be expressed together

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 11

Database requirement

.A.5 The database shall support the generation and control of
onfiguration objects; that is, objects which are themselves groupings
f other objects in the database. The configuration control facilities
hall allow access to the objects in a version group by the use of an
ncomplete name.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 12

Editor grid requirement

.6 Grid facilities To assist in the positioning of entities on a diagram,
e user may turn on a grid in either centimetres or inches, via an

ption on the control panel. Initially, the grid is off. The grid may be
urned on and off at any time during an editing session and can be
ggled between inches and centimetres at any time. A grid option
ill be provided on the reduce-to-fit view but the number of grid
ines shown will be reduced to avoid filling the smaller diagram
ith grid lines.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 13

Requirement problems

l Database requirements includes both conceptual and
detailed information
• Describes the concept of configuration control facilities

• Includes the detail that objects may be accessed using an incomplete
name

l Grid requirement mixes three different kinds of
requirement
• Conceptual functional requirement (the need for a grid)

• Non-functional requirement (grid units)

• Non-functional UI requirement (grid switching)

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 14

Structured presentation

2.6 Grid facilities
2.6.1 The editor shall provide a grid facility where a

matrix of horizontal and vertical lines provide a
background to the editor window. T his grid shall be
a p assive grid where the alignment of entities is the
user's responsibility.
Rationale: A grid helps the user to create a tidy
diagram with well-spaced entities. Although an active
grid, where entities 'snap-to' grid lines can be useful,
the positioning is imprecise. The user is the best person
to decide where entities should be positioned.

Specification: ECLIPSE/WS/Tools/DE/FS Section 5.6

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 15

Detailed user requirement

3.5.1 Adding nodes to a design
3.5.1.1 The editor shall provide a f acility for users to add nodes of a specified type to their

design.

3.5.1.2 The sequence of actions to add a node should be as follows:

1. The user should select the type of node to be added.

2. The user should move the cursor to the approximate node position in the diagram and
indicate that the node symbol should be added at that point.

3. The user should then drag the node symbol to its final position.

Rationale: The user is the best person to decide where to position a node on the diagram.
This approach gives the user direct control over node type selection and positioning.

Specification: ECLIPSE/WS/Tools/DE/FS. Section 3.5.1

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 16

Guidelines for writing requirements

l Adopt a standard format and use it for all
requirements

l Use language in a consistent way. Use “will” for
mandatory requirements, “should” for desirable
requirements

l Use text highlighting to identify key parts of the
requirement

l Use computer jargon sparingly

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 17

System Requirements:
Functional and non-functional requirements

l Functional requirements
• Statements of services the system should provide, how the system

should react to particular inputs and how the system should behave in
particular situations.

l Non-functional requirements
• constraints on the services or functions offered by the system such as

timing constraints, constraints on the development process, standards,
etc.

l Domain requirements
• Requirements that come from the application domain of the system

and that reflect characteristics of that domain

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 18

Functional requirements

l Describe functionality or system services

l Depend on the type of software, expected users and
the type of system where the software is used

l Functional user requirements may be high-level
statements of what the system should do but
functional system requirements should describe the
system services in detail

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 19

Examples of functional requirements

l The user shall be able to search either all of the initial
set of databases or select a subset from it.

l The system shall provide appropriate viewers for the
user to read documents in the document store.

l Every order shall be allocated a unique identifier
(ORDER_ID) which the user shall be able to copy to
the account’s permanent storage area.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 20

Requirements imprecision

l Problems arise when requirements are not precisely
stated

l Ambiguous requirements may be interpreted in
different ways by developers and users

l How would you interpret the phrase “appropriate
viewers” if you saw it in an SRS?
• User intention - special purpose viewer for each different document

type

• Developer interpretation - Provide a text viewer that shows the
contents of the document

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 21

Requirements completeness and consistency

l In principle requirements should be both complete and
consistent

l Complete
• They should include descriptions of all facilities required

l Consistent
• There should be no conflicts or contradictions in the descriptions of

the system facilities

l In practice, it is impossible to produce a complete and
consistent requirements document

l Do you agree? Why or why not?

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 22

Non-functional requirements

l Define system properties and constraints e.g.
reliability, response time and storage requirements.
Constraints are I/O device capability, system
representations, etc.

l Process requirements may also be specified mandating
a particular CASE system, programming language or
development method

l Non-functional requirements may be more critical
than functional requirements. If these are not met, the
system is useless

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 23

Non-functional classifications

l Product requirements
• Requirements which specify that the delivered product must behave in

a particular way e.g. execution speed, reliability, etc.

l Organisational requirements
• Requirements which are a consequence of organisational policies and

procedures e.g. process standards used, implementation requirements,
etc.

l External requirements
• Requirements which arise from factors which are external to the

system and its development process e.g. interoperability requirements,
legislative requirements, etc.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 24

Non-functional requirement types

Performance
requirements

Space
requirements

Usability
requirements

Efficiency
requirements

Reliability
requirements

Portability
requirements

Interoperability
requirements

Ethical
requirements

Legislative
requirements

Implementation
requirements

Standards
requirements

Delivery
requirements

Safety
requirements

Privacy
requirements

Product
requirements

Organizational
requirements

External
requirements

Non-functional
requirements

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 25

on-functional requirements examples

l Product requirement
• 4.C.8 It shall be possible for all necessary communication between the APSE

and the user to be expressed in the standard Ada character set

l Organisational requirement
• 9.3.2 The system development process and deliverable documents shall

conform to the process and deliverables defined in XYZCo-SP-STAN-95

l External requirement
• 7.6.5 The system shall not disclose any personal information about

customers apart from their name and reference number to the operators of the
system

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 26

Goals and requirements

l Non-functional requirements may be very difficult to
state precisely and imprecise requirements may be
difficult to verify.

l Goal
• A general intention of the user such as ease of use

l Verifiable non-functional requirement
• A statement using some measure that can be objectively tested

l Goals are helpful to developers as they convey the
intentions of the system users

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 27

Examples

l A system goal
• The system should be easy to use by experienced controllers and

should be organised in such a way that user errors are minimised.

l A verifiable non-functional requirement
• Experienced controllers shall be able to use all the system functions

after a total of two hours training. After this training, the average
number of errors made by experienced users shall not exceed two per
day.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 28

Requirements measures
Property Measure
Speed Processed transactions/second

User/Event response time
Screen refresh time

Size K Bytes
Number of RAM chips

Ease of use Training time
Number of help frames

Reliability Mean time to failure
Probability of unavailability
Rate of failure occurrence
Availability

Robustness Time to restart after failure
Percentage of events causing failure
Probability of data corruption on failure

Portability Percentage of target dependent statements
Number of target systems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 29

Requirements interaction

l Conflicts between different non-functional
requirements are common in complex systems

l Spacecraft system
• To minimise weight, the number of separate chips in the system

should be minimised

• To minimise power consumption, lower power chips should be used

• However, using low power chips may mean that more chips have to be
used. Which is the most critical requirement?

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 30

Domain requirements

l Derived from the application domain and describe
system characteristics and features that reflect the
domain

l May be new functional requirements, constraints on
existing requirements or define specific computations

l If domain requirements are not satisfied, the system
may be unworkable

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 31

Library system domain requirements

l There shall be a standard user interface to all
databases which shall be based on the Z39.50
standard.

l Because of copyright restrictions, some documents
must be deleted immediately on arrival. Depending on
the user’s requirements, these documents will either
be printed locally on the system server for manually
forwarding to the user or routed to a network printer.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 32

Train protection system

l The deceleration of the train shall be computed as:
• Dtrain = Dcontrol + Dgradient

where Dgradient is 9.81ms2 * compensated
gradient/alpha and where the values of 9.81ms2 /alpha
are known for different types of train.

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 33

Domain requirements problems

l Understandability
• Requirements are expressed in the language of the application domain

• This is often not understood by software engineers developing the
system

l Implicitness
• Domain specialists understand the area so well that they do not think

of making the domain requirements explicit

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 34

System requirements

l More detailed than user requirements

l Serve as a basis for the design document

l May be used as part of the system contract

l System requirements may be expressed using system
models discussed in Chapter 7

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 35

Requirements and design

l In principle, requirements should state what the
system should do and the design should describe how
it does this

l In practice, requirements and design are inseparable
• A system architecture may be designed to structure the requirements

• The system may inter-operate with other systems that generate design
requirements

• The use of a specific design may be a domain requirement

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 36

The system requirements document

l Also known as the SRS (systems requirement
specification)

l The requirements document is the official statement
of what is required of the system developers

l Should include both a definition and a specification of
requirements

l It is NOT a design document. As far as possible, it
should set of WHAT the system should do rather than
HOW it should do it

Users of a
requirements
document

Use the requirements to
develop validation tests for
the system

Use the requirements
document to plan a bid for
the system and to plan the
system development process

Use the requirements to
understand what system is to
be developed

System test
engineers

Managers

System engineers

Specify the requirements and
read them to check that they
meet their needs. They
specify changes to the
requirements

System customers

Use the requirements to help
understand the system and
the relationships between its
parts

System
maintenance

engineers

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 38

equirements document requirements

l Specify external system behaviour

l Specify implementation constraints

l Easy to change

l Serve as reference tool for maintenance

l Record forethought about the life cycle of the system
i.e. predict changes

l Characterise responses to unexpected events

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 39

IEEE requirements standard

l Introduction

l General description

l Specific requirements

l Appendices

l Index

l This is a generic structure that must be instantiated for
specific systems

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 40

Requirements document structure

l Introduction

l Glossary

l User requirements definition

l System architecture

l System requirements specification

l System models

l System evolution

l Appendices

l Index

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 41

Key points

l Requirements set out what the system should do and
define constraints on its operation and implementation

l Functional requirements set out services the system
should provide

l Non-functional requirements constrain the system
being developed or the development process

l User requirements are high-level statements of what
the system should do

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 5 Slide 42

Key points

l User requirements should be written in natural
language, tables and diagrams

l System requirements are intended to communicate the
functions that the system should provide

l A software requirements document is an agreed
statement of the system requirements

